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Abstract—Isolating fine-grained business functionalities by
boundaries into entities called microservices is a core activity
underlying microservitization. We define microservitization as
the paradigm shift towards microservices. Determining the
optimal microservice boundaries (i.e. microservice granularity)
is among the key microservitization design decisions that
influence the Quality of Service (QoS) of the microservice ap-
plication at runtime. In this paper, we provide an architecture-
centric approach to model this decision problem. We build on
ambients — a modelling approach that can explicitly capture
functional boundaries and their adaptation. We extend the
aspect-oriented architectural meta-modelling approach of am-
bients — AMBIENT-PRISMA — with microservice ambients.
A microservice ambient is a modelling concept that treats
microservice boundaries as an adaptable first-class entity. We
use a hypothetical online movie subscription-based system
to capture a microservitization scenario using our aspect-
oriented modelling approach. The results show the ability of
microservice ambients to express the functional boundary of a
microservice, the concerns of each boundary, the relationships
across boundaries and the adaptations of these boundaries.
Additionally, we evaluate the expressiveness and effective-
ness of microservice ambients using criteria from Architec-
ture Description Language (ADL) classification frameworks
since microservice ambients essentially support architecture
description for microservices. The evaluation focuses on the
fundamental modelling constructs of microservice ambients
and how they support microservitization properties such as
utility-driven design, tool heterogeneity and decentralised gov-
ernance. The evaluation highlights how microservice ambients
support analysis, evolution and mobility/location awareness
which are significant to quality-driven microservice granularity
adaptation. The evaluation is general and irrespective of the
particular application domain and the business competencies
in that domain.

Keywords-microservices; meta-modelling; granularity; ambi-
ents

I. INTRODUCTION

Microservitization is a shift towards transforming ser-
vices/components into microservices — more fine-grained
and autonomic services that isolate fine-grained business
functionalities by boundaries and interact through standard-
ised interfaces [1]. Microservitization is rapidly increasing;
many distributed and cloud-based systems have evolved

from monolithic to microservices architectures. Examples of
large-scale applications which adopt microservices include
Netflix [2], Amazon [3] and Uber [4]. Netflix for example
receives around one billion streaming requests everyday [5],
thereafter routing each request through an API to multiple
back-end microservices [2]. Each microservice encapsulates
a fine-grained business functionality.

Isolating business functionalities aims at enhancing the
autonomy and replaceability of the individual microser-
vice(s) [1]. This in turn can enhance decentralised gover-
nance of the microservices, where each microservice en-
capsulates fine-grained business functionality. Microservi-
tization hopes to enhance the flexibility of large scale
distributed applications to make them better cope with
operation, maintenance and evolution uncertainties. Such
flexibility promises improvement to the maintenance costs
and quality of service (QoS) provision to system users.

With the hype and increased interest of software industries
in microservices, there is still a general lack of systematic
approaches that model microservices design decisions, in-
cluding deciding the optimal microservice boundaries —
optimal microservice granularity level. Bridging this gap is a
prerequisite for advancing the adoption of this paradigm and
for facilitating design and runtime analysis that support its
operation, maintenance and evolution. In [1] we formulated
this design decision as a runtime decision problem and we
set a roadmap for a self-adaptive solution to it. “Splitting too
soon can make things very difficult to reason about. It will
likely happen that you (the software architect) will learn in
the process. [6].”

The runtime context is therefore more suitable to this
problem since much of the uncertainties that relate to the
choice of the optimal level of granularity and the expected
behaviour of the system can not be fully captured at design
time [1]. In this paper, we call for a systematic, flexible and
expressive architectural modelling and analysis support for
representing microservices and managing their granularities
to model this decision problem.A systematic architecture-
centric approach for modelling microservice granularity pro-
vides the appropriate level of abstraction for managing this
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runtime decision problem. In particular, this approach has
the promise to scale the analysis of this problem. Reasoning
about microservice granularity at the architectural rather than
code level can facilitate analysis of systems that exhibit
heterogeneity and decentralised governance — as is the case
with microservice applications. The heterogeneity of tools
supporting microservice architectures calls for flexibility in
modelling the granularity decision problem in a technology
independent way. Architectural modelling of microservices
in particular is a pressing issue due to the lack of standardi-
sation for this young research field [7]. Although intuitively
the main trigger for microservitization is “people finding
they have a monolith that’s too big to modify and deploy
[8]”, we have not encountered any architectural modelling
support in the literature to manage the adaptation from the
“too big” or “too small” services to the “good enough” level
of granularity.

The novel contribution of this paper is an architecture-
centric modelling concept for microservices. The concept
extends ambients [9], [10] (explained in Section II) by
introducing microservice ambients. Microservice ambients
provide the primitives for modelling microservices and and
treat microservice boundaries as adaptable first-class entities.
Microservice ambients use “aspects” to define the adaptation
behaviour needed to support changes in granularity at run-
time. Aspects flexibly separate cross-cutting concerns (and
thereby scope) of each boundary. We introduce the granu-
larity adaptation aspect to help define the runtime triggers
for granularity adaptation to be used as the mciroservice(s)
are monitored at runtime. When any of these triggers is
invoked, the graphical notation of microservice ambients
provides architectural modelling support to express the can-
didate solution for granularity adaptation. The transition (by
merging or decomposing a microservice ambient(s)) from an
initial architecture to a chosen candidate is captured in the
granularity adaptation aspect of the microservice ambient.

We use a hypothetical online movie subscription-based
system (Section III) to demonstrate the flexibility and ex-
pressiveness of the modelling approach in capturing mi-
croservitization scenarios (Section VI). We evaluate our
modelling approach using properties from ADL classifica-
tion frameworks [11]–[13] since microservice ambients es-
sentially support architecture description for microservices.
The evaluation focuses on the fundamental modelling con-
structs of microservice ambients and how they support mi-
croservitization properties such as utility-driven design, tool
heterogeneity and decentralised governance. The evaluation
also highlights how microservice ambients support runtime
analysis, mobility and location awareness; all of which
are significant to quality-driven microservice granularity
adaptation. The evaluation is general and irrespective of the
particular application domain and the business competencies
in that domain.

II. BACKGROUND

Ambient-PRISMA [14] extends traditional architectural
elements with a new kind of element called an ambient
inspired from Ambient Calculus [9]. Ambients are architec-
tural elements that “coordinate a boundary, model the notion
of location and provide mobility support to other archi-
tectural elements [10].” Ambients locate other architectural
elements in their boundary and manage them. Therefore,
ambients can be utilised as runtime modelling analysis tools,
where the parent ambient manages the interaction between
its children and exterior architectural elements. For example,
in Figure 6.a the MovieReview ambient is the parent of
RevPolM and RevInfoReqM microservice ambients, so any
access to these children ambients from outside the parent
ambient is managed by it.

AMBIENT-PRISMA separates the behaviour of cross-
cutting concerns through a set of aspects. Aspects give
a white-box view of each ambient’s boundary. Ambient-
PRISMA is supported by a specification language that allows
an aspect-oriented description of the software architecture.
Crucially, this specification language provides just enough
insight into the behaviour (i.e. concerns) of each ambient
to model an architecture expressively — capturing the
behaviour within ambient and the relationships across am-
bients.The aspects communicate through weaving relation-
ships. Each aspect fulfils its concern by utilising interface
services. Many aspects can utilise the same interface service
if need be. Ambients publish interface services through
ports. Attachments represent the communication channel
between a port of an ambient and any architectural element
located inside or outside that ambient. The interface services
that we utilise for the granularity problem are [10, p8,p9]:

• newAmbient creates a new ambient by providing the
name of the ambient as a parameter.

• addChild adds a new architectural element in the
boundary of an ambient.

• removeChild removes an architectural element that is
located in the boundary of an ambient.

III. MOTIVATING EXAMPLE: MICROSERVICE
BOUNDARIES

We use a hypothetical online movie streaming
subscription-based system to demonstrate the significance of
systematic, flexible, expressive architectural modelling and
analysis support to the microservice granularity problem.

System users are allowed to view movies on multiple
browsers upon providing their personal information and
setting up a subscription scheme. Personal information about
system users and about subscription sales are stored in a
local database. Displayed media content is regulated by
age restriction policies. The system also allows its users to
view and upload movie reviews. Reviews can be numeric
ratings and/or written reviews. Written reviews are regulated



according to policies defined by the firm before they are
made accessible to other system users. The system architects
and developers are currently based in a different department
(or “silo”) from the regulators that define user review and
movie content policies. This brief specification of the system
is inspired by the Promise requirement repository [15].

For illustration we assume that the architects adopt a
microservitization approach when building this system. They
henceforth need to address the microservice granularity chal-
lenge. To address this challenge, we assume the architects
need to construct a solution space of architectures with
varying granularity levels. We assume the intuition of the
architects when constructing these candidates is to utilise
domain-driven design concepts, such that each bounded
context represents an independent area of the domain (in-
spired by [16], [17]). Independence here implies that this
domain has consistent rules “ in terms of team organization,
usage within specific parts of the application, and physical
manifestations such as code bases and database schemas
[17]” and these rules only apply within that bounded context.
Each modular boundary represents a single microservice
within a bounded context. The intuition here is that a
modular boundary encapsulates more concretely the related
functionalities that belong to the same bounded context.

Furthermore, we assume the architects define decomposi-
tion rules such as XOR and OR to represent the relationships
between the respective modular boundaries. When presented
to stakeholders, these intuitions can raise the following
challenges (Cs) (among others):

• C1: What is the difference between a “modular bound-
ary” and a “bounded context”?

• C2: How does the interaction between modular bound-
aries differ for XOR and OR decompositions?

IV. PROBLEM DEFINITION

Reflecting on Section III, we describe the requirements
of a systematic architecture-centric approach to model mi-
croservice granularity:

• Requirement 1: The approach shall explicitly capture
the primitives for granularity adaptation — microser-
vice boundaries — as first-class entities. Boundaries are
primitives for granularity adaptation because they are
the effectors/actuators of granularity adaptation design
decisions.

• Requirement 2: The approach shall promote flexibility
and expressiveness in the modelling microservice gran-
ularity behaviour, thereby supporting runtime analysis
of this behaviour. Crucially this analysis needs to op-
timise for autonomy of computation and independent
deployability of the microservices. The objective of
the analysis is to avoid aggressive decomposition of
functionality.

The concept of ambients is particularly attractive for
the requirements above. We extend ambients by introducing

a microservice ambient type. A microservice ambient as
an architectural element allows modelling the boundary of
computation of a microservice (Requirement 1, addressing
C1). Aspects, weaving relationships, ports and attachments
model the impacts on the concerns and relationships when
these boundaries are adapted. We enrich the microservice
ambient with a granularity adaptation aspect to express
microservitization scenarios as a set of distinct conditions
and decomposition/merging steps. This in turn facilitates
runtime analysis for different quality trade-offs for different
granularity levels of a microservice ambient (Requirement 2,
addressing C2)). Capturing granularity adaptation behaviour
as a transactional set of decomposition/merging steps to
facilitate runtime analysis is a novel contribution of this
work. Other ADLs we have examined in the literature either
assume static modelling of the architectural elements or
provide little support for their evolution (e.g. by inheritance
or component replication); we discuss this further in Section
VI.

V. MICROSERVICE AMBIENT DESCRIPTION

A microservice ambient uses meta-services and meta-
properties to reflect on its behaviour and invoke meta-
services at runtime. These meta-properties and meta-services
are defined in the meta-model [10]. A microservice ambient
can encapsulate further microservice ambients in a hierar-
chical manner. As long as the autonomy of computation
(and thereafter independent deployability) are enforced by
the boundary, it is fair to assume each microservice ambient
in a hierarchy will be instantiated as a concrete microser-
vice. Nevertheless, each microservice will be of a different
granularity level, depending on the hierarchy position of the
microservice ambient instantiated.

Figure 1. White-box view of a microservice ambient

A microservice ambient can coordinate with its parent
ambient (or microservice ambient) to fulfil the behaviour de-
fined by its aspects. Additionally, the microservice ambient
can act as an autonomic element that employs the phases
of the MAPE-K loop to model the runtime granularity
adaptation [18]. The MAPE-K loop defines the stages for



an autonomous element to plan the adaptation of a running
system: monitoring the running system, analysing monitored
data, planning the adaptation actions, executing the plan on
the running system, and finally updating the knowledge base
of the autonomous element for future planning optimisation.
However, in this paper, we focus more on providing architec-
tural modelling support for the decision problem rather than
stating a decision-making method for choosing a granularity
adaptation candidate.

A microservice ambient must have at least 4 aspects to
support architectural modelling for granularity: a granularity
adaptation aspect (our novel contribution), a mobility aspect
(inherited from ambients [10]), a coordination aspect (inher-
ited from ambients [10]) and a distribution aspect (inherited
from ambients [10]). We elaborate on the role of each aspect
below. The overall white-box view of a microservice ambient
is shown in Figure 1.

• Granularity adaptation aspect: This aspect is respon-
sible for describing the behaviour of how a microser-
vice ambient adapts its granularity. The aspect utilises
the newAmbient,addChild,removeChild,addAttachment
and removeAttachment interface services inherited from
the definition of ambients (Section II). At runtime, the
granularity adaptation aspect monitors parameters (e.g.,
change rate, failure rate) indicating QoS. It then utilises
the inherited interface services to trigger granularity
adaptations in response to changes in the runtime
parameters.

• Mobility aspect: In the context of supporting granular-
ity adaptation, the mobility aspect allows microservice
ambients to enter or exit the boundaries of a parent
microservice ambient.

• Coordination aspect: At a high level, the coordina-
tion aspect redirects calls from external architectural
elements to internal architectural elements inside an
ambient. It also manages the redirection of calls from
internal architectural elements to external ones.

• Distribution aspect: The role of the distribution aspect
is to make an ambient aware of its hierarchical position
by storing the name of its parent ambient. The prede-
fined weaving relationship between the mobility and
distribution aspect ensures the distribution aspect man-
ages this awareness when adaptations in the hierarchy
are triggered by the mobility aspect.

Microservice ambients inherit all the invariants imposed on
ambients [10]. The introduction of the granularity adapta-
tion aspect however introduces an extra invariant specific
to microservice ambients. All microservice ambients must
implement a granularity adaptation aspect whose concern
is granularity (invGranAdapt). In addition, the following
weaving and port constraints are introduced for the microser-
vice ambient:

• The GranAdapt aspect definition implement an IMoni-

Figure 2. GranAdapt aspect template specification

tor interface to define the runtime monitoring require-
ments of the granularity adaptation aspect. Publishing
and requesting the services of this interface indicates
the need for 2 additional ports in a microservice ambi-
ent:

– An InMonitorPort is required to publish/request
the runtime monitoring interface service to archi-
tectural elements inside the microservice ambient.

– An ExMonitorPort is required to publish/request
the monitoring service to architectural elements
outside the microservice ambient. The ExMoni-
torPort of children microservice ambients is con-
nected to the InMonitorPort of its parent microser-
vice ambients.

• The granularity adaptation aspect introduces a weaving
relationships between itself and the distribution aspect.

A. GranAdapt Aspect and Microservice Ambient Templates

We have defined different templates that provide guidance
for architects when defining a microservice ambient and its
granularity adaptation behaviour. Architects can then instan-
tiate these templates according to specific microservitization
scenarios. A template of the granularity adaptation aspect is
outlined in Figure 2, using the Ambient-PRISMA Textual
Language that is based on a variant of dynamic logic [19].
The list of architectural elements which a microservice am-
bient is allowed to monitor is stored in set called Sources and
the size of the set is stored in SourceNum. Each Source stores
the architectural element located in an ambient, its name and
the corresponding Parameters monitored for it. A Parameter
is characterised by its name, ParameterKind and sequence



of recorded values. The recordReading IMonitor interface
service receives parameters readings from an architectural
element inside an ambient implementing this service. The
getReading IMonitor interface service publishes the latest
reading recorded for a parameter of an architectural element.
External microservice ambients can request readings for
architectural elements that they can not directly commu-
nicate with. The italicised terms are variability points in
the template, which can be instantiated depending on the
followed microservitization scenario.

Figure 3. Microservice ambient template specification

B. Architectural Configuration Specification

A template of the microservice ambient importing the
granularity adaptation aspect is outlined in Figure 3, also us-
ing the Ambient-PRISMA Textual Language. This template
includes all the invariants a microservice ambient needs to
fulfil. The highlighted lines refer to invGranAdapt invariant.
Because it is a template, Figure 3 does not specify the
architectural elements within the microservice ambient or
the attachments between them [10]. Moreover, it is assumed
that the attachments between a microservice ambient and its
children architectural elements is automatically managed by
the runtime environment of the microservice ambient [10].

Figure 4 illustrates a possible aspect type that uses the
template in Figure 2. Intuitively, it is motivated by clustering
simultaneously changing architectural elements within the
same microservice ambient. Here the number of attachments
(AttNumber)across children architectural elements of a mi-
croservice ambient (mem1 and mem2) is the indicator of
simultaneous change. The parent microservice ambient (self )
utilises the getReading interface service for this monitoring.
Where simultaneous change occurs in the number of attach-
ments within mem1 and mem2, this triggers merging mem1
and mem2 into a single microservice ambient.

Figure 2 defines merging as a transaction, allowing the
rollback of merging and decomposition in case of error.

These transactions utilise the interface services from IMon-
itor and establish the changes in the ambient hierarchy
required when a child microservice ambient enters or leaves
its parent ambient. Crucially, these changes assume that only
sibling microservice ambients are merged or decomposed. If
a transaction is invoked on non-sibling microservice ambi-
ents, the services utilised in the transactions and the triggers
in Figure 4 would have been different. The Valuations part
of Figure 4 updates the list of microservice architectural
elements that self would have to monitor after merging. This
involves removing mem1 and mem2 from the Sources of self
and replacing them with the newly formed microservice am-
bient cluster. Once we have the types of our architecture, we

Figure 4. Clustering aspect in microservitization scenario

create different configurations by instantiating the elements
including ambients and defining the ambient hierarchies.
Figure 6.a illustrates a possible instantiation — architectural
configuration — of the microservice ambient template. A
textual reflection of this graphical architectural configuration
is shown in Figure 5. Movie Review, RevInfoReqM and
RevPolM are all instances of the microservice ambient
ReviewFR. The constructor instantiating each microservice
ambient instance takes as a parameter its parent’s name.

Referring to Figure 6.a, MovieReview is the highest level
microservice ambient therefore its constructor does not take
any parameters. In reality however, this microservice ambi-
ent might reside within a larger ambient but for the purpose
of illustration we focus on this scope of the architectural con-
figuration. InfoReqDef1 and RevPolDef1 are instances of the
functional elements residing in RevInfoReqM and RevPolM
respectively. Because the runtime environment maintains
the attachments between the microservice ambient and its
children architectural elements, only attachments between
the children architectural elements need to be explicitly
configured. Therefore, only the attachment between RevIn-



foReqM and RevPolM is explicitly defined. Moreover, this
automatic runtime management of attachment ensures that
granularity adaptation is invoked reliably —- the attachments
are maintained correctly after the adaptation is invoked.

Both the template and configuration specifications are
defined at design time according to the microservitization
scenario (in this case clustering simultaneous changes to-
gether). At runtime, the transactions and valuations of the
instantiated aspects and the invariants of the instantiated am-
bients are executed and managed. The power of the triggers
in the granularity adaptation aspect can be extended such
that it controls runtime switching across different instances
of the granularity adaptation aspect, thereby changing the
theme of microservitization at runtime.

Figure 5. Possible architectural configuration using microservice ambient
instances

VI. EVALUATION

In this section we apply our microservice ambients to
model a microservitization scenarios [20], [21]. We then
evaluate our modelling approach for flexibility, expressive-
ness and support for runtime analysis using properties from
[11]–[13].

A. Clustering for Localising change

Problem Context: There are cases where sets of func-
tional elements change simultaneously over time. Figure
6.a exemplifies such a scenario. The change events in the
RevInfoReqM (managing the user input requirements when
uploading a review) and RevPolM (managing the regulations
on the contents of the uploaded reviews) are monitored by
the parent MovieReview ambient. The attachment between
the ExM (ExMonitor) ports of the sub-ambients and the
InM (InMonitor) port of the parent ambient enforces this
monitoring.

Problem: Localising change and reducing its ripple effects
through granularity adaptation.

Main driving forces:
• Reducing logical dependencies across microservice

boundaries, thereby enhancing the autonomy of
each individual microservice and the maintainabil-
ity/evolvability of the overall architecture.

• Enhancing the productivity and independence of the
team responsible for a microservice.

Invoking granularity adaptation: In Figure 6.b, the related
functional elements are now encapsulated by a single mi-
croservice ambient after the granularity adaptation is ap-
plied. The GranAdapt aspect definition of this application
of the scenario is shown in Figure 4. Reflecting on the
number of attachments, there is a total of 9 attachments in
Figure 6.a. After invoking the granularity adaptation aspect,
there is a total of 8 attachments within the MovieReview
microservice ambient in Figure 6.b. This reduction in the
number of attachments is an indicator of a slight reduction
in the logical dependencies when this adaptation is invoked.
Although reducing one attachment can seem insignificant
at the modelling level, it can translate to a significant
reduction in deployment costs at the underlying code level
and subsequent reduction in maintenance and testing efforts
over time.

Further analysis can help elaborate the merging decision
further. Such analysis can optimise for balancing between
the reduction in logical dependencies and the accompanied
increase in overheads. Examples of overheads include the
cost of merging/decomposing the underlying code, addi-
tional network link costs (in the case of decomposition), and
additional data format translation (in the case of merging).

Logical dependency reduction can enhance the produc-
tivity of the team managing the microservice. It particular,
the reduction easier for identifying the right expertise that
can best deal with the design, development and utility-
driven evolution of the microservice, as these concerns to big
extent are realised in the “glues” between the microservices
— the logical dependencies. Allocating the right expertise
potentially reduces long-term social and technical debt in
large-scale, distributed systems. This is the case for many
microservice applications.

B. Qualitative Evaluation

1) Effectiveness and Expressiveness of Modelling: We
use properties from the ADL classification framework in
[11] to evaluate the expressiveness and effectiveness of
microservice ambients in providing systematic architectural
support for modelling microservice boundaries (Require-
ment 1). ADLs are deemed crucial to architecture-centric
modelling. We evaluate the expressiveness and effectiveness
of microservice ambients using properties from an ADL
classification framework as microservice ambients can es-
sentially support an ADL that realises the concerns of mi-
croservices. We evaluate microservice ambients irrespective
of the particular application domain and the business com-
petencies in that domain, therefore we use this framework
as opposed to the more recent framework presented in [22]
which comprises the domain and business aspects of mod-
elling architectures. We elicited the classification framework



(a) Problem Context (b) Solution

Figure 6. Merging for Change Clustering

properties which are relevant to microservitization to make
the evaluation more focussed.

According to [11], the essential elements that an ADL
must explicitly model are components, connections, and
their architectural configurations. Components (microservice
ambients in our case) are the unit of computation in an
ADL. Connections in turn model the relationships across
these components. Architectural configurations represent the
overview of the architecture comprising both components
and connections [11]. Architectural configurations therefore
depict the impact of design decisions regarding granularity
on the overall microservice architecture.

Component modelling:

• Component Interface: The interface of a component
defines computational commitments a component can make
and constraints on its usage [11]. Microservice ambients
have commitments regarding the scope of runtime moni-
toring for each microservitization scenario. A microservice
ambient also has commitments on which architectural ele-
ments it can control when triggering granularity adaptation.
The monitoring commitments are captured by the Sources
parameter of the granularity adaptation aspect. In Figure
4, the Sources parameters only include the children of
the microservice ambient importing those aspect instances.
For example, the instantiation of the Sources parameter
in the granularity adaptation aspect of the MovieReview
microservice ambient in Figure 6.a would include only
RevInfoReqM and RevPolM. On the other hand, the commit-
ments of control are captured by the input to the MERGE
and DECOMPOSE transactions of the granularity adaptation
aspect. For example, the input to the MERGE transaction in
Figure 4 would be RevInfoReqM and RevPolM referring to
Figure 6.a.
• Component Evolution: We introduce the granularity
adaptation aspect to support boundary evolution of a mi-
croservice ambient. Figure 6 demonstrates how the gran-
ularity adaptation aspect can enforce evolution of the ar-

chitecture to optimise for multiple quality drivers. This
is a novelty compared to absent or limited support for
component evolution in other examined ADLs. MetaH [23]
and UniCon [24] for example do not support component
evolution thereby they can’t be used to reason about dynamic
problems such as microservice granularity. Other ADLs
such as ACME [25], Rapide [26] and C2 [27] support
component evolution by sub-typing, which is a less suitable
counterpart to decomposition/merging which we support
using transactions in the granularity adaptation aspect.
• Component non-functional properties: Localising
change addresses the changeability and replaceability non-
functional properties of the architecture. Since both proper-
ties can be encoded in the granularity adaptation aspect, our
contribution supports modelling distinct quality trade-offs
related to different levels of microservice granularity. Since
microservitization is ultimately a utility-driven exercise [1],
modelling non-functional properties is particularly signifi-
cant to microservitization since it allows reasoning about the
impact of different microservitization scenarios on utility.

Connection modelling:
• Connection types: Microservice ambients make explicit
use of two types of connection: attachments and weavings.
Attachments model the relationship across microservice
ambients (and other architectural elements). Therefore, at-
tachments are central to analysing the impact of adapting a
microservice boundary. Weavings on the other hand enforce
reliable granularity adaptation. The weaving relationship
we introduce between the granularity adaptation aspect and
the distribution aspect ensures that a granularity adaptation
triggered by the granularity adaptation aspect is reflected
in the hierarchy of ambients managed by the distribution
aspect.

Architectural Configuration Modelling:
• Configuration Understandability: The graphical support
for microservice ambients enables visualising the overall
configuration. In particular, the graphical support is detailed



enough to express granularity adaptation in action. However,
it is still abstract enough to hide implementation details
of this adaptation. On the other hand, the textual support
for modelling the configuration (Figure 5) complements the
graphical support and sharpens the overall understandability
of the modelling approach.
• Configuration compositionality and scalability: A com-
positional ADL supports describing architectural configura-
tions at different levels of detail [11]. The ambient approach
in general allows hierarchical composition of architectural
elements; it supports compositionality. Support for compo-
sitionality facilitates iterative analysis of microservitization
scenarios. For example, the internals of the ReviewRegula-
tion ambient in Figure 6.b can be further analysed to invoke
granularity adaptation within this microservice ambient.
• Configuration refinement and traceability: An ADL
must enable consistent mapping between its graphical no-
tation and an executable system [11]. An aspect specifica-
tion can be automatically mapped to a runnable modelling
construct using AMBIENT-PRISMANET middleware [10]
rendering an implementable runtime model of the solution
space of this decision problem.
• Configuration heterogeneity: It is essential for ADLs to
facilitate modelling architectures that employ varying tech-
nological choices (e.g., different programming languages)
[11]. The aspect-oriented nature of microservice ambients
supports such heterogeneous modelling. Crucially, the gran-
ularity adaptation aspect captures granularity adaptation
behaviour independent of the technologies used within the
architectural elements involved in Sthis behaviour. Support
for modelling heterogeneous configurations aligns with the
decentralised governance enforced by microservitization [1].
• Configuration evolvability and dynamism: ADLs need
to support incremental addition, removal, replacement, and
reconnection of components and connections in a config-
uration [11]. The MERGE and DECOMPOSE transactions
of the granularity adaptation aspect provide reliable support
for this dynamism — a novelty in our work. ADLs such
as Darwin [28] and [26] support reconnection, addition
and removal of components and connectors. However, the
reliability of these changes are not ensured.
• Configuration constraints: An ADL needs to model
configuration-wide dependencies in addition to component
constraints [11]. Configuration constraints are supported
by attachments, since they depict the dependencies across
microservice ambients. Support for defining configuration
constraints is essential to capturing the impact of different
microservitization drivers (e.g., enhancing team productivity
and architecture changeability) on the overall architecture.
• Configuration non-functional properties: Analogous to
component non-functional properties, an ADL needs to sup-
port representing configuration-wide non-functional proper-
ties [11]. We support this by providing a template of the
microservice ambient. Each architectural configuration in

turn instantiates this template according to the required non-
functional properties.

2) Facilitating Design Time and Runtime Analysis: We
use properties from [12], [13] to evaluate the support that
microservice ambients provide for runtime analysis of gran-
ularity (Requirement 2). In this section we illustrate the
significance of each feature in relation to runtime reasoning
about the microservice granularity problem and how it is
supported in the microservice ambient approach.

• Location: Location refers to space where an architectural
element is allowed to move. This is significant to defining
the scope of the solution space in the granularity prob-
lem. Location is enforced by the Sources parameter of the
granularity adaptation aspect. The architectural elements that
a microservice ambient monitors determines the ambient’s
scope of knowledge about its runtime environment. This
knowledge in turn confines the space in which the children
of a microservice ambient can be decomposed or merged.
This support for location is novel to microservice ambients.
Although most ADLs examined (e.g. [25], [27], [28]) sup-
port logical location by allowing hierarchical compositions
of components and connectors, they do not capture explicitly
the space in the hierarchy where these components are
allowed to move, which is significant to the microservice
granularity problem.
• Location-awareness: Awareness of location is supported
by the distribution aspect imported by the microservice
ambient. In addition, the weaving relation between the
granularity adaptation aspect and the distribution aspect en-
sures that location awareness is maintained after granularity
adaptation decisions are executed. Location-awareness is a
co-requisite for supporting location; only if a microservice
ambient is aware of its position can it reason about the
candidate solution space for granularity adaptation.
• Unit of Mobility: This is the most central feature to
the granularity adaptation problem. Microservice ambients
by definition facilitate runtime reasoning about the unit
of mobility in a microservice architecture. The unit of
mobility refers to the “smallest entity of a model that is
allowed to move [12, p.2].” Support for component evolution
and configuration dynamism in the previous subsection are
both pre-requisites for reasoning about the unit of mobility.
In turn, it is the granularity adaptation aspect which de-
fines the unit of mobility when decomposing or merging
a microservice ambient. This explicit support for unit of
mobility is a novelty in this work compared to ADLs such
as ACME [25]. In these ADLs, invoking a modification
to an architectural configuration involves re-defining both
components and connectors. In microservice ambients, it
is the runtime environment which implicitly handles the
implications of granularity adaptation, allowing the unit of
mobility to be captured clearly as inputs to the decompose
and merge transactions (Figure 4).



VII. RELATED WORK

Microservice adopters have modelled microservice archi-
tectures using several concepts. Here we summarise the
concepts we examined, comparing and contrasting them to
the microservice ambient concept. The most common mi-
croservices modelling technique is domain-driven modelling
[16], [17]. The constructs of a domain model are the different
areas of concern within the system, where the refinement
of the boundaries between these areas is incremental, trig-
gered by knowledge updates about the system domain.
Microservice ambients provide a modelling approach for
microservice computation boundaries analogous to domain-
driven modelling for the system domain. Moreover, they
provide support for runtime reasoning about adapting these
boundaries with the granularity adaptation aspect.

In [29],a static microservice design model is proposed
which is made up of 5 dimensions: culture, organisation,
processes and tools, individual service (“micro-”) design
and overall architecture (“macro-”) design. Moreover, it is
possible to create a hierarchy of design models. Microservice
ambients enrich this design model with support for run-
time analysis. In particular, microservice ambients support
modelling granularity of the “micro-design” and facilitate
runtime reasoning about the “macro-design”.

The hexagonal architecture presented in [30] focuses on
the user-facing interfaces. For each business functionality,
several adaptors and interfaces are modelled depending on
the user type. Consequently, each of these adaptors and inter-
faces is mapped to a separate microservice. The hexagonal
architecture supports adaptability by adding and removing
adaptors and/or interfaces. The microservice ambients on
the other hand support adaptability in terms of changing
the scope of a business functionality by decomposing and
merging them. Our support for merging and decomposition
gives more insight into the behaviour of each microservice
ambient than with the hexagonal modelling approach.

Microservice functionality is modelled in [31] as mes-
sages which a microservice sends and/or receives. Different
communication patterns for different message syntaxes de-
fine the behaviour of a microservice sending or receiving
the message. However, modelling the concerns of each
microservice using aspects provides a more powerful, in-
depth definition of each microservice’s behaviour than the
light weight message-based approach.

VIII. CONCLUSION AND FUTURE WORK

In this paper we provide an architecture-centric approach
to model microservice granularity. In particular, we extend
the aspect-oriented meta-modelling approach of ambients
with microservice ambients — a modelling concept that
treats boundaries as an adaptable first-class entity of mi-
croservices. We demonstrate the use and significance of our
approach by applying it to a microservitization scenario of
a hypothetical online movie subscription-based system. The

application shows that microservice ambients can expres-
sively capture microservitization scenarios with distinct QoS
trade-offs — driving forces. Additionally, we evaluate the
microservice ambients using properties from ADL classifi-
cation frameworks. The evaluation shows the potential of
microservice ambients as an ADL for microservices.The
evaluation highlights how microservice ambients support
analysis, evolution and mobility/location awareness.

In our short term future work we aim to map the microser-
vice ambients (and their constituents) to concrete microser-
vice source code for the online movie subscription-based
system to assess the practicality of microservice ambients
as an ADL for microservices.

Due to their power in capturing distinct scenarios, mi-
croservice ambients can provide the primitives for devising
a catalogue of granularity adaptation patterns, each mapping
to different quality trade-offs. A related interesting research
direction is mapping each quality to underlying runtime
metrics reflecting it. For example, attachment number is
used as metric of logical dependency reduction in the
change clustering scenario — “pattern”. The total number
of architectural elements, the ratio of functional elements
to microservice ambients and the number of attachments
between functional elements are further examples of metrics
that can be mapped to the logical dependency reduction
quality.Furthermore, the granularity adaptation aspect can
be used to identify use cases of conflict among patterns.
For each conflict use case, related patterns can resolve
the conflict. One direction of future research therefore is
to cross-reference patterns into a directed graph that the
research community can use to form a pattern language for
microservices. There are already promising attempts at this
in the industrial community [32].
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