
Real-Time Reflexion Modelling in Architecture Reconciliation: A Multi Case
Study

Jim Buckley1, Nour Ali2, Michael English1, Jacek Rosik1 Sebastian Herold1

1 The Irish Software Engineering Research Centre (Lero), University of Limerick,
Ireland

2 School of Computing, Engineering and Mathematics, University of Brighton, UK

Abstract
Context
Reflexion Modelling is considered one of the more successful approaches to
architecture reconciliation. Empirical studies strongly suggest that professional
developers involved in real-life industrial projects find the information provided by
variants of this approach useful and insightful, but the degree to which it resolves
architecture conformance issues is still unclear.

Objective
This paper aims to assess the level of architecture conformance achieved by
professional architects using Reflexion Modelling, and to determine how the approach
could be extended to improve its suitability for this task.

Method
An in-vivo, multi-case-study protocol was adopted across five software systems, from
four different financial services organizations. Think-aloud, video-tape and interview
data from professional architects involved in Reflexion Modelling sessions were
analysed qualitatively.

Results
This study showed that (at least) four months after the Reflexion Modelling sessions
less than 50% of the architectural violations identified were removed. The majority of
participants who did remove violations favoured changes to the architectural model
rather than to the code. Participants seemed to work off two specific architectural
templates, and interactively explored their architectural model to focus in on the
causes of violations, and to assess the ramifications of potential code changes. They
expressed a desire for dependency analysis beyond static-source-code analysis and
scalable visualizations.

Conclusion
The findings support several interesting usage-in-practice traits, previously hinted at
in the literature. These include 1) the iterative analysis of systems through Reflexion
models, as a precursor to possible code change or as a focusing mechanism to identify
the location of architecture conformance issues, 2) the extension of the approach with
respect to dependency analysis of software systems and architectural modelling
templates, 3) improved visualization support and 4) the insight that identification of
architectural violations in itself does not lead to their removal in the majority of
instances.

Keywords: Reflexion Modelling, Software Architecture, Architecture Consistency,
Architecture Conformance.

*Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction
Software Architecture aims to ensure prioritized non-functional requirements like
maintainability and modularity are satisfied through appropriate macro-structuring of
software systems [1]. However, often systems grow without an explicitly defined
architecture, or have drifted over time from their originally designed architecture [2-3].
In such cases, it is unlikely that the desired non-functional requirements have been
delivered.

Early work towards addressing this issue focussed on architecture recovery: deriving
the software’s architecture from the source code of the existing system, typically from
the source code dependencies of these systems [4-5]. However, even though software
architects were often allowed to confirm or refute the suggestions of such analyses,
they did not drive the process, thus limiting their ability to impose their desired
architecture on the system [6]. In addition, these approaches often suffered from the
‘garbage-in, garbage-out’ phenomenon [7], whereby any architecture derived from
analysis of a system without an initial architecture (defined or adhered to) is likely to
be flawed.

More recently approaches to retro-fit the intended architecture (as originally or
retrospectively defined) onto systems, have been developed to address these issues.
This work is referred to in the literature as architecture reconciliation [7] architecture
conformance [3] or compliance checking [9]. Several techniques have been proposed
in this area, ranging from allowing architects probe the architecture of specific points
in the system [10-11] by defining textual rules, to more system-encompassing
specifications like Reflexion Modelling (RM). In Reflexion Modelling [12], for
example, the architect is initially prompted to explicitly state their ideal (as-intended)
architecture for the system, as a simple vertices-and-edges diagram in which vertices
represent architectural modules and edges represent the expected/allowed
dependencies between these modules. The architect is then asked to map elements of
the source code to the vertices in this as-intended architecture.

The approach parses the system to identify dependencies between the source code
elements mapped to different vertices in the as-intended architecture, thus allowing
corroboration or contradiction of the relationships proposed by the architect with
respect to the as-implemented system. It is anticipated that the architect would then
update the system to more fully align it with the as-intended architecture. Such an
approach allows the architect drive the process from their architectural perspective,
and focuses them on the parts of the system where specific architectural violations
arise in the implemented system with respect to this perspective [13-14].

Several implementations of RM variants have been empirically evaluated through
case studies [15-18], largely achieving positive feedback from industrial practitioners.
Specifically, software architects have shown great enthusiasm for the information
which it provides [13, 19] and have even proactively sought such analysis again [20].
However, most of these studies focus on the ability of RM to identify inconsistencies
[21-22] but do not concentrate on how the capabilities and insights provided by RM
approaches are utilized by software practitioners and if the violations are subsequently
removed.

This research assesses how the capabilities and insights provided by Real-Time
Reflexion Modelling (RT-RM) approaches are utilized by practitioners. Here RT-RM
[18] refers to a variant of RM where new architectural violations are presented to the
architect, as new mappings are made between architectural modules and source code
elements.

The research assesses how RT-RM is leveraged, determines if RT-RM results in the
removal of architectural violations and also identifies the ways in which the
participants would like to see RT-RM adapted/evolved in the future. It addresses these
questions through a usage-analysis of a Just-In-Time Tool for Architecture
Consistency (JITTAC) [34], which embodies a RT-RM approach. The empirical
analysis is performed over five in-vivo case studies in four different commercial
organizations.

This paper is a substantial extension of the work presented by several of the authors in
[18]. That paper reported on the first three case studies, providing a characterization
of the modelling practices of the participants involved, their mapping (source code to
RM vertices) preferences, and a characterization of the violations identified. In
comparison this paper:

 Incorporates a larger data set, including two more case-studies, and
retrospective interviews with the participants from all five case studies. This
provided us with a larger, more representative data-set on which to base our
findings and with the ability to explicitly assess the outcome of the RT-RM
intervention longitudinally;

 Provides an expanded analysis of the data-set, resulting in several new

findings. Specifically, while it does re-assess the modelling, mapping and
architectural violations issues expounded upon in [18], with respect to the
enlarged data set, it also includes findings on iterative analysis of systems
through Reflexion models, findings on the outcome of RM in terms of the
systems’ architectural violations and an extended set of requirements for RM
going forward.

 Presents an extended review of the related literature in this area (Section 2)

which discusses the alternative approaches adopted and empirical work carried
out in this and closely related areas.

The paper is structured as follows. Section 2 discusses the current state of the art with
respect to various architecture conformance approaches. Section 3 focuses on one
particularly successful approach: RM, discussing the approach, its empirical
evaluations to date and how RT-RM builds on the approach. Section 4 describes the
five case studies that make up the empirical component of this paper. Sections 5 and 6
present and discuss the findings across these case studies, with section 7 examining
the threats to validity. Finally, section 8 concludes the paper.

2 State of the Art
When a software system’s implementation diverges from its designed architecture, it
is referred to as architectural drift or architectural erosion [8, 2]. This usually

happens during software evolution, when the software undergoes changes as a result
of bug fixes and updates, but may also happen during initial implementation of the
system [23]. Architectural drift may result in the goals associated with the system’s
as-intended architecture being lost [20-21], often with serious consequences [3, 24-
25].

Architecture conformance aims to address architectural drift. It has been defined as a
process of ensuring continued conformance of a subject system’s implementation to
its architectural design documentation and goals [26]. Here, design documentation is
defined as any artefact created during the system’s design (sometimes, even after the
code is written) that documents the system’s architecture. There have been many
approaches suggested to increase architectural conformance, and these can be
classified into several schools [8]. This section, reviews several of these approaches.

Tvedt Tesoriero et al. [16] divide architectural evaluation work into two main areas:
pre-implementation architecture evaluation and implementation-oriented architecture
conformance. In their classification, pre-implementation architectural evaluation
involves the analysis of a proposed architecture to check whether it will fulfil the
optimum number of the system’s desired requirements. These approaches are used by
architects during initial design and provisioning stages, before the actual
implementation starts.

In contrast implementation-oriented architecture conformance approaches assess
whether the implemented architecture of the system matches the intended architecture
of the system [16, 22, 26]. Specifically, whereas architectural evaluation assesses the
quality of the proposed architectural design, architectural conformance assesses
whether the implemented architecture is consistent with the proposed architecture’s
specification, the goals of the proposed architecture, or both. Implementation-oriented
conformance approaches can be split into two categories [27]:

 Conformance by Construction: These approaches strive to achieve
conformance through automated or semi-automated generation of artefacts,
composing the system from the architectural descriptions. Several,
established approaches implementing conformance by construction exist
already. For example, approaches such as: generative programming [28],
round-trip engineering [29], and model driven development [30-31] are
being used in commercial software development. However, it is more
difficult to apply these approaches retrospectively on existing systems:
while model transformations have the ability to map from the
implementation back to architectural models, these transformations are
predefined and usually reflect well defined patterns between the platform
independent models and the platform specific ones. This somewhat
constrains the mapping between the existing system and the architects’
intended architecture as usually the mappings between the code and the
models in existing systems do not follow strict patterns. In addition, when
applied in the forward direction, these approaches only generate partial
implementations of the system. Hence assessment of conformance still
needs to be checked as the implementation is completed [32].

 Conformance by Extraction: These approaches analyse artefacts, or
partial artefacts, of the implementation process itself (for example, source
code dependencies) and/or artefacts that are available after the system’s
implementation (for example dynamic traces). A comparison of these
artefacts with the system’s as-intended architecture is then performed
through textually-specified or graphically-specified rules and mappings.
These comparisons facilitate software engineers’ identification of potential
discrepancies and violations. Most of the conformance-by-extraction
approaches currently reported on have been applied retrospectively to
software systems after deployment.

Conformance by extraction techniques can be further split into three categories, based
on the analysis they employ [33]:

 Static Architecture Conformance is based on static techniques that
analyse different assets produced by the implementation process, such as
source code and data structures. Static analysis may be performed without
a fully running system and thus allows conformance testing over a wider
span of software lifecycle phases. Most of the techniques presented in the
literature are static architecture conformance techniques [14-17, 21, 33-34]

 Dynamic Architecture Conformance uses run-time analysis techniques on

an executing system. Thus, an instance of a running (and probably almost
fully implemented) system is required. For example, de Silva and
Balasubramaniam describe a non-intrusive approach to architecture
conformance checking at runtime [35]. In another example [36], execution
traces of a running system have been extracted as coloured petri nets
which were investigated for architectural violations. The work of Popescu
and Medvidovic [37] focuses on message-based systems and integrates
recorders into components of such systems that are used to evaluate
consistency between actual occurring events and prescribed events.

 Combined Static and Dynamic Architecture Conformance is based on

applying both type of analysis, usually in sequence. An example is the
Pattern Lint work done by Sefika et al. [38] where static analysis, followed
by dynamic analysis was used. This complimentary dynamic analysis was
used to detect the prevalence of violations, as identified through static
analysis, in the executing system.

These architecture conformance approaches can also be categorized by the level of
support they offer to the architect: The first can be loosely referred to as visualization
tools that allow the architect to view information about the structure of the system, but
not as an explicit architectural model. For example, Klocwork [39] provides various
forms of dependency analysis, quality metrics and visualisation support that provide
useful guidance for architecture conformance.

The second category allows the architect to declare their desired architectural model,
either graphically [15] and/or through the definition of individual rules [33, 40-41].
Semmle, for example, uses a Source Code Query Language (SCQL) called .QL which,
while expressive in defining constraints, is limited in its architecture-visualizing

ability and thus its ability to guide reasoning about overall software architecture
abstractions [42]. In contrast, graphical modelling approaches (like RM) allow the
architect to create a vertices-and-edges diagram of the intended architecture and, to
visualize the implemented system in the context of that intended architecture,
although typically with less expressive constraints.

Passos et al. [42] presented an overview of three approaches: a rule-based approach
[10], an RM type approach [43], and an approach that allowed architects to visualize
the system as a hierarchical dependency matrix of source code elements [44] with
architectural rules embedded. They recommended RM for organizations interested in
systematically incorporating architecture conformance checking into their software
development process, due to a well-defined architecture conformance process, centred
on holistic high-level models as defined by architects. Indeed, several commercial
tools have now been developed that incorporate similar functionality [45-46] and it is
this type of approach that is the focus of this research. As such the next section will
describe RM in greater detail.

3 Reflexion Modelling
The traditional RM process as explicitly outlined by [13] was adapted by Rosik et al
[20] to facilitate the application of RM during system implementation, as well as
system evolution:

1. Before implementation of the system commences, the designer creates a
hypothesised architectural model: the as-intended architecture.

2. During the implementation phase, developers and/or architects, frequently

update a set of mappings which assign newly implemented source code
entities to the entities in the as-intended architecture.

3. At any point during implementation or subsequent maintenance, a dependency

graph of the system’s sources can be extracted by parsing the system, creating
a source model (referred to as the “as-implemented architecture” from this
point on).

4. The relationships defined by the engineer in the as-intended architecture are

compared with those extracted from the as-implemented architecture. Results
of that comparison are presented to the developer through the Reflexion model
periodically. The following relationships are represented in this model:

 A solid edge represents a relationship present in both, the as-intended

architecture and the as-implemented architecture (convergence).

 A dashed edge represents a relationship present in the as-implemented
architecture, but not present in the as-intended architecture (divergence).

 A dotted edge represents a relationship present in the as-intended

architecture but not present in the as-implemented architecture (absence).

5. By analysing the Reflexion model, engineers can become aware of
architectural drift issues. Of most interest are the divergences where there are
dependencies in the source code unexpected by the original architects.
Absences may also be of interest but alternatively, they may just reflect places
where the software is incomplete (when the technique is applied before the
implementation is finished). In addressing divergences, architects may choose
to take one of the following actions (derived from [21]):

 The inconsistency may be corrected by updating the code base (changing

the as-implemented architecture);

 Mappings between the source code and the as-intended architecture may
be updated, for example: reassigning an implemented entity to a different
as-intended entity;

 The implementation may be considered acceptable and the as-intended

architecture may be updated accordingly.

Steps 2, 3, 4 and 5 are continuously repeated over time, towards prompting increased
system conformance to the as-intended architecture.

To further increase conformance, several groups [47-49] have proposed more timely
violation detection in RM. For example, developers could be made aware of the
violations they introduce with respect to the as-intended architecture as they code, via
margin alerts at compile time and code assist [34]. We refer to these notifications as
Just-In-Time (JIT), in that they notify the developer immediately after introduction,
before the violation gets embedded/accepted in the code-base. This approach is in
accordance with the findings of Layman et al [50], who suggest that the longer an
issue persists in the code-base, the harder it is to fix.

Similarly, architects could get real-time notifications as they reconcile the architecture
(RT-RM). That is, they can immediately be made aware of violations that arise based
on new mappings they make between their as-intended architecture and the source
code. These real-time alerts do not address violation embedding/acceptance, but
instead are aimed at allowing the architect to explore the mapping more interactively
during initial architectural reconciliation. It is this variation of RM that is the focus of
this paper.

3.1 JITTAC: A RT-RM Tool
A screenshot of the JITTAC tool, which was used in the case-studies reported on here,
is presented in Figure 1. JITTAC stands for a “Just-In-Time Tool for Architecture
Conformance” [34] and, as the name suggests, has JIT and real-time notification
facilities. Only the real-time notification facilities were employed in these case studies.

As shown in Figure 1, JITTAC allows the architect to define an architectural model of
the system (1) where components and their connections, can be dragged and dropped
from a palette (2). Additionally, drag and drop facilities can be used to create
mappings from the existing source code elements in the package explorer (4) to the
components in this architectural model and a summary of these mappings is available
in an outline view (5). Many source code elements can be mapped into one

architectural component and the architectural models and mappings can be defined
incrementally and iteratively. In addition, source code elements can be dragged
directly onto a blank space in the canvas to create a new component.

Figure 1: JITTAC

As mappings are defined between the source code and the architectural model in these
ways, the results of the RM analysis are presented in real-time. JITTAC conforms to
the RM process, as declared above, using dotted edges to represent relationships
defined in the as-intended architecture, but not present in the implementation
(absences), dashed edges to represent relationships present in the as-implemented
architecture but absent in the as-intended architecture (divergences) and solid edges
representing those relationships that are present in both (convergences). Typically, the
architect will focus on the dotted and dashed edges in their efforts to address
architectural drift.

The tool allows for further analysis of divergent edges. Specifically when the edge is
clicked upon, the tool lists the source code relationships underpinning the edge (see
the Architectural Relations view (3) for the code relationships underpinning the edge
between “Figure” and “Common” in Figure 1). JITTAC then allows the architect to
click on the Source in the Architectural Relations view, to navigate to the associated
source code, which has an alert posted in its margin. If that code is changed to address
the inconsistency, this change gets reflected back, removing the margin alert and
updating the architectural model instantaneously: the divergent edge becomes a
convergent one.

3.2 Empirical Assessment of RM Approaches
Many empirical studies have been carried out assessing the original (non real-time)
RM. In one of the first case-studies reported, Murphy et al. compared the layered
(intended) architecture of a program restructuring tool with the actual implementation
(implemented architecture) [15]. In another case-study presented in the same paper,
RM was applied to the kernel of an experimental operating system developed at the
University of Washington. Both of these case studies were on prototypes developed

by students/researchers in the group and the system-creators retrospectively changed
their systems to address the architectural violations.

Another RM approach was used by Tran et al. [21], with the goal of retrospectively
repairing the architecture of two open source systems: the Linux Kernel and an editor
called Vi iMproved (VIM). Their goal was to remove all anomalies excepting those
that were either too risky or 'not worthwhile'. However in the first instance, they did
not provide feedback to the original development team and, even though they did
present their findings to the original author of the VIM editor, no comment is made on
whether the author addressed the identified violations or not.

An RM process in a series of works [9, 16, 22, 26] was used to perform a series of
evaluations on a software system being re-implemented, called the Experience
Management System. In these studies the as-implemented view was shown to be
useful in demonstrating to management that the project needed restructuring.
However, their approach was manual and the desired architecture could not be
achieved. Instead, they were able to document violations that would normally have
been overlooked. An improved version of their technique has been used in another
case-study of a Simulation and Analysis Tool [16]. However, as in the original study
in this area [15], the violations identified in these evaluations were again addressed by
members of the research team, who were also the authors of the system under study.

Knodel et al. [17, 33] built and used an RM based tool called SAVE (Software
Architecture Visualisation and Evaluation Tool) for the purpose of architecture
evaluation. The tool extended RM with hierarchical modelling capabilities as
proposed by Koschke and Simon [51]. It was used to analyse software systems’
architectures in a number of evaluation scenarios: academic, open source or
commercial software systems of varying sizes, ranging from 10 to 600 KLOC [17].
Again, no reference was made to the system's subsequent evolution. Similarly,
Knodel and Popescu evaluated a proposed extension to RM where the subsequent
architecture conformance actions performed after these techniques were applied was
not mentioned [33].

Kolb et al. [19] and Knodel et al. [52] also report on experiences using SAVE with an
industrial partner. In this instance, conformance checking was adopted by the
company involved as a standard instrument for ensuring higher quality products at the
organisation. Identified violations, in already deployed systems, were fed back to the
development team and a formal process adopted whereby these inconsistencies were
removed. The results presented show a promising trend: a decrease in the number of
inconsistencies over the product's life time. It should be noted however that, due to
the product line [53] nature of the products involved, there was probably an agenda of
heightened Architecture Conformance in the development teams.

In contrast, a more recent, longitudinal case-study in IBM, [20] showed that periodic
(four-five monthly) identification of architectural violations, over two years, using
RM did not serve to lessen architectural drift in a less formal (non-SPL) development
context: During the study no violations were removed from the system based on the
insights provided by the RM approach. The authors proposed Real-Time RM to
address this by alerting developers as they introduced violations into the system and
thus pre-empting retrospective remedial action.

Empirical evaluations of real-time architectural violation feedback are scarcer.
Eichberg et al. [49] concentrated on the performance of the (real-time) algorithm
employed. Knodel et al. [48] evaluated it on M.Sc. students and Mattsson [11]
evaluated a Model Driven Development approach to the problem. An evaluation of
the approach’s performance tells us little about its effectiveness as an Architectural
Conformance technique. A student-based study has lesser ecological validity and the
Model Driven Development approach employed by Mattsson [11] can only be
employed during initial system development, as it is currently formulated.

4 Empirical Study
The empirical study reported on here is a multi-case study of RT-RM. These are in-
vivo case studies involving commercial organizations and their commercial software
products. The study is motivated by the lack of empirical studies assessing how RM is
used and leveraged in practice, particularly with respect to architectural violation
removal.

4.1 Motivation and Research Questions
Of the studies reviewed in section 3.2, none characterize participants’ usage of RM.
Hence, there is limited guidance as to how the modelling and mapping facilities
available to participants are used during RM (an exception being [18]). This is
surprising given the popularity of such tools in practice, and the lack of reported
results of this kind leaves open the possibility that current approaches to architectural
reconciliation may be sub-optimal for their users.

This paper attempts to address this issue by observing architects employing the RT-
RM technique during architectural reconciliation, highlighting the different modelling
approaches and mapping approaches used by these architects. The goal is to identify
potential improvements and thus to hone the approach going forward. Hence, the first
research question posed is:

RQ1: What system perspectives are of particular interest to architects in Real-Time
Reflexion Modelling during architecture reconciliation?

The architects may be interested in perspectives of the system that emphasise its
structural or functional aspects, or even its cross-cutting concerns. Likewise, they may
be interested in specific subsets of the system or the whole system. If the latter, then
are scalability-handling measures are required? Without empirical evidence on the
perspectives of interest to the architects, these questions remain open and this paper
sets out to address this gap.

The second research question is:

RQ2: What facilities of RT-RM are of interest to architects during architecture

reconciliation?

Given the lack of empirical evaluations concerning how RT-RM is performed, it is
possible that the real-time feedback provides no additional utility. Alternatively, given
real-time feedback, architects may find it useful to explore their models interactively

to identify violations, or to model potential changes to the source code through
Reflexion model manipulations (and the associated immediate feedback that RT-RM
offers). Thus, this second research question probes the potential added-value of real-
time information in RT-RM.

The evidence presented in previous research (see section 3.2), regarding violation
removal as a result of violation identification through RM is mixed. In many cases,
data on the removal of violations is simply not presented, or they have indicated that
violations are removed by research team or not removed. No studies have looked at
violation removal as a result of applying RT-RM, even though this adaptation has
been proposed as potentially elevating violation removal. Therefore, our third
research question is:

RQ3: Does real-time architectural violation identification prompt the removal of
violations in commercial practice, during architectural reconciliation and, if so,

where is the locale of change?

Here, ‘locale’ refers to the source code, the as-intended architecture or the mapping
generated by the architect. Given that the probable answer to this research question is
that some violations are removed and others are not, this paper also assesses the
factors that influence the removal of these violations in the organizations. Hence the
paper poses its final research question:

RQ4: What are the factors that influence the removal of violations during RT-RM
architectural reconciliation, in commercial software systems?

4.2 Empirical Design
An in-vivo, multi-case-study protocol [54-55] was adopted across four financial
services organizations. These organizations have a large Irish-based presence, with
large software portfolios and all were interested in heightening their systems' quality
through architecture conformance checking.

The companies were responsible for selecting the participants and the target systems
for these case-studies, within the constraints that the systems had to be developed in
Java (to facilitate our tool support), that they should be over 25KLOC (to heighten the
reality of architecture conformity as a concern) and that the participants were
experienced developers, familiar with the architecture of the systems. We requested
that the participant ideally be the software architect responsible for the system. Three
of the companies selected one system for analysis and one company selected two
systems for analysis, resulting in five separate case studies.

4.2.1 Systems
Table one provides some characteristics of the software systems chosen by the
companies, in size order. The first three systems are an order of magnitude greater in
size than the other two, as evidenced by all the size indicators presented. As would be
expected, the number of developers also reflects this size gradient, although it should
be noted that the number of developers refers to the participants’ estimate of all the
developers who have contributed to the code-base over the lifetime of the software,
and so is inexact. Note also that the three systems presented first are much older than

the others, suggesting that there might be a greater number of architectural violations
in these systems. Systems labelled 4a and 4b came from the same Financial Services
company.

Case System Domain Size No. of

Developers
Age
(years) KLOC Java Files Packages

1 Claims Mgt 2,223 7,300 1,105 >30 >10
2 Banking 1,800 6,289 956 ~18 8
3 Underwriting 1,200 3,347 486 >20 >10
4b Marketing 75 239 124 11 2
4a Banking 38 173 25 6 1.25

Table 1: The Software Systems Used in the Case Studies

4.2.2 Participants
Table 2 characterizes the participants involved in the study, in terms of their
experience and current role. All the participants were experienced Software Engineers
and four of the five were the architects responsible for the systems under study during
these sessions. In the fifth case (4a) there was no explicit architect for that product as
agile development was practised in that team. Instead, all the team had architectural
responsibilities for that system and this participant was selected by the Team-Lead for
participation, based on his architectural knowledge of the system.

The distinction between "Product Architect" and "Chief Architect" is that the first and
third participants were the Chief Architects for all software products that the Irish-
based subsidiaries were responsible for whereas the second and fifth (4b) participants
were responsible for the specific software system under study. Participant 4b also had
a larger corporate-wide role in a team that defined the umbrella architecture of the
company's software portfolio.

Case Years S.E.
Experience

Current Role Years
Experience as
Architect

1 22 Chief Architect 12
2 8 Product

Architect
3

3 12 Chief Architect 8
4a 5 Senior

Developer
0

4b 16 Product
Architect

2

Table 2: The Participants

4.2.3 Study Protocol
A 20 minute demo of the RT-RM tool was given to each of the participants. The
objective of the demo was to show the architecture reconciliation capabilities of the
tool and to demonstrate how to use it. Interested readers can view a similar, but
briefer demonstration of the tool at http://www.lero.ie/project/rca/arc. All of the
functionality used by the participants in their sessions, is as per the RT-RM approach
description in section 3.1.

After the demo, the participants installed the tool as a plugin to their Eclipse IDE, and
chose the system that they wished to study. The participants stated their original
architectural model of the system or, more typically, part of the system. Four of them
(1, 2, 3, 4a) used the tool to do this but participant 4b used a paper-based model he
had created in advance of the session. He then replicated his model in the tooling. The
authors acted as observers of the sessions and aided in any technical support that was
required for the tool. Each architecture reconciliation session lasted more than an hour.
In the case of case study one it lasted one hour and forty-four minutes, but all other
sessions lasted less than 90 minutes. Each session included a number of iterations,
where the participants focused on increasing the depth or scope of their architectural
models. That is, each iteration consisted of adding new components and/or mappings
and probing arising violations. On average 4.2 iterations were employed per case
study. The participants were interviewed several months after their session, to reflect
on their experiences and to determine the actions they had taken as a result of their
sessions.

4.2.4 Data Collection
The participants first answered questions to characterize their systems and their own
professional experience. Then they started to use the tool for architecture
reconciliation and their session was videotaped. The participants’ screens and remarks
were captured, providing valuable data on the process of creating their architectural
models, and mappings, the inconsistencies identified, and the participants’
observations on their tool usage. Think aloud data was gathered in line with the three
best-practice guidelines suggested by Ericsson and Simon [56]: the researcher should
ask participants to report verbally everything that comes into their mind, as it comes
into their mind and prompt them when they fall silent. Their utterances often fell into
the category of them explaining the architecture and architectural violations to the
observer. At the end of the session, the participants were asked open questions about
the value of the results obtained, and the tool’s usability. Screenshots of the
architectural models that participants evaluated and a tool-produced file of the
mappings defined by the participant were also captured.

Several months after the original session (ranging from four-to-seven months) the
participants were interviewed to assess the impact that the approach had on their
systems and to assess the validity of our findings with respect to their session. Thus
the data-set for analysis consisted of:

 The participants’ questionnaire

 Video recordings of participants’ screens, their tool interactions, and their
think-aloud.

 Screenshots of their architectural models, and the inconsistencies identified

during each iteration.

 A tool-produced file containing the mappings, connections and components
defined by the participant

 Notes taken during the sessions, highlighting any important, observed events.

 Transcripts of the participants' interviews

The gathered material of the sessions amounted to over seven hours of video
recordings which was transcribed and, together with other material, thoroughly
analysed and discussed to identify and record important findings regarding their
modelling and mapping practices. This analysis initially consisted of an open-coding-
like phase, in the spirit of Corbin and Strauss [57], where the analysis was informed
by knowledge derived from the literature and the earlier case study results. This was
done independently by two of the authors and subsequent discussions between these
authors focused on the reliability, veracity and relevance of their independent findings
for the research questions identified in Section 3.1. The findings were later presented
back to the participants for verification and the results presented here are the
outcomes of these researcher discussions/participant verifications.

Additionally, transcripts of participants’ post-session interviews were analysed to see
what action, if any, participants had undertaken in response to their architecture
reconciliation sessions.

5 Findings

In this section, we discuss our findings and come up with several observations to
answer the research questions presented in section 4.1. Each subsection, discusses one
of these research questions.

5.1 What system perspectives are of particular interest to architects in Real-Time
Reflexion Modelling during architecture reconciliation? (RQ1)

5.1.1 Architectural Style Perspectives
The participants in case studies 1-3 (henceforth called Participants 1, 2 and 3
respectively) used the approach to check the functional partitioning of their systems:
specifically to assess if communication between these partitions was exclusively
through defined interfaces. Each of the partitions was thus modelled in the intended
architecture as an interface vertex which (should) provide the only access to their
associated implementation vertex. Figure 2 shows one such model generated by
Participant 2 on his fifth iteration. In this diagram the 'API' vertices represent
interfaces and the 'SPI' vertices represent implementations - a naming convention in
the company in question. Note that the violations in this diagram are where SPI
vertices make direct calls on another SPI vertex.

In contrast, the architectural model used by Participant 4a and 4b was an N-layered
architectural style. This can be seen in the model created by Participant 4b in his third
iteration, as shown in Figure 3. Here there are four layers with the first and second
layer broken down into two sub vertices. Note that in this model, the edge that spans
more than one level in the layered architecture, is perceived as a violation, as would
be expected in this layered style.

These behaviours suggest an observation (O1): architectural templates should be
made available for architectural reconciliation sessions supporting different clichéd
decompositions. Specifically, given the unprompted architectural styles adopted by

the participants in these studies, an N-layered template and an interface-based
template should be provided. In the former template exclusive access to different tiers
could be assumed to be through adjacent tiers only, thus allowing default detection of
convergent and divergent edges in the model. In the interface template exclusive
access to implementations through interfaces could be presumed and again this, in
conjunction with source code analysis, could be used to automatically detect
violations.

Figure 2: An Interface-based model from Case Study 2

This latter template suggests a specialist interface type vertex and interface-type edge:
an extension of the port-type Component Access Rules proposed by Knodel and
Popescu [33] for RM. This vertex/port could be responsible for checking that any
element calling a method of the interface’s implementation is doing so through the
interface. Source code analysis could also reveal code that is located within the
implementation vertex but that has interface-type properties and could prompt for its
relocation. Interface vertices could also be useful in COTS (Components Of-The-
Shelf) situations where the static analysis underpinning the tool does not have access
to the source code of the component’s implementation but may have access to its API,
or may be able to deduce calls on components’ APIs based on naming conventions.
This would extend modelling beyond the source code of the in-house system itself
(see section 5.1.3).

Both interface vertices and interface-edges could be distinguished in such models, as
suggested by Prujit and Brinkkemper [58], to illustrate their interface-nature, and thus
facilitate communication of the architecture with the wider development team.

5.1.2 A Feature Oriented Perspective
Interestingly three of the five participants expressed a desire to model their system
based on features, where their definition of features differed from participant to

participant, but generally reflected some user-functionality of the system, in line with
the definition in Wilde and Scully [59]. This was most apparent in case study 2 where,
after his study, the participant stated:

"It would be really neat if each node reflected some sort of user goal. It would be difficult to

map (code to user goals), but it’d be great. Then we could see all the relations between
features…"

Figure 3: Reflexion Model from Case Study 4b

This sentiment was also echoed by Participant 1 in passing and Participant 3. This
latter participant stated:

"We did some work a while ago modelling part of our system in terms of user functions and
this (RT-RM) could be used with that. Of course it's changed now (the modelling they did)
and we'd need to do some work to get it back…, but it wouldn't be too out of date… It (RT-

RM) would be really nice for that"

These quotations suggest a desire for a complimentary view in RM whereby the
vertices are used to represent features and the edges, dependencies between features.
This is plausible because some RM tooling allows several concurrent models of the
software system to be preserved at once [34] and a feature-based model could be one
of these. Admittedly mapping code to feature-based vertices would be difficult, based
on their delocalization in the code-base [60] the finely-grained nature of this
delocalization and the difficulty in locating features in code, in general. These
observations suggest that (O2) the current mapping facilities (drag-and-drop from
the package explorer, as in JITTAC or regular-expression descriptions, as in the
jRMTool [61]) may need to be enhanced to help achieve this mapping and that (O3)
the envisaged tooling might benefit from providing support for feature location
[62].

5.1.3 A System-wide Perspective
Another modelling issue that was noted in three sessions was the participants’ desire
to model beyond the static code-base. They wished to determine the code-base's
relationship to dynamically configured elements (Javascript for example) and to
include 3rd party components. For example, participants 1 and 4b were particularly
interested in identifying calls to a 3rd-party component and capturing events that the
system listened to, from that component. Participant 4b, referring to a Business
Process Manager component of interest said:

“the web service layer would have had some logic that would have created a
workflow instance… using calls into a JPBM API… not code we own. The JPBM then

triggers events into this workflow package and there’s a relationship from here to
here and back to workflow that I know exists… and I’m struggling to see how the

approach is going to capture that”

It would be possible (indeed easy) to capture the calls to an external component via an
interface-type vertex in the Reflexion model, if lexical conventions were adhered to in
invocations of that particular interface. In contrast, identifying the events that the
system listens to through, for example, a Spring framework is a much more difficult
proposition, as is capturing any dynamically configured relationships through a layer
of indirection. However, the expressed desire of three of the five participants was that,
given the composition of today's software systems, (O4) architectural reconciliation
should be scoped beyond static source-code analysis.

5.1.4 Hierarchical or Partition-based Perspectives
Over the architecture-reconciliation iterations, the participants generally moved to
more encompassing architectural models or deeper architectural models, where
elements of their earlier models were probed in more detail. The latter approach can
be seen in Participant 4a and Participant 4b's sessions where they started off with one
Reflexion model node per layer in their architectural model and then proceeded to
divide the layers into individual components, as shown in Figure 3. Alternatively, the
participants who adhered to a more interface-oriented model initially took a small set
of interface-based partitions and expanded that set over their iterations. In all three
cases, the models grew to a point where they were somewhat difficult to read, as
illustrated by Figure 4, which is Participant 2's final model from the session. It should
be noted that this ‘final’ model still left the majority of the system in a ‘Rest-of-
System’ node at the bottom right hand corner. This suggests that the approach should
(O5) explicitly deal with scalability issues.

JITTAC has the ability to grey out user-specified vertices and their incident edges, as
illustrated in Figure 5 (from Participant 1, during Iteration 3), and this is particularly
useful when the system contains utility vertices that are widely invoked. Alternatively
JITTAC can grey out all nodes not adjacent to a selected node, allowing the architect
to focus in on one part of the system. These improvements were noted by several of
the participants:

“Ah, that’s nice” (referring to the hiding facility)

"Better clean this mess up a bit. How do I em... grey 'em again?"

But all participants suggested that additional improvements be made to address the
scalability issue. The 'increasing depth' approach suggests that a hierarchical
modelling capability would be useful and this was explicitly requested by one of the
participants (4b). Indeed, this suggestion also compliments the observation in section
5.2.1 that participants often wanted to "dig into" specific nodes at more detail, to find
the source of the violations.

Figure 4: An illustration of the Scalability issues faced by participants

Figure 5: Greying-out, as provided by JITTAC

The participants’ 'increasing scope' approach suggests that there could be multiple
simultaneous models at the same level of granularity, each containing a sub-set of
the partitions and their relationships. Here navigation between these models could
be based on the architect's selection of a particular partition and a drop down selection
of the other models within which that partition appears. This implies a possible pre-
session analysis where sets of partitions are composed based on cluster analysis [63],
clone analysis [64] or connectivity analysis (for example, sub-sets could be formed,
based on articulation vertices [65] when the entire partition set is modelled as a
dependency graph). The current JITTAC implementation allows for simultaneous
models of the system but for no such sub-set analysis.

5.2 What facilities of RT-RM are of interest to architects during architecture
reconciliation? (RQ2)

5.2.1 Interactive Analysis of the Abstract Model
In all of the participants' sessions they manipulated the abstract architectural model to
obtain real-time feedback about the system. From the think-aloud data it became
apparent that there were two rationales underpinning this behaviour and these are
listed in Table 3. The first was that the participants used the model to focus in on
particular violations at more detailed levels of granularity. To illustrate, consider this
segment of Participant 1's think-aloud when considering a violating edge between two
nodes that modelled two packages:

"That’s probably class <X>. I'm nearly sure. Let me just... (grabs class <X> from the
package explorer and drops it on the canvas making a new node in the architectural model)...

aah yes…, that accounts for well over half of them (the violations)"

This type of analysis was apparent in four of the five sessions and happened seven
times in total over these four sessions. It was always based on a strong hypothesis as
to the source code element causing the violations, and these hypotheses were right in

six of the seven episodes. Consequently, it can be considered a more optimal
alternative than scanning through the “Architectural Relations" listing provided by the
tool to identify prevalent offenders, where a prevalent offender can be defined as a
source code entity that is frequently a start-point or end-point of the dependencies
underpinning a violating edge.

This behaviour hints at an incongruity between the participants' needs and the
“Architecture Relations” view, suggesting that (O6) approaches like these should
provide architects with ranked lists of source code sources and targets
underpinning each violating dependency in the Reflexion model, at different levels
of granularity, where this ranking reflects their prevalence of occurrence.

The second rationale for iterative analysis was to evaluate potential code changes
before making them. To illustrate this, consider participant 3 when he found an
interface in an implementation module:

"Interface in wrong package... OK, let’s look at what would change if we moved it (drags a
class from the package explorer to an existing interface vertex)... its fixed it..”.” …Oh really

cool.... that's really cool"

Later, at the end of the session, when prompted about his feelings about the approach
the participant said:

"modelling the changes before you commit to them, that's really clever"

A similar quote was given by participant 2 who also trialled a proposed change at the
modelling level. In that case, he backed out of the change because the modelling
exercise showed him that the proposed change would introduce a circular
dependency:

"aha.. a circular dependency: that’s why (the class was placed in what he thought was an
inappropriate location)"

Overall, three participants demonstrated this behaviour, a total of six times during
their sessions, all actively commenting on its utility during the course of their session.
This suggests that one of the core benefits of the real-time approach is the ability to
model code changes in advance of actual change. Both this and the rationale of
focusing in on violations argue strongly for (O7) the ability to quickly and easily alter
the model and mappings at various levels of granularity and to provide real-time
feedback on the effects of these alterations as part of any RM type approach. This is
an advantage/usage we did not originally consider when proposing RT-RM.

Case
Study

Rationale
Focus on Violation Evaluating Code change

1 3 1
2 2 2
3 1 2
4a 1 0
4b 0 1

Table 3: Rationale for Iterative Analysis of the Reflexion Model

5.2.2 De-Novo Mapping
The tooling in this study allowed participants to create a mapping between the source
code and their model in two ways:

1. They could build their models in advance and only then map the source code
elements to those models to see if the edges were as they hypothesized. We
called this approach Retrospective Mapping.

2. They could drag elements from the package explorer and drop them on the

canvas directly to make Reflexion model vertices and see the resultant edges
appear. In this instance they did not explicitly commit themselves to expected
edges, and we called this behaviour De-Novo Mapping.

The researchers were not prescriptive in the approach to be adopted by participants.
Participant 4a and 4b used the Retrospective approach. Only on one occasion did 4a
drag and drop a source code element directly into the architecture as a new
component. He said: “I am doing this because I do not know how this element
works”. All the other participants used a mixed approach but predominantly relied on
the De-Novo approach as their sessions progressed. For example, Participant 1
preferred to drag and drop the elements of the source code into the model as
components directly:

“(After dragging a package onto the canvas) This works reasonably well to the way... it just

makes it convenient and it makes things quicker”.

While these three participants did use the Retrospective approach, their adoption of it
was short-lived and seemed to be based on our presenting both options to them in the
initial demonstration. This is best illustrated by a quotation from Participant 2:

“(Tries the Retrospective approach) OK, why would I do that?…”.

This is interesting because Retrospective Mapping aligns with the classical RM
approach. But three of the five participants preferred to use De-Novo mapping. This
suggests that (O8) an advantage of RT-RM is that, often participants prefer to build
their models directly from the source code, with real-time feedback, without
explicitly stating a model in advance. This type of behaviour was also seen when
participants wanted to focus in on the cause of violations as discussed in section 5.2.1.

5.2.3 Drag-and-Drop versus Lexical Mapping
Participant 4a and 4b came from the same company and their systems adhered to a
company-wide standard (layered) architecture. Regardless, the mappings required by
these participants differed hugely. This can be seen by the fact that Participant 4b
used eight mappings during his session and Participant 4a used 56. In Participant 4b’s
system, the packages in the package explorer directly related to each tier (some utility
nodes were the exception). In Participant 4a’s system, each package contained
elements from each tier, leading to a much greater mapping effort for the participant
when using the tool's drag-and-drop facility. The result was that Participant 4a

typically had 1-1 mappings between source code elements (packages) and
components, while Participant 4b had, on average, 1:5.6 mappings between them.

In the interview after his session Participant 4a expressed the desire for a lexical
mapping facility in the tool, as per the original Reflexion Modelling tool developed by
Murphy et al.: the jRMTool [61]. This was because his team’s conventions demanded
that the individual elements in each package had lexical signals as to their tier
placement but that they were not placed in packages based on that layering.
Interestingly, this issue also arose, to a degree for Participant 1 and Participant 2. In
both systems several of the interfaces were placed within one 'interface-collection'
package. While the participants were happy to drag these interfaces out individually,
it would have been helpful if interface nodes could have been formed, based on the
lexical matching evident between the implementation package and their associated
interface within this ‘interface-collection’ package. However the vast majority of their
mappings were suited to drag-and-drop operations, as were all of Participant 3’s.
These findings suggest that (O9) architects should be offered a drag-and-drop
mapping facility and a lexical mapping facility.

This raises interesting questions about the potential for confusion if both facilities
were to be offered in conjunction with each other. For example: when the drag-and-
drop mapping facility conflicts with the lexical mapping facility, which one should
take precedence? Additionally, will architects forget which of the two mapping
facilities they used for certain parts of the source, or which one has precedence in the
case of overlaps?

Indeed, even with just the drag-and-drop mapping facility available, Participants 1, 2
and 4b mentioned difficulties in keeping track of the unmapped parts of the codebase.
While the code mapped to each vertex was made explicit in the outline view, no
perspective illustrating the unmapped source code was available in JITTAC and this
proved to be a problem. This difficulty would likely be exacerbated by the availability
of more than one mapping-based strategy and so should be addressed. Hence (O10)
architects should be made aware of the source code that remains unmapped for
each architectural model they create.

With respect to the precedence of drag-and-drop or lexical mapping, participant 4a
mentioned that “(while) lexical analysis would come in handy... many files would not
fall under a lexical definition (convention)” This is entirely plausible: situations
where conventions demand more than one naming approach, or simple programmer
inexperience may lead to lower naming consistency in a software system that remains
unnoticed for long periods of time. In addition, drag-and-drop was appropriate for the
vast majority of mappings in three of the five case studies. This suggests that if both
modes of mapping were to be made available at the same time, drag-and-drop
should have default primacy, but the architect should be able to change this default.

5.3 Does real-time architectural violation identification prompt the removal of
violations in commercial practice, during architectural reconciliation and, if so,
where is the locale of change? (RQ3)

Table 4 presents the results of an analysis of the architectural violations identified by
the participants in the study over several iterations of the RM process. As described

earlier we consider an iteration as a distinct phase in the sessions where participants
define or augment their as-intended architectural model of the system, make mappings
between that model and the source code, and possibly, subsequently analyse or
manipulate that model to explore and assess any violations. So for example,
participant 2 created seven models, each an expansion of the previous model in that
additional parts of the system were included each time. Each time the expanded model
required additional mappings to the source code. For four of the seven models he
assessed and explored the violations he had identified. The three other expansions
highlighted no new violations.

Case Violations Identified
Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7

1 1(10) 0 1(33) 2 (26)1
2 1 (10) 0 1 (3) 0 1 (10) 0 3 (1156)
3 0 1(26) 1 (86)
4a 0 1 (2) 3 (31)
4b 1 (43) 1 (90) 1 (16) 1 (5)

Table 4: Violations Identified per Iteration

The number in parenthesis in each cell in Table 4 represents the number of source
code dependencies underpinning the violations identified. The number before the
parentheses represents the number of violations, as measured by actual edges between
vertices in the Reflexion model. For example the Reflexion model from iteration five
of Participant 2’s session is presented in Figure 2. In this model we see the 10 source
code dependencies on one edge that were introduced in iteration five and the three
source code dependencies that were introduced in iteration three on another edge. The
10 violations introduced in iteration one are not visible in the figure as they reflected a
mistake in the mapping from source code to vertices in the Reflexion model and the
participant changed the mapping before iteration two to remove them. Mapping
changes like this are signalled by highlighting in Table 4.

It should be noted that, even with the large number of violations identified in Table 4,
the level of violation removal was quite low. At the time of the post-session interview,
several months after the empirical session, several violations had been addressed but
no architect had removed more than 50% of the violations identified and two of the
architects had removed none. In addition, the architects had no plans to address the
remaining violations in the future.

5.3.1 Locale of Change
Table 5 documents the changes that programmers made to the system to address the
violations they identified. As shown in Table 4 and in Table 5, three of the
participants changed mappings during their session. These reflected genuine mapping
mistakes, where the name of classes and packages suggested to them that they

1 As shown in Figure 4 this participant created a ‘Rest-of-System’ vertex, connecting it to his existing
model, during this iteration. The reason that the number reported in this cell does not tally with the
violations that can be seen in Figure 4 is that the participant subsequently inspected these dependencies
(after the session) and, in our retrospective interview, stated that the violating edge incident on the
‘Rest-of-System’ vertex with 1151 dependencies was not, in fact, a violation.

belonged to Reflexion model vertices other than those that they actually belonged to.
To illustrate, consider Participant 4a’s utterance:

“Oh so… I haven’t got to mapping this into the correct location yet!”

As shown in Table 5, in two instances (Participant 2 and 4) these redefined mappings
served to address a ‘violation’, but in the other it had no effect.

Case
Study

Resultant Change Focus
Code Architectural Model Mapping

1 Add
2 Add, Trial Yes
3 Yes NoDen
4a Yes
4b

Table 5: Change Focus

Interestingly all bar two of the participants chose to change the architectural model,
after discussing the issue with other members of their development teams. For
example, Participant 1, after discussing the issue some time later with his team stated:

"I talked to the team.... They said no way. We've got to bypass them (interfaces) or else we'd

hammer it (the system's performance)"

The architect agreed and changes were made to the architectural model of the system,
rather than the system itself. This is an example of the case 'Add' where developer
insight led the architect to change the as-intended architectural model to achieve
additional architectural goals. This was also evident in case study 2, again for
performance reasons.

There was also a related situation ('NoDen') where a participant agreed to change the
model, not because the implemented architecture (as embodied by the source code
dependencies) improved adherence to architectural goals but because it did not
denigrate adherence to the currently stated architectural goals and because the
violating dependencies were widespread in the code. Thus they would take some
effort to remove. This is illustrated by a quote from Participant 3:

"If we go down to separately versioned components (only) then the API becomes God... vitally
important. (Otherwise its) difficult to get specific resources for this. It’s perceived in terms of
finding time, which is a tough argument to make to management. It's funny (because) it adds

to the maintenance overhead, so I'm very keen on (refactoring the code)"

Finally, as discussed in section 5.2.1, there was another situation where the architect
trialled the proposed changes at the RM level (‘Trial’) and it showed him a knock-on
effect (a circular dependency) that he considered outweighed the potential benefits of
aligning the code with the architecture. Hence, he reversed his change at the RM
level, resulting in only a temporary change at the architectural model level.

So it seems that (O11) RT-RM, while prompting some removal of violations, is not
sufficient to prompt removal of all, or the majority of, the violations identified when

applied retrospectively on a system that has drifted for some time. In situations
where the architects do move to address architectural violations, they are more
likely to change the architectural description than the source code.

5.4 What are the factors that influence the removal of violations during RT-RM
architectural reconciliation, in commercial software systems? (RQ4)

The findings from this study indicate that there are several factors that influence the
removal of violations and several factors which then influence the site at which the
removal is performed. As discussed above, the site at which removals are performed
can depend on architectural agendas (in this case ‘performance’) which are currently
deemed more important than the architectural agendas espoused in the as-intended
architecture, Alternatively, they can depend on the effort associated with changing the
source code (when the violation does not denigrate the architecture).

In terms of whether a violation is removed in the first place, the participants cited
several considerations. They cited the non-availability of resources to undertake the
required re-structuring of the code-base, the lower priority associated with
restructuring than enhancing the current systems’ functionalities and the embedded-
ness of the identified violations. This last rationale suggests that, if architectural
reconciliation can be achieved in a JIT fashion, then the violations might be identified
before they would become embedded, as it would warn programmers as they
introduce the violations, not retrospectively.

With respect to the violations that were addressed, only one participant changed the
source code. This participant (3) was an architect who had extensively coded on the
project, identified a violation that ‘particularly offends’ him and identified the change
required: re-directing a localized set of calls to an existing interface. He stated that
there were no gains to be made by by-passing the interface in this situation, and thus,
that coupling should be decreased.

6 Discussion
Many of the observations reported above (O1, O5, O6, O9 and O10) highlight
potential future directions for RM. For example, the architectural templates
suggestion (O1), and the inclusion of drag-and-drop and lexical mapping (O9) serve
to enrich the modelling and consistency goals of these approaches. While we are
aware of no academic work on desirable strategies for mapping code entities to
architectural vertices in the Reflexion model, we are aware of commercial tool-sets
that allow both (for example Structure101 [46]).
The suggestion that there should be an interface template, echos the findings of
Knodel and Popescu [33] who suggested that ports should be associated with
architectural vertices in Reflexion models, constraining the allowable dependencies
on those vertices to defined interfaces. More generally, Pruijt and Brinkkemper [58]
argue for richer architectural modelling of systems, which could also include layering
constructs.

O5, O6 and O10 suggest enriching the visualization interface presented to the
architect. Under these suggestions, architects would be able to scale the approach to

large architectural models, identify classes that cause a significant amount of
violations, and identify code that was as yet unmapped. Koschke and Simon [51] have
implemented hierarchical RM, as have a number of the commercial providers (for
example [66]) towards the scalability issue. Unmapped code was highlighted by a
view in the original RM tool (the jRMTool). But a review of the literature in the area
suggests that the proposal to rank classes in order of significance, in terms of the
violations they prompt, is novel.

With respect to O7: real-time feedback when (easily) manipulating the model and
mappings, Buckley et al. performed two in-vivo case studies with a RM approach on a
commercial Learning Management System (LMS) in IBM (Buckley et al. 2008). The
second of these case studies implied the need for such a facility. There, the participant
used the technique to remove the GUI layer of the LMS, so that the rest of the system
could be integrated into another IBM system (Workspace Collaborative Learning). As
in the studies here, the participant worked exclusively at the modelling level before
proceeding to make the necessary code changes (in that case without real-time
feedback). He cited the detail of code change, and subsequent compiler errors, as the
reason for approaching the task at the RM level.

This behaviour can be contextualized in terms of the cognitive dimensions proposed
by Blackwell et al [67]. Specifically, code is a ‘viscous’ representation to change due
to its inherent level of detail and because programmers often face situations where
code change prompts ripple effects they have not foreseen. Working at the abstract
level provided by RM provides a less viscous representation that facilitates the
cognitive dimension of ‘provisionality’: the ability to check out certain implications
of change, before actually performing or reversing that change.

Of the more surprising requests from participants (O2, O3) one was for feature-
oriented RM where individual features would form the individual vertices of a
Reflexion model and this model would act as a dependency analysis vehicle for
architects. Such an environment would be in the spirit of FEAT [68] where the level
of visualization would be increased from Feature contents, as in FEAT, to feature
contents and inter-feature dependencies. The participants’ comments hinted at the
requirement for a Feature Location Technique as part of this environment and an
iterative process for this is envisaged, in line with the process proposed by Kastner et
al. [69]. In this process users would seed the tool with elements of the source code
they associate with the feature and the tool would iteratively apply Feature Location
Techniques to that seed set. The results would then be fed back to the user via a
Reflexion model, as suggestions that can be accepted or rejected by the architect, for
further applications of Feature Location techniques.

O4 suggests that the inability of traditional RM to go beyond source code
dependencies is an issue for the architects. This has been noted in general in the
literature [70] and has been the subject of some preliminary investigation [71].

One of the core advantages of RM proposed in the literature was the architects pre-
commitment to an expected architectural model [13-14]: When the system was parsed
and shown to differ from that architectural expectation the architect’s subsequent
surprise created an element of “cognitive conflict” between expectation and reality,
driving further investigation [14].

Instead, the behaviour observed here (O8) suggests that architects would prefer to
create their model directly from the source code, retrospectively analysing the
relationships that appeared rather than pre-committing to a set of expected
relationships. Regardless, in most of the cases observed architects did seem to bring
expectations to their iterations: specifically that communication should happen
through interfaces, and between adjacent layers only. They also brought expectations
as to the location of the dependencies underpinning the identified violations. So, it
seems more likely that the architects just found the explicit statement of these
expectations/their model un-necessary and dragging-and-dropping from the package
explorer less clunky. This is evidenced by quotations like those presented in section
5.2.2.

In terms of O11, which refers to the likelihood of identified violations being removed,
the study reflects other studies in the area, in that the findings were mixed. While
Knodel et al. [52] and Kolb et al. [19] report that violations were addressed in their
case study, Rosik et al [20] found that they were not. Other studies have reported that
only academic researchers removed identified violations [15, 21]. In this study, some
were removed but the majority remained. It seems that factors such as programmer
availability, the embedded-ness of the violations and organizational priorities make
the removal of violations company-specific. These findings suggest that future
empirical studies in this area might usefully consider JIT violation notification, varied
commercial contexts and be longitudinal in nature, to assess the subsequent outcomes
of violation identification.

Also in relation to O11, when violations were removed, the majority of them were
done at the model level, not at the code. Similarly, Buckley et al. [14] reported that
when the as-implemented architecture of the system under study was shown to the
system architect, he noted that the as-implemented architecture was inconsistent with
how he viewed the system, but that it was correct and valid, in that it did not
compromise any of the system’s architectural goals. Given the extent to which the as-
implemented architecture was embedded in the system, he adopted a ‘NoDen’ type
behaviour and stated that he was going to change his own (internal) architectural
model of the system. A similar behaviour was observed in a longitudinal architectural
conformance study in IBM [20]. There, the architectural model was changed to
accommodate a legacy component and to obfuscate several ‘trivial’ violations.
However, in that instance, the hidden violations grew over time, resulting in bigger
violations. These complimentary findings suggest that architects are more likely to
approach consistency through modification of the as-intended model rather than the
code-base, largely for pragmatic reasons, but also for the reason that insights from
developers working on a system are seen as a legitimate input to the definition of a
system’s architecture [1, 35].

The findings with respect to the architectural templates desired (O1) and the locale of
change subsequent to violation identification (O11), provide an interesting
commentary on the architectural agendas at play during these software systems’
development. Specifically, the systems seem to have been built with modularity and
maintainability as a primary architectural concern. Defining APIs to packages and
programming to those APIs (as per the as-intended architectures of four of these
systems), divides the systems into more manageable, information-hiding [72]

partitions. The APIs expose only limited details of these partitions to the rest of the
system, a well-accepted approach to reducing complexity and easing maintainability
[73]. Likewise programming to these APIs and programming to a layered
architectural style (as in 2 of the case studies) facilitates replace-ability [74] as can be
prompted, for example, by the evolution of new services, or new database and
presentation layer technologies.

System performance is another apparent architectural requirement for some of the
systems studied. Specifically, in two cases the development team highlighted their
system-performance concerns to the architect, objecting to the programming-to-
interfaces style the architect proposed. This illustrates a distributed cognition model of
software across the team [75], highlighting the conflicting agendas of performance
and maintainability in these instances. Tellingly, in both cases, the architect ultimately
deferred to the development team and accepted the violations as necessary, suggesting
that the performance requirement out-ranked the maintainability requirement at that
point in time. This also suggests that the relative importance of performance over
maintainability, as a non-functional requirement, may grow over time in line with
customer concerns, as systems become larger and processing becomes more involved.

Finally, given the financial nature of all these systems, it is interesting to note that
performance and modularity were the only two architectural requirements that arose
during the case studies. It could be expected that issues such as security and
traceability would also be major concerns in the development of such systems. The
most likely reason for their non-emergence during this analysis is scoping: the
technique applied only focused on the (java) source code dependencies in the systems
whereas these other non-functional requirements were handled within the systems’
frameworks.

Whatever the rationale underpinning the locale of change, these findings imply that
the labels ‘Architecture Conformance’ [42, 52] or ‘Compliance Checking’ [9, 40]
when applied to this field, are misnomers. They convey the impression that the code
should conform to the as-intended architecture. Better labels would be ‘Architecture
Consistency’ [77] or ‘Architecture Reconciliation’ [35], where the implication is that
consistency between the architecture and the source code is the goal, regardless of the
appropriate site-of-change.

7 Threats to Validity and Reliability
Validity refers to the extent to which empirical results are meaningful [77]. A related
concern is reliability, which refers to consistency in data gathering and data analysis
[77]. This section assesses the validity and reliability issues that can arise in (multi-
)case studies [78] and the steps that were taken to mitigate against these concerns in
this instance. With respect to validity, it discusses these issues under the validity-
categorization schema of Shuttleworth [79]:

Construct validity is the degree to which the measurements taken relate to the
phenomena under-study. Here the phenomena were the participants’ usage of RT-RM
(the perspectives and facilities they used/desired) and their removal of architectural
violations (in terms of the extent of removal, locale of removal and rationale for

removal/persistence). The measurements were the videoed protocol of the participants,
their think-aloud data and their retrospective interviews.

The observation-type measurements we employed could report directly on many of
the phenomena under study (for example the ‘architectural-style perspectives’ and the
‘interactive analysis’ usage). However, other phenomena could not be assessed so
directly (for example ‘factors that influenced violation removal’, and the desire for a
‘Feature Oriented’ perspective). Analysis of think-aloud data and retrospective
interviews were employed to report on these phenomena, and such analysis is open to
individual interpretation and subjectivity, thus threatening the construct validity of the
study. The researchers counteracted this possibility through discussion meetings
where each researcher who analysed the data independently presented their results to
another researcher who adopted and argued a counter position (colloquially known as
a “devil’s advocate” role [79]). In addition, we employed a participatory verification
step, where the five participants reviewed our findings on their sessions for
misinterpretations and inconsistencies.

Internal validity is the extent to which independent variables (and only independent
variables) affect the dependent variables in controlled experiments. Even though in-
vivo case studies cannot be equated to controlled studies, the presence of RT-RM, as
embodied in JITTAC, could be considered an independent variable and the
participants’ behaviour and desired enhancements could be considered the dependent
variables in these studies.
The presence of the research team at the sessions, and in performing the interviews
afterwards, might be considered “another variable” that impacted on the dependent
variable [80]. For example, it might have prompted participants to remove more
violations and to suggest that the RT-RM approach, as embedded in JITTAC, was
more congruent to their task than it was. Given the low rate of violation removal
found in the studies, it is unlikely that the team’s presence prompted participants to
remove more violations than they would have done otherwise. But if it did, the valid
removal rate would be even lower than reported on here, reinforcing our findings.

Many of the “congruent-to-task” improvements arose naturally in the think-aloud
protocol, but there is the possibility that more would have been identified if
participants had been reporting to someone else. We attempted to mitigate this
possibility by receiving these improvement-comments positively, with phrases like:
‘Oh that’s very interesting’.

External validity is the degree to which the conclusions of the study are applicable to
software development in general. Our study was performed on five commercial
systems from four different companies where four architects and one experienced
developer (with some architectural responsibility for the system) performed in-vivo
architecture reconciliation tasks. The systems had already been deployed and were of
different sizes and ages. Three of them were extremely large systems and the others
were of a realistic industrial scale. Hence, the study had high ecological validity, a
subset of external validity that refers to the degree to which the study is representative
of reality.

However, all the participants used JITTAC and JITTAC embodies one specific
variant of RT-RM only. Additionally, as with all in-vivo case studies of this depth, the

number of data-points is limited and this lessens the external validity of the study in
general. We would hope that other researchers would add to the evidence in this area
by performing additional in-vivo case studies with other RT-RM approaches and tools.

As stated above, reliability is concerned with the consistency of result
gathering/analysis [77]. To improve reliability in data gathering, congruent data was
collected from multiple sources. These included the video recordings of the sessions,
participant interviews, participant-uttered observation and the screenshots collected.
With respect to data analysis, two researchers independently analysed each session
and had analysis-discussion meetings afterwards. As described above, in these
meetings they each acted as devil’s advocate to the findings of the other researcher
when their analyses did not align, serving to make the analysis more transparent
(explicit), reliable and reasoned across the research team. In addition, each participant
in the study reviewed the findings associated with their session for accuracy.

Towards reliability going forwards, we documented in detail all the procedures
(design and protocol) in each session so that the case study could be repeated in the
future by other researchers.

8 Conclusions
This study has presented a number of observations from a multi-case study of RT-RM,
identifying several utilities of the approach and several limitations. Most surprisingly
it showed that (at least) four months after their sessions all the associated
development teams had removed less than 50% of the architectural violations
identified in their RM session and some had removed none. The primary reasons
given were the effort involved, the organizations’ focus on new business goals and the
lack of perceived importance of the violations identified in comparison to these new
business goals.

With regard to the architecture reconciliations that were achieved, the majority of
practitioners using RM in these case studies favoured changes to the intended
architecture rather than changes to the code. This reflected the teams' prioritization of
performance, as embodied in the current implementation, over the longer-term
maintainability gains implied by the intended architecture. In another case it reflected
the (large) effort required to address violations that did not denigrate the architecture,
in the opinion of the architect.

Participants would generally like to have richer modelling facilities in such
approaches. Specifically, their behaviours implied a need for certain architectural
templates and the need for interface vertices. They would like modelling facilities to
cope with larger scale models, and also expressed a need to expand the technique
further, to model the event driven/dynamic behaviour of systems and to model
systems in terms of their user functionalities.

There were several usability issues that arose. On the positive side, the approach
provided for real-time, iterative analysis of the system at the architectural model level,
which allowed participants interactively assess changes to the code-base before they
proceeded and allowed them check hypotheses on the specific location of
architectural inconsistencies. In addition, participants predominantly chose to create
elements of their architectural model directly from elements in their code base which,

though inconsistent with the classical RM approach, was preferred by participants as
less clunky. Such an approach seems intuitively to have less impact in terms of
cognitive conflict, but the participants still seemed to have strong implicit
expectations when they adopted this behaviour and so it is likely that cognitive
conflict still played a motivating/focusing role.

The participants’ behaviour suggested the need for both Drag-and-Drop and lexicon-
based mapping from the source code to the architectural elements in the as-intended
model. The predominance of Drag-and-Drop in these session, allied with the
perceived more approximate nature of lexicon-based mapping suggests that Drag-and-
Drop should be the default option, even if both were made available. However,
participants expressed difficulty in remembering the mapping relationships that they
had and hadn’t created, a difficulty that could be exacerbated by a second mapping
facility.

Acknowledgement

This work was supported, in part, by Science Foundation Ireland grants 12/IP/1351
and 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie) and by the University of Brighton under the Rising Star Scheme
awarded to Nour Ali.

References
1. Garlan, David. 2000. ‘Software Architecture: A Roadmap’. In Proceedings of

the Conference on The Future of Software Engineering, 91–101. Limerick,
Ireland: ACM. doi:10.1145/336512.336537.

2. Perry, Dewayne E, and Alexander L Wolf. 1992. ‘Foundations for the Study
of Software Architecture’. ACM SIGSOFT Software Engineering Notes 17
(October): 40–52. doi:10.1145/141874.141884.

3. Knodel, Jens. 2011. ‘Sustainable Structures in Software Implementations by
Live Compliance Checking’. Stuttgart, Fraunhofer Verlag.

4. Schwanke, Robert W. 1991. ‘An Intelligent Tool for Re-Engineering Software
Modularity’. In , 13th International Conference on Software Engineering,
1991. Proceedings, 83–92. doi:10.1109/ICSE.1991.130626.

5. Cimitile, Aniello., and Guiseppe Visaggio. 1995. ‘Software Salvaging and the
Call Dominance Tree’. J. Syst. Softw. 28 (2): 117–27. doi:10.1016/0164-
1212(94)00049-S.

6. Koschke, Rainer 2002. ‘Atomic Architectural Component Recovery for
Program Understanding and Evolution’. In International Conference on
Software Maintenance, 2002. Proceedings, 478–81.
doi:10.1109/ICSM.2002.1167807.

7. Babbage, Charles. 1864. Passages From The Life Of A Philosopher. Cooper
Press.

8. de Silva, Lakshitha, and Dharini Balasubramaniam. 2012. ‘Controlling
Software Architecture Erosion: A Survey’. Journal of Systems and Software
85 (1): 132–51. doi:10.1016/j.jss.2011.07.036.

9. Hochstein, L., and M. Lindvall. 2003. ‘Diagnosing Architectural
Degeneration’. In Software Engineering Workshop, 2003. Proceedings. 28th
Annual NASA Goddard, 137–42. doi:10.1109/SEW.2003.1270736.

10. de Moor, Oege, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel
Avgustinov, Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. 2008. ‘.QL:
Object-Oriented Queries Made Easy’. In Generative and Transformational
Techniques in Software Engineering II, edited by Ralf Lämmel, Joost Visser,
and João Saraiva, 78–133. Lecture Notes in Computer Science 5235. Springer
Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-88643-
3_3.

11. Mattsson, Anders. 2012. ‘Modelling and Automatic Enforcement of
Architectural Design Rules’. University of Limerick.
http://ulir.ul.ie/handle/10344/2478.

12. Murphy, Gail C., and David Notkin. 1997. ‘Reengineering with Reflexion
Models: A Case Study’. Computer 30 (8): 29–36. doi:10.1109/2.607045.

13. Le Gear, Andrew, Jim Buckley, Brendan Cleary, J.J. Collins, and Kieran
O’Dea. 2005. ‘Achieving a Reuse Perspective within a Component Recovery
Process: An Industrial Scale Case Study’. In 13th International Workshop on
Program Comprehension, 2005. IWPC 2005. Proceedings, 279–88.
doi:10.1109/WPC.2005.4.

14. Buckley, Jim, Andrew P. LeGear, Chris Exton, Ross Cadogan, Trevor
Johnston, Bill Looby, and Rainer Koschke. 2008. ‘Encapsulating Targeted
Component Abstractions Using Software Reflexion Modelling’. Journal of
Software Maintenance and Evolution: Research and Practice 20 (2): 107–34.
doi:10.1002/smr.364.

15. Murphy, Gail C., David Notkin, and Kevin Sullivan. 2001. ‘Software
Reflexion Models: Bridging the Gap between Design and Implementation’.
Software Engineering, IEEE Transactions on 27 (4): 364–80.
doi:10.1109/32.917525.

16. Tvedt Tesoriero, Roseanne, Patricia Costa, and Mikael Lindvall. 2004.
‘Evaluating Software Architectures.’ In Advances in Computers, 61:1–43.
http://dblp.uni-trier.de/db/journals/ac/ac61.html#TvedtCL04.

17. Knodel, Jens, Mikael Lindvall, Dirk Muthig, and Matthias Naab. 2006. ‘Static
Evaluation of Software Architectures’. In Software Maintenance and
Reengineering, 2006. CSMR 2006. Proceedings of the 10th European
Conference on, 10 pp. – 294. doi:10.1109/CSMR.2006.53.

18. Ali, Nour, Jacek Rosik, and Jim Buckley. 2012. ‘Characterizing Real-Time
Reflexion-Based Architecture Recovery: An In-Vivo Multi-Case Study’. In
Proceedings of the 8th International ACM SIGSOFT Conference on Quality of
Software Architectures, 23–32. QoSA ’12. New York, NY, USA: ACM.
doi:10.1145/2304696.2304702.

19. Kolb, Ronny, Isabel John, Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald
Meier. 2006. ‘Experiences with Product Line Development of Embedded
Systems at Testo AG’. In Software Product Line Conference, 2006 10th
International, 10 pp. – 181. doi:10.1109/SPLINE.2006.1691589.

20. Rosik, Jacek, Andrew Le Gear, Jim Buckley, Muhammad Ali Babar, and Dave
Connolly. 2011. ‘Assessing Architectural Drift in Commercial Software
Development: A Case Study’. Softw. Pract. Exper. 41 (1): 63–86.
doi:10.1002/spe.999.

21. Tran, John B., Michael W. Godfrey, Eric H.S. Lee, and Richard C. Holt. 2000.
‘Architectural Repair of Open Source Software’. In 8th International
Workshop on Program Comprehension, 2000. Proceedings. IWPC 2000, 48–
59. doi:10.1109/WPC.2000.852479.

22. Lindvall, Mikael, Roseanne Tesoriero, and Patricia Costa. 2002. ‘Avoiding
Architectural Degeneration: An Evaluation Process for Software Architecture’.
In Eighth IEEE Symposium on Software Metrics, 2002. Proceedings, 77–86.
doi:10.1109/METRIC.2002.1011327.

23. Mattsson, Anders, Björn Lundell, Brian Lings, and Brian Fitzgerald. 2009.
‘Linking Model-Driven Development and Software Architecture: A Case
Study’. IEEE Transactions on Software Engineering 35 (1): 83–93.
doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2008.87.

24. Van Gurp, Jilles, and Jan Bosch. 2002. ‘Design Erosion: Problems and
Causes’. J. Syst. Softw. 61 (2): 105–19. doi:10.1016/S0164-1212(01)00152-2.

25. Van Gurp, Jilles, Sjaak Brinkkemper, and Jan Bosch. 2005. ‘Design
Preservation over Subsequent Releases of a Software Product: A Case Study
of Baan ERP: Practice Articles’. J. Softw. Maint. Evol. 17 (4): 277–306.
doi:10.1002/smr.v17:4.

26. Tvedt Tesoriero, Roseanne, Patricia Costa, and Mikael Lindvall. 2002. ‘Does
the Code Match the Design? A Process for Architecture Evaluation’. In
International Conference on Software Maintenance, 2002. Proceedings, 393–
401. doi:10.1109/ICSM.2002.1167796.

27. Shaw, Mary, and Paul Clements. 2006. ‘The Golden Age of Software
Architecture’. IEEE Softw. 23 (2): 31–39. doi:10.1109/MS.2006.58.

28. Czarnecki, Krysztof, and Ulrich Eisenecker. 2000. Generative Programming:
Methods, Tools, and Applications. 1 edition. Boston: Addison-Wesley
Professional.

29. Henriksson, Anders, and Henrik Larsson. 2003. A Definition of Round-Trip
Engineering. Linköpings University, Sweden. http://www.ida.liu.se/
henla/papers/roundtrip-engineering.pdf.

30. Stahl, Thomas, Markus Voelter, and Krzysztof Czarnecki. 2006. Model-
Driven Software Development: Technology, Engineering, Management. John
Wiley & Sons.

31. Mattsson, Anders, Brian Fitzgerald, Björn Lundell, and Brian Lings. 2012.
‘An Approach for Modeling Architectural Design Rules in UML and Its
Application to Embedded Software’. ACM Trans. Softw. Eng. Methodol. 21
(2): 10:1–10:29. doi:10.1145/2089116.2089120.

32. Herold, Sebastian, and Andreas Rausch. 2013. ‘Complementing Model-Driven
Development for the Detection of Software Architecture Erosion’. In 2013 5th
International Workshop on Modeling in Software Engineering (MiSE), 24–30.
doi:10.1109/MiSE.2013.6595292.

33. Knodel, Jens, and Daniel Popescu. 2007. ‘A Comparison of Static
Architecture Compliance Checking Approaches’. In Software Architecture,
2007. WICSA ’07. The Working IEEE/IFIP Conference on, 12.
doi:10.1109/WICSA.2007.1.

34. Buckley, Jim, Sean Mooney, Jacek Rosik, and Nour Ali. 2013. ‘JITTAC: A
Just-in-Time Tool for Architectural Consistency’. In Proceedings of the 2013
International Conference on Software Engineering, 1291–94. ICSE ’13.
Piscataway, NJ, USA: IEEE Press.
http://dl.acm.org/citation.cfm?id=2486788.2486987.

35. de Silva, Lakshitha, and Dharini Balasubramaniam. 2013. ‘PANDArch: A
Pluggable Automated Non-Intrusive Dynamic Architecture Conformance
Checker’. In Software Architecture, edited by Khalil Drira, 240–48. Lecture
Notes in Computer Science 7957. Springer Berlin Heidelberg.
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_21.

36. Ganesan, Dharmalingam., Thorsten. Keuler, and Yutaro Nishimura. 2008.
‘Architecture Compliance Checking at Runtime: An Industry Experience
Report’. In The Eighth International Conference on Quality Software, 2008.
QSIC ’08, 347–56. doi:10.1109/QSIC.2008.45.

37. Popescu, Daniel, and Nenad Medvidovic. 2008. ‘Ensuring Architectural
Conformance in Message-Based Systems’. In Workshop on Architecting
Dependable Systems (WADS).

38. Sefika, Mohlalefi, Aamod Sane, and Roy H. Campbell. 1996. ‘Monitoring
Compliance of a Software System with Its High-Level Design Models’. In ,
Proceedings of the 18th International Conference on Software Engineering,
1996, 387–96. doi:10.1109/ICSE.1996.493433.

39. Klocwork. 2014. See your architecture, optimise your code [online] available:
http://www.klocwork.com/products/insight/architect-code-visualization/
[accessed 23/01/2015].

40. Herold, Sebastian. 2011. ‘Architectural Compliance in Component-Based
Systems. Foundations, Specification, and Checking of Architectural Rules’.
Ph.D. thesis, Clausthal University of Technology.

41. de Moor, Oege, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjörn
Ekman, Neil Ongkingco, Damien Sereni, and Julian Tibble. "Keynote
Address:. QL for Source Code Analysis." In SCAM, vol. 7, pp. 3-16. 2007.

42. Passos, Leonarod, Ricardo Terra, Marco Tulio Valente, Renato Diniz, and
Nabor Mendonçanda. 2010. ‘Static Architecture-Conformance Checking: An
Illustrative Overview’. IEEE Software 27 (5): 82–89.
doi:10.1109/MS.2009.117.

43. Duszynski, Slawomir., Jens Knodel, and Mikael Lindvall. 2009. ‘SAVE:
Software Architecture Visualization and Evaluation’. In Software
Maintenance and Reengineering, 2009. CSMR ’09. 13th European Conference
on, 323–24. doi:10.1109/CSMR.2009.52.

44. Sangal, Neeraj, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. ‘Using
Dependency Models to Manage Complex Software Architecture’. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 167–76.
OOPSLA ’05. New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1094811.1094824.

45. Bischofberger, Walter, Jan Kühl, and Silvio Löffler. 2004. ‘Sotograph — A
Pragmatic Approach to Source Code Architecture Conformance Checking’. In
Software Architecture, edited by Flavio Oquendo, Brian Warboys, and Ron
Morrison, 3047:1–9. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg. http://dx.doi.org/10.1007/978-3-540-24769-2_1.

46. Headway Software. 2014. Software architecture and dependency management
tool for java, c, c++, .net and more [online] available:
http://www.headwaysoftware.com/products/?code=Structure101 [accessed
23/01/2015]

47. Rosik, Jacek and Jim Buckley. 2009. ‘Design Requirements for an
Architecture Consistency Tool’. In Proceedings of the 21st Annual Psychology

of Programming Interest Group Conference. Limerick, Ireland.
http://www.thehealthwell.info/search-results/design-requirements-
architecture-consistency-
tool?&content=resource&member=none&catalogue=none&collection=none&
tokens_complete=true.

48. Knodel, Jens, Dirk Muthig, and Dominik Rost. 2008. ‘Constructive
Architecture Compliance Checking - an Experiment on Support by Live
Feedback’. In IEEE International Conference on Software Maintenance, 2008.
ICSM 2008, 287–96. doi:10.1109/ICSM.2008.4658077.

49. Eichberg, Michael, Sven Kloppenburg, Karl Klose, and Mira Mezini. 2008.
‘Defining and Continuous Checking of Structural Program Dependencies’. In
Proceedings of the 30th International Conference on Software Engineering,
391–400. ICSE ’08. New York, NY, USA: ACM.
doi:10.1145/1368088.1368142.

50. Layman, Lucas, Laurie Williams, and Robert St. Amant. 2007. ‘Toward
Reducing Fault Fix Time: Understanding Developer Behavior for the Design
of Automated Fault Detection Tools’. In First International Symposium on
Empirical Software Engineering and Measurement, 2007. ESEM 2007, 176–
85. doi:10.1109/ESEM.2007.11.

51. Koschke, Rainer, and Daniel Simon. 2003. ‘Hierarchical Reflexion Models’.
In Proceedings of the 10th Working Conference on Reverse Engineering, 36 – .
WCRE ’03. Washington, DC, USA: IEEE Computer Society.
http://dl.acm.org/citation.cfm?id=950792.951359

52. Knodel, Jens, Dirk Muthig, Uwe Haury, and Gerald Meier. 2008.
‘Architecture Compliance Checking - Experiences from Successful
Technology Transfer to Industry’. In 12th European Conference on Software
Maintenance and Reengineering, 2008. CSMR 2008, 43–52.
doi:10.1109/CSMR.2008.4493299.

53. Pohl, Klaus, Günter Böckle, and Frank J. van der Linden. 2005. Software
Product Line Engineering: Foundations, Principles and Techniques. Secaucus,
NJ, USA: Springer New York, Inc.

54. Kitchenham, Barbara, Lesley Pickard, and Shari Lawrence Pfleeger. 1995.
‘Case Studies for Method and Tool Evaluation’. IEEE Software 12 (4): 52–62.
doi:10.1109/52.391832.

55. Runeson, Per, and Martin Höst. 2009. ‘Guidelines for Conducting and
Reporting Case Study Research in Software Engineering’. Empirical Software
Engineering 14 (2): 131–64. doi:10.1007/s10664-008-9102-8.

56. Ericsson, K. Anders, and Herbert A. Simon. 1993. Protocol Analysis - Rev’d
Edition: Verbal Reports as Data. Revised edition. Cambridge, Mass: A
Bradford Book.

57. Corbin, Juliet M., and Anselm Strauss. 1990. ‘Grounded Theory Research:
Procedures, Canons, and Evaluative Criteria’. Qualitative Sociology 13 (1): 3–
21. doi:10.1007/BF00988593.

58. Pruijt, Leo, and Sjaak Brinkkemper. 2014. ‘A Metamodel for the Support of
Semantically Rich Modular Architectures in the Context of Static Architecture
Compliance Checking’. In Proceedings of the WICSA 2014 Companion
Volume, 8:1–8:8. WICSA ’14 Companion. New York, NY, USA: ACM.
doi:10.1145/2578128.2578233.

59. Wilde, Norman, and Michael C. Scully. 1995. ‘Software Reconnaissance:
Mapping Program Features to Code’. Journal of Software Maintenance 7 (1):
49–62. doi:10.1002/smr.4360070105.

60. Wilde, Norman, Michelle Buckellew, Henry Page, Vaclav Rajlich, and
LaTreva Pounds. 2003. ‘A Comparison of Methods for Locating Features in
Legacy Software’. J. Syst. Softw. 65 (2): 105–14. doi:10.1016/S0164-
1212(02)00052-3.

61. Reflexion Model Eclipse Plugin. 2013. SourceForge.net. [online], available:
http://sourceforge.net/projects/jrmtool/ [accessed 23/01/2015].

62. Dit, Bogdan, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
‘Feature Location in Source Code: A Taxonomy and Survey’. Journal of
Software: Evolution and Process 25 (1): 53–95. doi:10.1002/smr.567.

63. Christl, Andreas, Rainer. Koschke, and Margaret-Anne Storey. 2005.
‘Equipping the Reflexion Method with Automated Clustering’. In 12th
Working Conference on Reverse Engineering, 89–98.
doi:10.1109/WCRE.2005.17.

64. Frenzel, Pierre., Rainer Koschke, Andreas P.J. Breu, and Karsten Angstmann.
2007. ‘Extending the Reflexion Method for Consolidating Software Variants
into Product Lines’. In 14th Working Conference on Reverse Engineering,
2007. WCRE 2007, 160–69. doi:10.1109/WCRE.2007.28.

65. Gibbons, Alan. 1985. Algorithmic Graph Theory. Cambridge University Press.
66. hello2morrow. 2014. hello2morrow-Sonargraph [online] available:

http://www.hello2morrow.com/products/sonargraph [accessed 23/01/2015]
67. Blackwell, Alan F., Carol Britton, Anna Louise Cox, Thomas R. G. Green,

Corin A. Gurr, Gada F. Kadoda, Maria Kutar, et al. 2001. ‘Cognitive
Dimensions of Notations: Design Tools for Cognitive Technology’. In
Proceedings of the 4th International Conference on Cognitive Technology:
Instruments of Mind, 325–41. CT ’01. London, UK: Springer.
http://dl.acm.org/citation.cfm?id=647492.727492.

68. Robillard, Martin P., and Gail C. Murphy. 2003. ‘FEAT: A Tool for Locating,
Describing, and Analyzing Concerns in Source Code’. In Proceedings of the
25th International Conference on Software Engineering, 822–23. ICSE ’03.
Washington, DC, USA: IEEE Computer Society.
http://dl.acm.org/citation.cfm?id=776816.776969.

69. Kastner, C., A Dreiling, and K. Ostermann. 2014. ‘Variability Mining:
Consistent Semi-Automatic Detection of Product-Line Features’. IEEE
Transactions on Software Engineering 40 (1): 67–82.
doi:10.1109/TSE.2013.45.

70. Burke, Joseph. 2012. ‘Web Architecture Dependencies & Web Architecture
Recovery Techniques’. Master’s Thesis, University of Limerick.

71. Hassan, Ahmed E., and Richard C. Holt. 2002. ‘Architecture recovery of web
applications’. In Proceedings of the 24th International Conference on
Software Engineering (ICSE '02). ACM, New York, NY, USA, 349-359.
DOI=10.1145/581339.581383 http://doi.acm.org/10.1145/581339.581383

72. Parnas D.L.. 1994. ‘Software Aging’. Proceedings of the 16th International
Conference on Software Engineering: 279-287

73. Romano Daniele and Martin Pinzger. 2011. 'Using Source Code Metrics to
Predict Change-Prone Java Interfaces'. Proceedings of the 27th IEEE
Conference on Software Maintenance. pp 303-312.

74. Cheesman, John and John Daniels. 2000. UML Components: A Simple Process
for Specifying Component-Based Systems. Addison-Wesley.

75. Dubochet, Gilles, Chris Exton, and Jim Buckley. 2009. 'Computer Code as a
Medium for Human Communication: Are Programming Languages
Improving?' In Proceedings of the 21st Working Conference on the
Psychology of Programmers Interest Group, 174-187.

76. Rosik, Jacek. 2015. ‘A Continuous Approach for Software Architecture

Consistency’. Ph.D. Thesis, University of Limerick.
77. Mitchell, Mark L. and Janina M. Jolley. 2004. Research Design Explained.

Fifth edition, Thomson-Wadsworth.
78. Yin, Robert K. 2003. Case Study Research: Design and Methods, 3rd edition,

Sage Publications, Thousand Oaks, CA.
79. Shuttleworth, Martyn. 2009. Types of Validity-An Overview [online] available:

https://explorable.com/types-of-validity [accessed 23/01/2015].
80. Greenwood Davydd J. (Ed.). 1999. Action Research: From Practice to Writing

in an International Action Research Development Program John Benjamins
Publishing ISBN: 9027217785.

81. Noland, E. William. 1959. Hawthorne Revisited. By Henry A. Landsberger.
Ithaca, New York. Social Forces 37(4): 361-364.

