
A novel method to verify multilevel computational models of

biological systems using multiscale spatio-temporal meta

model checking

Ovidiu Pârvu1,*, David Gilbert1

1 Department of Computer Science, College of Engineering, Design and

Physical Sciences, Brunel University London, London, United Kingdom

* ovidiu.parvu@gmail.com

Abstract

Insights gained from multilevel computational models of biological systems can be

translated into real-life applications only if the model correctness has been verified first.

One of the most frequently employed in silico techniques for computational model

verification is model checking. Traditional model checking approaches only consider the

evolution of numeric values, such as concentrations, over time and are appropriate for

computational models of small scale systems (e.g. intracellular networks). However for

gaining a systems level understanding of how biological organisms function it is essential

to consider more complex large scale biological systems (e.g. organs). Verifying

computational models of such systems requires capturing both how numeric values and

properties of (emergent) spatial structures (e.g. area of multicellular population) change

over time and across multiple levels of organization, which are not considered by

existing model checking approaches. To address this limitation we have developed a

novel approximate probabilistic multiscale spatio-temporal meta model checking

methodology for verifying multilevel computational models relative to specifications

describing the desired/expected system behaviour. The methodology is generic and

supports computational models encoded using various high-level modelling formalisms

PLOS 1/63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

because it is defined relative to time series data and not the models used to generate it.

In addition, the methodology can be automatically adapted to case study specific types

of spatial structures and properties using the spatio-temporal meta model checking

concept. To automate the computational model verification process we have

implemented the model checking approach in the software tool Mule

(http://mule.modelchecking.org). Its applicability is illustrated against four

systems biology computational models previously published in the literature encoding

the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus

laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and

software will enable computational biologists to efficiently develop reliable multilevel

computational models of biological systems.

Introduction 1

Multilevel computational models of complex biological systems are abstract 2

representations of living systems that span multiple levels of organization. They encode 3

the hierarchical organization of biological systems explicitly, and therefore enable 4

reasoning about how events initiated at one level of organization reflect across multiple 5

levels of organization. In systems biology [1, 2] multilevel, also commonly referred to as 6

multiscale [3] computational models can be employed for gaining a better understanding 7

of the underlying mechanisms of living systems, and to generate new hypotheses for 8

driving experimental studies. Conversely in systems medicine it is argued [4] that 9

multilevel computational models could potentially facilitate delivering personalized 10

treatments by providing a patient specific understanding of how diseases and their 11

treatment reflect across multiple levels of organization [5]. 12

However any insights gained from model simulation results can be successfully 13

translated into real-life applications only if the correctness of the models has been 14

verified first. Computational models of biological systems can be validated either in the 15

in vitro environment by checking if the model simulation results can be reproduced 16

experimentally, or in the in silico environment by verifying if the model simulation 17

results conform to a formal specification describing the desired/expected system 18

behaviour. An in silico approach that automates the process of verifying models 19

PLOS 2/63

http://mule.modelchecking.org

relative to formal specifications is called model checking [6, 7]; see S1 Text for a brief 20

description of model checking. Due to the complex, stochastic nature of biological 21

systems only approximate probabilistic model checking approaches are considered 22

throughout this paper. 23

Validating multilevel computational models in the in vitro environment is 24

challenging because there is a need for experimental data from all levels of organization 25

and the interactions between different levels, which is often not available. Moreover in 26

vitro validation procedures need to account for the variability inherent in biological 27

systems [8,9] which can be of different orders of magnitude at different levels. 28

Conversely, verifying multilevel computational models in the in silico environment is 29

challenging because there is a lack of model checking approaches that can explicitly 30

distinguish between different levels of organization. Existing model checking approaches 31

can be employed to verify submodels corresponding to each level of organization 32

individually without the possibility of referring to interactions between different levels. 33

In this paper we address this issue by developing a novel multiscale model checking 34

methodology for automatically verifying multilevel computational models relative to 35

given specifications. Our approach is generic and supports computational models 36

encoded using various high-level modelling formalisms because it is defined relative to 37

time series data representing the model simulation results and not the models 38

themselves. Moreover our methodology could be potentially employed for analysing 39

time series data recorded in the wet-lab as well. This could enable checking if a 40

computational model correctly describes a physical system, or that a physical system 41

correctly implements an in silico design, but this is beyond the scope of this paper. 42

Both spatial and non-spatial computational models can be verified using our 43

approach. The specifications against which the computational models are verified can 44

describe both how numeric values (e.g. concentration of protein X) and properties of 45

(emergent) spatial structures, called spatial entities, (e.g. area of multicellular 46

population) are expected to change over time and across multiple levels of organization. 47

For instance, assuming we would like to verify a computational model describing 48

tumour growth, the specification could state that if the concentration of protein X in a 49

cancerous cell rises above a certain threshold level (e.g. 0.8 M), then the cell will divide 50

and the cellular density or area of the tumour (structure) will increase. 51

PLOS 3/63

Assuming that the computational model considered is spatial, the type of spatial 52

entities and their properties, called spatial measures, can differ between case studies. 53

For instance given a tumour growth computational model one could be potentially 54

interested in how the area of the tumour structure changes over time, whereas in case of 55

a migrating multicellular population tracking the position of the population over time 56

could be of interest. 57

We defined an abstraction of our approach, called multiscale spatio-temporal meta 58

model checking that enables the automatic reconfiguration of the model checking 59

methodology according to case study specific spatial entity types and measures. The 60

spatio-temporal meta model checking approach resembles the meta-programming [10] 61

concept from computer science where an abstract type is defined that acts as a template 62

for creating specific type instances tailored to particular applications. Our 63

spatio-temporal meta model checking approach is not restricted to biologically relevant 64

spatial entity types and properties, and therefore could be employed to adapt the 65

methodology to case studies from other fields of science. However we do not illustrate 66

this in this paper. Due to the intended general applicability of the approach, and the 67

fact that hierarchical systems in multiple domains of science (e.g. astrophysics, energy, 68

engineering, environmental science and materials science [11]) are commonly referred to 69

as multiscale, our approach is called multiscale rather than multilevel spatio-temporal 70

meta model checking. 71

To enable the automatic verification of multilevel computational models of biological 72

systems relative to formal specifications we have implemented the model checking 73

method in the software tool Mule which is made freely available online 74

(http://mule.modelchecking.org) in binary and source code format. Moreover a 75

Docker [12] image has been created that provides a self-contained environment for 76

running Mule without additional setup on all major operating systems. 77

We illustrate the applicability of Mule by verifying the correctness of four multilevel 78

computational models previously published in the literature. The models considered are 79

of different complexity, have been encoded using different modelling formalisms and 80

software, are deterministic, stochastic or hybrid, and encode space explicitly or not. The 81

case studies corresponding to the four multilevel computational models are the rat 82

cardiovascular system dynamics [13], the uterine contractions of labour [14], the 83

PLOS 4/63

http://mule.modelchecking.org

Xenopus laevis cell cycle [15], and the acute inflammation of the gut and lung [16]. The 84

formal specifications against which the models are verified were derived from the 85

original papers introducing the models. The main reason for this is that in the following 86

we focus on describing the model verification methodology and not on presenting novel 87

biologically relevant results. 88

In brief, the main contributions of our paper are: 89

1. Definition of a multiscale spatio-temporal model checking methodology for 90

verifying multilevel computational models of biological systems relative to formal 91

specifications describing the desired/expected system behaviour. 92

2. Definition of the spatio-temporal meta model checking concept which enables 93

automatically reconfiguring the methodology according to case study specific 94

spatial entity types and measures. 95

3. Implementation of the multiscale spatio-temporal meta model checking approach 96

in the freely available software Mule. Both Bayesian and frequentist model 97

checking algorithms can be employed to verify multilevel computational models 98

(considering user-defined error bounds). 99

4. Illustrative examples of how to verify multilevel computational models of 100

biological systems using multiscale spatio-temporal meta model checking. 101

Related work 102

In computational (systems) biology, model checking approaches have been employed for 103

model verification [17–32], parameter estimation/synthesis [33–42], model construction 104

(i.e. both model parameters and structure/topology) [43,44], and robustness 105

computation (considering various perturbations) [39,44–47]; see recent review 106

papers [48–50] for a more detailed description. 107

One common characteristic of these model checking approaches is that they only 108

consider how numeric values (e.g. concentrations) change over time. They are 109

appropriate for small scale systems where the spatial domain is usually not represented 110

explicitly (e.g. cell cycle [23,27,32,36,44,46,51], gene expression/regulatory 111

networks [20,35,39,52,53], signalling pathways [17,22,25,28–30,38,46,54–56]). These 112

PLOS 5/63

model checking approaches cannot be directly employed to verify either spatial 113

computational models because they do not consider how spatial properties change over 114

time, or multilevel computational models because they do not distinguish between 115

different levels of organization. 116

In previous work [57] we have defined a model checking methodology which enables 117

verifying computational models of biological systems with respect to both how numeric 118

values and spatial properties change over time. However the main limitation of this 119

approach is that it cannot explicitly distinguish between different levels of organization 120

and therefore cannot be employed to verify multilevel computational models of 121

biological systems. Moreover the types of spatial entities and measures are hardcoded in 122

the methodology and cannot be reconfigured according to the model verification 123

requirements of different case studies. 124

Methods 125

Using the novel model checking approach introduced in this paper multilevel 126

computational models of biological systems can be verified relative to formal 127

specifications as described by the workflow depicted in Fig. 1, which comprises four 128

steps: 129

1. Model construction: Using biological observations and/or relevant references 130

from the literature to construct the computational model. 131

2. Multiscale spatio-temporal analysis: Each time the model is simulated time 132

series data are generated in which spatial entities from multiple scales are 133

automatically detected and analysed. 134

3. Formal specification: The specification of the system is mapped from natural 135

language into formal logic. 136

4. Model checking: The model checker takes as input the processed time series 137

data (representing the behaviour of the modelled system) and the formal 138

specification, and verifies if the model is correct relative to the specification using 139

the model checking algorithm chosen by the user (e.g. frequentist statistical model 140

checking). In the case that the model is incorrect it is updated and verified again. 141

PLOS 6/63

Figure 1. Multiscale spatio-temporal model checking workflow. The first step
(1) in the workflow is using biological observations and/or information from the
literature to construct the multilevel computational model of the biological system
considered. Next (2) the model is simulated to produce time series data in which spatial
entities from multiple scales are automatically detected and analysed using a multiscale
spatio-temporal analysis module. Then (3) the specification against which the model is
verified is translated from natural language to a formal multiscale spatio-temporal
language called PBLMSTL. Finally (4) using the model checker Mule the model is
automatically verified relative to the given PBLMSTL specification considering the
processed time series data representing the modelled system behaviour. If the model is
declared incorrect relative to the given specification then it is updated and the steps (2)
and (4) are repeated.

Model construction 142

The biological systems considered here are assumed to be inherently complex, stochastic, 143

and to span multiple levels of organization [58], where different levels of organization 144

correspond to different spatio-temporal scales. Moreover we assume in the following 145

that biological systems which are multilevel (i.e. span multiple levels of biological 146

organization) are inherently multiscale (i.e. span multiple spatio-temporal scales). 147

Therefore the terms multiscale and multilevel are used interchangeably in this paper. 148

However, since our methodology is “multiscale” instead of “multilevel” we will refer to 149

“scales” rather than “levels” when describing it. The multiscale system representation is 150

assumed to be hierarchical, with the most coarse-grained scales represented at the top 151

of the hierarchy and the most fine-grained scales at the bottom. Time can be 152

represented either in a discrete (using non-negative integer values) or continuous (using 153

non-negative real values) manner. Whenever space is represented explicitly, we assume 154

throughout, similarly to our previous work [57], that it is discretised and represented in 155

pseudo-3D i.e. 2D space in which pile up is allowed, where the degree of pile up for each 156

spatial position is computed using a density measure (e.g. representing cellular density). 157

However adapting the methodology to other numbers of spatial dimensions requires 158

minor changes which are described later. Furthermore we consider that the behaviour of 159

such systems can be represented as sequences of discrete states where the system 160

probabilistically transitions between states only when an event (e.g. a biochemical 161

reaction) occurs. 162

Such systems are usually represented using high-level modelling languages (e.g. agent 163

PLOS 7/63

based models, cellular automata etc.), examples of which are given in the Results section. 164

However, for model checking purposes, the behaviour of the computational models is 165

usually described using an equivalent low level representation (e.g. a state transition 166

system). The main reason for this is to enable defining the model checking algorithms 167

relative to a single common rather than multiple different model representations. 168

Low level modelling formalisms often employed to encode systems that have the 169

above mentioned properties are stochastic discrete-event systems (SDES) [59] when no 170

constraint is imposed on the representation of time, respectively 171

discrete-time/continuous-time Markov chains (DTMC/CTMC) when time is assumed to 172

be discrete/continuous. One limitation of SDESs (and DTMCs/CTMCs) is that they do 173

not explicitly distinguish between how numeric and spatial properties of the system 174

change over time and across multiple scales. An extension of SDESs called stochastic 175

spatial discrete-event systems (SSpDES) was defined in [57] to enable explicitly 176

differentiating between numeric and spatial properties. However, similarly to SDESs, 177

SSpDESs do not enable distinguishing between different scales. 178

In order to address this issue a multiscale extension of SSpDESs called Multiscale 179

Stochastic Spatial Discrete Event Systems, or MSSpDES for short, is defined next. 180

Formally an MSSpDES M is a 9-tuple 〈S, T , µ, NSV , SpSV , NV , CSpV , MA, SVSS 〉 181

where: 182

• S = {s0, s1, ..., sk} is the set containing all possible states of the system. 183

• T is the set representing time and it is typically equal to the set of non-negative 184

integer numbers in case of a discrete-time representation (i.e. T = Z+), 185

respectively the set of non-negative real numbers in case of a continuous-time 186

representation (i.e. T = R+). 187

• µ is a probability measure employed to compute the probability of the system to 188

transition along the sequences of states described by a collection of model 189

simulation traces. In case of biological systems it is often assumed that the 190

Markov (memoryless) property holds i.e. the probability of the systems to 191

transition between states depends only on the current and not on previous states. 192

Considering this assumption, if a discrete-time representation is employed then µ 193

is defined similarly as for DTMCs [60] relative to a transition probability function 194

PLOS 8/63

P : S × S → [0, 1] which records the probability of transitioning between any two 195

states si, sj ∈ S. Conversely, if a continuous-time representation is employed then 196

µ is defined similarly as for CTMCs [61] considering a transition rate matrix 197

Q : S × S → R which records the rate at which a system transitions between any 198

two states si, sj ∈ S and from which the corresponding state transition 199

probabilities can be derived. 200

• NSV = {nsv1, nsv2, ..., nsvl} is the set of numeric state variables describing the 201

state of the system. 202

• SpSV = {spsv1, spsv2, ..., spsvm} is the set of spatial state variables describing 203

the state of the system. 204

• NV : S ×NSV → R is the numeric value assignment function employed to 205

compute for a given state of the system s ∈ S the value valNSV ∈ R of the 206

numeric state variable nsv ∈ NSV , where valNSV = NV (s, nsv). 207

• CSpV = {SpV1,SpV2, ...,SpVn} is the collection of spatial value assignment 208

functions, where each spatial value assignment function SpVi ∈ CSpV , 209

SpVi : S × SpSV → Rmi×ni , is employed to compute for a given state of the 210

system s ∈ S the value valSpSV ∈ Rmi×ni of spatial state variable spsv ∈ SpSV 211

that corresponds to a discretised spatial domain of size mi × ni, where 212

valSpSV = SpVi(s, spsv). 213

• MA = (VMA, EMA) is the multiscale architecture graph encoding the hierarchical 214

multiscale structure of the system under consideration. 215

• SVSS : NSV ∪ SpSV → VMA is the state variable scale and subsystem 216

assignment function which associates each state variable sv ∈ NSV ∪ SpSV with 217

a vertex vscsubsys ∈ VMA encoding a particular scale and subsystem, where 218

vscsubsys = SVSS (sv). 219

The multiscale architecture graph MA = (VMA, EMA) is employed to formally encode 220

the hierarchical top-down structure of multiscale systems and is represented as a rooted 221

(directed) tree, where VMA represents the set of vertices and EMA the set of directed 222

edges. The main reason for choosing the rooted directed tree representation is that its 223

PLOS 9/63

structure is inherently hierarchical and therefore similar to the organization of biological 224

organisms. We assume throughout that vertices higher in the tree correspond to 225

coarse-grained scales, and vertices lower in the tree correspond to fine-grained scales. 226

Each vertex v ∈ VMA is encoded as a tuple (sc, subsys) where subsys represents a 227

particular biological subsystem (e.g. heart) and sc its corresponding scale (e.g. organ). 228

Both scales and subsystems are recorded by the MA graph to enable distinguishing 229

between different scales (e.g. organ and cellular), and/or different subsystems (e.g. heart 230

and liver) corresponding to the same scale (e.g. organ). Directed edges (v, vi) ∈ EMA, 231

i = 1,m, link the biological subsystem represented by vertex v to all its m constituent 232

subsystems from finer-grained scales represented by vertices vi. 233

The assumption made here is that biological systems can be decomposed in a 234

top-down manner from coarse-grained (e.g. population/organism) to fine-grained (e.g. 235

intracellular/molecular) scales. Moreover at each scale (e.g. organ) one or multiple 236

biological subsystems (e.g. heart and kidney) could be explicitly considered. The 237

number and type of biological subsystems and/or scales considered differs depending on 238

the biological question addressed. A description of how to construct the MA graph 239

corresponding to a given biological system is given in S2 Text. 240

Considering that the MA graph is represented as a rooted directed tree, a strict 241

partial order < can be defined over the set of vertices VMA, where v1 < v2, for all 242

v1, v2 ∈ VMA, if the unique path from the root to v1 passes through v2. Similarly a 243

non-strict partial order ≤ can be defined over VMA, where v1 ≤ v2 if the unique path 244

from the root to v1 passes through v2, or v1 = v2. One of the main practical benefits of 245

defining these partial orders is that they enable writing expressions for referring to all 246

subsystems vi of a system vj (vi ≤ vj), and all ancestor/parent systems vk of a 247

subsystem vl (vl < vk) in a concise manner. Therefore such expressions could be 248

employed to write shorter formal specifications against which the computational models 249

are verified. 250

A simple illustrative example of how to construct a (discrete-time) MSSpDES model 251

for a biological system spanning multiple levels of organization is given below. 252

Example 1 Simple illustrative example of how to construct an MSSpDES 253

model 254

PLOS 10/63

Let us assume that we would like to model the movement (considering the von 255

Neumann neighbourhood relation) of a unicellular microorganism in a fixed size 256

environment (here a discretised rectangular grid of size 2× 2). In order to move, the cell 257

requires energy which it can chemically convert from an abstractly denoted nutrient A; 258

the chemical reaction for converting A to energy is A→ Energy. If nutrient A is 259

available intracellularly then it can be converted directly to energy. Otherwise it has to 260

be assimilated from the environment first; the cell can only assimilate nutrients from 261

the position of the discretised space which it currently occupies. The probability of the 262

cell to move is 20%, respectively 30% to convert A to energy and 50% to assimilate A 263

from the environment. 264

Although the system considered in this example is much simpler than a real-life one, 265

it suffices to illustrate the principles of abstractly representing a multiscale stochastic 266

spatial discrete-event system. Throughout this example a discrete time representation is 267

employed. 268

The spatial state variables employed to describe the behaviour of the system are 269

Cell – encoding the position of the cell in the discretised space, and A extracellular – 270

representing the distribution of nutrient A in the environment. Conversely the employed 271

numeric state variables are A intracellular – encoding the intracellular availability of 272

nutrient A, and Energy – representing the cell’s energy supply. The considered 273

subsystems and corresponding scales are energy production reaction network at the 274

intracellular scale, microorganism at the cellular scale, and growth media at the 275

environment scale. State variables associated with the energy production reaction 276

network (intracellular scale) are A intracellular and Energy, respectively Cell with 277

the microorganism (cellular scale), and A extracellular with the growth media 278

(environment scale). In the initial state (S0) of the system, depicted in Fig. 2, the cell is 279

positioned in the lower right part of the environment, A extracellular is uniformly 280

distributed across the entire environment (A extracellular[i, j] = 1, for all i, j = 1, 2), 281

and the initial levels of A intracellular and Energy are zero. 282

Figure 2. Initial state of the system. Cell and A extracellular are the spatial state
variables representing the position of the cell, respectively distribution of nutrient A in
the environment. A intracellular and Energy represent the intracellular availability of
nutrient A, respectively energy.

PLOS 11/63

Starting from the initial state S0 the system can (in)directly transition to any of the 283

states depicted in Fig. 3. 284

Figure 3. The state space of the system i.e. all possible states which can be reached
from the initial state S0. Cell and A extracellular are the spatial state variables
representing the position of the cell, respectively distribution of nutrient A in the
environment. A intracellular and Energy represent the intracellular availability of
nutrient A, respectively energy. The percentage associated with the arrows connecting
each pair of states represents the probability of transitioning from one state to the other.

Given that in S0 the cell has no supplies of intracellular nutrient A or energy, the 285

only possible action is for it to assimilate A from its environment (S0 → S1, probability 286

100%). Since only one supply of nutrient A is available the only possible next action is 287

to convert the newly gained intracellular A supply to energy (S1 → S2, probability 288

100%). Once a supply of energy is available the cell can move either above (S2 → S4) or 289

to its left (S2 → S3). The probability of moving to either of the neighbouring positions 290

is therefore equal to 100% / 2 = 50%. Continuing from either state S3 or S4 the cell 291

will try to assimilate new A nutrient supplies, which can be converted to energy and 292

then used to move in the environment. This process is repeated multiple times until the 293

cell reaches a state in which it has no A nutrients available 294

extracellularly/intracellularly, respectively no supplies of energy (i.e. S10, S11, S18, S19, 295

S25, S26). In such cases the cell becomes dormant and the system reaches its final state. 296

Using the notations above we formally define the corresponding MSSpDES modelM 297

and (state) transition probability function P as follows: 298

• M = 〈S, T , µ, NSV , SpSV , NV , CSpV , MA, SVSS 〉, where: 299

– S = {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, 300

S17, S18, S19, S20, S21, S22, S23, S24, S25, S26}. 301

– T = Z+ is the set representing time. 302

– µ is the function used to compute the probability associated with a set of 303

paths Paths(S0) starting from S0 having a common finite prefix 304

σfinite = {s0, s1, ..., sn}, which means that for all σ ∈ Paths(S0), 305

σ[i] = σfinite [i] = si, i = 0, n, where σ[i] denotes the i -th state in σ. The 306

probability value corresponding to Paths(S0) is computed by multiplying the 307

probabilities of the state transitions associated with the common finite path 308

PLOS 12/63

prefix σfinite . For instance given the finite state sequence 309

σfinite = {S0, S1, S2, S3, S5, S7, S10}, µ({σ ∈ Paths(S0) | σ[i] = σfinite [i], 0 ≤ 310

i ≤ 6}) = P(S0, S1) ·P(S1, S2) ·P(S2, S3) ·P(S3, S5) ·P(S5, S7) ·P(S7, S10), 311

where the probability values P(Si, Sj) with Si, Sj ∈ S are recorded by the 312

transition probability function P provided below. 313

– NSV = {A intracellular, Energy}, and NV is the function used to compute 314

the value of A intracellular and Energy in a given state of a computation 315

path. The values of the numeric state variables for each state (e.g. 316

NV (S0, Energy) = 0) are depicted in Fig. 3 and therefore will not be 317

explicitly restated here. 318

– SpSV = {Cell, A extracellular}, and CSpV = {SpV } is the collection 319

containing the spatial value assignment function SpV used to evaluate Cell 320

and A extracellular in a given state of a computation path. The values of 321

the spatial state variables for each state (e.g. SpV (S0, Cell) = [0, 0; 0, 1]) are 322

depicted in Fig. 3 and therefore will not be explicitly restated here. 323

– MA is the multiscale architecture graph depicted in Fig. 4 encoding the 324

hierarchical organization of the considered subsystems, namely the growth 325

media (environment scale), the microorganism (cellular scale) and the energy 326

production reaction network (intracellular scale). 327

– SVSS is the state variable scale and subsystem assignment function which 328

associates state variables to particular subsystems encoded as vertices in the 329

MA graph. The values returned by SVSS for the considered state variables 330

are: SVSS (A intracellular) = (Intracellular, 331

EnergyProductionReactionNetwork), SVSS (Energy) = (Intracellular, 332

EnergyProductionReactionNetwork), SVSS (Cell) = (Cellular, 333

Microorganism), and SVSS (A extracellular) = (Environment, 334

GrowthMedia). 335

• P is the transition probability function which records the probability of 336

transitioning between any two states of the system si, sj ∈ S. Due to page size 337

constraints it is not possible to represent P explicitly. Instead only its non-zero 338

entries are given below: 339

PLOS 13/63

P(S0, S1) = 100%, P(S1, S2) = 100%, P(S2, S3) = 50%, P(S2, S4) = 50%, 340

P(S3, S5) = 100%, P(S4, S6) = 100%, P(S5, S7) = 100%, P(S6, S8) = 100%, 341

P(S7, S9) = 50%, P(S7, S10) = 50%, P(S8, S11) = 50%, P(S8, S12) = 50%, 342

P(S9, S13) = 100%, P(S12, S14) = 100%, P(S13, S15) = 100%, 343

P(S14, S16) = 100%, P(S15, S17) = 50%, P(S15, S18) = 50%, P(S16, S19) = 50%, 344

P(S16, S20) = 50%, P(S17, S21) = 100%, P(S20, S22) = 100%, 345

P(S21, S23) = 100%, P(S22, S24) = 100%, P(S23, S25) = 50%, 346

P(S23, S26) = 50%, P(S24, S25) = 50%, P(S24, S26) = 50%. 347

Figure 4. The multiscale architecture graph corresponding to the simple illustrative
MSSpDES example. Each vertex in the graph (e.g. (Environment, GrowthMedia))
corresponds to a subsystem (e.g. growth media) and its associated scale (e.g.
environment). Directed edges between vertices (e.g. ((Environment, GrowthMedia),
(Cellular, Microorganism))) indicate how one subsystem from a coarse-grained scale (e.g.
(Environment, GrowthMedia)) can be decomposed in one or multiple subsystems from
more fine-grained scales (e.g. (Cellular, Microorganism)).

In spite of the simplicity of the scenario described above the same model development 348

principles apply to more complex multiscale real-life systems. However due to the 349

inherent complexity of such systems the size of the state space is expected to be larger. 350

� 351

The main reason for encoding multiscale stochastic biological systems using a 352

low-level modelling formalism such as MSSpDES is to enable our model checking 353

approach to be employed for the general class of SDESs, which MSSpDESs extend, 354

instead of restricting it to a particular high-level modelling formalism. 355

Although MSSpDES models are restricted to a two-dimensional spatial 356

representation (see codomain of spatial value assignment functions SpVi ∈ CSpV), 357

extending the models from a two- to, for instance three-dimensional spatial 358

representation, requires only replacing the codomain Rmi×ni of each SpVi ∈ CSpV with 359

Rmi×ni×pi . 360

MSSpDESs are multiscale extensions of SSpDESs 〈S, Tr , µ, NSV , SpSV , NV , 361

SpV 〉, where the semantics of S, µ, NSV , SpSV and NV is preserved, the transition 362

rates matrix Tr was replaced by the set T representing time and the state transition 363

probabilities are defined by a transition probability function P for discrete-time systems, 364

PLOS 14/63

respectively are derived from a transition rates matrix Q for continuous-time systems. 365

The single spatial value assignment function SpV in an SSpDES is replaced by CSpV , 366

the MA graph is defined to explicitly encode the hierarchical representation of the 367

systems under consideration, and SVSS is introduced to associate state variables with 368

particular scales and subsystems encoded as vertices in the MA graph. The main 369

advantage of defining MSSpDESs as extensions of SSpDESs is backwards compatibility. 370

SSpDESs can be encoded as MSSpDESs where the set T and probability measure µ are 371

defined accordingly, CSpV contains a single element SpV , and the MA graph contains 372

only one vertex to which all state variables are assigned using SVSS . Due to this, 373

multiple SSpDESs employing the same representation of time can be easily integrated 374

into a single MSSpDES by defining the set T and probability measure µ accordingly, 375

gathering all spatial value assignment functions SpV into a single collection, 376

constructing a corresponding MA graph, mapping state variables to appropriate vertices 377

in the graph and adding interactions between submodels. 378

Multiscale spatio-temporal analysis 379

Detection and analysis of spatial entities 380

Let us denote execution traces (or time series data) generated by MSSpDES models as 381

σ = {(s0, t0), (s1, t1), ...}, where s0, s1, ... represent the states of the execution trace 382

and t0, t1, ... the time durations spent in each corresponding state. Typically in case of 383

a continuous-time representation the time durations are represented by non-negative 384

real values t0, t1, ... ∈ R+, whereas in case of a discrete-time representation by 385

non-negative integer values t0, t1, ... ∈ Z+. 386

Given an execution trace σ = {(s0, t0), (s1, t1), ...}, a numeric state variable nsv and 387

a spatial state variable spsv, it is possible to reason about how the values of nsv and 388

spsv change over time by evaluating them for each state in σ using 389

NV (s0, nsv),NV (s1, nsv), ..., respectively SpV (s0, spsv),SpV (s1, spsv), Although 390

the sequence SpV (s0, spsv),SpV (s1, spsv), ... describes how the entire discretised 391

spatial domain DSD = Rmspsv×nspsv corresponding to spsv changes over time, we are 392

interested in reasoning about how emergent spatial structures, called spatial entities, 393

identified by subsets of positions in DSD change over time. For instance assuming that 394

PLOS 15/63

spsv records the cellular density in a 2D environment DSD and that we would like to 395

reason about spatial entities denoting multicellular populations, then only the subsets 396

comprising at least x (e.g. x = 20) neighbouring positions in DSD having the cellular 397

density value greater than 0 would be considered. To reason about such spatial entities 398

there is a need for an additional processing step which automatically detects and 399

analyses how the spatial entities change over time. 400

This processing step is denoted as the multiscale spatio-temporal analysis and its 401

associated workflow is depicted in Fig. 5. The first step in the workflow is to split up 402

the time series data corresponding to all spatial state variables such that each resulting 403

time subseries corresponds to a single subsystem and scale. Next each time subseries is 404

passed to a uniscale spatio-temporal analysis module which automatically detects, 405

analyses and annotates spatial entities with their corresponding scale and subsystem. 406

Finally, during the last step the collections of detected spatial entities are merged such 407

that spatial entities corresponding to the same time point are grouped together. 408

Figure 5. The multiscale spatio-temporal analysis workflow. An MSSpDES
model of the system under consideration is constructed and simulated to generate time
series data. This time series data is split up into subsets (1) such that each subset
corresponds to a single subsystem and scale. The time series data subsets are passed to
a uniscale spatio-temporal analysis module (2) which automatically detects, analyses
and annotates spatial entities with their corresponding scale and subsystem. The results
of the uniscale spatio-temporal analysis are then merged (3) such that spatial entities
corresponding to the same time point are grouped together. If more simulations are
required, a new time series dataset is generated, for which steps (1)–(3) are repeated.

The uniscale spatio-temporal analysis module assumes that the problem of detecting 409

and analysing spatial entities at a given time point is transformed into an image 410

processing problem. This transformation is possible because the spatial domain is 411

assumed to be discretised and (the value of) each position in the discretised space can 412

be mapped to (the intensity of) a pixel in an image. One of the main advantages of this 413

is that existing image processing approaches for detecting and analysing objects in 414

images can be directly reused. 415

We define parameterized detection and analysis modules for two generic types of 416

spatial entities, namely regions and clusters [57]. 417

Regions represent subsets of neighbouring positions in the discretised space 418

(considering the Moore neighbourhood relation) with associated values (e.g. 419

PLOS 16/63

concentrations) above a user-defined threshold. For instance considering a 420

computational model that encodes the evolution of a population of cells in a 2D 421

environment, regions could represent patches of neighbouring cells where the cellular 422

density is greater than a user-defined value. More formally a region R is defined with 423

respect to a state s and spatial state variable spsv as a subset {0, 1}mspsv×nspsv (i.e. 424

positions of the discretised space included in R are marked with 1, all others with 0) of 425

neighbouring positions in SpV (s, spsv) such that for all positions of the discretised 426

space (i, j) ∈ R marked with 1, the corresponding value SpV (s, spsv)[i, j] ≥ 427

THRESHOLD, and the number of positions included in R is greater than εsize, where 428

THRESHOLD ∈ R, εsize ∈ N are user-defined parameters. The module for detecting 429

and analysing regions is an implementation of Algorithm 1 in [57] using image 430

processing functions from the open source Computer Vision library OpenCV [62]. 431

Conversely clusters represent subsets of neighbouring regions in the discretised space 432

where the maximum distance between two neighbouring regions is bounded above by a 433

user-defined threshold. For instance considering again the computational model 434

encoding the evolution of a population of cells, clusters could represent groups of 435

patches of cells where the distance between neighbouring patches is less or equal to a 436

user-defined threshold value. Clusters are computed using an improved version of the 437

DBSCAN algorithm [63]. The output of this algorithm depends on the given set of 438

regions REG, the pseudometric d used to compute the distance between any two 439

regions in REG, the maximum distance εdistance between two neighbouring regions, and 440

the minimum number of regions εsize neighbouring a core region, where a region is 441

denoted as core if its number of neighbouring regions is greater or equal to εsize. The 442

pseudometric d considered here is defined with respect to a set of regions REG, 443

d : REG×REG→ R+, d(A,B) =
√

(xB − xA)2 + (yB − yA)2, where (xA, yA) and 444

(xB , yB) are the centroids of regions A, respectively B. Moreover two regions 445

REG1, REGn ∈ REG are called density-reachable if there exists a sequence of regions 446

REG1, REG2, ..., REGn ∈ REG, where i ≥ 1 and n ≥ 2 such that for all i < n, REGi 447

is a core region, and REGi+1 is a neighbour of REGi. Using the notations above a 448

cluster C is defined as a maximal subset {0, 1}m1×n1 × {0, 1}m2×n2 × ...× {0, 1}mp×np
449

(i.e. regions’ positions included in C are marked with 1, all others with 0) of the given 450

set of regions REG = {REG1, REG2, ..., REGp} such that all regions in C are 451

PLOS 17/63

density-reachable from an arbitrary core region of C [63]. 452

Each detected region/cluster is characterized by a set of general quantitative spatial 453

measures that enable describing how the spatial entity changes over time. A description 454

of the set of spatial measures considered is given in Table 1. 455

Table 1. Description of the spatial measures considered.

Name Values Description

clusteredness [0, 1]
Indicates if regions contain holes (clusteredness < 1) or not (clusteredness = 1),
respectively measures if the average distance between all positions considered in a
cluster is small (clusteredness → 1) or large (clusteredness → 0).

density [0, 1]
Computes the average value associated with the discretised spatial positions defining a
region/cluster.

area R+
Represents the number of positions in the discretised space associated with a
region/cluster.

perimeter R+
Represents the length of the outer contour of a region, respectively the convex hull of
a cluster.

distance from the
origin

R+
Computes the minimum distance between the outer contour of a region, respectively
the convex hull of a cluster, and the centre point of the discretised spatial domain.

angle
[0, 360]
(degrees)

Determined by the lines that pass through the discretised spatial domain’s centre
point and are tangent to a region’s outer contour, respectively cluster’s convex hull.

triangle/rectan-
gle/circle
measure

[0, 1]
Indicates if the shape of the region’s outer contour, respectively cluster’s convex hull,
is similar to a triangle/rectangle/circle (triangle/rectangle/circle measure → 1) or not
(triangle/rectangle/circle measure → 0).

centroid Ox/Oy
coordinate

R+
Represents the Ox/Oy coordinate of the geometric centre of the region’s outer
contour, respectively cluster’s convex hull.

Each spatial measure considered has a name (column “Name”), an associated range of valid values (column “Values”) and a
corresponding description (column “Description”). In case of spatial measures which have similar semantics the table rows
have been merged and the spatial measure names are separated by the “/” symbol (see last two table rows).

The spatial entity types and measures were chosen relative to the case studies 456

considered here. Therefore depending on case study specific requirements different sets 457

of spatial entity types and/or measures may need to be employed. For instance, 458

extending the spatial representation from two to three dimensions requires employing 459

appropriate types of spatial entities (e.g. 3D structure) and measures (e.g. volume), and 460

updating the multiscale spatio-temporal analysis module (implementation) accordingly. 461

Moreover (the value corresponding to) each position in the discretised space is mapped 462

to (the intensity of) a voxel, rather than a pixel in an image. The model checking 463

approach is adapted automatically to different spatial entity types and/or measures 464

using the spatio-temporal meta model checking concept described later. 465

The output of the multiscale spatio-temporal analysis is time series data describing 466

how the values of the spatial measures considered change over time for each detected 467

PLOS 18/63

spatial entity, scale and subsystem. 468

Multiscale Spatial Temporal Markup Language 469

The MSSpDES model simulation results are represented by time series data produced 470

by the multiscale spatio-temporal analysis and time series data describing the evolution 471

over time of numeric state variables values. 472

To represent these model simulation results in a uniform manner which facilitates 473

exchange of data sets and integration of software tools a corresponding standard data 474

representation format is required. To the best of our knowledge such a standard data 475

representation format does not exist. 476

One of the main requirements for the data representation format is that it supports 477

recording different numbers of values at different time points because the collection of 478

(emergent) spatial entities considered could potentially change over time. Traditional 479

tabular (e.g. csv) representation formats are not suitable because they assume that the 480

number of recorded values (or columns) is constant throughout the entire time series. 481

Moreover defining a representation format similar to csv that does not annotate 482

numeric values with their meaning could be potentially difficult to interpret. 483

For portability, structuring and readability purposes an eXtensible Markup 484

Language (XML) based standard representation format is defined called Multiscale 485

Spatial Temporal Markup Language (MSTML). The rules and constraints for the 486

structure of MSTML files are formalised in XML Schema Definition (xsd) files. The 487

latest version of the MSTML format is made available at 488

http://mule.modelchecking.org/standards, a description of the format is given 489

in S3 Text, and an example of an MSTML formatted file is depicted in Listing 1. 490

For model checking purposes the number of MSTML files #MSTML generated for 491

an MSSpDES model assuming fixed parameter values varies depending if the model is 492

deterministic (#MSTML = 1) or stochastic (#MSTML ≥ 1), and if the required level 493

of confidence for the model checking result is high (e.g. 99%) or low (e.g. 70%). 494

To determine the correctness of a model the model checker verifies if its behaviour 495

captured by a corresponding set of MSTML files conforms to a given formal 496

specification. 497

PLOS 19/63

http://mule.modelchecking.org/standards

Listing 1. An example MSTML file recording multiscale spatio-temporal time series
data.

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <experiment>
3 <t imepoint va lue=”1”>
4 <s p a t i a lEn t i t y spat ia lType=” c l u s t e r ” scaleAndSubsystem=”Organ .

L iver ”>
5 <c l u s t e r e dn e s s>0 .01</ c l u s t e r e dn e s s>
6 <dens i ty>0 .4</ dens i ty>
7 <area>15</ area>
8 <per imeter>28</ per imeter>
9 <distanceFromOrigin>81</ distanceFromOrigin>

10 <ang le>10 .5</ ang le>
11 <t r i ang l eMeasure>0 .5</ t r iang l eMeasure>
12 <rectang leMeasure>1 .0</ rectang leMeasure>
13 <c i r c l eMeasur e>0 .1</ c i r c l eMeasure>
14 <centroidX>703.4999</ centroidX>
15 <centroidY>118.087</ centroidY>
16 </ spa t i a lEn t i t y>
17 <numer icStateVar iab le scaleAndSubsystem=” Ce l l u l a r . Hepatocyte ”>
18 <name>dys funct ion</name>
19 <value>0 .1</ value>
20 </ numer icStateVar iab le>
21 </ t imepoint>
22 . . .
23 </ experiment>

Formal specification 498

The temporal logic employed to write the formal specification needs to enable reasoning 499

about how values of numeric state variables and/or spatial measures, which are the 500

state variables considered, are expected to change over time and multiple scales. 501

To the best of our knowledge the only formal language for reasoning about numeric 502

and spatial properties corresponding to computational models of biological systems is 503

called Bounded Linear Spatial Temporal Logic (BLSTL), which we have previously 504

introduced in [57]. One of the main limitations of BLSTL is that it does not enable 505

different scales to be explicitly distinguished. Therefore it is not possible to relate how 506

changes at one scale reflect at another scale and vice versa. 507

Bounded Linear Multiscale Spatial Temporal Logic 508

To address the issue of relating changes between scales we define the Bounded Linear 509

Multiscale Spatial Temporal Logic (BLMSTL) which enables explicitly distinguishing 510

between state variables corresponding to different scales and subsystems. Throughout it 511

is assumed that the scales and subsystems considered are the same as the ones defined 512

PLOS 20/63

in the MA graph of the corresponding MSSpDES model. Although MSSpDESs can be 513

employed to represent both discrete- and continuous-time stochastic discrete-event 514

systems, the semantics of a temporal logic usually varies with the considered 515

representation of time. Therefore in this paper we restrict the semantics of BLMSTL to 516

a continuous-time representation (similarly to CSL [64] and in contrast to BLSTL). 517

However adapting BLMSTL to a discrete-time representation requires changing only the 518

semantics of the time dependent operators, whereas the definition of all other atomic 519

propositions (related to different scales and subsystems, numeric state variables, and 520

spatial entities) is preserved. 521

BLMSTL enables reasoning about how collections, or more formally bags, of spatial 522

measures values from one time point, and collections of numeric state variables and 523

spatial measures values corresponding to multiple time points change over time using 524

statistical functions. Transfer relations between state variables from the same and/or 525

different scales are encoded using standard arithmetic functions. An informal natural 526

language description of the most relevant BLMSTL features is given below; see S4 Text 527

for a formal definition of the BLMSTL syntax and semantics. 528

Similarly to BLSTL, BLMSTL employs temporal and Boolean operators for 529

describing how a system changes over time, respectively for composing simple logic 530

statements into more complex ones. BLMSTL atomic propositions enable describing 531

relations between numeric state variables and/or spatial measures associated to subsets 532

of spatial entities. 533

Numeric state variables are specified by their name (e.g. heartBeat) and their 534

associated scale and subsystem (e.g. (organ, heart)); the corresponding BLMSTL 535

notation for specifying scales and subsystems is scale.subsystem (e.g. organ.heart). 536

Conversely spatial measures associated with subsets of spatial entities are specified by 537

their spatial measure type (e.g. area), associated spatial entity type (e.g. regions) and 538

their corresponding scale and subsystem. Similarly to MSTML the sets of spatial entity 539

types and spatial measures considered are SET considered = {clusters, regions}, 540

respectively SM considered = {clusteredness, density, area, perimeter, 541

distanceFromOrigin, angle, triangleMeasure, rectangleMeasure, circleMeasure, 542

centroidX, centroidY}. 543

Instead of considering all spatial entities of a given type it is possible to select only a 544

PLOS 21/63

subset of spatial entities by imposing constraints over the spatial measure values (e.g. 545

spatial entities with area > 10), by using subset operators \ (difference), ∩ 546

(intersection) and ∪ (union), or specifying one or multiple scales and subsystems using 547

the partial orders < and ≤ defined over the set of vertices VMA (e.g. spatial entities 548

whose corresponding scale and subsystem < (organ, heart)). 549

The resulting collection of spatial measures values corresponding to multiple spatial 550

entities (e.g. value of the area for all detected spatial entities) can be described using 551

unary (e.g. mean), binary (e.g. covariance) or binary quantile (e.g. percentile) statistical 552

functions. These statistical functions can be additionally employed to reason about 553

collections of numeric state variables and spatial measures values corresponding to 554

multiple time points (e.g. the value of numeric state variable X for all time points in the 555

time interval [0, 100]). By considering different numbers of time points for different 556

state variables it is possible, for instance, to describe how values corresponding to one 557

time point (and a coarse-grained scale) relate to other values corresponding to multiple 558

time points (and a fine-grained scale), or vice versa. 559

Transfer functions defined over state variables from different scales can be encoded 560

using unary (e.g. square root) and binary (e.g. add) arithmetic functions. For instance if 561

the value of a state variable svcg from a coarse-grained scale is equal to the arithmetic 562

mean of four state variables svfg1
, svfg2

, svfg3
, svfg4

from a more fine-grained scale, this 563

can be written as svcg = (svfg1
+ svfg2

+ svfg3
+ svfg4

)/4; in BLMSTL “+” and “/” 564

would be replaced by the arithmetic functions add, respectively div. 565

Illustrative examples of statements written both in natural language and BLMSTL 566

are given below. For simplicity the number of scales and subsystems explicitly specified 567

is two in all examples. 568

• Natural language: Always during the time interval [0, 95] if the concentration 569

of EGFR (corresponding to scale and subsystem (Intracellular, RasERKPathway)) 570

increases over 20 M, then the cancerous cell (corresponding to scale and 571

subsystem (Cellular, Cancerous)) will divide i.e. the cell count will increase. 572

BLMSTL: G[0, 95] (({EGFR}(scaleAndSubsystem = 573

Intracellular.RasERKPathway) > 20) ⇒ 574

(d(count(density(filter(regions, scaleAndSubsystem = 575

PLOS 22/63

Cellular.Cancerous)))) > 0)). 576

• Natural language: If the concentration of drug X (corresponding to scale and 577

subsystem (Organism, Human)) eventually increases during time interval [5, 10], 578

then the area of the aorta cross section (corresponding to scale and subsystem 579

(OrganSystem, Aorta)) will be larger during time interval [10, 30] than [0, 10]. 580

BLMSTL: (F [5, 10] d({X}(scaleAndSubsystem = Organism.Human)) > 0) ⇒ 581

(min([10, 30] min(area(filter(regions, scaleAndSubsystem = 582

OrganSystem.Aorta)))) > 583

max([0, 10] max(area(filter(regions, scaleAndSubsystem = 584

OrganSystem.Aorta))))). 585

• Natural language: Always during the time interval [0, 100] the liver 586

dysfunction measure (corresponding to scale and subsystem (Organ, Liver)) is 587

equal to the average density of damaged liver tissues (corresponding to scales and 588

subsystems ≤ (Tissue, DamagedLiverTissue)). The assumption made here is that 589

the density value represents the degree of damage suffered by the liver tissue. 590

BLMSTL: G[0, 100] ({LiverDysfunction} (scaleAndSubsystem = 591

Organ.Liver) = avg(density(filter(regions, scaleAndSubsystem ≤ 592

Tissue.DamagedLiverTissue)))). 593

To enable the explicit encoding of the probability with which a BLMSTL statement 594

is expected to hold, a probabilistic extension of BLMSTL called Probabilistic Bounded 595

Linear Multiscale Spatial Temporal Logic is defined. 596

Probabilistic Bounded Linear Multiscale Spatial Temporal Logic 597

A Probabilistic Bounded Linear Multiscale Spatial Temporal Logic (PBLMSTL) property 598

φ is a logic property of the form P./θ[ψ] where ./ ∈ {<,<=, >=, >}, θ ∈ (0, 1) and ψ is 599

a BLMSTL property. 600

An illustrative example of a natural language probabilistic statement mapped into 601

PBLMSTL is given below: 602

Natural language: The probability is greater than 0.99 that always during the 603

time interval [0, 95] if the concentration of EGFR (corresponding to scale and 604

PLOS 23/63

subsystem (Intracellular, RasERKPathway)) increases over 20 M, then the 605

cancerous cell (corresponding to scale and subsystem (Cellular, Cancerous)) will 606

divide i.e. the cell count will increase. 607

PBLMSTL: P > 0.99 [G[0, 95] (({EGFR}(scaleAndSubsystem = 608

Intracellular.RasERKPathway) > 20) ⇒ 609

(d(count(density(filter(regions, scaleAndSubsystem = 610

Cellular.Cancerous)))) > 0))]. 611

A PBLMSTL property φ ≡ P./θ[ψ] holds for an MSSpDES M if and only if the 612

probability of ψ to hold for a model simulation is ./ θ. Therefore in order to determine 613

the truth value of a PBLMSTL property φ the likelihood of ψ being true needs to be 614

computed. 615

Model checking 616

The multiscale spatio-temporal model checking problem is to automatically verify if an 617

MSSpDES M satisfies a PBLMSTL property φ. 618

In order to solve the model checking problem only approximate probabilistic model 619

checking approaches are considered throughout. As illustrated in Table 2 the 620

approaches considered are either Bayesian or frequentist, and estimate or hypothesis 621

testing based; a brief description of each approach was given in our previous 622

work [57, Additional File 4] and will not be restated here. 623

By means of approximate probabilistic model checking approaches the verification of 624

a PBLMSTL specification against an MSSpDES model is guaranteed to terminate. 625

Therefore the corresponding multiscale spatio-temporal model checking problem is 626

well-defined; see S5 Text for a formal proof. Intuitively the main idea behind the proof 627

is to show that in order to verify an MSSpDES model the number of required model 628

simulations is finite, and that the number of time points considered for each model 629

simulation is bounded. Therefore the PBLMSTL specification is evaluated against a 630

finite number of time points and model simulations, which can be done in a finite 631

number of steps. 632

PLOS 24/63

Table 2. Considered approximate probabilistic model checking approaches.

Name Type Input Description Sample size Ref.

Chernoff-
Hoeffding
bounds
based

FE ε, δ

The absolute difference between
the estimated p and true p′

probability of ψ to hold is greater
than ε with probability less than δ
(i.e. P [|p− p′| > ε] < δ).

n = 4
ε2 log

(
2
δ

)
[65]

Improved
frequentist
statistical
hypothesis

testing

FH α, β

Wald’s sequential probability ratio
test [66] is employed to decide if
the null hypothesis H0 is rejected
in favour of the alternative
hypothesis H1 considering the
upper bounds on the probability of
type I and type II errors α,
respectively β.

The value of n is determined
during the execution of the model
checking approach considering α,
β and the number and order of
MSTML files against which ψ
evaluates true; see [67, p. 21] for
an approach on how to compute
an upper bound for n.

[59, 68]

Probabilistic
black-box

FH -

The p-value associated with the
null and alternative hypotheses H0,
respectively H1 is computed after
evaluating the n MSTML files
against ψ. The hypothesis with the
lowest corresponding p-value holds.

n > 0 [69,70]

Bayesian
mean and
variance

based

BE
α, β,
T

The probability ρ and variance ν
of ψ to hold are estimated
considering the given MSTML files
and the Beta prior parameters α
and β. New MSTML files are
evaluated against ψ until the
condition ν < T holds.

The value of n is determined
during the execution of the model
checking approach considering α,
β, T and the number and order
of MSTML files against which ψ
evaluates true.

[71]

Bayesian
statistical
hypothesis

testing

BH
α, β,
T

A measure B of confidence in the
null hypothesis H0 relative to the
alternative hypothesis H1 is
computed considering the Beta
prior parameters α and β. New
MSTML files are evaluated against
ψ until either B > T or B < 1/T .

The value of n is determined
during the execution of the model
checking approach considering α,
β, T and the number and order
of MSTML files against which ψ
evaluates true.

[72,73]

Each table body row corresponds to a different approximate probabilistic model checking approach. The columns from left to
right record the name, type (i.e. F — Frequentist, B — Bayesian, E — Estimate, H — Hypothesis testing), input parameters
(excluding φ and MSTML files), description, sample size (i.e. n) and reference corresponding to a model checking approach.
The null (i.e. H0) and alternative (i.e. H1) hypotheses represent φ (e.g. P>θ[ψ]), respectively the opposite of φ (e.g. P≤θ[ψ]).
Bayesian methods consider prior knowledge when deciding if a logic property holds. Conversely frequentist approaches assume
that no prior knowledge is available. All methods except probabilistic black-box take as input a user-defined upper bound on
the approximation error. They request additional model simulations until the result is sufficiently accurate. Conversely
probabilistic black-box model checking takes a fixed number of model simulations as input and computes a p-value as the
confidence measure of the result.

Spatio-temporal meta model checking 633

One of the main limitations of our methodology, as described up to this point, is that 634

the evolution over time of spatial properties can be described only with respect to the 635

predefined collections of spatial entity types SET considered = {clusters, regions} and 636

PLOS 25/63

spatial measures SM considered = {clusteredness, density, area, perimeter, 637

distanceFromOrigin, angle, triangleMeasure, rectangleMeasure, circleMeasure, 638

centroidX, centroidY}. 639

In order to overcome this limitation and enable automatically reconfiguring the 640

methodology according to case study specific spatial entity types and measures, we 641

define a generalized version of the multiscale spatio-temporal model checking 642

methodology called multiscale spatio-temporal meta model checking in which 643

SET considered and SM considered are replaced with meta collections of spatial entity 644

types SET , and spatial measures SM , defined as follows: 645

• SET = {sety | sety is a spatial entity type for which there

exists a corresponding spatial detection mechanism fsety,

fsety : SpSV p → {0, 1}m1×n1 × {0, 1}m2×n2 × ...× {0, 1}mp×np ,

which detects sets of spatial entities SE of type sety in the

discretised spatial domain}.

646

Considering the spatial state variable tuples spsvt ∈ SpSV p, fsety computes 647

which positions of the discretised space are occupied (1) by spatial entities or not 648

(0); see [57] for examples of spatial detection mechanisms corresponding to the 649

spatial entity types clusters and regions. 650

• SM = {sm | sm is a spatial measure, sm : SE → SMV ⊆ R, where SE is a set of 651

spatial entities and SMV is the corresponding domain of valid spatial measure 652

values}; similarly see [57] for examples of spatial measures corresponding to the 653

spatial entity types clusters and regions. 654

These collections are called meta because they provide only a description of the 655

conditions which should hold for each spatial entity type and spatial measure but do not 656

explicitly define instances thereof. 657

The multiscale spatio-temporal meta model checking methodology enables the 658

creation of different multiscale spatio-temporal model checking methodology instances 659

by replacing SET and SM with case study specific collections of spatial entity types 660

and spatial measures. These instances can then be used to verify corresponding 661

MSSpDES models. For instance, in order to verify computational models considering a 662

3D representation of space a corresponding model checking methodology instance could 663

PLOS 26/63

be created that replaces SET and SM with SET 3D = {cuboid, cylinder, sphere} and 664

SM 3D = {volume, centroidX, centroidY , centroidZ}. 665

A graphical description of the workflow employed to create multiscale 666

spatio-temporal model checking methodology instances is given in Fig. 6. For simplicity 667

a single multiscale model checking methodology instance is considered throughout this 668

paper corresponding to the collections of spatial entity types and measures 669

SET considered, respectively SM considered. 670

Figure 6. Workflow for creating multiscale spatio-temporal model checking
methodology instances. The workflow comprises two levels, the upper generic
(meta) level, and the lower specific (instance) level. The upper level comprises the
multiscale spatio-temporal meta model checking methodology. Conversely the lower
level consists of the specific collections of spatial entity types and measures employed to
create multiscale spatio-temporal model checking methodology instances. For each
considered pair (e.g. m) of spatial entity types and spatial measures collections a
corresponding multiscale model checking methodology instance is created. The resulting
methodology instances (e.g. m) can then be employed for various case studies (e.g. n) to
decide if computational models (e.g. m,n) are correct relative to corresponding formal
specifications (e.g. m,n) or not. Rounded rectangles and arrows having the same
border/line colour correspond to the same collections of spatial entity types and spatial
measures.

Whenever creating new multiscale model checking methodology instances there is an 671

additional need to define corresponding image processing functions for automatically 672

detecting and analysing spatial entities in time series data. However such functions can 673

often be defined based on existing approaches from the image processing literature. 674

Finally following on from S5 Text, when verifying an MSSpDES model relative to a 675

formal PBLMSTL specification, the number of required model simulations and the 676

number of required state transitions for each model simulation do not depend directly 677

on the considered collections of spatial entity types and spatial measures. Therefore 678

regardless of the considered instances of SET and SM the multiscale spatio-temporal 679

model checking problem is well-defined. 680

Implementation 681

The multiscale spatio-temporal meta model checking approach was implemented in the 682

model checking software Mule which enables automatically verifying multilevel 683

computational models of biological systems relative to formal specifications; the model 684

checker name is a concatenation of the first and last two letters in the word 685

PLOS 27/63

“Multiscale”. For efficiency purposes Mule was implemented in C++ and supports all 686

approximate probabilistic model checking approaches described in Table 2. 687

Depending on the approximate probabilistic model checking approach employed the 688

number of MSTML files required to verify if the computational model is valid relative 689

to a PBLMSTL specification is computed differently. In case of Chernoff-Hoeffding 690

bounds based and probabilistic black-box model checking approaches the number of 691

required MSTML files can be computed before running Mule (i.e. statically). 692

Conversely in case of the improved frequentist and Bayesian statistical hypothesis 693

testing, and Bayesian mean and variance based model checking approaches the number 694

of required MSTML files is determined only during the execution of Mule (i.e. 695

dynamically). To support generating MSTML files on-demand Mule can take as input 696

the path to a script (in our case Bash script) that simulates a computational model and 697

stores the resulting output in MSTML files; run Mule with the command line argument 698

--help for more execution details. 699

The workflow for generating multiscale spatio-temporal model checker instances was 700

implemented as described in Fig. 7. The main idea behind the implementation is to use 701

two instead of one compilation (or translation) steps. The first compilation step takes a 702

description of the spatial entity types and measures as input and produces C++ source 703

code as output. The second compilation step translates the generated C++ source code 704

in binary (i.e. executable) format. Conceptually this approach is called “meta” because 705

Mule is an abstract multiscale spatio-temporal (meta) model checker that can be 706

instantiated according to case study specific spatial entity types and measures. From a 707

practical point of view the user modifies only the description of the spatial entity types 708

and measures, while the source code and the corresponding executables are 709

automatically generated for him/her. 710

The main advantage of the workflow depicted in Fig. 7 is that it enables the 711

considered spatial entity types and measures to be compiled into the model checking 712

executable instead of being (dynamically) loaded at runtime, which could negatively 713

impact the model checker performance. 714

Mule was implemented as an offline model checker and takes as input model 715

simulation traces rather than the computational models used to generate them. Using 716

trace analysis each model simulation trace is evaluated against the PBLMSTL 717

PLOS 28/63

Figure 7. Implementation of workflow for generating multiscale
spatio-temporal model checker instances according to user-defined spatial
entity types and spatial measures. Starting from the problem one tries to solve,
an xml file is created describing the collections of spatial entity types and spatial
measures of interest. These collections are then verified with respect to relevant
constraints captured by an xsd file; see http://mule.modelchecking.org/standards

for the latest version of the xsd file. If the xml file verification fails then the
specification of the spatial entity types and measures needs to be updated accordingly.
Otherwise the xml file is employed by a C++ source code generator/translator written
in Python to generate the corresponding Mule source files based on a set of predefined
templates. The source files are compiled to produce an executable version of the
corresponding Mule instance. This instance can then be employed to verify
corresponding computational models.

specification. The trace analysis results corresponding to multiple model simulation 718

traces are used by the employed model checking approach to determine if the 719

PBLMSTL specification holds for the model. 720

The main advantage of implementing Mule as an offline model checker is that it is 721

decoupled from the specific modelling formalisms employed to encode the computational 722

models. Consequently Mule can be employed to verify computational models encoded 723

using various modelling formalisms provided that the corresponding computational 724

models satisfy the constraints of an MSSpDES model without requiring the explicit 725

translation of the computational models to MSSpDES. In addition given that Mule 726

takes simulation traces (i.e. time series data) as input it can be employed to evaluate 727

PBLMSTL specifications both against time series data generated in silico or recorded 728

in vitro. Conversely the main disadvantages of Mule are that the computational models 729

need to be constructed and simulated using external tools, and the model simulation 730

output needs to be stored in or translated to csv format. To generate model simulations 731

on demand Mule needs to be able to execute the model simulator from the command 732

line. 733

In contrast to Mule inline approximate probabilistic model checkers (e.g. 734

COSMOS [74], PLASMA [75], PRISM [76], UPPAAL-SMC [77], Ymer [78]) are 735

integrated modelling and verification environments that can be employed not only to 736

verify, but also to construct and simulate computational models. In addition inline 737

model checkers are usually more efficient than their offline counterparts, because model 738

simulations can be generated on-demand, in-memory and potentially stopped early (i.e. 739

as soon as the considered logic statement is accepted/rejected). However inline model 740

PLOS 29/63

http://mule.modelchecking.org/standards

checkers typically require explicitly encoding computational models in the model 741

checker specific modelling formalism, and they can not be employed to evaluate formal 742

specifications against time series data recorded in vitro. 743

Both the source code and the executable corresponding to the Mule instance 744

employed throughout this paper are made freely available online 745

at http://mule.modelchecking.org; this Mule instance is defined with respect to the 746

collection of spatial entity types SET considered and spatial measures SM considered. 747

Moreover a corresponding Docker image has been created providing a self-contained 748

environment for executing/updating model checker instances which can be run on all 749

major operating systems without additional setup (except installing the freely available 750

software Docker). 751

Results 752

We illustrate the applicability of the model checker based on four multiscale systems 753

biology case studies published in the literature. The case studies were chosen such that 754

the corresponding computational models are of different types (i.e. 755

deterministic/hybrid/stochastic), span different levels of organization (e.g. 756

cellular/organ) and are encoded using different modelling formalisms (e.g. ordinary 757

differential equations/cellular automata) and software (e.g. Morpheus/NetLogo); see 758

Table 3 for a brief comparison of the multilevel computational models considered. 759

Since Mule is implemented as an offline model checker and all approximate 760

probabilistic model checking algorithms employed here (see Table 2) are defined relative 761

to simulation traces, the computational models M1–M4 were not explicitly translated to 762

an MSSpDES representation. Instead the computational models encoded using 763

high-level modelling formalisms were simulated and the simulation output was stored in 764

MSTML files. These MSTML files were then provided as input to the model checker 765

Mule. There are two main reasons for employing the computational models encoded in 766

high-level modelling formalisms (as developed by their original authors) instead of 767

MSSpDES. First of all simulating an MSSpDES computational model on a computer 768

requires defining an MSSpDES operational semantics, which was not given here. 769

Secondly approximations inherent to the translation of computational models between 770

PLOS 30/63

http://mule.modelchecking.org

Table 3. Considered multilevel systems biology computational models against which the proposed model
checking methodology and implementation were validated.

M1 M2 M3 M4

Description
Rat cardiovascular
system dynamics

Uterine contractions of
labour

Xenopus laevis cell
cycle

Acute inflammation of
the gut and lung

Model type Deterministic Deterministic Hybrid Stochastic

Modelling
formalism(s)

Ordinary differential
equations (ODE)

Cellular automata
(CA)

ODEs + Cellular
Potts model (CPM)

Agent based modelling
(ABM)

Modelling
software

JSim Mathematica Morpheus NetLogo

Explicit spatial
representation

N Y Y Y

Levels of
organization

Cellular + Organ
system

Cellular + Tissue
Intracellular +

Cellular
Cellular + Tissue +

Organ
Case study
reference

[13] [14] [15] [16]

Model
download link

http://virtualrat.

org/sites/default/

files/downloads/

Workflow_Model_

Files_12April2012.

zip

http:

//s3-eu-west-1.

amazonaws.com/

files.figshare.

com/1720626/

Supporting_

Information_S1

http://imc.zih.

tu-dresden.de/

wiki/morpheus/doku.

php?id=examples:

multiscale#odes_

in_cpm_cellscell_

cycle_and_

proliferation

http:

//bionetgen.org/

SCAI-wiki/images/

7/7d/GutLungAxis2.

1.nlogo

Each model (M1–M4) has an associated description and type (i.e. deterministic, stochastic or hybrid), was encoded using
specific modelling formalisms and software, represents space explicitly or not (Y – Yes, N – No), spans different levels of
organization, and has a corresponding reference paper and download link.

different modelling formalisms could potentially impact the outcome of the model 771

checker execution. 772

In case of the deterministic continuous-state computational model M1 an alternative 773

approach, which is not considered here, would have been to translate M1 into a 774

stochastic discrete-state computational model. Using the approach described by 775

Wilkinson [79, Section 6.7] and under the assumption that the volume of the media 776

containing the species in the model is known, concentrations can be converted into 777

discrete numbers of molecules, and deterministic into stochastic kinetic rate constants. 778

The main reason for not translating M1 into a stochastic model is that we want to 779

illustrate that Mule can be employed to verify existing deterministic continuous-state 780

computational models relative to PBLMSTL specifications without the need to initially 781

alter the models. The probability of a PBLMSTL specification to hold for the 782

deterministic continuous-state model M1 is either 1 (i.e. true) or 0 (i.e. false). 783

The natural language and corresponding formal specifications, against which the 784

PLOS 31/63

http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://virtualrat.org/sites/default/files/downloads/Workflow_Model_Files_12April2012.zip
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://s3-eu-west-1.amazonaws.com/files.figshare.com/1720626/Supporting_Information_S1
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:multiscale#odes_in_cpm_cellscell_cycle_and_proliferation
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo
http://bionetgen.org/SCAI-wiki/images/7/7d/GutLungAxis2.1.nlogo

models were verified, have been derived from the original papers introducing the case 785

studies. Quotes from the original papers have been employed to create initial natural 786

language statements describing the expected system behaviour. The initial natural 787

language statements were then rephrased to match the constructs and structure typical 788

to formal PBLMSTL statements; the resulting statements are called rephrased natural 789

language statements. Finally the rephrased natural language statements were manually 790

mapped into corresponding PBLMSTL statements. Where insufficient information was 791

available (e.g. probabilities) the numeric values employed in the formal specification are 792

quantitative approximations of the corresponding natural language descriptions (e.g. 793

with high probability ⇒ 0.9). The main purpose of the PBLMSTL statements 794

considered is to illustrate the expressivity of the methodology and not to predict 795

previously unknown biologically relevant properties. For reproducibility purposes the 796

mapping between quotes from the original papers, derived natural language statements 797

and corresponding PBLMSTL specifications is documented in the supplementary 798

materials. 799

The model checking approach employed to verify the deterministic computational 800

models (M1 and M2) was probabilistic black-box because it does not place a lower 801

bound on the required number of model simulations and therefore is suitable for 802

computational models which are simulated only once. Conversely for the verification of 803

the hybrid (M3) and stochastic (M4) computational models improved frequentist 804

statistical hypothesis testing was employed setting the values of both input parameters 805

α (i.e. probability of type I errors) and β (i.e. probability of type II errors) to 5%. 806

Therefore the number of model simulations considered for the verification of 807

computational models M3 and M4 was variable and computed relative to the values of 808

the input parameters α and β, respectively fixed and was equal to one for 809

computational models M1 and M2. 810

All approximate probabilistic model checking approaches supported by Mule (see 811

Table 2) were previously introduced by other authors and are not directly dependent on 812

PBLMSTL. Therefore a comparison between the different model checking approaches, 813

although interesting, goes beyond the scope of this paper. 814

The computational models have been simulated, analysed and verified using the 815

same regular desktop computer (Linux x64, Intel Core i5-2500 CPU @1.6 GHz, 16 GB 816

PLOS 32/63

DDR3 RAM memory). To assess the performance of the approach execution times have 817

been recorded for all relevant steps of the model checking workflow. 818

Finally, for comparison purposes, the case studies and the corresponding 819

computational models will not be described individually but in parallel considering the 820

steps of the model checking workflow (i.e. model construction, multiscale 821

spatio-temporal analysis, formal specification, model checking). 822

Model construction 823

Rat cardiovascular system dynamics 824

The cardiovascular system comprises the heart, blood and blood vessels, and is the 825

organ system responsible for delivering oxygen and nutrients to, and removing waste 826

products from the entire organism. Its dynamics changes in case of a transient increase 827

of the thoracic pressure (e.g. by performing the Valsalva manoeuvre) which leads to 828

reduced blood flow in the right atrium, reduced cardiac output and decreased aortic 829

pressure [13]. 830

In order to describe the behavioural changes of the cardiovascular system during the 831

Valsalva manoeuvre Beard et al. built a multiscale non-spatial ODE model [13] by 832

integrating two previously existing models. The first model is an abstract representation 833

of the cardiovascular system [80]. Conversely the second model encodes the baroreflex 834

mechanism [81] which is employed to maintain the blood pressure of an organism at 835

approximately constant levels. One of the main advantages of the integrated multiscale 836

model is that it enables relating changes at the entire cardiovascular system level with 837

changes at the baroreflex mechanism level and vice versa, which was not possible when 838

employing the constituent models separately. The hierarchical organization of the 839

resulting model is encoded by the MA graph depicted in Fig. 8. 840

Figure 8. MA graph representing the multiscale organization of the rat
cardiovascular system dynamics computational model.

For verification purposes the numeric state variables considered at the organ system 841

scale are the thoracic pressure and the heart rate, and the aortic pressure at the cellular 842

scale. 843

PLOS 33/63

Uterine contractions of labour 844

Although it is known that usually during human labour regions across the entire uterus 845

contract in a coordinated fashion the underlying mechanisms by which an initial local 846

contraction propagates to the entire organ level are not fully understood [14]. 847

One hypothesis is that a positive feedback loop is created between the tissue level 848

contractions and the intrauterine pressure as follows: An initial tissue level contraction 849

increases the intrauterine pressure and adds tension to the neighbouring regions, which 850

in response start to contract, thus increasing the intrauterine pressure even further and 851

adding tension to their corresponding neighbouring regions which also start to contract, 852

and the entire process is repeated until all contractible regions across the entire organ 853

are recruited. 854

In order to test this hypothesis Young and Barendse developed a corresponding 855

predictive deterministic computational model [14]. The model was encoded as a cellular 856

automaton in Mathematica and spans two levels of organization, the organ level for the 857

uterus, and the tissue level for the uterine regions; see Fig. 9 for the corresponding MA 858

graph. 859

Figure 9. MA graph representing the multiscale organization of the uterine
contractions of labour computational model.

At the organ (i.e. uterus) scale the numeric state variable considered is the 860

intrauterine pressure and space is encoded explicitly as a 4× 4 grid, where each grid 861

position represents a tissue (i.e. uterine region). Conversely at the tissue level there is 862

no explicit representation of space and the recorded numeric state variables are the 863

contractile, burst and refractory activities of the uterine regions. 864

Xenopus laevis cell cycle 865

The cell cycle is a fundamental biological process which is responsible for the 866

replication/division of cells and is involved in the development and partial renewal of 867

organisms. Its complexity is usually proportional to the complexity of the considered 868

organism. Therefore it is studied in lower and less complex organisms such as 869

the Xenopus laevis frog. 870

To gain a better understanding of the Xenopus laevis embryonic cell cycle and how 871

PLOS 34/63

it affects cellular population growth the developers of the modelling software 872

Morpheus [82] built a corresponding multiscale computational model [83]. The 873

computational model describes how three proteins CDK1, Plk1 and APC regulate the 874

cell cycle at the intracellular level using ODEs [15], and how cells divide and are 875

displaced in 2D space at the cellular level using a CPM. The corresponding MA graph is 876

depicted in Fig. 10. 877

Figure 10. MA graph representing the multiscale organization of the
Xenopus laevis cell cycle computational model.

At the cellular level space is represented explicitly as a 52× 52 grid recording the 878

spatial distribution of the population of cells. Conversely at the intracellular level there 879

is no explicit representation of space and the numeric state variables considered are the 880

concentrations of CDK1, Plk1 and APC. 881

Acute inflammation of the gut and lung 882

There is no single definition of inflammation in the literature [84] but here we will 883

interpret it as the response of a biological system to bodily damaging stimuli. 884

Depending on the intensity of the stimulus an inflammatory response initiated in one 885

organ can propagate to other organs and eventually lead to multiple organ failure [16]. 886

To gain a better understanding of the relation between inflammatory responses and 887

multiple organ failure, G. An [16] built a multiscale agent-based computational model 888

using the software NetLogo which describes how the inflammation of either the gut (i.e. 889

gut ischemia) or lung (i.e. pneumonia) could potentially lead to the failure of both 890

organs. The levels of organization considered in the computational model are cellular 891

(for representing endothelial and epithelial cells), tissue (for representing the organ 892

luminal space, the blood vessel luminal space, and the endothelial and epithelial layers), 893

and organ (for representing the gut and lung); see Fig. 11 for the corresponding MA 894

graph. 895

Figure 11. MA graph representing the multiscale organization of the acute
inflammation of the gut and lung computational model.

The organism level is not modelled explicitly and the corresponding vertex 896

(Organism, Human) was added to the MA graph in Fig. 11 only to ensure that its 897

PLOS 35/63

structure is tree-like. At the organ level space is not represented explicitly and the 898

numeric state variables considered represent the amount of solute which leaked into the 899

gut and lung. Conversely at the tissue level space is represented explicitly as a 31× 31 900

grid where each grid position represents a cell. The tissue level numeric state variables 901

considered for both gut and lung are the total concentration of cytoplasm and cell wall 902

occludin, and the total cell damage by-product. At the cellular level the numeric state 903

variables considered encode the level of ischemia for both gut and lung endothelial cells. 904

Multiscale spatio-temporal analysis 905

The computational models M1–M4 were simulated and the simulation results were 906

translated to MSTML. 907

The computational model simulation end time was computed as per Definition 1, S5 908

Text considering the PBLMSTL statements against which each computational model 909

was verified (see Table 5). 910

The translation of the simulation results to MSTML comprises multiple steps. First 911

of all the model simulation output is converted to csv format in order to ensure that the 912

time series data provided as input to the multiscale spatio-temporal analysis module is 913

represented in a uniform manner. Secondly an MSTML subfile is generated for each 914

considered time point, numeric state variable and spatial region comprising one or 915

multiple grid positions. In the end all subfiles are merged into a single MSTML file. 916

The main difference between the csv and corresponding MSTML file is that for each 917

time point the former records the values associated to entire discretised spatial domains, 918

whereas the latter only captures the properties of the detected spatial entities. The 919

main advantage of storing to disk the results of the csv to MSTML translation, and 920

providing MSTML instead of csv files as input to the model checker is reusability. 921

MSTML files can be employed for the evaluation of different PBLMSTL specifications 922

in separate executions of the model checker without the need to run the csv to MSTML 923

translation each time. 924

Execution times for the model simulation and subsequent translation steps 925

corresponding to all computational models are given in Table 4. 926

The most time consuming step for the rat cardiovascular system dynamics (i.e. 927

PLOS 36/63

Table 4. Model simulation and analysis execution times for the rat cardiovascular system dynamics, the
uterine contractions of labour, the Xenopus laevis cell cycle, and the acute inflammation of the gut and
lung case studies.

Execution time (seconds)

M1 M2 M3 M4
Model simulation 37.22 1.13 1.79 329.6

Convert simulation output to csv format 0.33 0.02 1.31 2.62
Generate MSTML subfiles 25.52 25.15 12.06 64.82

Merge subfiles into single MSTML file 31.21 0.44 1.66 2.88
The steps considered are model simulation, conversion of the simulation output to csv format, generating an MSTML subfile
for each considered time point, numeric state variable and spatial region comprising one or multiple grid positions, and
merging subfiles into a single MSTML file. Depending on the computational model type (i.e. deterministic/stochastic/hybrid)
and the formal specification against which it was verified, the number of considered model simulations, and time points per
model simulation differed. Computational models are distinguished by their model id (i.e. M1–M4). The execution time of
the deterministic computational models M1 and M2 was computed by simulating the models and analysing the resulting
model simulation output one time. Conversely the execution time of the hybrid (M3) and stochastic (M4) computational
models was computed as the average execution time of 1500, respectively 500 repeated runs of the model simulation and
model simulation output analysis steps. The number of time points recorded for each model simulation was 30001 for
computational model M1, 330 for M2, 103 for M3, and 1000 for M4. The number of time points was fixed due to two reasons.
First of all the model simulation time interval considered was bounded. Secondly the model simulators recorded state changes
considering a fixed user-defined simulation time step size (chosen by the original model authors).

37.22s) and the acute inflammation of the gut and lung (i.e. 329.6s) case studies was the 928

model simulation due to the large number of time points considered (i.e. 30001), and 929

the stochastic nature and high complexity associated with the model. Conversely the 930

most time consuming step for the uterine contractions of labour (i.e. 25.15s) and 931

Xenopus laevis cell cycle (i.e. 12.06s) case studies was generating the MSTML subfiles 932

due to the spatial regions which have been automatically detected and analysed for each 933

spatial state variable considered. 934

The least time consuming step for all case studies was converting the model 935

simulation output to csv format. 936

Formal specification 937

The generated MSTML files representing the behaviour of the computational models 938

and the corresponding MA graphs are employed during the evaluation of the formal 939

specifications described in natural language in Table 5. The equivalent PBLMSTL 940

specifications for the rat cardiovascular system dynamics, the uterine contractions of 941

labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung 942

case studies are given in S1 File, S2 File, S3 File, respectively S4 File. 943

Throughout natural language specifications are translated to PBLMSTL such that 944

PLOS 37/63

Table 5. Natural language descriptions of the formal specifications employed for the rat cardiovascular
system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle, and the acute
inflammation of the gut and lung case studies.

MId SId Description

1

1
The probability is greater than 0.9 that after initiating the Valsava manoeuvre (time = 5000 ms) the
thoracic pressure increases from the baseline value -4 to 16 for 10 seconds (time interval [5001 ms, 14999
ms]), and then drops back to the baseline value -4.

2
The probability is greater than 0.9 that during the initial phase of the response (time interval [5001 ms,
6500 ms]) the aortic pressure increases and the heart rate decreases.

3

The probability is less than 0.1 that after the initial response phase (time interval [5001 ms, 6500 ms])
the aortic pressure continues to increase or stay constant, respectively the heart rate continues to
decrease or stay constant throughout the remainder of the Valsava interval (time interval [6501 ms,
14999 ms]).

2

4
The probability is greater than 0.9 that the intrauterine pressure increases/decreases with the
contractile activity of uterine regions.

5
The probability is less than 0.1 that the intrauterine pressure decreases when the entire uterus
experiences an action potential burst.

6
The probability is greater than 0.9 that the intrauterine pressure decreases when the entire uterus is in
the refractory period.

3

7
The probability is greater than 0.9 that whenever the concentration of CDK1 reaches very high levels
(in our case >96% of its maximum value) all cells will divide.

8
The probability is greater than 0.9 that whenever the average concentration of APC increases and
reaches its local maximum value no cell will divide.

9
The probability is greater than 0.9 that the average concentrations of CDK1, Plk1 and APC increase
and then decrease (i.e. oscillate) over time at least three times.

4

10
The probability is greater than 0.9 that if the level of cytoplasm occludin in the lung decreases then
eventually the number of ischemic endothelial lung cells will increase.

11
The probability is greater than 0.9 that always an increase of the cell damage by-product in the gut will
lead to an increase of the cell damage by-product in the lung.

12
The probability is greater than 0.9 that if the level of cell wall occludin in the gut decreases then
eventually the amount of solute leaking in the gut lumen will increase.

Each model is identified by an id (column “MId”) and has an associated set of natural language statements. Conversely each
natural language statement has a corresponding id (column “SId”) and description (column “Description”).

the i-th natural language statement corresponds to the i-th PBLMSTL statement. 945

Model checking 946

Each computational model has been verified against the relevant PBLMSTL statements 947

500 times, where each PBLMSTL statement was stored in a separate file. The main 948

reason for repeating the model verification procedure 500 times for each computational 949

model and PBLMSTL statement is to compute the variation of the model checker 950

execution time between runs, and the variation of the number of MSTML files 951

considered for the hybrid (M3) and stochastic (M4) computational models. Results 952

obtained for each of the 500 model checker executions and PBLMSTL statements 953

PLOS 38/63

corresponding to the computational models M1, M2, M3 and M4 are given in S6 Text, 954

S7 Text, S8 Text, respectively S9 Text. The output of the statistical analysis of the 955

model checking results is summarized in Table 6. 956

Table 6. Statistical analysis of the model checking results for the rat cardiovascular system dynamics, the
uterine contractions of labour, the Xenopus laevis cell cycle, and the acute inflammation of the gut and
lung case studies.

MId SId
% true

PBLMSTL
#total MSTML #true MSTML #false MSTML Execution time

µ σ µ σ µ σ µ σ

1
1 100 1 0 1 0 0 0 17.67 0.12
2 100 1 0 1 0 0 0 17.61 0.13
3 100 1 0 0 0 1 0 17.8 0.36

2
4 100 1 0 1 0 0 0 0.55 0.01
5 100 1 0 0 0 1 0 0.54 0.01
6 100 1 0 1 0 0 0 0.54 0.01

3
7 100 28.79 2.04 28.61 1.62 0.19 0.44 35.35 2.44
8 100 28 0 28 0 0 0 34.29 0.09
9 100 28 0 28 0 0 0 35.36 0.99

4
10 100 28 0 28 0 0 0 87.39 0.72
11 100 28 0 28 0 0 0 90.27 2.23
12 100 28 0 28 0 0 0 87.03 0.65

Entries in the “MId” and “SId” columns represent the numeric identifiers associated with each computational model and its
corresponding PBLMSTL statements. The “% true PBLMSTL” column describes what percentage of the 500 model checker
executions concluded that the PBLMSTL statement is true. “#total MSTML” represents the total number of MSTML files
evaluated for the PBLMSTL statement during a single model checker execution; columns “#true MSTML” and “#false
MSTML” represent the number of MSTML files for which the PBLMSTL statement was evaluated true, respectively false,
during a single model checker execution. “Execution time” records the average runtime in seconds for each model checker
execution. “µ” and “σ” represent the mean and standard deviation. Due to the deterministic nature of computational models
M1 and M2 only one simulation trace was employed for their verification (see table rows corresponding to MId 1 and MId 2,
table column 4). Conversely the number of simulation traces considered for the verification of computational models M3 and
M4 was equal to ≈28 (see table rows corresponding to MId 3 and MId 4, table column 4), and was computed as a function of
the input parameters α and β of the improved statistical hypothesis testing model checking approach. The model simulation
traces employed for the verification of computational models M3 and M4 were chosen randomly from the collection of 1500,
respectively 500 simulation traces generated to compute the average execution times given in Table 4.

Empirical evidence shows that all computational models are correct relative to the 957

formal specifications derived from the original papers introducing the models. 958

Due to the deterministic nature of computational models M1 and M2, the 959

corresponding model checking results were obtained by considering a single MSTML file, 960

and therefore were identical across all 500 model checker executions. The main 961

difference between the PBLMSTL statements considered is that in case of statements 1, 962

2, 4 and 6 the estimated probability p for them to hold, computed as #true MSTML 963

divided by #total MSTML, was p = (1 / 1) = 1, whereas for the PBLMSTL statements 964

3 and 5 it was p = (0 / 1) = 0. However since the associated probabilistic specification 965

PLOS 39/63

for the PBLMSTL statements 1, 2, 4 and 6 was p > 0.9 (i.e. 1 > 0.9), and p < 0.1 (i.e. 966

0 < 0.1) for the PBLMSTL statements 3 and 5, all PBLMSTL statements hold. 967

Conversely in case of the hybrid (M3) and stochastic (M4) computational models the 968

model checking results were obtained by considering multiple MSTML files. Moreover 969

the number of MSTML files against which the corresponding PBLMSTL statements 970

evaluated true varied between model checker executions (e.g. see Table 6, row 971

corresponding to SId 7). However the result of the model verification procedure was 972

always the same (see Table 6, column 3). 973

The average model checker execution times corresponding to the verification of the 974

deterministic computational models M1 and M2 were smaller than for the hybrid, 975

respectively stochastic computational models M3 and M4. This is due to the difference 976

in the number of MSTML files considered which was one for computational models M1 977

and M2, and u28 for computational models M3 and M4. Moreover the variation in the 978

average model checker execution times between the computational models M1 and M2, 979

respectively M3 and M4 is due to the difference in the number of time points considered 980

per model simulation which was 30001 for M1 and 330 for M2, respectively 103 for M3 981

and 1000 for M4. Average model checker execution times corresponding to the same 982

computational model but different PBLMSTL statements were approximately equal 983

throughout because most of the execution time is spent on reading the MSTML file(s) 984

from disk and not the evaluation of the PBLMSTL statements. 985

By storing the PBLMSTL statements corresponding to a computational model in 986

separate files each MSTML file read by the model checker from disk is evaluated against 987

only one rather than all PBLMSTL statements. Therefore in order to reduce the 988

average model checker execution time all PBLMSTL statements corresponding to the 989

same computational model could be written into a single file. A comparison between 990

average execution times obtained for 500 model checker executions considering all 991

PBLMSTL statements written into single, respectively multiple separate files are given 992

in Table 7. Regardless of the computational model considered the average model 993

checker execution time was approximately three times smaller when storing PBLMSTL 994

statements in single rather than multiple separate files. The main reason for this is that 995

the total number of MSTML files read from disk, which takes up most of the model 996

checker execution time, was reduced by a factor equal to the number of PBLMSTL 997

PLOS 40/63

statements considered (i.e. 3). 998

Table 7. Comparison of average model checker execution times when
PBLMSTL statements corresponding to a computational model are stored
in a single, respectively multiple separate files.

MId
Execution time (seconds)

Single file Separate files
1 17.9 53.07
2 0.56 1.63
3 36.3 105
4 87.51 264.68

The “MId” column records the numeric identifiers associated with each computational
model. Average model checker execution times corresponding to PBLMSTL statements
stored in a single, respectively multiple separate files are given in columns “Single file”
and “Separate files”.

The model checker execution times given in Tables 6 and 7 were measured when 999

providing pre-generated MSTML files as input to Mule. However Mule can be 1000

additionally employed to verify computational models by generating MSTML files on 1001

demand. In order to measure the model checker execution time when all MSTML files 1002

are generated on-demand the computational model M3 was verified 500 times relative to 1003

the corresponding PBLMSTL statements stored in a single file, without providing any 1004

pre-generated MSTML files as input. The average execution time of the 500 runs was 1005

317.7s i.e. ≈9 times more than when providing pre-generated MSTML files as input (i.e. 1006

36.3s). The large difference in execution time is due to the fact that when generating 1007

MSTML files on-demand Mule needs to wait for the MSTML files to be generated (i.e. 1008

for the computational model to be simulated and the model simulation output to be 1009

translated to MSTML) before evaluating the PBLMSTL specification against them. 1010

Therefore there is a model checker execution time overhead when verifying 1011

computational models using on-demand generated MSTML files. The magnitude of the 1012

execution time overhead depends on the number of MSTML files against which the 1013

PBLMSTL specification is evaluated, and the time required to generate a new model 1014

simulation and translate the model simulation output to MSTML. 1015

A comparison between the average execution times recorded for simulating the 1016

model, translating the output to MSTML and verifying it using model checking is given 1017

in Fig. 12. 1018

The most time consuming step in the model checking workflow for both the 1019

PLOS 41/63

Figure 12. Average execution times (measured in seconds) corresponding
to the verification of the rat cardiovascular system dynamics, the uterine
contractions of labour, the Xenopus laevis cell cycle, and the acute
inflammation of the gut and lung computational models. Execution times were
recorded for the computational model simulation, converting the output to csv format,
generating MSTML subfiles for each considered time point, numeric state variable and
spatial entity, merging the subfiles into a single MSTML file, and model checking.

cardiovascular system dynamics and acute inflammation of the gut and lung case 1020

studies is the model simulation. This is due to the large number of time points 1021

considered in case of the former, and the high complexity associated with the stochastic 1022

computational model in case of the latter. Conversely for the uterine contractions of 1023

labour case study the most time consuming step in the model checking workflow is 1024

generating the MSTML subfiles due to the additional need to automatically detect and 1025

analyse spatial regions of three types (i.e. corresponding to the contractile, burst and 1026

refractory activities) for each simulation time point. In contrast, the most time 1027

consuming step in the model checking workflow for the Xenopus laevis cell cycle case 1028

study is model checking due to the need to evaluate each PBLMSTL statement against 1029

multiple MSTML files. The least time consuming step in the model checking workflow 1030

for all case studies is converting the simulation output to csv format. 1031

For reproducibility purposes the MA graph, the pre-generated MSTML file(s), the 1032

formal PBLMSTL specification, and the excerpts from the referenced papers used to 1033

write the formal specification for each case study are made available as supplementary 1034

materials; see Table 8 for details. Due to file size constraints only a subset of the total 1035

number of generated MSTML files was made available for the Xenopus laevis cell cycle 1036

(see S3 Dataset) and the acute inflammation of the gut and lung (see S4 Dataset) case 1037

studies; the complete datasets are made freely available online 1038

at http://mule.modelchecking.org/case-studies. 1039

Discussion 1040

The need for reasoning about how systems evolve over multiple temporal and spatial 1041

scales has been previously emphasized in the literature. For instance Van de Weghe et 1042

al. [85] have defined a theoretical framework which enables describing and analysing 1043

how geographical phenomena observed at higher scales are reflected at lower scales and 1044

PLOS 42/63

http://mule.modelchecking.org/case-studies

Table 8. Availability of the MA graph, the generated MSTML file(s), the
formal PBLMSTL specification, and the excerpts from the referenced
papers used to write the formal specification for each case study.

MId MA graph MSTML file(s)
PBLMSTL
specification

Excerpts from
referenced papers

1 S5 File S1 Dataset S1 File S10 Text

2 S6 File S2 Dataset S2 File S11 Text

3 S7 File S3 Dataset S3 File S12 Text

4 S8 File S4 Dataset S4 File S13 Text

The “MId” column records the numeric identifiers associated with each computational
model.

vice versa. However there is a lack of corresponding model checking approaches for 1045

computational models of such systems. 1046

To the best of our knowledge the only related multiscale model checking approach 1047

which explicitly distinguishes between multiple spatial scales without (initially) 1048

accounting for time was introduced by Grosu et al. [86] for detecting patterns in images. 1049

The multiscale representation of space was created by recursively splitting a spatial 1050

domain in quadrants (a finite number of times) and representing the resulting hierarchy 1051

as a quadtree. A formal logic called Linear Spatial Superposition Logic (LSSL) and a 1052

corresponding model checking algorithm were introduced in order to encode 1053

specifications relative to spatial subdomains along a linear path through the quadtree. 1054

More recently both the formal logic and corresponding model checking algorithm were 1055

extended by Gol et al. [87] to account for branching paths through quadtrees (Tree 1056

Spatial Superposition Logic), and by Haghighi et al. [88] to account for the evolution of 1057

the quadtrees over time (SpaTel). Although efficient for pattern detection (and 1058

generation) these approaches could be potentially too restrictive for reasoning about 1059

general multiscale systems since only one spatial domain is considered and the 1060

relationship between consecutive levels/scales is fixed. Moreover it is not possible to 1061

describe how spatial entities potentially spanning multiple quadrants of the spatial 1062

domain, and their properties change over time. 1063

In this paper we have introduced a novel multiscale spatio-temporal meta model 1064

checking methodology which enables automatically verifying multilevel computational 1065

models of biological systems relative to specifications describing the desired/expected 1066

system behaviour. 1067

PLOS 43/63

Our approach is generic and supports multilevel computational models of biological 1068

systems encoded using various high-level modelling formalisms (e.g. CPMs, ABMs) 1069

because it is defined relative to time series data and not the models used to produce 1070

them. This is illustrated by the four case studies which were formally encoded using 1071

ODEs (rat cardiovascular system dynamics), CAs (uterine contractions of labour), 1072

CPMs (Xenopus laevis cell cycle), ABMs (acute inflammation of the gut and lung) or 1073

combinations thereof. 1074

Although the model checker is flexible regarding the modelling formalism employed 1075

to encode the computational models it requires that the model simulation output is 1076

translated to the standard MSTML format. During the translation process non-spatial 1077

state variables (e.g. concentrations) are mapped directly from their native format to 1078

MSTML. Conversely in case of spatial state variables the multiscale spatio-temporal 1079

analysis module is additionally executed for automatically detecting emergent spatial 1080

entities (e.g. clusters) and computing their properties (e.g. area). 1081

The model checker can be adapted automatically to case study specific spatial entity 1082

types (e.g. 3D spatial structure) and/or properties (e.g. minimum distance to a fixed 1083

point) not covered by our multiscale spatio-temporal analysis module. External analysis 1084

tools can be employed to automatically detect and analyse these case study specific 1085

spatial entities, and to convert the output to the MSTML format. The corresponding 1086

instance of the multiscale spatio-temporal meta model checker can be generated 1087

automatically based on a configuration file without the need to modify the 1088

implementation by hand. 1089

The set of MSTML files representing the model behaviour can be generated either 1090

before or during the evaluation of a PBLMSTL specification. In case of the latter the 1091

model checker must be executed with an additional parameter representing the path to 1092

an external program which runs model simulations on demand, translates the output to 1093

MSTML and stores the resulting files in a predefined location. The overhead of 1094

generating MSTML files during (i.e. on demand) rather than before the evaluation of 1095

the PBLMSTL specification depends on the number of required MSTML files and the 1096

time required to simulate the computational model and translate the output to MSTML. 1097

We have illustrated the applicability and flexibility of the model checker Mule by 1098

verifying four systems biology computational models previously published in the 1099

PLOS 44/63

literature relative to formal specifications derived from the original papers introducing 1100

the models. Although only the probabilistic black box (see rat cardiovascular system 1101

dynamics and uterine contractions of labour case studies) and frequentist statistical 1102

model checking algorithms (see Xenopus laevis cell cycle and acute inflammation of gut 1103

and lung case studies) were employed here, additional frequentist (i.e. based on 1104

Chernoff-Hoeffding bounds) and Bayesian (i.e. hypothesis testing, mean and variance 1105

estimate based) model checking algorithms are supported. 1106

The scalability of the entire model verification workflow depends on the scalability of 1107

the model simulation, multiscale spatio-temporal analysis and model checking steps. 1108

The execution time of the model simulation depends on the complexity of the system 1109

under consideration. Conversely the execution times of both the multiscale 1110

spatio-temporal analysis and the model checker depend on the size of the simulation 1111

output. In addition, the model checker execution time also depends on the formal 1112

specification. Our expectation is that scaling up to more complex systems will lead to 1113

an increase of the computational model complexity but not necessarily the size of the 1114

simulation output and/or formal specification. Therefore the expected scalability 1115

bottleneck of the entire model checking workflow is the model simulation and not the 1116

model verification step. This is supported by empirical evidence obtained from the case 1117

studies; the ratio between the maximum and minimum execution times for the model 1118

simulation step was u290, u5 for the multiscale spatio-temporal analysis, and u156 for 1119

model checking. In addition it would be possible to speed up the model checking step 1120

by evaluating MSTML files against the formal specification in parallel rather than 1121

sequentially as it is done now. 1122

To enable computational modellers to easily adopt our approach for the verification 1123

of multilevel computational models of biological systems the model checker Mule (source 1124

code, binary, Docker image) and relevant supplementary materials are made freely 1125

available online via the official web page http://mule.modelchecking.org. 1126

Building on our model checking methodology we could consider the following 1127

extensions in the future. First of all it is assumed throughout that computational 1128

models are translatable to an MSSpDES representation which means that any 1129

computational model encoded using a potentially incompatible high-level modelling 1130

formalism will be translated to a corresponding MSSpDES representation subject to 1131

PLOS 45/63

http://mule.modelchecking.org

potential approximation errors (e.g. consider continuous computational models). 1132

Alternative representations could be employed instead. Secondly, although our 1133

methodology is automatically reconfigurable according to case study specific spatial 1134

entity types and measures, there is a need for the corresponding spatio-temporal 1135

analysis tools to be developed. The spatio-temporal analysis modules described here are 1136

currently restricted to pseudo-3D spatial entity types and measures, but could be 1137

extended in the future for other numbers of dimensions. Thirdly the efficiency of Mule 1138

could be improved by supporting on-the-fly model checking. However this means that 1139

all computational models considered would need to be explicitly translated to a 1140

common (e.g. MSSpDES) representation before being verified. Fourthly the efficacy of 1141

the methodology was tested only against in silico generated time series data, but our 1142

expectation is that it could be employed for analysing experimental time series data as 1143

well. Moreover since the methodology is not restricted to biological case studies, 1144

non-biological case studies could be additionally considered in order to test the 1145

limitations of the approach and potentially identify new features which could be 1146

included in forthcoming versions. Finally the efficacy of the multiscale model checking 1147

approach could be assessed in the future in the context of robustness analysis, 1148

parameter estimation/synthesis, and model construction problems. 1149

Conclusions 1150

In this paper we have defined a multiscale spatio-temporal meta model checking 1151

methodology which enables the automatic verification of multilevel computational 1152

models with respect to how both numeric (e.g. concentrations) and spatial (e.g. area) 1153

properties change over time considering multiple levels of organization. 1154

The approach was implemented in our model checking software Mule which is made 1155

freely available online. To encourage potential contributions (e.g. extensions) the source 1156

code is hosted in a public GitHub repository. For flexibility purposes Mule supports 1157

both frequentist and Bayesian, estimate and statistical hypothesis testing based model 1158

checking approaches. 1159

We have illustrated the applicability of the model verification approach using four 1160

representative systems biology case studies published in the literature, namely the rat 1161

PLOS 46/63

cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis 1162

cell cycle and the acute inflammation of the gut and lung. 1163

Our approach enables computational modellers to construct reliable multilevel 1164

computational models of biological systems in a faster manner than it is done currently. 1165

These computational models could then be potentially translated into systems medicine 1166

to provide patient specific predictions on the evolution of diseases and their treatment 1167

across multiple levels of organization. 1168

Acknowledgments 1169

We would like to thank the anonymous reviewers, Monika Heiner, Alessandro Pandini 1170

and Allan Tucker for their insightful comments which helped improve the quality of the 1171

paper. 1172

References

1. Ideker T, Galitski T, Hood L. A NEW APPROACH TO DECODING LIFE:

Systems Biology. Annual Review of Genomics and Human Genetics.

2001;2(1):343–372. Available from:

http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.2.1.343.

2. Kitano H. Systems Biology: A Brief Overview. Science. 2002

Jan;295(5560):1662–1664. PMID: 11872829. Available from:

http://www.sciencemag.org/content/295/5560/1662.

3. Dada JO, Mendes P. Multi-scale modelling and simulation in systems biology.

Integrative biology: quantitative biosciences from nano to macro. 2011

Feb;3(2):86–96.

4. Boissel JP, Auffray C, Noble D, Hood L, Boissel FH. Bridging Systems Medicine

and Patient Needs. CPT: Pharmacometrics & Systems Pharmacology. 2015

Mar;4(3):135–145. Available from:

http://onlinelibrary.wiley.com/doi/10.1002/psp4.26/abstract.

PLOS 47/63

http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.2.1.343
http://www.sciencemag.org/content/295/5560/1662
http://onlinelibrary.wiley.com/doi/10.1002/psp4.26/abstract

5. Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D, et al.

Enabling multiscale modeling in systems medicine. Genome Medicine. 2014

Mar;6(3):21. Available from: http://genomemedicine.com/content/6/3/21.

6. Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen D, editor. Logics of Programs. No. 131

in Lecture Notes in Computer Science. Springer Berlin Heidelberg; 1982. p. 52–71.

Available from: http://link.springer.com/chapter/10.1007/BFb0025774.

7. Queille JP, Sifakis J. Specification and verification of concurrent systems in

CESAR. In: Dezani-Ciancaglini M, Montanari U, editors. International

Symposium on Programming. No. 137 in Lecture Notes in Computer Science.

Springer Berlin Heidelberg; 1982. p. 337–351. Available from:

http://link.springer.com.v-ezproxy.brunel.ac.uk:

2048/chapter/10.1007/3-540-11494-7_22.

8. Carusi A, Burrage K, Rodŕıguez B. Bridging experiments, models and

simulations: an integrative approach to validation in computational cardiac

electrophysiology. American Journal of Physiology - Heart and Circulatory

Physiology. 2012 Jul;303(2):H144–H155. Available from:

http://ajpheart.physiology.org/content/303/2/H144.

9. Carusi A. Validation and variability: Dual challenges on the path from systems

biology to systems medicine. Studies in History and Philosophy of Science Part C:

Studies in History and Philosophy of Biological and Biomedical Sciences. 2014

Dec;48, Part A:28–37. Available from:

http://www.sciencedirect.com/science/article/pii/S1369848614001265.

10. Sheard T. Accomplishments and Research Challenges in Meta-programming. In:

Taha W, editor. Semantics, Applications, and Implementation of Program

Generation. No. 2196 in Lecture Notes in Computer Science. Springer Berlin

Heidelberg; 2001. p. 2–44. Available from:

http://link.springer.com/chapter/10.1007/3-540-44806-3_2.

PLOS 48/63

http://genomemedicine.com/content/6/3/21
http://link.springer.com/chapter/10.1007/BFb0025774
http://link.springer.com.v-ezproxy.brunel.ac.uk:2048/chapter/10.1007/3-540-11494-7_22
http://link.springer.com.v-ezproxy.brunel.ac.uk:2048/chapter/10.1007/3-540-11494-7_22
http://ajpheart.physiology.org/content/303/2/H144
http://www.sciencedirect.com/science/article/pii/S1369848614001265
http://link.springer.com/chapter/10.1007/3-540-44806-3_2

11. Groen D, Zasada SJ, Coveney PV. Survey of Multiscale and Multiphysics

Applications and Communities. Computing in Science Engineering. 2014

Mar;16(2):34–43.

12. Docker. Docker - Build, Ship, and Run Any App, Anywhere;. Available from:

https://www.docker.com/ [cited 2015-05-20].

13. Beard DA, Neal ML, Tabesh-Saleki N, Thompson CT, Bassingtwaighte JB,

Shimoyama M, et al. Multiscale Modeling and Data Integration in the Virtual

Physiological Rat Project. Annals of Biomedical Engineering. 2012

Nov;40(11):2365–2378. Available from:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463790/.

14. Young RC, Barendse P. Linking Myometrial Physiology to Intrauterine Pressure;

How Tissue-Level Contractions Create Uterine Contractions of Labor. PLoS

Comput Biol. 2014 Oct;10(10):e1003850. Available from:

http://dx.doi.org/10.1371/journal.pcbi.1003850.

15. Ferrell Jr JE, Tsai TYC, Yang Q. Modeling the Cell Cycle: Why Do Certain

Circuits Oscillate? Cell. 2011 Mar;144(6):874–885. Available from:

http://www.sciencedirect.com/science/article/pii/S0092867411002431.

16. An G. Introduction of an agent-based multi-scale modular architecture for

dynamic knowledge representation of acute inflammation. Theoretical Biology

and Medical Modelling. 2008 May;5(1):11. Available from:

http://www.tbiomed.com/content/5/1/11/abstract.

17. Ballarini P, Gallet E, Gall PL, Manceny M. Formal Analysis of the

Wnt/β-catenin through Statistical Model Checking. In: Margaria T, Steffen B,

editors. Leveraging Applications of Formal Methods, Verification and Validation.

Specialized Techniques and Applications. No. 8803 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg; 2014. p. 193–207. Available from:

http://link.springer.com/chapter/10.1007/978-3-662-45231-8_14.

18. Barbuti R, Levi F, Milazzo P, Scatena G. Probabilistic model checking of

biological systems with uncertain kinetic rates. Theoretical Computer Science.

PLOS 49/63

https://www.docker.com/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463790/
http://dx.doi.org/10.1371/journal.pcbi.1003850
http://www.sciencedirect.com/science/article/pii/S0092867411002431
http://www.tbiomed.com/content/5/1/11/abstract
http://link.springer.com/chapter/10.1007/978-3-662-45231-8_14

2012 Feb;419:2–16. Available from:

http://www.sciencedirect.com/science/article/pii/S0304397511008929.

19. Barnat J, Brim L, Černá I, Dražan S, Fabriková J, Láńık J, et al. : A Framework

for Parallel Analysis of Biological Models. Electronic Proceedings in Theoretical

Computer Science. 2009 Oct;6:31–45. ArXiv: 0910.0928. Available from:

http://arxiv.org/abs/0910.0928.

20. Batt G, Ropers D, Jong Hd, Geiselmann J, Mateescu R, Page M, et al.

Validation of qualitative models of genetic regulatory networks by model checking:

analysis of the nutritional stress response in Escherichia coli. Bioinformatics. 2005

Jun;21(suppl 1):i19–i28. Available from:

http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i19.

21. Bernot G, Comet JP, Richard A, Guespin J. Application of formal methods to

biological regulatory networks: extending Thomas’ asynchronous logical approach

with temporal logic. Journal of Theoretical Biology. 2004 Aug;229(3):339–347.

Available from:

http://www.sciencedirect.com/science/article/pii/S0022519304001444.

22. Calder M, Vyshemirsky V, Gilbert D, Orton R. Analysis of Signalling Pathways

Using Continuous Time Markov Chains. In: Priami C, Plotkin G, editors.

Transactions on Computational Systems Biology VI. No. 4220 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg; 2006. p. 44–67. Available from:

http://link.springer.com/chapter/10.1007/11880646_3.

23. Chabrier N, Fages F. Symbolic Model Checking of Biochemical Networks. In:

Priami C, editor. Computational Methods in Systems Biology. No. 2602 in

Lecture Notes in Computer Science. Rovereto, Italy: Springer Berlin Heidelberg;

2003. p. 149–162. Available from:

http://link.springer.com/chapter/10.1007/3-540-36481-1_13.

24. Chabrier-Rivier N, Chiaverini M, Danos V, Fages F, Schächter V. Modeling and

querying biomolecular interaction networks. Theoretical Computer Science. 2004

Sep;325(1):25–44. Available from:

http://www.sciencedirect.com/science/article/pii/S030439750400218X.

PLOS 50/63

http://www.sciencedirect.com/science/article/pii/S0304397511008929
http://arxiv.org/abs/0910.0928
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i19
http://www.sciencedirect.com/science/article/pii/S0022519304001444
http://link.springer.com/chapter/10.1007/11880646_3
http://link.springer.com/chapter/10.1007/3-540-36481-1_13
http://www.sciencedirect.com/science/article/pii/S030439750400218X

25. Clarke EM, Faeder JR, Langmead CJ, Harris LA, Jha SK, Legay A. Statistical

Model Checking in BioLab: Applications to the Automated Analysis of T-Cell

Receptor Signaling Pathway. In: Heiner M, Uhrmacher AM, editors.

Computational Methods in Systems Biology. No. 5307 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg; 2008. p. 231–250. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-88562-7_18.

26. David A, Larsen KG, Legay A, Mikučionis M, Poulsen DB, Sedwards S. Runtime

Verification of Biological Systems. In: Margaria T, Steffen B, editors. Leveraging

Applications of Formal Methods, Verification and Validation. Technologies for

Mastering Change. No. 7609 in Lecture Notes in Computer Science. Springer

Berlin Heidelberg; 2012. p. 388–404. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-34026-0_29.

27. Gong H, Feng L. Computational analysis of the roles of ER-Golgi network in the

cell cycle. BMC Systems Biology. 2014 Dec;8(Suppl 4):S3. Available from:

http://www.biomedcentral.com/1752-0509/8/S4/S3/comments.

28. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O. Probabilistic

model checking of complex biological pathways. Theoretical Computer Science.

2008 Feb;391(3):239–257. Available from:

http://www.sciencedirect.com/science/article/pii/S0304397507008572.

29. Heiner M, Gilbert D, Donaldson R. Petri Nets for Systems and Synthetic Biology.

In: Bernardo M, Degano P, Zavattaro G, editors. Formal Methods for

Computational Systems Biology. No. 5016 in Lecture Notes in Computer Science.

Springer Berlin Heidelberg; 2008. p. 215–264. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-68894-5_7.

30. Kwiatkowska M, Norman G, Parker D. Stochastic Model Checking. In: Bernardo

M, Hillston J, editors. Formal Methods for Performance Evaluation. No. 4486 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2007. p. 220–270.

Available from:

http://link.springer.com/chapter/10.1007/978-3-540-72522-0_6.

PLOS 51/63

http://link.springer.com/chapter/10.1007/978-3-540-88562-7_18
http://link.springer.com/chapter/10.1007/978-3-642-34026-0_29
http://www.biomedcentral.com/1752-0509/8/S4/S3/comments
http://www.sciencedirect.com/science/article/pii/S0304397507008572
http://link.springer.com/chapter/10.1007/978-3-540-68894-5_7
http://link.springer.com/chapter/10.1007/978-3-540-72522-0_6

31. Monteiro PT, Wassim AJ, Thieffry D, Chaouiya C. Model Checking Logical

Regulatory Networks. In: Discrete Event Systems. vol. 12. Ecole Normale

Supérieure de Cachan, Cachan, France: International Federation of Automatic

Control; 2014. p. 170–175. Available from:

http://www.ifac-papersonline.net/Detailed/65093.html.

32. Van Goethem S, Jacquet JM, Brim L, Šafránek D. Timed Modelling of Gene

Networks with Arbitrarily Precise Expression Discretization. Electronic Notes in

Theoretical Computer Science. 2013 Mar;293:67–81. Available from:

http://www.sciencedirect.com/science/article/pii/S1571066113000212.

33. Barnat J, Brim L, Šafránek D, Vejnár M. Parameter Scanning by Parallel Model

Checking with Applications in Systems Biology. In: Second International

Workshop on Parallel and Distributed Methods in Verification, 2010 Ninth

International Workshop on, and High Performance Computational Systems

Biology; 2010. p. 95–104.

34. Batt G, Belta C, Weiss R. Model Checking Genetic Regulatory Networks with

Parameter Uncertainty. In: Bemporad A, Bicchi A, Buttazzo G, editors. Hybrid

Systems: Computation and Control. No. 4416 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg; 2007. p. 61–75. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-71493-4_8.

35. Batt G, Belta C, Weiss R. Temporal Logic Analysis of Gene Networks Under

Parameter Uncertainty. IEEE Transactions on Automatic Control. 2008

Jan;53(Special Issue):215–229.

36. Brim L, Češka M, Dražan S, Šafránek D. Exploring Parameter Space of Stochastic

Biochemical Systems Using Quantitative Model Checking. In: Sharygina N, Veith

H, editors. Computer Aided Verification. No. 8044 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg; 2013. p. 107–123. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-39799-8_7.

37. Češka M, Dannenberg F, Kwiatkowska M, Paoletti N. Precise Parameter

Synthesis for Stochastic Biochemical Systems. In: Mendes P, Dada JO,

Smallbone K, editors. Computational Methods in Systems Biology. No. 8859 in

PLOS 52/63

http://www.ifac-papersonline.net/Detailed/65093.html
http://www.sciencedirect.com/science/article/pii/S1571066113000212
http://link.springer.com/chapter/10.1007/978-3-540-71493-4_8
http://link.springer.com/chapter/10.1007/978-3-642-39799-8_7

Lecture Notes in Computer Science. Springer International Publishing; 2014. p.

86–98. Available from:

http://link.springer.com/chapter/10.1007/978-3-319-12982-2_7.

38. Donaldson R, Gilbert D. A Model Checking Approach to the Parameter

Estimation of Biochemical Pathways. In: Heiner M, Uhrmacher AM, editors.

Computational Methods in Systems Biology. No. 5307 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg; 2008. p. 269–287. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-88562-7_20.

39. Giacobbe M, Guet CC, Gupta A, Henzinger TA, Paixao T, Petrov T. Model

Checking Gene Regulatory Networks. arXiv:14107704 [cs, q-bio]. 2015 Oct;ArXiv:

1410.7704. Available from: http://arxiv.org/abs/1410.7704.

40. Jha SK, Langmead CJ. Synthesis and infeasibility analysis for stochastic models

of biochemical systems using statistical model checking and abstraction

refinement. Theoretical Computer Science. 2011 May;412(21):2162–2187.

Available from:

http://www.sciencedirect.com/science/article/pii/S0304397511000387.

41. Liu B, Kong S, Gao S, Zuliani P, Clarke EM. Parameter Synthesis for Cardiac

Cell Hybrid Models Using δ-Decisions. In: Mendes P, Dada JO, Smallbone K,

editors. Computational Methods in Systems Biology. No. 8859 in Lecture Notes in

Computer Science. Springer International Publishing; 2014. p. 99–113. Available

from: http://link.springer.com/chapter/10.1007/978-3-319-12982-2_8.

42. Palaniappan SK, Gyori BM, Liu B, Hsu D, Thiagarajan PS. Statistical Model

Checking Based Calibration and Analysis of Bio-pathway Models. In: Gupta A,

Henzinger TA, editors. Computational Methods in Systems Biology. No. 8130 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2013. p. 120–134.

Available from:

http://link.springer.com/chapter/10.1007/978-3-642-40708-6_10.

43. Calzone L, Chabrier-Rivier N, Fages F, Soliman S. Machine Learning

Biochemical Networks from Temporal Logic Properties. In: Priami C, Plotkin G,

editors. Transactions on Computational Systems Biology VI. No. 4220 in Lecture

PLOS 53/63

http://link.springer.com/chapter/10.1007/978-3-319-12982-2_7
http://link.springer.com/chapter/10.1007/978-3-540-88562-7_20
http://arxiv.org/abs/1410.7704
http://www.sciencedirect.com/science/article/pii/S0304397511000387
http://link.springer.com/chapter/10.1007/978-3-319-12982-2_8
http://link.springer.com/chapter/10.1007/978-3-642-40708-6_10

Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 68–94. Available

from: http://link.springer.com/chapter/10.1007/11880646_4.

44. Fages F, Rizk A. From Model-Checking to Temporal Logic Constraint Solving.

In: Gent IP, editor. Principles and Practice of Constraint Programming - CP

2009. No. 5732 in Lecture Notes in Computer Science. Springer Berlin Heidelberg;

2009. p. 319–334. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-04244-7_26.

45. Česka M, Šafránek D, Dražan S, Brim L. Robustness Analysis of Stochastic

Biochemical Systems. PLoS ONE. 2014 Apr;9(4):e94553. Available from:

http://dx.doi.org/10.1371/journal.pone.0094553.

46. Rizk A, Batt G, Fages F, Soliman S. On a Continuous Degree of Satisfaction of

Temporal Logic Formulae with Applications to Systems Biology. In: Heiner M,

Uhrmacher AM, editors. Computational Methods in Systems Biology. No. 5307 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2008. p. 251–268.

Available from:

http://link.springer.com/chapter/10.1007/978-3-540-88562-7_19.

47. Rizk A, Batt G, Fages F, Soliman S. A general computational method for

robustness analysis with applications to synthetic gene networks. Bioinformatics.

2009 Jun;25(12):i169–i178. Available from:

http://bioinformatics.oxfordjournals.org/content/25/12/i169.

48. Brim L, Češka M, Šafránek D. Model Checking of Biological Systems. In:

Bernardo M, Vink Ed, Pierro AD, Wiklicky H, editors. Formal Methods for

Dynamical Systems. No. 7938 in Lecture Notes in Computer Science. Springer

Berlin Heidelberg; 2013. p. 63–112. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-38874-3_3.

49. Fisher J, Piterman N. Model Checking in Biology. In: Kulkarni VV, Stan GB,

Raman K, editors. A Systems Theoretic Approach to Systems and Synthetic

Biology I: Models and System Characterizations. Springer Netherlands; 2014. p.

255–279. Available from:

http://link.springer.com/chapter/10.1007/978-94-017-9041-3_10.

PLOS 54/63

http://link.springer.com/chapter/10.1007/11880646_4
http://link.springer.com/chapter/10.1007/978-3-642-04244-7_26
http://dx.doi.org/10.1371/journal.pone.0094553
http://link.springer.com/chapter/10.1007/978-3-540-88562-7_19
http://bioinformatics.oxfordjournals.org/content/25/12/i169
http://link.springer.com/chapter/10.1007/978-3-642-38874-3_3
http://link.springer.com/chapter/10.1007/978-94-017-9041-3_10

50. Zuliani P. Statistical model checking for biological applications. International

Journal on Software Tools for Technology Transfer. 2014 Aug;p. 1–10. Available

from: http://link.springer.com/article/10.1007/s10009-014-0343-0.

51. Maria ED, Fages F, Soliman S. On Coupling Models Using Model-Checking:

Effects of Irinotecan Injections on the Mammalian Cell Cycle. In: Degano P,

Gorrieri R, editors. Computational Methods in Systems Biology. No. 5688 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2009. p. 142–157.

Available from:

http://link.springer.com/chapter/10.1007/978-3-642-03845-7_10.

52. Ciocchetta F, Gilmore S, Guerriero ML, Hillston J. Integrated Simulation and

Model-Checking for the Analysis of Biochemical Systems. Electronic Notes in

Theoretical Computer Science. 2009 Mar;232:17–38. Available from:

http://www.sciencedirect.com/science/article/pii/S157106610900053X.

53. Yordanov B, Belta C. A formal verification approach to the design of synthetic

gene networks. In: 2011 50th IEEE Conference on Decision and Control and

European Control Conference (CDC-ECC); 2011. p. 4873–4878.

54. Gilbert D, Heiner M, Lehrack S. A Unifying Framework for Modelling and

Analysing Biochemical Pathways Using Petri Nets. In: Calder M, Gilmore S,

editors. Computational Methods in Systems Biology. No. 4695 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg; 2007. p. 200–216. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-75140-3_14.

55. Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM. Computational

Modeling and Verification of Signaling Pathways in Cancer. In: Horimoto K,

Nakatsui M, Popov N, editors. Algebraic and Numeric Biology. No. 6479 in

Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2012. p. 117–135.

Available from:

http://link.springer.com/chapter/10.1007/978-3-642-28067-2_7.

56. Guerriero ML. Qualitative and Quantitative Analysis of a Bio-PEPA Model of the

Gp130/JAK/STAT Signalling Pathway. In: Priami C, Back RJ, Petre I, editors.

Transactions on Computational Systems Biology XI. No. 5750 in Lecture Notes in

PLOS 55/63

http://link.springer.com/article/10.1007/s10009-014-0343-0
http://link.springer.com/chapter/10.1007/978-3-642-03845-7_10
http://www.sciencedirect.com/science/article/pii/S157106610900053X
http://link.springer.com/chapter/10.1007/978-3-540-75140-3_14
http://link.springer.com/chapter/10.1007/978-3-642-28067-2_7

Computer Science. Springer Berlin Heidelberg; 2009. p. 90–115. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-04186-0_5.

57. Pârvu O, Gilbert D. Automatic validation of computational models using

pseudo-3D spatio-temporal model checking. BMC Systems Biology. 2014

Dec;8(1):124. Available from:

http://www.biomedcentral.com/1752-0509/8/124/abstract.

58. Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, et al.

Multi-scale computational modelling in biology and physiology. Progress in

Biophysics and Molecular Biology. 2008 Jan;96(1–3):60–89. Available from:

http://www.sciencedirect.com/science/article/pii/S0079610707000673.

59. Younes HL, Simmons RG. Statistical probabilistic model checking with a focus

on time-bounded properties. Information and Computation. 2006

Sep;204(9):1368–1409. Available from:

http://www.sciencedirect.com/science/article/pii/S0890540106000678.

60. Hansson H, Jonsson B. A logic for reasoning about time and reliability. Formal

Aspects of Computing. 1994 Sep;6(5):512–535. Available from:

http://link.springer.com/article/10.1007/BF01211866.

61. Baier C, Katoen JP, Hermanns H. Approximative Symbolic Model Checking of

Continuous-Time Markov Chains. In: Baeten JCM, Mauw S, editors.

CONCUR’99 Concurrency Theory. No. 1664 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg; 1999. p. 146–161. Available from:

http://link.springer.com/chapter/10.1007/3-540-48320-9_12.

62. Bradski G, Kaehler A. Learning OpenCV: Computer Vision with the OpenCV

Library. Cambridge, MA: O’Reilly; 2008.

63. Tran TN, Drab K, Daszykowski M. Revised DBSCAN algorithm to cluster data

with dense adjacent clusters. Chemometrics and Intelligent Laboratory Systems.

2013 Jan;120:92–96. Available from:

http://www.sciencedirect.com/science/article/pii/S0169743912002249.

PLOS 56/63

http://link.springer.com/chapter/10.1007/978-3-642-04186-0_5
http://www.biomedcentral.com/1752-0509/8/124/abstract
http://www.sciencedirect.com/science/article/pii/S0079610707000673
http://www.sciencedirect.com/science/article/pii/S0890540106000678
http://link.springer.com/article/10.1007/BF01211866
http://link.springer.com/chapter/10.1007/3-540-48320-9_12
http://www.sciencedirect.com/science/article/pii/S0169743912002249

64. Aziz A, Sanwal K, Singhal V, Brayton R. Verifying Continuous Time Markov

Chains. In: CAV. vol. 1102 of Lecture Notes in Computer Science. Springer; 1996.

p. 269–276.

65. Hérault T, Lassaigne R, Magniette F, Peyronnet S. Approximate Probabilistic

Model Checking. In: Steffen B, Levi G, editors. Verification, Model Checking,

and Abstract Interpretation. No. 2937 in Lecture Notes in Computer Science.

Springer Berlin Heidelberg; 2004. p. 73–84. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-24622-0_8.

66. Wald A. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical

Statistics. 1945 Jun;16(2):117–186. Available from:

http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=

Display&handle=euclid.aoms/1177731118.

67. Younes HLS. Verification and Planning for Stochastic Processes with

Asynchronous Events [Doctor of Philosophy]. Carnegie Mellon. Pittsburgh; 2005.

68. Koh CH, Palaniappan SK, Thiagarajan PS, Wong L. Improved statistical model

checking methods for pathway analysis. BMC Bioinformatics. 2012 Dec;13(Suppl

17):S15. PMID: 23282174. Available from:

http://www.biomedcentral.com/1471-2105/13/S17/S15/abstract.

69. Sen K, Viswanathan M, Agha G. Statistical Model Checking of Black-Box

Probabilistic Systems. In: Alur R, Peled DA, editors. Computer Aided

Verification. No. 3114 in Lecture Notes in Computer Science. Springer Berlin

Heidelberg; 2004. p. 202–215. Available from:

http://link.springer.com/chapter/10.1007/978-3-540-27813-9_16.

70. Younes HLS. Probabilistic Verification for “Black-Box” Systems. In: Etessami K,

Rajamani SK, editors. Computer Aided Verification. No. 3576 in Lecture Notes

in Computer Science. Springer Berlin Heidelberg; 2005. p. 253–265. Available

from: http://link.springer.com/chapter/10.1007/11513988_25.

71. Langmead CJ. Generalized Queries and Bayesian Statistical Model Checking in

Dynamic Bayesian Networks: Application to Personalized Medicine. In: Proc. of

PLOS 57/63

http://link.springer.com/chapter/10.1007/978-3-540-24622-0_8
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177731118
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177731118
http://www.biomedcentral.com/1471-2105/13/S17/S15/abstract
http://link.springer.com/chapter/10.1007/978-3-540-27813-9_16
http://link.springer.com/chapter/10.1007/11513988_25

the 8th International Conference on Computational Systems Bioinformatics

(CSB). California: Life Sciences Society; 2009. p. 201–212.

72. Jha SK, Clarke EM, Langmead CJ, Legay A, Platzer A, Zuliani P. A Bayesian

Approach to Model Checking Biological Systems. In: Degano P, Gorrieri R,

editors. Computational Methods in Systems Biology. No. 5688 in Lecture Notes in

Computer Science. Springer Berlin Heidelberg; 2009. p. 218–234. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-03845-7_15.

73. Jha SK, Clarke EM, Langmead CJ, Legay A, Platzer A, Zuliani P. Statistical

Model Checking for Complex Stochastic Models in Systems Biology. Carnegie

Mellon University; 2009. Available from: http://repository.cmu.edu/cgi/

viewcontent.cgi?article=2244&context=compsci.

74. Ballarini P, Djafri H, Duflot M, Haddad S, Pekergin N. COSMOS: A Statistical

Model Checker for the Hybrid Automata Stochastic Logic. In: 2011 Eighth

International Conference on Quantitative Evaluation of Systems (QEST); 2011. p.

143–144.

75. Jegourel C, Legay A, Sedwards S. A Platform for High Performance Statistical

Model Checking – PLASMA. In: Flanagan C, König B, editors. Tools and

Algorithms for the Construction and Analysis of Systems. No. 7214 in Lecture

Notes in Computer Science. Springer Berlin Heidelberg; 2012. p. 498–503.

Available from:

http://link.springer.com/chapter/10.1007/978-3-642-28756-5_37.

76. Kwiatkowska M, Norman G, Parker D. 4.0: Verification of Probabilistic

Real-Time Systems. In: Gopalakrishnan G, Qadeer S, editors. Computer Aided

Verification. No. 6806 in Lecture Notes in Computer Science. Snowbird, UT,

USA: Springer Berlin Heidelberg; 2011. p. 585–591. Available from:

http://link.springer.com/chapter/10.1007/978-3-642-22110-1_47.

77. Bulychev PE, David A, Larsen KG, Mikucionis M, Poulsen DB, Legay A, et al.

UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata. In:

Proceedings 10th Workshop on Quantitative Aspects of Programming Languages

PLOS 58/63

http://link.springer.com/chapter/10.1007/978-3-642-03845-7_15
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2244&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2244&context=compsci
http://link.springer.com/chapter/10.1007/978-3-642-28756-5_37
http://link.springer.com/chapter/10.1007/978-3-642-22110-1_47

and Systems, QAPL 2012, Tallinn, Estonia, 31 March and 1 April 2012.; 2012. p.

1–16. Available from: http://dx.doi.org/10.4204/EPTCS.85.1.

78. Younes HLS. Ymer: A Statistical Model Checker. In: Etessami K, Rajamani SK,

editors. Computer Aided Verification. No. 3576 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg; 2005. p. 429–433. Available from:

http://link.springer.com/chapter/10.1007/11513988_43.

79. Wilkinson DJ. Stochastic Modelling for Systems Biology, Second Edition. 2nd ed.

Boca Raton: CRC Press; 2011.

80. Smith BW, Chase JG, Nokes RI, Shaw GM, Wake G. Minimal haemodynamic

system model including ventricular interaction and valve dynamics. Medical

Engineering & Physics. 2004 Mar;26(2):131–139.

81. Bugenhagen SM, Cowley AW, Beard DA. Identifying physiological origins of

baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat.

Physiological Genomics. 2010 Jun;42(1):23–41.

82. Starruß J, Back Wd, Brusch L, Deutsch A. Morpheus: a user-friendly modeling

environment for multiscale and multicellular systems biology. Bioinformatics.

2014 May;30(9):1331–1332. Available from:

http://bioinformatics.oxfordjournals.org/content/30/9/1331.

83. Starruß J, Back Wd. Morpheus examples;. Available from:

http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:

examples [cited 2015-05-20].

84. Scott A, Khan KM, Cook JL, Duronio V. What is “inflammation”? Are we ready

to move beyond Celsus? British Journal of Sports Medicine. 2004

Jun;38(3):248–249. Available from: http://bjsm.bmj.com/content/38/3/248.

85. Van de Weghe N, de Roo B, Qiang Y, Versichele M, Neutens T, de Maeyer P.

The continuous spatio-temporal model (CSTM) as an exhaustive framework for

multi-scale spatio-temporal analysis. International Journal of Geographical

Information Science. 2014;28(5):1047–1060. Available from:

http://dx.doi.org/10.1080/13658816.2014.886329.

PLOS 59/63

http://dx.doi.org/10.4204/EPTCS.85.1
http://link.springer.com/chapter/10.1007/11513988_43
http://bioinformatics.oxfordjournals.org/content/30/9/1331
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:examples
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:examples
http://bjsm.bmj.com/content/38/3/248
http://dx.doi.org/10.1080/13658816.2014.886329

86. Grosu R, Smolka SA, Corradini F, Wasilewska A, Entcheva E, Bartocci E.

Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes.

Commun ACM. 2009 Mar;52(3):97–105. Available from:

http://doi.acm.org/10.1145/1467247.1467271.

87. Gol EA, Bartocci E, Belta C. A Formal Methods Approach to Pattern Synthesis

in Reaction Diffusion Systems. arXiv:14095671 [cs]. 2014 Sep;arXiv: 1409.5671.

Available from: http://arxiv.org/abs/1409.5671.

88. Haghighi I, Jones A, Kong Z, Bartocci E, Gros R, Belta C. SpaTeL: A Novel

Spatial-temporal Logic and Its Applications to Networked Systems. In:

Proceedings of the 18th International Conference on Hybrid Systems:

Computation and Control. HSCC ’15. New York, NY, USA: ACM; 2015. p.

189–198. Available from: http://doi.acm.org/10.1145/2728606.2728633.

Supporting Information

S1 Text

Brief description of the in silico computational model verification approach

called model checking.

S2 Text

Description of how to construct the MA graph corresponding to a given

biological system.

S3 Text

Description of the Multiscale Spatial Temporal Markup Language.

S4 Text

Formal definition of BLMSTL syntax and semantics.

PLOS 60/63

http://doi.acm.org/10.1145/1467247.1467271
http://arxiv.org/abs/1409.5671
http://doi.acm.org/10.1145/2728606.2728633

S5 Text

Proof that the multiscale spatio-temporal model checking problem is

well-defined.

S6 Text

Model checking results for the rat cardiovascular system dynamics case

study.

S7 Text

Model checking results for the uterine contractions of labour case study.

S8 Text

Model checking results for the Xenopus laevis cell cycle case study.

S9 Text

Model checking results for the acute inflammation of the gut and lung case

study.

S10 Text

Excerpts from the literature employed to write the formal specification for

the rat cardiovascular system dynamics case study.

S11 Text

Excerpts from the literature employed to write the formal specification for

the uterine contractions of labour case study.

S12 Text

Excerpts from the literature employed to write the formal specification for

the Xenopus laevis cell cycle case study.

PLOS 61/63

S13 Text

Excerpts from the literature employed to write the formal specification for

the acute inflammation of the gut and lung case study.

S1 File

Formal PBLMSTL specification for the rat cardiovascular system dynamics

case study.

S2 File

Formal PBLMSTL specification for the uterine contractions of labour case

study.

S3 File

Formal PBLMSTL specification for the Xenopus laevis cell cycle case

study.

S4 File

Formal PBLMSTL specification for the acute inflammation of the gut and

lung case study.

S5 File

Multiscale architecture graph for the rat cardiovascular system dynamics

case study.

S6 File

Multiscale architecture graph for the uterine contractions of labour case

study.

S7 File

Multiscale architecture graph for the Xenopus laevis cell cycle case study.

PLOS 62/63

S8 File

Multiscale architecture graph for the acute inflammation of the gut and

lung case study.

S1 Dataset

Dataset of MSTML files generated for the rat cardiovascular system

dynamics case study.

S2 Dataset

Dataset of MSTML files generated for the uterine contractions of labour

case study.

S3 Dataset

Dataset of MSTML files generated for the Xenopus laevis cell cycle case

study.

S4 Dataset

Dataset of MSTML files generated for the acute inflammation of the gut

and lung case study.

PLOS 63/63

