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1 Introduction

In the last decade bioinformatics has witnessed the emergence of high throughput ex-
perimental techniques allowing simultaneous measurements of activity of many genes,
thus giving a possibility to reconstruct gene regulatory networks from experimental
data. As a result, there has arisen interest in the properties of gene regulatory networks
and in the ways how such networks might have evolved.

One of the first noticed properties of gene regulatory networks was that the dis-
tribution of vertex degrees tends to correspond to the so-called power law (Barabasi
and Albert (1999), Sidow (1996), Watts and Strogatz (1998), Wolf et al (2002)), i.e.
the number of genes with k connections is roughly equal to ck�β for some constants
c and β. At the same time, gene networks also have properties that distinguish them
from random networks with the power law vertex degree distribution (e.g. gene net-
works possess some modularity, which can be detected by distribution of clustering co-
efficients (Ravasz et al (2002)) being different from distribution in random networks).
Consequently, several models for the possible evolution of gene regulatory networks
leading to networks with similar properties as those obtained in experiments have been
proposed (Chung et al (2003), Milo et al (2002), Ravasz et al (2002), Wagner (1994)).
At the same time, without doubt there is an underlying biological process governing
the evolution of networks, on basis of which several scenarios of network evolution
have been proposed (Babu et al (2004), Friedman and Hughes (2003), Teichmann et
al (2001)). Practically all of these scenarios are based on some process of gene du-
plication, preserving or duplicating some of the existing connections and losing some
other.

In Ravasz et al (2002) a semi-formal model of ’hierarchical’ networks has been
proposed, which generally involves replications of all network genes, preserving con-
nections within each of replicas as well as adding connections to one particular ’central
node’. It is shown (using simulation experiments) that such hierarchical networks have
vertex degree and clustering coefficient distributions similar to those of biological net-
works.

A more formal approach is taken in Chung et al (2003). Here the authors consider
two network evolution models: ’duplication model’ in which within each step exactly
one network node is duplicated, duplicating also all of its connections, and ’partial
duplication model’, with the difference from the duplication model being that each of
the duplicated nodes connections is duplicated just with some probability p. It is proven
that partial duplication model has the power law vertex degree distribution. Similarly as
in the model considered in Ravasz et al (2002) the networks studied here are undirected
graphs.

Besides that, already in 1994 a rather complicated duplication model has been anal-
ysed by Wagner (1994), before genome wide networks from high throughput experi-
ment results even became available. This model is somewhat similar to the full and to
the partial duplication models we are introducing here, the main difference is that in
each step exactly one gene is duplicated together with all of its connections. One of the
results obtained on the basis of this model is that the evolution of gene networks should
preferentially occur either by duplication of single genes or by duplication of all genes
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in a network, the preference for such a behaviour being consistent with experimental
observations in biology.

A number of authors have explored more biological approach to the problem, study-
ing known biological networks and trying to infer from them potential scenarios of
evolution. Usually in these cases a distinction is made between ’general’ genes and
the known transcription factors (as a consequence the networks considered are directed
graphs). Such approach was used, for example, in Babu et al (2004), where the authors
have analysed several known biological networks. Their results indicate that it is likely
that duplications of single genes or gene and transcription factor pairs have occurred in
the past together with duplication and random loss of their interactions.

More complicated network model (including also metabolic pathways) has been
considered in Teichmann et al (2001) and several possible duplication events have been
identified, although the results appear to be based on manual pathway analysis.

A scheme for single gene duplication has been also proposed in Sidow (1996), giv-
ing greater attention to duplication and loss of gene interactions. However, this is largely
a qualitative proposal, not directly based on quantitative observations. More recently
schemes of very similar type have been described by Thompson et al (2015), in this
case also discussing possible biological mechanisms that could lead to gene regulatory
changes. The paper also proposes several variants of pipelines of bioinformatics soft-
ware packages that could be used for analysis of gene regulatory changes (however,
without testing them either on real or on simulated data).

Comparatively recent review paper about underlining biological mechanisms for
evolution of gene regulation has been published by Romero et al (2012). In context of
next generation sequencing (NGS) data becoming available, Garfield and Wray (2010)
discusses how the known bioinformatics techniques could be used to study gene regu-
lation evolution from NGS data (however, also without presenting concrete user cases).

One of the first attempts to use real experimentally obtained data sets to study evo-
lutionary changes in gene regulation is probably by Friedman and Hughes (2003).
The authors have analysed several biological networks (C.elegans, Drosophila and
S.cerevisiae (yeast)) and have found a confirmation of duplication events in two of
them (C.elegans and S.cerevisiae). The results are based on analysing similarity be-
tween genes belonging to particular genome blocks. There is also an earlier study by
Gu et al (2002)) that tries to estimate the number of duplicated genes in yeast, but does
not directly attempt to confirm or reject the duplication hypothesis.

Yeast genome is particularly attractive for study of evolution of gene regulatory
changes, since it is widely believed that during the evolution yeast genome has un-
dergone a full duplication. The most extensive analysis of yeast genomes from such a
perspective is probably by Thompson et al (2013), where evolutionary histories of 15
species of yeast are compared with changes in gene regulation (at the level of individual
genes for a number of few well known regulatory motifs and also, more indirectly, at
the genome wide level by comparing gene expression patterns).

In this paper we consider two gene duplication models that are based on those
proposed before, but are more general than previously published mathematically well-
defined models, and mathematically more precise compared to more complicated, but
less formally described schemes. Our aims are to assess the biological appropriateness
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of the proposed models (this is done by computer simulations) as well as to study the
possibilities of reconstruction of the evolution history of gene regulatory networks from
the given final states. The reconstruction is attempted solely on the basis of network
topology, not considering similarity between particular genes. (Thus, this is a kind of
opposite approach to that used in Babu et al (2004).)

One of the proposed models (FDM) is fully deterministic and for this model we
provide an exact algorithm for reconstruction of evolutionary history. Although the al-
gorithm has exponential running time (the reconstruction problem itself is presumably
NP-complete), it works well in practice on random networks with up to 200 genes (this
is comparable to sizes of many gene regulatory networks that are analysed by biol-
ogists). The other proposed model (PDM) involves random deletions of gene interac-
tions, and the prospects of unambiguous and/or computationally efficient reconstruction
of full evolution history of such networks seems unlikely. However, a number of heuris-
tics can be used that at least are able to identify a large subset of genes that have been
duplicated during the last duplication event. Similar heuristic approaches could be ap-
plied also to noisy networks (i.e. networks involving random loss or emergence of gene
interactions).

The methods have been applied to analysis of yeast regulatory network (Lee et al
(2002)) and the results indicate that traces from gene duplications, which have occurred
long time ago, can still be detected from the network topology alone. The methods
also have been able to identify several biologically confirmed pairs of such duplicated
genes.

2 Models of network evolution

We consider two gene duplication models for gene regulatory network evolution. Gen-
erally these models are similar to those considered before and briefly discussed in the
previous section. Our motivation to select these particular modifications was partially
influenced by our aim to study the reconstruction possibilities of network evolution.
Therefore we tried to distinguish between the duplication process as such and the fol-
lowing insertions and deletions of regulatory relations, which under most models are
largely treated as ’noise’. On the basis of the results in Ravasz et al (2002) and in
Wagner (1994) it also seemed to be important to consider models that allow simultane-
ous duplications of several genes together with the regulatory relations involving these
genes.

For the purpose of this paper gene regulatory network will be defined simply as a
directed graph N � pG,Rq, where G � t1, . . . , nu is a set of genes (graph vertices)
and R � G � G is a set of regulatory relations (graph edges). The presence of edge
pg1, g2q P R means that the gene g2 is regulated by the gene g1 – this could mean that
the increased activity of g1 either increases or decreases the activity of g2, or, more
generally, that g1 is one of the arguments of some function that regulates the activity of
g2. We are focusing on the topology of networks and not on the properties of specific
genes, thus the labels (indices) of individual genes in G are used only as a technical
convenience and we will consider two networks N1 and N2 to be equal if they are
isomorphic as unlabelled graphs.
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2.1 Full duplication model (FDM)

In this model we assume that in each step a subset of network genes is being duplicated
in such a way that all gene interactions within the duplicated part and their connections
to non-duplicated part of the network are preserved. From the biological perspective this
model reasonably well describes what happens immediately after the duplication of part
of the genome. Note, however, that, in line with the proposals of several other authors,
to preserve network ’modularity’ duplicated parts themselves remain disconnected in
FDM, which might or might not be the case for real biological networks, depending on
specific biological events leading to a particular duplication.

Definition 1. Given network N � pG,Rq with G � t1, . . . , nu, a duplication event
D is a function that for some non-empty set SpDq � tg1, . . . , gku � G maps network
N to network DpNq � pGY T pDq, R1q, where T pDq � Dpg1q, . . . , Dpgkq, Dpgiq �
n � i, and R1 � tpx, yq | pGpxq, Gpyqq P R ^  px P SpDq ^ y P T pDqq ^  py P
SpDq ^ x P T pDqqu (where Gpxq � x for x ¤ n and Gpxq � D�1pxq for x ¡ n).

If we start with a networkN , the evolution process involving duplicationsD1, . . . , Dm

will map network N to network Dmp. . . D2pD1pNqqq. Depending on the genes in-
volved several different relationships between two duplication events Di and Dj are
possible. In discussing these we assume that Di has occurred before Dj (i.e. i   j) and
N � pG,Rq contains n genes.

If SpDiq � G, SpDjq � G, SpDiq X SpDjq � H, and there are no pg1, g2q P R
with g1 P SpDiq and g2 P SpDjq, or with g2 P SpDiq and g1 P SpDjq, then events are
independent and can be combined, i.e. there is a duplication eventD such that networks
N1 � DipDjpNqq, N2 � DjpDipNqq and N3 � DpNq are isomorphic as unlabelled
graphs.

If only the first three conditions SpDiq � G, SpDjq � G, SpDiq X SpDjq �
H hold, or alternatively, if SpDjq � SpDiq Y T pDiq and SpDjq contains exactly
one element from each pair from the set ttx,Dipxqu | x P SpDiqu, then events are
interchangeable and their order can be changed without the change of the topology of
the resulting network, i.e. N1 � DipDjpNqqq and N2 � DjpDipNqq are isomorphic
as unlabelled graphs. All independent events by definition are also interchangeable.

If events are not interchangeable we say that they are dependent. The motivation
to distinguish between these categories is the following: to obtain the same result in-
dependent events can be applied in any order or both simultaneously; interchangeable
events can be applied in any order (but not simultaneously); dependent events can be
applied only in the order of their occurrence. On the basis of this we can define an evo-
lution graph that describes duplication events that have occurred during the evolution
of network.

Definition 2. Given networkN and the sequence of duplication events S � D1, . . . , Dm

in the order in which they have occurred, we say that directed graphEpSq � pt0, . . . ,m�
1u, P YC YBq with three types of edges P,C,B � t0, . . . ,m� 1u� t0, . . . ,m� 1u
is an evolution graph of N , where:

1. pi, jq P P ô i   j and Di and Dj are dependent and there is no k with i   k   j
such that both pairs Di,Dk and Dk,Dj are dependent;
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2. pi, jq P C ô Di and Dj are interchangeable;
3. pi, jq P B ô either i � 0 and Dj is independent or interchangeable with Dk for

all k   j, or j � m � 1 and Di is independent or interchangeable with Dk for all
k ¡ i.

Given network N and a sequence of duplication events S, by N 1 � DpN,EpSqq
we denote a network obtained from N by applying these duplication events in the order
specified by S. Note that whilst the networkN 1 is already uniquely defined by the initial
network N and the sequence of duplication events S, the same (up to isomorphism)
networkN 1 could be obtained from different sequences S1 and S2 of duplication events
from some given set and, correspondingly, by different evolution graphs EpS1q and
EpS2q.

Fig. 1. A sequence of 5 duplication events and the corresponding evolution graph. Graph vertices
that are duplicated by the next duplication event are denoted with grey dots. In evolution graph
edges from P are shown with black, edges from C with grey and edges from B with dashed lines.
By definition edges from C are bidirectional.

Informally an evolution graph shows all duplication events that have occurred for a
given network and relations between those events. In addition it contains two extra ver-
tices 0 (source) and m� 1 (sink) that could be characterized as ”all events independent
ofD1, . . . , Dm and occurring before them” and ”all events independent ofD1, . . . , Dm

and occurring after them”; the source vertex is connected by B-edges to all the vertices
without incoming P edges and the sink vertex is connected byB-edges from all the ver-
tices without outgoing P edges. In this way evolution graphs describe all the interme-
diate networks obtainable from N by subsequences of events from S � D1, . . . , Dm.
An example of evolution graph is shown in Figure 1.

Two evolution graphs EpS1q and EpS2q involving sequences S1 and S2 of du-
plication events (not necessarily with elements from the same set) are equivalent, if
DpN,EpS1qq and DpN,EpS2qq are isomorphic as unlabelled graphs. N is irreducible
if there do not exist N 1, S and E, such that N � DpN 1, EpSqq, i.e. network N is ir-
reducible if it can not be obtained by a sequence of duplication events from any other
network.

Evolution graphs raise a number of interesting questions about their properties.
Firstly, an evolution graph equivalent to EpSq can be obtained from EpSq by chang-
ing the order of duplication events in the sequence S (the allowed changes depend on
which events are independent and which events are interchangeable). It is not yet known
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whether (and how) two equivalent evolution graphs EpS1q and EpS2q can be conve-
niently characterized simply in terms of ’manipulation’ of the elements of sequences
S1 and S2. Apart from the allowed changes of the order of events, the equivalence will
also be preserved by combining two successive independent events into a single one.
However, the problem starts to get complicated already by the fact that for some net-
works there exist sets of several (more than 2) dependent events that can be combined
into a single duplication event.

Secondly, an interesting question is whether there exist two different (non-isomorphic)
irreducible networks N1 and N2 and evolution graphs EpS1q and EpS2q, such that the
resulting networks DpN1, EpS1qq and DpN2, EpS2qq are isomorphic. Although we do
not have an example of such a pair of non-isomorphic networks, there are reasons to
suspect that such pairs might exist. However, our experiments show that in practice such
pairs of networks are at least quite rare (none were detected during the computational
experiments of reconstruction of 200 random evolution graphs, each of them involving
around 50 duplication events).

2.2 Partial duplication model (PDM)

Whilst there is a good biological motivation behind the FDM, it has some problems.
Firstly, in networks evolving according to this model vertex degree distribution corre-
sponds quite badly to the power law (see Section 4). Besides that, since edges in both
directions are treated in the same way, the evolution leads to networks having vertices
with large number of incoming edges, which does not correspond well to biological re-
ality (the number of gene regulators are usually assumed to be comparatively small, at
the same time the number of genes affected by a particular known gene regulator often
tend to be large).

In order to deal with this we can treat the incoming and outgoing edges differ-
ently – after a duplication event all connections within the duplicated part as well as
all incoming connections are preserved, however, all outgoing connections (to the set
of non-duplicated genes) compete between the initial connections and the duplicated
ones, as a result only one connection from the each pair is preserved. Apart from giv-
ing ’nicer’ results (the model corresponds well to the power law distribution and the
maximal number of incoming edges never increases), there seems to be a biological
justification behind this: since gene regulators are often involved in regulation of sev-
eral genes, to preserve ’useful connections’ binding sites have to be more flexible to
adapt to mutations. As a result, it is less likely that they will interact too long with two
competing and independently mutating regulators. Thus, PDM might be adequate for
description of the situation that could be observed in a comparatively short term after
the duplication of part of the genome. Formally duplication events for PDM are defined
as follows.

Definition 3. Given network N � pG,Rq with G � t1, . . . , nu, a partial duplication
event D is a function that for some non-empty set SpDq � tg1, . . . , gku � G maps
network N to network DpNq � pG Y T pDq, R1q, where T pDq � Dpg1q, . . . , Dpgkq,
Dpgiq � n � i, and R1 is obtained by randomly, with probability p � 1{2, removing
from the set tpx, yq | pGpxq, Gpyqq P R px P SpDq^y P T pDqq^ py P SpDq^x P
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T pDqqu (where Gpxq � x for x ¤ n and Gpxq � D�1pxq for x ¡ n) exactly one edge
from each pair tpx, zq, py, zqu with x P SpDq, y P T pDq and z R SpDq, z R T pDq.

Evolution graphs for this model can be defined in a similar way as for FDM. An
example of duplication of two genes according to both FDM and PDM models is shown
in Figure 2.

Fig. 2. Initial network A and the resulting networks after genes a and b are duplicated according
to FDM (B) and PDM (C or D).

3 Reconstruction of network evolution

We are interested in reconstruction of duplication events that have transformed an initial
networkN into networkN 1. Several problems can be considered in this context for both
FDM and PDM models.

Reconstruction of the full Evolution Graph (EGP). For a given network N 1 find an
irreducible network N , the sequence of duplication events S � D1, . . . , Dm, and the
corresponding evolution graph EpSq, such that N 1 � DpN,EpSqq. From the biologi-
cal perspective this would mean reconstruction of the complete history of evolution of
gene regulation process. Due to noise such reconstruction clearly seems infeasible for
real biological networks, thus the problem is largely of theoretical interest – how unam-
biguously and how efficiently such a reconstruction can be done for the described gene
duplication models? Nevertheless, the experiments with yeast network (see Section 4)
seem to suggest that even after a long evolution process some topological properties of
N are still weakly preserved in the evolved network N 1.

Reconstruction of a Duplication Event (DEP). For a given network N 1 find a net-
workN and a duplication eventD, such thatN 1 � DpNq. Largely this can be regarded
as an intermediate technical problem for solving LDEP described below.

Reconstruction of one of the Largest Duplication Events (LDEP). For a given net-
workN 1 find a networkN with the smallest possible number of genes, and a duplication
event D, such that N 1 � DpNq (in general such N might not be unique). This is likely
the most practical and interesting problem from the perspective of biological applica-
tions – finding the latest duplication event (or, probably, by repeated solving of LDEP,
finding several most recent events) of the genome and the corresponding gene regulation
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changes that have occurred as a result of such event(s). In the real biological networks
the anticipated amount of noise will still be large (due to both, gene regulation changes
that have occurred for other reasons than genome duplications, and (almost certain)
biological inaccuracies of the proposed duplication models). However, the solving of
LDEP for such real networks could be made much more feasible with the use of other
additional information (notably about gene similarity), which is easily available for bio-
logical networks, but which we are not considering here. The larger issue for analysis of
real biological networks very likely could be the validation of the predicted genome du-
plications – with observational data at the time-scale of biological evolution simply not
being available, it can be done only indirectly. At the same time, solving LDEP could be
applied to studies of statistical significance of a number of different proposed changes
of regulatory patterns (e.g. such as described in Teichmann et al (2001) or Thompson
et al (2015)).

3.1 Network reconstruction using full duplication model

Regarding the theoretical complexity of all three problems, it is easy to see that all of
them are in class NP. Our approach for solving DEP involves using graph isomorphism
solver for partitioning graph vertices into automorphism orbits as well as some steps of
exhaustive search. Solving LDEP additionally involves solving a problem similar to IN-
DEPENDENT SET, and solving EGP can be reduced to repeated solving of LDEP until
we get an irreducible network. However, neither the reduction to SUBGRAPH AUTO-
MORPHISM nor to INDEPENDENT SET is currently known, thus we can only conjecture
that DEP is at least as hard as SUBGRAPH AUTOMORPHISM and that LDEP and EGP
are NP-complete.

Below we describe FindLargestDuplicationEvent algorithm for solving LDEP, which
is likely the problem that is the most relevant for real biological applications. With
simple modifications the algorithm can be adapted also for generating all the possible
solutions for DEP. EGP can be solved by repeated solving of LDEP until we get an
irreducible network.

The reconstruction process is based on finding pairs of genes that can be mapped
one to another by graph automorphisms.

Definition 4. Given networkN � pG,Rq and vertex g P G, the orbit opgq is the largest
subset of G, such that for all g1 P opgq there is an automorphism of graph N mapping g
to g1.

By definition opgq � opg1q for all g1 P opgq and we can partition G into a set of
disjoint orbits opGq � tO1, . . . , Osu, such thatG � O1Y . . .YOs. Duplicated pairs of
vertices clearly should belong to non-singleton orbits, thus when looking for duplication
candidates we are interested in considering only the subset of orbits OpGq � tO P
opGq | |O| ¡ 1u and the subset of vertices GO � tg P G | DO P OpGq : g P Ou.

The fact that two vertices v1 and v2 belong to the same orbit O does not, however,
guarantee that there is a duplication event producing this pair of vertices. To decide
whether this really is the case it is useful to construct a refinement of partition OpGq.

For N � pG,Rq and set of vertices A � G by NA we denote the subgraph of N
induced by the set of vertices A.
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Consider the subgraph NGO
and let CpGOq � tC1, . . . , Ctu be the partition of

NGO
into connected components (some connected components may contain only a

single vertex). We say that a connected component C spans a set of orbits A � OpGq
if C X O � H for all O P A. Due to the properties of automorphisms, if a component
C1 spans set of orbits A � OpGq and a component C2 spans a subset B � A, then C2

must also span the whole set A. Moreover, the connected components C1 and C2 must
be isomorphic.

Therefore we can partition the set of orbits OpGq into subsets, such that two orbits
are spanned by a connected component C if and only if they belong to the same set of
this partition. Let this partition be SpGOq � tS1, . . . , Spu. For O P OpGq by SpOq P
SpGOq we denote the set with O P SpOq and define GSpOq � tg P G | DO1 P SpOq :
g P O1u.

For network N � pG,Rq, G1 � G and vertex v P G by Epv,G1q we denote the
set of all vertices from G1 connected with v, i.e. Epv,G1q � tw P G1 | pv, wq P
R_ pw, vq P Ru.

Finally we construct refinement P pGOq � tP1, . . . , Pqu of the initial partition into
orbits OpGq in the following way. Each set of partition P P P pGOq is a subset of some
orbit O P OpGq denoted by OP . Two vertices v1, v2 P O are placed in the same subset
P if and only ifEpv1, G�GSpOqq � Epv2, G�GSpOqq. That is, we put two vertices of
orbit O in the same subpartition of the refinement if and only if their neighbour vertices
are the same, apart from the vertices from the orbits spanned by the same connected
component C.

Refinement P pGOq places additional restrictions on pairs of vertices v1 P SpDq and
v2 P T pDq that can be involved in the same duplication event D. Since, by definition of
D, v1 and v2 must be connected to the same set of vertices from G� pSpDq Y T pDqq,
they both must belong to the same subpartition P P P pGOq. The converse, however, is
still not necessarily true.

At this stage it is useful to identify a subset of vertices that contains the entire
connected components, which could be created by a single duplication event D without
affecting any other vertices that might be involved inD. Let Ĉ � CpGOq be a maximal
set of connected components such that all C P Ĉ span the same set of partitions P̂ �
P pGOq. Then for any two components C1, C2 P Ĉ we can put all the vertices of C1

in SpDq and all the vertices of C2 in T pDq without affecting involvement of any other
vertices in D. Thus, altogether we can put in each of the sets SpDq and T pDq all the
vertices from t|Ĉ|{2u components from Ĉ (the assignment of all vertices of a particular
component to either SpDq or T pDq can be random).

For any two maximal sets of connected components Ĉ1, Ĉ2 � CpGOq with the
property described above we can include vertices from components Ĉ1 and Ĉ2 in SpDq
and T pDq independently. Let DC be a duplication event obtained by inclusion in each
of the sets SpDCq and T pDCq all the vertices from t|Ĉ|{2u components from all the
maximal sets Ĉ � CpGOq with the property that all C P Ĉ span the same set of
partitions P̂ � P pGOq.

Construction of DC can be regarded as the first (and computationally the easiest)
step of solving LDEP, in which we identify all the vertices that can be included in the
largest duplication event without affecting inclusion of any others. This will include
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all the pairs of vertices that might be created by duplication events involving just a
single vertex. The benefit of this step is that it reduces the number of vertices for which
deciding whether these could or should be included in the same duplication event is a
more difficult problem.

After the construction of DC the remaining set of vertices that might be involved in
duplication event is GC � GSpOq � pSpDCq Y T pDCqq with partitioning QpGCq �
tQ1, . . . , Qru, where for each i: |Qi| ¡ 1 and there is Pj P P pGOq, such that Qi �
Pj XGC . It is easy to observe that: 1) for no connected component C of the subgraph
NGC

all the vertices of C can be included in the same duplication event D, and 2)
if v1 P SpDq and v2 P T pDq for some event D, then v1 and v2 must belong to the
same connected component C of the subgraph NGC

. For further analysis of the pairs
of vertices that can be included in the largest duplication event it is convenient to use
reconstruction graphs defined as follows.

Definition 5. Given network N � pG,Rq with GC and QpGCq � tQ1, . . . , Qru con-
structed as described above, we say that an undirected graphRpN,GCq � pt1, . . . , ru, XY
Y q with two types of edges X,Y � tta, bu | a, b P t1, . . . , ruu is a reconstruction
graph of N , where:

1. ti, ju P X ô there is and edge in N between Qi and Qj and Qi YQj consists of
at least two connected components in NQiYQj

;
2. ti, ju P Y ô there is and edge in N between Qi and Qj and Qi Y Qj consists of

a single connected component in NQiYQj
.

Reconstruction graphs provide useful information that characterizes all the possible
vertices (duplication events) and all the possible edges between interchangeable events
that might appear at the ’lowest level’ of evolution graph of N (i.e. for each possible
evolution graph of N the set of vertices that are connected by B-edges to sink vertex in
this particular graph). A sample of reconstruction graph is shown in Figure 3.

It is easy to show that:

1. If two sets Q1, Q2 P QpGCq are connected by edge from X , then there is a du-
plication event D involving vertices from both of these sets, i.e. SpDq XQ1 � H
and SpDq XQ2 � H. Since, by definition of X edge, there should be at least two
isomorphic connected componentsC1 anC2 inNQ1YQ2

that span bothQ1 andQ2,
then we can take SpDq � C1 and T pDq � C2.

2. If two sets Q1, Q2 P QpGCq are connected by edge from Y , then there is no du-
plication event involving vertices from both of these events, i.e. for all D either
SpDq X Q1 � H or SpDq X Q2 � H. If, to the contrary, we assume that there
is such an event D, then SpDq and T pDq must be isomorphic and disconnected in
NQ1YQ2

, which contradicts the definition of Y edge.

Thus, to find the largest number of vertices of GC that can be involved in a single
duplication event we can initially construct reconstruction graph RpN,GCq and then
partition it into connected components R1, . . . , Rs taking into account both X and Y
edges. ForRi letDRi

be a duplication event with the largest possible number of vertices
in SpDRi

q from the partitions that correspond to the vertices of Ri. Since inclusion
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Fig. 3. A sequence of 3 duplication events (left, top), the corresponding evolution graph (right)
and reconstruction graphs (left, bottom) for the network obtained after each of 3 duplication
events. In this simple case the partitioning QpGCq is the same as OpGq. In networks vertices
belonging to different orbits are shown in different shades, one-vertex orbits are black. In recon-
struction graphs edges from X are black and edges from Y are dotted, the shades of vertices
match the shades of the corresponding orbits.

in duplication event of vertices from different components R are independent, we can
construct the largest duplication eventDR involving vertices ofGC by taking SpDRq ��
i SpDRi

q. The largest duplication event Dmax for the whole network N then can be
obtained by taking SpDmaxq � SpDCq Y SpDRq.

However, there does not seem to be a computationally efficient way for finding sets
SpDRiq. The problem of finding these sets has some similarities to INDEPENDENT SET
problem and some specialised algorithms for the latter probably can be adapted for this
purpose. At the same time, in practical computational experiments that we have per-
formed on reconstruction of network evolution (see Section 4) the sizes of components
Ri were very small and there was no need for more elaborated approaches for finding
SpDRi

q than exhaustive search (involving few simple heuristic rules). The algorithm
FindLargestDuplicationEvent is summarised in pseudo-code form as Algorithm 1.

Algorithm 1 contains two computationally non-trivial steps: Step 2 involving com-
putation of automorphism orbits and Step 11 (repeated r times for each Ri separately)
involving exhaustive search. All the other steps can be computed in polynomial time (at
most Op|G|3q for Step 5, the majority of steps requiring just linear time).

The algorithm has been implemented by adapting a well-known program package
nauty (McKay (2013)) for partitioning vertices in orbits. In simulation experiments
the computation of automorphism orbits turned out to be computationally the most
expensive part of the algorithm and limited its application to networks with sizes of
around 200 vertices. At the same time, the computations ofDRi were comparatively fast
in practice (largely due to small sizes and simple structure of componentsRi) and never
posed a computational efficiency issue for networks used in simulation experiments.
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Algorithm 1 Algorithm for finding the largest duplication event in given network
1: procedure FINDLARGESTDUPLICATIONEVENT(N � pG,Rq)
2: Compute the orbits OpGq � tO1, . . . , Osu and set of vertices GO

3: Compute the set of connected components CpGOq
4: Compute the partition of orbits SpGOq
5: Compute the refinement P pGOq of partition OpGq
6: Compute duplication event DC and the sets SpDCq and T pDCq
7: Compute the set of vertices GC and the partition QpGCq
8: Build the reconstruction graph RpN,GCq � pt1, . . . , ru, X Y Y q
9: Partition vertices of RpN,GCq into connected components R1, . . . , Rs

10: for i � 1, . . . , r do
11: find the largest duplication event DRi and the sets SpDRiq and T pDRiq
12: end for
13: Compute SpDRq �

�
i SpDRiq

14: Compute D1

max by selecting SpD1

maxq � SpDCqYSpDRq and T pD1

maxq � T pDCqY
T pDRq

15: Construct network N 1 by removing from N all the vertices in T pD1

maxq and renumbering
remaining ones with 1, ..., n1; assume renumbering transforms SpD1

maxq to S
16: Construct Dmax by selecting SpDmaxq � S
17: return N 1 and Dmax

18: end procedure

3.2 Network reconstruction using partial duplication model

Partial duplication model involves random deletions of gene interactions and the prospects
of unambiguous and/or computationally efficient reconstruction of full evolution his-
tory of such networks seems unlikely. Also there is no obvious way to obtain the exact
solution of LDEP without checking all the possible edge combinations as candidates
for random deletions that have occurred during the duplication process. Nevertheless
PDM still has some deterministic features from treating the incoming and the outgoing
gene regulation edges differently (the latter being preserved by duplications) and these
features can be exploited by heuristic approaches for finding approximate solutions to
LDEP.

A straightforward adaptation of FindLargestDuplicationEvent to PDM involves check-
ing all the candidates of connected components with k vertices that might be involved
in duplications and all modifications of these components obtained by removing in-
coming edges. Unfortunately, such approach is feasible only for k ¤ 2 (were k � 2 is
the non-trivial case), allowing analysis of networks with up to 100 vertices. And since
the possibility of a k vertex component to be involved in a duplication is dependent
on which incoming edges have or have not been removed, we can use only a greedy
approach that selects any suitable pair of components with k ¤ 2 vertices whenever
one is found. All duplicated components involving single vertex (the case k � 1) are
independent however, and according to simulation experiments (see Section 4) around
85% of genes in randomly evolved networks using PDM are duplicated as singletons.
Thus, a modified version of the algorithm is able to detect at least around 85% of genes
from the largest possible duplication event.
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3.3 Reconstruction of large or noisy networks

There are two challenges, if we wish to apply the reconstruction procedure to real net-
works. Firstly, despite the fact that graph automorphism problem is considered to be
comparatively easy, it is doubtful whether we will be able to use it for graphs with sev-
eral thousands of vertices. A potential solution here could be to use some heuristic for
computation of automorphism orbits. With this, of course, we are loosing the possibility
to reconstruct the complete evolution, however, we still might be able to recover large
part of the most recent duplications.

Secondly, even if assuming that our duplication models well correspond to bio-
logical reality, the evolution of real networks involves other processes that govern the
appearance of new or disappearance of existing regulatory relations. Thus, the real data
are certain to be extremely ’noisy’. One consequence is that instead of checking for au-
tomorphisms we should be looking for ’approximate automorphisms’, which is a much
harder problem. The only practical solution here again could be use of a heuristic ap-
proach, heuristic computations of approximate solutions often computationally being
not much harder than heuristic computations that attempt to find exact solutions.

Currently we have implemented a simple heuristic of such a type that is based on
breadth-first searches from each network vertex followed by comparison of vertex and
edge properties at different depth levels of search. Experiments with networks having
few hundreds of vertices show that usually there are just few automorphism orbits that
are either split or merged when this heuristic is used, however, such split or merged
orbits almost always exist. Nevertheless for random networks the difference is not very
large and the use of such type of heuristic can be regarded as a direct computation of
partition P pGOq instead of initialGO. The exact neighbourhood comparison rules used
for vertex partitioning can also be easily modified to deal with different notions of ’ap-
proximate automorphisms’ and making the approach adaptable for finding approximate
solutions of LDEP for both FDM and PDM models.

4 Simulation and reconstruction experiments

Properties of networks. To study how similar are the properties of networks evolved
under FDM and PDM models to the properties of real biological networks we have
performed a number of tests for both duplication models as well as for FDM with
’noise’ (a random deletion of some edges after each duplication step). In each test for
a chosen duplication model and for some probability p (ranging between 0.001 and
0.2) 100 networks have been generated. This was done by starting from small random
networks (15 to 30 genes) and by performing random duplication steps (a vertex was
chosen for duplication with probability p) until networks’ sizes reached around 5000
genes (FDM) or 20000 (PDM). The following conclusions were obtained from these
tests:

– Probability p (within the used range) with which a vertex is selected for duplication
in each step has little qualitative impact on the results.

– PDM produces networks corresponding very well to the power law. The ratio of
number of edges to number of vertices is also similar to what we usually have in
biological networks.
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– FDM produces networks that very badly correspond to the power law. The number
of edges is also much larger than in biological networks.

– FDM with ’noise’ produces networks with vertex degree distribution that is close,
but still deviates from the power law. Since it is actually not that clear how close
to the power law should be the properties of real biological networks, the obtained
networks might still be considered as biologically believable.

– For all models clustering coefficients are slightly increasing with network size (sim-
ilarly as for hierarchical networks in Ravasz et al (2002)).

– For PDM around 85% of duplications involved just a duplication of a single gene.

The vertex degree distributions obtained for both FDM and PDM models as well as
for ’noisy’ FDM are shown in Figure 4.

Fig. 4. Vertex degree distribution for duplication models (y axis shows vertex degree and x axis
the number of vertices having this degree). To satisfy the power law, distribution graphs should
be linear when drawn in logarithmic scale. A probability p � 0.05 for duplication of each vertex
within duplication step was used. In model with random deletions the probability for edge dele-
tion was 0.2. The exact values of these probabilities have a limited impact on degree distributions.

Reconstruction experiments on simulated networks. Experiments for reconstruc-
tion of evolution graph (solving of EGP) have been performed for FDM using Find-
LargestDuplicationEvent algorithm. The algorithm has been implemented by adapting
a well-known program package nauty (McKay (2013)) for partitioning vertices in or-
bits. This partitioning turned out to be computationally the most expensive part of the
algorithm and limited network sizes to around 200 vertices.

We generated 200 networks, starting from random networks and applying random
duplication events until networks’ sizes reached 150-200 genes. Then the procedure
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FindLargestDuplicationEvent was repeatedly called until no further reconstruction was
possible. In all 200 cases the reconstructed networks were identical to initial networks.
The reconstruction process usually took few minutes on a standard workstation.

A modification of FindLargestDuplicationEvent for PDM limited to identification
only of duplicated components consisting of a single vertex (the case k � 1) has been
applied to PDM networks with up to 300 genes for finding the largest duplication event
(PDM networks have fewer edges, thus the automorphism procedure can deal with
graphs with more vertices, despite the fact that it has to be called many times). Ex-
periments confirmed that in this way it is still possible to reconstruct a large part of the
occurred duplications – as expected the number of vertices involved in reconstructed
events were around 85% of the number of vertices that were involved in simulated du-
plications, although it was not possible to unambiguously identify all the vertices that
were initially duplicated.

A heuristic version of algorithm has also been implemented and tested for FDM
and PDM models. A simple breadth-first search based heuristic was used. The results
indicate that for FDM networks with 150-200 vertices the largest duplication event can
be reconstructed correctly by heuristic version in around 2{3 of cases and on average
around 90% of vertices from the largest duplication event are identified correctly. The
program was also able to process in real time (few minutes) FDM networks with up to
5000 vertices and PDM networks with up to 20000 vertices. It is difficult to estimate
the quality of these results due to the difficulty of computing the real largest duplication
event for such networks.

Reconstruction of biological networks. It is a very tempting but a difficult challenge
to try applying the reconstruction methods to real gene regulatory networks. One of
the difficulties here is already outlined in the previous section, namely, the method is
not particularly well suited for large and/or noisy networks. However, probably almost
as serious difficulty is still the current limited availability of genome wide biologically
confirmed gene regulation networks. Nevertheless, we thought it will be useful to apply
the method to one of the most complete genome-wide networks currently available -
S.cerevisiae (yeast) network (Lee et al (2002)). This network is particularly suited for
such type of experiment, since it is widely believed that during the evolution yeast
genome has undergone a full duplication.

The network is obtained using so called ChIP-chip experiments (the experimental
technology was developed by Ren et al (2002)) and contains data about 6270 yeast
genes, 106 of them being transcription factors. Gene regulations were inferred from
affinities with which given transcription factors were bound to promoter regions of
given genes. The network is given as 106 � 6270 matrix, containing probabilities (or,
more exactly, p-values, where lower p-values correspond to higher probabilities) for
given transcription factors to be involved in regulation of given genes. Using this matrix
we constructed a deterministic network, connecting transcription factors with genes if
the corresponding p-values were below a certain threshold. The resulting network con-
tained 5962 genes (we discarded those for which protein sequences were unavailable).
The total number of connections depended on the used threshold for p-values, how-
ever, small changes were observed using p-value thresholds from a wide range just be-



892 Viksna and Gilbert

low 0.0001, thus the corresponding network using this threshold and containing 15303
edges was selected for further experiments.

A heuristic version of algorithm for FDM model with breadth-first search based
computation of the partition P pGOq was used. In total 277 non-singleton orbits (i.e.
duplication candidates) were discovered. To evaluate whether the orbits really contain
duplicated gene pairs, we made all pairwise comparisons between the protein sequences
corresponding to 5962 genes (by using Smith-Waterman algorithm implemented in
ssearch procedure from FASTA package (Pearson (1990))). A normalised comparison
score computed as ssearch scorepP1, P2q{mintlengthpP1q, lengthpP2quthen was as-
signed to each protein pair tP1, P2u.

Fig. 5. Score distributions for detected duplication candidates, for randomly selected pairs, and
the average scores. y axis shows scores, value on x axis is proportional to the number of pairs not
exceeding given score. The first diagram shows all detected pairs, the second the remaining ones
after the pairs of adjacent genes have been filtered out.

The distribution of normalized scores is shown in Figure 5. Here the scores for
genes within orbits are compared with the average score and with scores for randomly
selected gene pairs. At first the results may not seem too encouraging with similarity
scores between the predicted duplicated gene pairs being only slightly above the scores
between random pairs. Also the numbers of the predicted pairs with scores below and
above the average score value are practically equal. Nevertheless the scores between
the predicted duplicated gene pairs remain consistently higher over the whole range
of scores, thus suggesting that some information about network evolution still can be
recovered from network topology alone. Also the predicted duplicate genes include a
number of pairs that are regarded as known duplicates by biologists – e.g. gene pairs
COS5 and COS8, or YLR460C and YNL134L.

An additional feature observed from this experiment was that unusually high num-
ber of orbits contained genes that are adjacent (or, in few cases, almost adjacent) on the
yeast genome. From 158 two gene orbits 120 contained such adjacent genes. In most
cases the genes of these pairs were from the opposite strands of DNA, and it is known
that such pairs tend to have common regulators. To filter out this effect we considered
only the orbits not containing such adjacent genes. With such genes excluded the higher
values of similarity scores between predicted duplicates compared to the scores between
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random pairs became more apparent. Also approximately 3{4 of predicted duplicates
had similarity scores above the average value.

5 Conclusions and discussion

The current stage of research on models of gene duplication and on possibilities of
reconstruction of evolution of gene regulatory networks from their topology raises a
number of interesting questions both, from the perspective of mathematical properties
of the models and the design of efficient algorithms, and from the perspective of appli-
cation of such type of evolution reconstruction methods to real biological data sets.

From the mathematical point of view, likely the most interesting are the proper-
ties of FDM networks. One of the open questions already discussed in this paper is
the question about the existence of two non-isomorphic irreducible networks N1 and
N2 and evolution graphs EpS1q and EpS2q, such that the resulting evolved networks
DpN1, EpS1qq and DpN2, EpS2qq are isomorphic.

Another interesting question is related to computation of reconstruction graphs
RpN,GCq � pt1, . . . , ru, X Y Y q. Currently these graphs contain two types of edges:
edge of type Y between partitionsQ1 andQ2 corresponding to two vertices ofRpN,GCq
implies that these partitions can not be included in a single duplication event; edge of
type X , however, implies only that Q1 and Q2 could (but not necessarily have to) be
included in a single duplication event. Thus, the role of type X edges is mainly in
defining of connected components Ri of RpN,GCq, each of these then can be analysed
independently.

Still, often it is possible to show that the two partitions Q1 and Q2 must be included
in a single duplication event, and this property can be decided by analysing solely the
vertices belonging to Q1 or Q2 and the edges between them. An interesting question
therefore is whether we can define a simple property (similar to the properties we use
in Definition 5) of graphNQ1YQ2

that is necessary and sufficient for such an ’enforced’
X edge to exist.

From the computational perspective, however, it is not too difficult to decide whether
two partitions Q1 and Q2 must be involved in a single duplication event and should be
connected by an ’enforced’ X edge or not. Actually this is already done in our imple-
mentation of the algorithm as the initial stage of exhaustive search used for computing
duplication events DRi . Assuming that we have computed such ’enforced’ X edges,
there are number of questions about the structure of connected components Ri them-
selves. For example, is this the case that all the vertices connected by ’enforced’ X
edges must belong to a clique? This really have been the case in all our simulation ex-
periments, however, the size of components Ri encountered in these experiments have
been too small to assess the validity of such hypothesis. However, if the hypothesis is
true, it will imply that LDEP can be reduced to INDEPENDENT SET problem.

For the applications to analysis of real biological networks it is very likely, how-
ever, that only heuristic approaches will be practically useful and the improvements of
such approaches are certainly possible (currently we have used only a simple breadth-
first search based heuristic for characterizing the nearest neighbourhood of each of the
vertices). Also in the best case we likely will be able to reliably identify only candi-
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date gene pairs from some of the latest duplication events that have occurred, and not a
consistent evolution history.

Nevertheless, the analysis results on yeast genome suggest that information about
gene duplications that have occurred long time ago can still be recovered from the net-
work topology alone. Biological gene regulatory networks in almost all cases contain
additional information (about gene similarity, relative positions of genes on genome
etc.) that usually is more reliable than the topological structure of the network. Thus,
it seems there is a good potential for practical applications integrating the informa-
tion about the gene regulatory network structure with the information about the genes
themselves. One study of such type that we are considering is identification of bio-
logically well-known small gene regulatory patterns in data sets that are obtained by
high-throughput technologies at genome wide level. Currently such genome wide net-
works are described only by probability matrices (in a similar way as for yeast network,
which we have analysed here) and do not possess well-defined topological features
(the latter being dependent on the probability thresholds applied). Identification of bi-
ologically well-established regulatory patterns could supplement such high-throughput
data sets with additional biologically useful information. Apart from the yeast genome
data set analysed here, several other data sets suitable for such studies and obtained by
newer and more reliable NGS technologies are recently becoming available, e.g. data
about gene regulation in E.coli obtained from RNA-seq experiments (Gama-Castro et al
(2011)), and these data sets could merit analysis using techniques similar to those we
have presented here.
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