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Abstract 
Context 
Reflexion Modelling is considered one of the more successful approaches to 
architecture reconciliation. Empirical studies strongly suggest that professional 
developers involved in real-life industrial projects find the information provided by 
variants of this approach useful and insightful, but the degree to which it resolves 
architecture conformance issues is still unclear.  
 
Objective 
This paper aims to assess the level of architecture conformance achieved by 
professional architects using Reflexion Modelling, and to determine how the approach 
could be extended to improve its suitability for this task.  
 
Method 
An in-vivo, multi-case-study protocol was adopted across five software systems, from 
four different financial services organizations. Think-aloud, video-tape and interview 
data from professional architects involved in Reflexion Modelling sessions were 
analysed qualitatively. 
 
Results 
This study showed that (at least) four months after the Reflexion Modelling sessions 
less than 50% of the architectural violations identified were removed. The majority of 
participants who did remove violations favoured changes to the architectural model 
rather than to the code. Participants seemed to work off two specific architectural 
templates, and interactively explored their architectural model to focus in on the 
causes of violations, and to assess the ramifications of potential code changes. They 
expressed a desire for dependency analysis beyond static-source-code analysis and 
scalable visualizations. 
 
Conclusion 
The findings support several interesting usage-in-practice traits, previously hinted at 
in the literature. These include 1) the iterative analysis of systems through Reflexion 
models, as a precursor to possible code change or as a focusing mechanism to identify 
the location of architecture conformance issues, 2) the extension of the approach with 
respect to dependency analysis of software systems and architectural modelling 
templates, 3) improved visualization support and 4) the insight that identification of 
architectural violations in itself does not lead to their removal in the majority of 
instances. 
 
Keywords: Reflexion Modelling, Software Architecture, Architecture Consistency, 
Architecture Conformance. 
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1 Introduction 
Software Architecture aims to ensure prioritized non-functional requirements like 
maintainability and modularity are satisfied through appropriate macro-structuring of 
software systems [1]. However, often systems grow without an explicitly defined 
architecture, or have drifted over time from their originally designed architecture [2-3]. 
In such cases, it is unlikely that the desired non-functional requirements have been 
delivered. 
 
Early work towards addressing this issue focussed on architecture recovery: deriving 
the software’s architecture from the source code of the existing system, typically from 
the source code dependencies of these systems [4-5]. However, even though software 
architects were often allowed to confirm or refute the suggestions of such analyses, 
they did not drive the process, thus limiting their ability to impose their desired 
architecture on the system [6]. In addition, these approaches often suffered from the 
‘garbage-in, garbage-out’ phenomenon [7], whereby any architecture derived from 
analysis of a system without an initial architecture (defined or adhered to) is likely to 
be flawed. 
 
More recently approaches to retro-fit the intended architecture (as originally or 
retrospectively defined) onto systems, have been developed to address these issues. 
This work is referred to in the literature as architecture reconciliation [7] architecture 
conformance [3] or compliance checking [9]. Several techniques have been proposed 
in this area, ranging from allowing architects probe the architecture of specific points 
in the system [10-11] by defining textual rules, to more system-encompassing 
specifications like Reflexion Modelling (RM). In Reflexion Modelling [12], for 
example, the architect is initially prompted to explicitly state their ideal (as-intended) 
architecture for the system, as a simple vertices-and-edges diagram in which vertices 
represent architectural modules and edges represent the expected/allowed 
dependencies between these modules. The architect is then asked to map elements of 
the source code to the vertices in this as-intended architecture.  
 
The approach parses the system to identify dependencies between the source code 
elements mapped to different vertices in the as-intended architecture, thus allowing 
corroboration or contradiction of the relationships proposed by the architect with 
respect to the as-implemented system. It is anticipated that the architect would then 
update the system to more fully align it with the as-intended architecture. Such an 
approach allows the architect drive the process from their architectural perspective, 
and focuses them on the parts of the system where specific architectural violations 
arise in the implemented system with respect to this perspective [13-14]. 
 
Several implementations of RM variants have been empirically evaluated through 
case studies [15-18], largely achieving positive feedback from industrial practitioners. 
Specifically, software architects have shown great enthusiasm for the information 
which it provides [13, 19] and have even proactively sought such analysis again [20]. 
However, most of these studies focus on the ability of RM to identify inconsistencies 
[21-22] but do not concentrate on how the capabilities and insights provided by RM 
approaches are utilized by software practitioners and if the violations are subsequently 
removed.  
 



This research assesses how the capabilities and insights provided by Real-Time 
Reflexion Modelling (RT-RM) approaches are utilized by practitioners. Here RT-RM 
[18] refers to a variant of RM where new architectural violations are presented to the 
architect, as new mappings are made between architectural modules and source code 
elements.  
 
The research assesses how RT-RM is leveraged, determines if RT-RM results in the 
removal of architectural violations and also identifies the ways in which the 
participants would like to see RT-RM adapted/evolved in the future. It addresses these 
questions through a usage-analysis of a Just-In-Time Tool for Architecture 
Consistency (JITTAC) [34], which embodies a RT-RM approach. The empirical 
analysis is performed over five in-vivo case studies in four different commercial 
organizations.  
 
This paper is a substantial extension of the work presented by several of the authors in 
[18]. That paper reported on the first three case studies, providing a characterization 
of the modelling practices of the participants involved, their mapping (source code to 
RM vertices) preferences, and a characterization of the violations identified. In 
comparison this paper: 
 

 Incorporates a larger data set, including two more case-studies, and 
retrospective interviews with the participants from all five case studies. This 
provided us with a larger, more representative data-set on which to base our 
findings and with the ability to explicitly assess the outcome of the RT-RM 
intervention longitudinally; 

 
 Provides an expanded analysis of the data-set, resulting in several new 

findings. Specifically, while it does re-assess the modelling, mapping and 
architectural violations issues expounded upon in [18], with respect to the 
enlarged data set, it also includes findings on iterative analysis of systems 
through Reflexion models, findings on the outcome of RM in terms of the 
systems’ architectural violations and an extended set of requirements for RM 
going forward. 

 
 Presents an extended review of the related literature in this area (Section 2) 

which discusses the alternative approaches adopted and empirical work carried 
out in this and closely related areas. 

 
The paper is structured as follows. Section 2 discusses the current state of the art with 
respect to various architecture conformance approaches. Section 3 focuses on one 
particularly successful approach: RM, discussing the approach, its empirical 
evaluations to date and how RT-RM builds on the approach. Section 4 describes the 
five case studies that make up the empirical component of this paper. Sections 5 and 6 
present and discuss the findings across these case studies, with section 7 examining 
the threats to validity. Finally, section 8 concludes the paper. 
 
 
2 State of the Art 
When a software system’s implementation diverges from its designed architecture, it 
is referred to as architectural drift or architectural erosion [8, 2]. This usually 



happens during software evolution, when the software undergoes changes as a result 
of bug fixes and updates, but may also happen during initial implementation of the 
system [23]. Architectural drift may result in the goals associated with the system’s 
as-intended architecture being lost [20-21], often with serious consequences [3, 24-
25]. 
  
Architecture conformance aims to address architectural drift. It has been defined as a 
process of ensuring continued conformance of a subject system’s implementation to 
its architectural design documentation and goals [26]. Here, design documentation is 
defined as any artefact created during the system’s design (sometimes, even after the 
code is written) that documents the system’s architecture. There have been many 
approaches suggested to increase architectural conformance, and these can be 
classified into several schools [8]. This section, reviews several of these approaches. 
 
Tvedt Tesoriero et al. [16] divide architectural evaluation work into two main areas: 
pre-implementation architecture evaluation and implementation-oriented architecture 
conformance. In their classification, pre-implementation architectural evaluation 
involves the analysis of a proposed architecture to check whether it will fulfil the 
optimum number of the system’s desired requirements. These approaches are used by 
architects during initial design and provisioning stages, before the actual 
implementation starts. 
 
In contrast implementation-oriented architecture conformance approaches assess 
whether the implemented architecture of the system matches the intended architecture 
of the system [16, 22, 26]. Specifically, whereas architectural evaluation assesses the 
quality of the proposed architectural design, architectural conformance assesses 
whether the implemented architecture is consistent with the proposed architecture’s 
specification, the goals of the proposed architecture, or both. Implementation-oriented 
conformance approaches can be split into two categories [27]: 
  

 Conformance by Construction: These approaches strive to achieve 
conformance through automated or semi-automated generation of artefacts, 
composing the system from the architectural descriptions. Several, 
established approaches implementing conformance by construction exist 
already. For example, approaches such as: generative programming [28], 
round-trip engineering [29], and model driven development [30-31] are 
being used in commercial software development. However, it is more 
difficult to apply these approaches retrospectively on existing systems: 
while model transformations have the ability to map from the 
implementation back to architectural models, these transformations are 
predefined and usually reflect well defined patterns between the platform 
independent models and the platform specific ones. This somewhat 
constrains the mapping between the existing system and the architects’ 
intended architecture as usually the mappings between the code and the 
models in existing systems do not follow strict patterns. In addition, when 
applied in the forward direction, these approaches only generate partial 
implementations of the system. Hence assessment of conformance still 
needs to be checked as the implementation is completed [32]. 
 



 Conformance by Extraction: These approaches analyse artefacts, or 
partial artefacts, of the implementation process itself (for example, source 
code dependencies) and/or artefacts that are available after the system’s 
implementation (for example dynamic traces). A comparison of these 
artefacts with the system’s as-intended architecture is then performed 
through textually-specified or graphically-specified rules and mappings. 
These comparisons facilitate software engineers’ identification of potential 
discrepancies and violations. Most of the conformance-by-extraction 
approaches currently reported on have been applied retrospectively to 
software systems after deployment. 

 
Conformance by extraction techniques can be further split into three categories, based 
on the analysis they employ [33]:  
 

 Static Architecture Conformance is based on static techniques that 
analyse different assets produced by the implementation process, such as 
source code and data structures. Static analysis may be performed without 
a fully running system and thus allows conformance testing over a wider 
span of software lifecycle phases. Most of the techniques presented in the 
literature are static architecture conformance techniques [14-17, 21, 33-34] 

 
 Dynamic Architecture Conformance uses run-time analysis techniques on 

an executing system. Thus, an instance of a running (and probably almost 
fully implemented) system is required. For example, de Silva and 
Balasubramaniam describe a non-intrusive approach to architecture 
conformance checking at runtime [35]. In another example [36], execution 
traces of a running system have been extracted as coloured petri nets 
which were investigated for architectural violations. The work of Popescu 
and Medvidovic [37] focuses on message-based systems and integrates 
recorders into components of such systems that are used to evaluate 
consistency between actual occurring events and prescribed events. 

 
 Combined Static and Dynamic Architecture Conformance is based on 

applying both type of analysis, usually in sequence. An example is the 
Pattern Lint work done by Sefika et al. [38] where static analysis, followed 
by dynamic analysis was used. This complimentary dynamic analysis was 
used to detect the prevalence of violations, as identified through static 
analysis, in the executing system. 

 
These architecture conformance approaches can also be categorized by the level of 
support they offer to the architect: The first can be loosely referred to as visualization 
tools that allow the architect to view information about the structure of the system, but 
not as an explicit architectural model. For example, Klocwork [39] provides various 
forms of dependency analysis, quality metrics and visualisation support that provide 
useful guidance for architecture conformance. 
 
The second category allows the architect to declare their desired architectural model, 
either graphically [15] and/or through the definition of individual rules [33, 40-41]. 
Semmle, for example, uses a Source Code Query Language (SCQL) called .QL which, 
while expressive in defining constraints, is limited in its architecture-visualizing 



ability and thus its ability to guide reasoning about overall software architecture 
abstractions [42]. In contrast, graphical modelling approaches (like RM) allow the 
architect to create a vertices-and-edges diagram of the intended architecture and, to 
visualize the implemented system in the context of that intended architecture, 
although typically with less expressive constraints.  
 
Passos et al. [42] presented an overview of three approaches: a rule-based approach 
[10], an RM type approach [43], and an approach that allowed architects to visualize 
the system as a hierarchical dependency matrix of source code elements [44] with 
architectural rules embedded. They recommended RM for organizations interested in 
systematically incorporating architecture conformance checking into their software 
development process, due to a well-defined architecture conformance process, centred 
on holistic high-level models as defined by architects. Indeed, several commercial 
tools have now been developed that incorporate similar functionality [45-46] and it is 
this type of approach that is the focus of this research. As such the next section will 
describe RM in greater detail.  
 
 
3 Reflexion Modelling 
The traditional RM process as explicitly outlined by [13] was adapted by Rosik et al 
[20] to facilitate the application of RM during system implementation, as well as 
system evolution:  
 

1. Before implementation of the system commences, the designer creates a 
hypothesised architectural model: the as-intended architecture. 

 
2. During the implementation phase, developers and/or architects, frequently 

update a set of mappings which assign newly implemented source code 
entities to the entities in the as-intended architecture.  

 
3. At any point during implementation or subsequent maintenance, a dependency 

graph of the system’s sources can be extracted by parsing the system, creating 
a source model (referred to as the “as-implemented architecture” from this 
point on). 

 
4. The relationships defined by the engineer in the as-intended architecture are 

compared with those extracted from the as-implemented architecture. Results 
of that comparison are presented to the developer through the Reflexion model 
periodically. The following relationships are represented in this model: 

 
 A solid edge represents a relationship present in both, the as-intended 

architecture and the as-implemented architecture (convergence). 
 

 A dashed edge represents a relationship present in the as-implemented 
architecture, but not present in the as-intended architecture (divergence). 

 
 A dotted edge represents a relationship present in the as-intended 

architecture but not present in the as-implemented architecture (absence).  
 



5. By analysing the Reflexion model, engineers can become aware of 
architectural drift issues. Of most interest are the divergences where there are 
dependencies in the source code unexpected by the original architects. 
Absences may also be of interest but alternatively, they may just reflect places 
where the software is incomplete (when the technique is applied before the 
implementation is finished). In addressing divergences, architects may choose 
to take one of the following actions (derived from [21]): 

 
 The inconsistency may be corrected by updating the code base (changing 

the as-implemented architecture); 
 

 Mappings between the source code and the as-intended architecture may 
be updated, for example: reassigning an implemented entity to a different 
as-intended entity; 

 
 The implementation may be considered acceptable and the as-intended 

architecture may be updated accordingly. 
  
Steps 2, 3, 4 and 5 are continuously repeated over time, towards prompting increased 
system conformance to the as-intended architecture.  
 
To further increase conformance, several groups [47-49] have proposed more timely 
violation detection in RM. For example, developers could be made aware of the 
violations they introduce with respect to the as-intended architecture as they code, via 
margin alerts at compile time and code assist [34]. We refer to these notifications as 
Just-In-Time (JIT), in that they notify the developer immediately after introduction, 
before the violation gets embedded/accepted in the code-base. This approach is in 
accordance with the findings of Layman et al [50], who suggest that the longer an 
issue persists in the code-base, the harder it is to fix. 
 
Similarly, architects could get real-time notifications as they reconcile the architecture 
(RT-RM). That is, they can immediately be made aware of violations that arise based 
on new mappings they make between their as-intended architecture and the source 
code. These real-time alerts do not address violation embedding/acceptance, but 
instead are aimed at allowing the architect to explore the mapping more interactively 
during initial architectural reconciliation. It is this variation of RM that is the focus of 
this paper. 
 
3.1 JITTAC: A RT-RM Tool 
A screenshot of the JITTAC tool, which was used in the case-studies reported on here, 
is presented in Figure 1. JITTAC stands for a “Just-In-Time Tool for Architecture 
Conformance” [34] and, as the name suggests, has JIT and real-time notification 
facilities. Only the real-time notification facilities were employed in these case studies. 
 
As shown in Figure 1, JITTAC allows the architect to define an architectural model of 
the system (1) where components and their connections, can be dragged and dropped 
from a palette (2). Additionally, drag and drop facilities can be used to create 
mappings from the existing source code elements in the package explorer (4) to the 
components in this architectural model and a summary of these mappings is available 
in an outline view (5). Many source code elements can be mapped into one 



architectural component and the architectural models and mappings can be defined 
incrementally and iteratively. In addition, source code elements can be dragged 
directly onto a blank space in the canvas to create a new component.   
 

 
Figure 1: JITTAC 

 
As mappings are defined between the source code and the architectural model in these 
ways, the results of the RM analysis are presented in real-time. JITTAC conforms to 
the RM process, as declared above, using dotted edges to represent relationships 
defined in the as-intended architecture, but not present in the implementation 
(absences), dashed edges to represent relationships present in the as-implemented 
architecture but absent in the as-intended architecture (divergences) and solid edges 
representing those relationships that are present in both (convergences). Typically, the 
architect will focus on the dotted and dashed edges in their efforts to address 
architectural drift. 
 
The tool allows for further analysis of divergent edges. Specifically when the edge is 
clicked upon, the tool lists the source code relationships underpinning the edge (see 
the Architectural Relations view (3) for the code relationships underpinning the edge 
between “Figure” and “Common” in Figure 1). JITTAC then allows the architect to 
click on the Source in the Architectural Relations view, to navigate to the associated 
source code, which has an alert posted in its margin. If that code is changed to address 
the inconsistency, this change gets reflected back, removing the margin alert and 
updating the architectural model instantaneously: the divergent edge becomes a 
convergent one. 
 
3.2 Empirical Assessment of RM Approaches 
Many empirical studies have been carried out assessing the original (non real-time) 
RM. In one of the first case-studies reported, Murphy et al. compared the layered 
(intended) architecture of a program restructuring tool with the actual implementation 
(implemented architecture) [15]. In another case-study presented in the same paper, 
RM was applied to the kernel of an experimental operating system developed at the 
University of Washington. Both of these case studies were on prototypes developed 



by students/researchers in the group and the system-creators retrospectively changed 
their systems to address the architectural violations. 
 
Another RM approach was used by Tran et al. [21], with the goal of retrospectively 
repairing the architecture of two open source systems: the Linux Kernel and an editor 
called Vi iMproved (VIM). Their goal was to remove all anomalies excepting those 
that were either too risky or 'not worthwhile'. However in the first instance, they did 
not provide feedback to the original development team and, even though they did 
present their findings to the original author of the VIM editor, no comment is made on 
whether the author addressed the identified violations or not. 
 
An RM process in a series of works [9, 16, 22, 26] was used to perform a series of 
evaluations on a software system being re-implemented, called the Experience 
Management System. In these studies the as-implemented view was shown to be 
useful in demonstrating to management that the project needed restructuring. 
However, their approach was manual and the desired architecture could not be 
achieved. Instead, they were able to document violations that would normally have 
been overlooked. An improved version of their technique has been used in another 
case-study of a Simulation and Analysis Tool [16]. However, as in the original study 
in this area [15], the violations identified in these evaluations were again addressed by 
members of the research team, who were also the authors of the system under study.  
 
Knodel et al. [17, 33] built and used an RM based tool called SAVE (Software 
Architecture Visualisation and Evaluation Tool) for the purpose of architecture 
evaluation. The tool extended RM with hierarchical modelling capabilities as 
proposed by Koschke and Simon [51]. It was used to analyse software systems’ 
architectures in a number of evaluation scenarios: academic, open source or 
commercial software systems of varying sizes, ranging from 10 to 600 KLOC [17]. 
Again, no reference was made to the system's subsequent evolution. Similarly, 
Knodel and Popescu evaluated a proposed extension to RM where the subsequent 
architecture conformance actions performed after these techniques were applied was 
not mentioned [33].  
 
Kolb et al. [19] and Knodel et al. [52] also report on experiences using SAVE with an 
industrial partner. In this instance, conformance checking was adopted by the 
company involved as a standard instrument for ensuring higher quality products at the 
organisation. Identified violations, in already deployed systems, were fed back to the 
development team and a formal process adopted whereby these inconsistencies were 
removed. The results presented show a promising trend: a decrease in the number of 
inconsistencies over the product's life time. It should be noted however that, due to 
the product line [53] nature of the products involved, there was probably an agenda of 
heightened Architecture Conformance in the development teams. 
 
In contrast, a more recent, longitudinal case-study in IBM, [20] showed that periodic 
(four-five monthly) identification of architectural violations, over two years, using 
RM did not serve to lessen architectural drift in a less formal (non-SPL) development 
context: During the study no violations were removed from the system based on the 
insights provided by the RM approach. The authors proposed Real-Time RM to 
address this by alerting developers as they introduced violations into the system and 
thus pre-empting retrospective remedial action. 



 
Empirical evaluations of real-time architectural violation feedback are scarcer. 
Eichberg et al. [49] concentrated on the performance of the (real-time) algorithm 
employed. Knodel et al. [48] evaluated it on M.Sc. students and Mattsson [11] 
evaluated a Model Driven Development approach to the problem. An evaluation of 
the approach’s performance tells us little about its effectiveness as an Architectural 
Conformance technique. A student-based study has lesser ecological validity and the 
Model Driven Development approach employed by Mattsson [11] can only be 
employed during initial system development, as it is currently formulated. 
 
 
4 Empirical Study 
The empirical study reported on here is a multi-case study of RT-RM. These are in-
vivo case studies involving commercial organizations and their commercial software 
products. The study is motivated by the lack of empirical studies assessing how RM is 
used and leveraged in practice, particularly with respect to architectural violation 
removal.  
 
4.1 Motivation and Research Questions 
Of the studies reviewed in section 3.2, none characterize participants’ usage of RM. 
Hence, there is limited guidance as to how the modelling and mapping facilities 
available to participants are used during RM (an exception being [18]). This is 
surprising given the popularity of such tools in practice, and the lack of reported 
results of this kind leaves open the possibility that current approaches to architectural 
reconciliation may be sub-optimal for their users.  
 
This paper attempts to address this issue by observing architects employing the RT-
RM technique during architectural reconciliation, highlighting the different modelling 
approaches and mapping approaches used by these architects. The goal is to identify 
potential improvements and thus to hone the approach going forward. Hence, the first 
research question posed is: 
 

RQ1: What system perspectives are of particular interest to architects in Real-Time 
Reflexion Modelling during architecture reconciliation? 

 
The architects may be interested in perspectives of the system that emphasise its 
structural or functional aspects, or even its cross-cutting concerns. Likewise, they may 
be interested in specific subsets of the system or the whole system. If the latter, then 
are scalability-handling measures are required? Without empirical evidence on the 
perspectives of interest to the architects, these questions remain open and this paper 
sets out to address this gap.  
 
The second research question is: 

 
RQ2: What facilities of RT-RM are of interest to architects during architecture 

reconciliation? 
 

Given the lack of empirical evaluations concerning how RT-RM is performed, it is 
possible that the real-time feedback provides no additional utility. Alternatively, given 
real-time feedback, architects may find it useful to explore their models interactively 



to identify violations, or to model potential changes to the source code through 
Reflexion model manipulations (and the associated immediate feedback that RT-RM 
offers). Thus, this second research question probes the potential added-value of real-
time information in RT-RM.  
 
The evidence presented in previous research (see section 3.2), regarding violation 
removal as a result of violation identification through RM is mixed. In many cases, 
data on the removal of violations is simply not presented, or they have indicated that 
violations are removed by research team or not removed. No studies have looked at 
violation removal as a result of applying RT-RM, even though this adaptation has 
been proposed as potentially elevating violation removal. Therefore, our third 
research question is: 
 

RQ3: Does real-time architectural violation identification prompt the removal of 
violations in commercial practice, during architectural reconciliation and, if so, 

where is the locale of change? 
 

Here, ‘locale’ refers to the source code, the as-intended architecture or the mapping 
generated by the architect. Given that the probable answer to this research question is 
that some violations are removed and others are not, this paper also assesses the 
factors that influence the removal of these violations in the organizations. Hence the 
paper poses its final research question: 
 

RQ4: What are the factors that influence the removal of violations during RT-RM 
architectural reconciliation, in commercial software systems? 

 
 

4.2 Empirical Design 
An in-vivo, multi-case-study protocol [54-55] was adopted across four financial 
services organizations. These organizations have a large Irish-based presence, with 
large software portfolios and all were interested in heightening their systems' quality 
through architecture conformance checking.  
 
The companies were responsible for selecting the participants and the target systems 
for these case-studies, within the constraints that the systems had to be developed in 
Java (to facilitate our tool support), that they should be over 25KLOC (to heighten the 
reality of architecture conformity as a concern) and that the participants were 
experienced developers, familiar with the architecture of the systems. We requested 
that the participant ideally be the software architect responsible for the system. Three 
of the companies selected one system for analysis and one company selected two 
systems for analysis, resulting in five separate case studies. 
 
4.2.1 Systems 
Table one provides some characteristics of the software systems chosen by the 
companies, in size order. The first three systems are an order of magnitude greater in 
size than the other two, as evidenced by all the size indicators presented. As would be 
expected, the number of developers also reflects this size gradient, although it should 
be noted that the number of developers refers to the participants’ estimate of all the 
developers who have contributed to the code-base over the lifetime of the software, 
and so is inexact. Note also that the three systems presented first are much older than 



the others, suggesting that there might be a greater number of architectural violations 
in these systems. Systems labelled 4a and 4b came from the same Financial Services 
company.  
 
Case System Domain Size No. of 

Developers 
Age 
(years) KLOC Java Files Packages 

1 Claims Mgt 2,223 7,300 1,105 >30 >10 
2 Banking  1,800 6,289 956 ~18 8 
3 Underwriting 1,200 3,347 486 >20 >10 
4b Marketing  75 239 124 11 2 
4a Banking 38 173 25 6 1.25 

Table 1: The Software Systems Used in the Case Studies 
 
4.2.2 Participants 
Table 2 characterizes the participants involved in the study, in terms of their 
experience and current role. All the participants were experienced Software Engineers 
and four of the five were the architects responsible for the systems under study during 
these sessions. In the fifth case (4a) there was no explicit architect for that product as 
agile development was practised in that team. Instead, all the team had architectural 
responsibilities for that system and this participant was selected by the Team-Lead for 
participation, based on his architectural knowledge of the system.  
 
The distinction between "Product Architect" and "Chief Architect" is that the first and 
third participants were the Chief Architects for all software products that the Irish-
based subsidiaries were responsible for whereas the second and fifth (4b) participants 
were responsible for the specific software system under study. Participant 4b also had 
a larger corporate-wide role in a team that defined the umbrella architecture of the 
company's software portfolio. 
 

Case Years S.E. 
Experience 

Current Role Years 
Experience as 
Architect 

1 22 Chief Architect 12 
2 8 Product 

Architect 
3 

3 12 Chief Architect 8 
4a 5 Senior 

Developer 
0 

4b 16 Product 
Architect 

2 

Table 2: The Participants 
 
4.2.3 Study Protocol 
A 20 minute demo of the RT-RM tool was given to each of the participants. The 
objective of the demo was to show the architecture reconciliation capabilities of the 
tool and to demonstrate how to use it. Interested readers can view a similar, but 
briefer demonstration of the tool at http://www.lero.ie/project/rca/arc. All of the 
functionality used by the participants in their sessions, is as per the RT-RM approach 
description in section 3.1. 
 



After the demo, the participants installed the tool as a plugin to their Eclipse IDE, and 
chose the system that they wished to study. The participants stated their original 
architectural model of the system or, more typically, part of the system. Four of them 
(1, 2, 3, 4a) used the tool to do this but participant 4b used a paper-based model he 
had created in advance of the session. He then replicated his model in the tooling. The 
authors acted as observers of the sessions and aided in any technical support that was 
required for the tool. Each architecture reconciliation session lasted more than an hour. 
In the case of case study one it lasted one hour and forty-four minutes, but all other 
sessions lasted less than 90 minutes. Each session included a number of iterations, 
where the participants focused on increasing the depth or scope of their architectural 
models. That is, each iteration consisted of adding new components and/or mappings 
and probing arising violations. On average 4.2 iterations were employed per case 
study. The participants were interviewed several months after their session, to reflect 
on their experiences and to determine the actions they had taken as a result of their 
sessions. 
 
4.2.4 Data Collection 
The participants first answered questions to characterize their systems and their own 
professional experience. Then they started to use the tool for architecture 
reconciliation and their session was videotaped. The participants’ screens and remarks 
were captured, providing valuable data on the process of creating their architectural 
models, and mappings, the inconsistencies identified, and the participants’ 
observations on their tool usage. Think aloud data was gathered in line with the three 
best-practice guidelines suggested by Ericsson and Simon [56]: the researcher should 
ask participants to report verbally everything that comes into their mind, as it comes 
into their mind and prompt them when they fall silent. Their utterances often fell into 
the category of them explaining the architecture and architectural violations to the 
observer. At the end of the session, the participants were asked open questions about 
the value of the results obtained, and the tool’s usability. Screenshots of the 
architectural models that participants evaluated and a tool-produced file of the 
mappings defined by the participant were also captured.  
 
Several months after the original session (ranging from four-to-seven months) the 
participants were interviewed to assess the impact that the approach had on their 
systems and to assess the validity of our findings with respect to their session. Thus 
the data-set for analysis consisted of: 
 

 The participants’ questionnaire 
 

 Video recordings of participants’ screens, their tool interactions, and their 
think-aloud. 

 
 Screenshots of their architectural models, and the inconsistencies identified 

during each iteration. 
 

 A tool-produced file containing the mappings, connections and components 
defined by the participant 

 
 Notes taken during the sessions, highlighting any important, observed events. 

 



 Transcripts of the participants' interviews 
 
The gathered material of the sessions amounted to over seven hours of video 
recordings which was transcribed and, together with other material, thoroughly 
analysed and discussed to identify and record important findings regarding their 
modelling and mapping practices. This analysis initially consisted of an open-coding-
like phase, in the spirit of Corbin and Strauss [57], where the analysis was informed 
by knowledge derived from the literature and the earlier case study results. This was 
done independently by two of the authors and subsequent discussions between these 
authors focused on the reliability, veracity and relevance of their independent findings 
for the research questions identified in Section 3.1. The findings were later presented 
back to the participants for verification and the results presented here are the 
outcomes of these researcher discussions/participant verifications. 
 
Additionally, transcripts of participants’ post-session interviews were analysed to see 
what action, if any, participants had undertaken in response to their architecture 
reconciliation sessions. 
 
 
5 Findings 
 
In this section, we discuss our findings and come up with several observations to 
answer the research questions presented in section 4.1. Each subsection, discusses one 
of these research questions. 
 
5.1 What system perspectives are of particular interest to architects in Real-Time 
Reflexion Modelling during architecture reconciliation? (RQ1) 
 
5.1.1 Architectural Style Perspectives 
The participants in case studies 1-3 (henceforth called Participants 1, 2 and 3 
respectively) used the approach to check the functional partitioning of their systems: 
specifically to assess if communication between these partitions was exclusively 
through defined interfaces. Each of the partitions was thus modelled in the intended 
architecture as an interface vertex which (should) provide the only access to their 
associated implementation vertex. Figure 2 shows one such model generated by 
Participant 2 on his fifth iteration. In this diagram the 'API' vertices represent 
interfaces and the 'SPI' vertices represent implementations - a naming convention in 
the company in question. Note that the violations in this diagram are where SPI 
vertices make direct calls on another SPI vertex.  
 
In contrast, the architectural model used by Participant 4a and 4b was an N-layered 
architectural style. This can be seen in the model created by Participant 4b in his third 
iteration, as shown in Figure 3. Here there are four layers with the first and second 
layer broken down into two sub vertices. Note that in this model, the edge that spans 
more than one level in the layered architecture, is perceived as a violation, as would 
be expected in this layered style.  
 
These behaviours suggest an observation (O1): architectural templates should be 
made available for architectural reconciliation sessions supporting different clichéd 
decompositions. Specifically, given the unprompted architectural styles adopted by 



the participants in these studies, an N-layered template and an interface-based 
template should be provided. In the former template exclusive access to different tiers 
could be assumed to be through adjacent tiers only, thus allowing default detection of 
convergent and divergent edges in the model. In the interface template exclusive 
access to implementations through interfaces could be presumed and again this, in 
conjunction with source code analysis, could be used to automatically detect 
violations. 
 

 
Figure 2: An Interface-based model from Case Study 2 

 
This latter template suggests a specialist interface type vertex and interface-type edge: 
an extension of the port-type Component Access Rules proposed by Knodel and 
Popescu [33] for RM. This vertex/port could be responsible for checking that any 
element calling a method of the interface’s implementation is doing so through the 
interface. Source code analysis could also reveal code that is located within the 
implementation vertex but that has interface-type properties and could prompt for its 
relocation. Interface vertices could also be useful in COTS (Components Of-The-
Shelf) situations where the static analysis underpinning the tool does not have access 
to the source code of the component’s implementation but may have access to its API, 
or may be able to deduce calls on components’ APIs based on naming conventions. 
This would extend modelling beyond the source code of the in-house system itself 
(see section 5.1.3).  
 
Both interface vertices and interface-edges could be distinguished in such models, as 
suggested by Prujit and Brinkkemper [58], to illustrate their interface-nature, and thus 
facilitate communication of the architecture with the wider development team. 
 
5.1.2 A Feature Oriented Perspective 
Interestingly three of the five participants expressed a desire to model their system 
based on features, where their definition of features differed from participant to 



participant, but generally reflected some user-functionality of the system, in line with 
the definition in Wilde and Scully [59]. This was most apparent in case study 2 where, 
after his study, the participant stated: 
 
"It would be really neat if each node reflected some sort of user goal. It would be difficult to 

map (code to user goals), but it’d be great. Then we could see all the relations between 
features…" 

 

 
Figure 3: Reflexion Model from Case Study 4b 

 
This sentiment was also echoed by Participant 1 in passing and Participant 3. This 
latter participant stated: 
 

"We did some work a while ago modelling part of our system in terms of user functions and 
this (RT-RM) could be used with that. Of course it's changed now (the modelling they did) 
and we'd need to do some work to get it back…, but it wouldn't be too out of date… It (RT-

RM) would be really nice for that" 
 
These quotations suggest a desire for a complimentary view in RM whereby the 
vertices are used to represent features and the edges, dependencies between features. 
This is plausible because some RM tooling allows several concurrent models of the 
software system to be preserved at once [34] and a feature-based model could be one 
of these. Admittedly mapping code to feature-based vertices would be difficult, based 
on their delocalization in the code-base [60] the finely-grained nature of this 
delocalization and the difficulty in locating features in code, in general. These 
observations suggest that (O2) the current mapping facilities (drag-and-drop from 
the package explorer, as in JITTAC or regular-expression descriptions, as in the 
jRMTool [61] ) may need to be enhanced to help achieve this mapping and that (O3) 
the envisaged tooling might benefit from providing support for feature location 
[62]. 



 
5.1.3 A System-wide Perspective 
Another modelling issue that was noted in three sessions was the participants’ desire 
to model beyond the static code-base. They wished to determine the code-base's 
relationship to dynamically configured elements (Javascript for example) and to 
include 3rd party components. For example, participants 1 and 4b were particularly 
interested in identifying calls to a 3rd-party component and capturing events that the 
system listened to, from that component. Participant 4b, referring to a Business 
Process Manager component of interest said: 
 

“the web service layer would have had some logic that would have created a 
workflow instance… using calls into a JPBM API… not code we own. The JPBM then 

triggers events into this workflow package and there’s a relationship from here to 
here and back to workflow that I know exists… and I’m struggling to see how the 

approach is going to capture that” 
 
It would be possible (indeed easy) to capture the calls to an external component via an 
interface-type vertex in the Reflexion model, if lexical conventions were adhered to in 
invocations of that particular interface. In contrast, identifying the events that the 
system listens to through, for example, a Spring framework is a much more difficult 
proposition, as is capturing any dynamically configured relationships through a layer 
of indirection. However, the expressed desire of three of the five participants was that, 
given the composition of today's software systems, (O4) architectural reconciliation 
should be scoped beyond static source-code analysis.  
 
5.1.4 Hierarchical or Partition-based Perspectives 
Over the architecture-reconciliation iterations, the participants generally moved to 
more encompassing architectural models or deeper architectural models, where 
elements of their earlier models were probed in more detail. The latter approach can 
be seen in Participant 4a and Participant 4b's sessions where they started off with one 
Reflexion model node per layer in their architectural model and then proceeded to 
divide the layers into individual components, as shown in Figure 3. Alternatively, the 
participants who adhered to a more interface-oriented model initially took a small set 
of interface-based partitions and expanded that set over their iterations. In all three 
cases, the models grew to a point where they were somewhat difficult to read, as 
illustrated by Figure 4, which is Participant 2's final model from the session. It should 
be noted that this ‘final’ model still left the majority of the system in a ‘Rest-of-
System’ node at the bottom right hand corner. This suggests that the approach should 
(O5) explicitly deal with scalability issues.   
 
JITTAC has the ability to grey out user-specified vertices and their incident edges, as 
illustrated in Figure 5 (from Participant 1,  during Iteration 3), and this is particularly 
useful when the system contains utility vertices that are widely invoked. Alternatively 
JITTAC can grey out all nodes not adjacent to a selected node, allowing the architect 
to focus in on one part of the system. These improvements were noted by several of 
the participants: 
 

“Ah, that’s nice” (referring to the hiding facility) 
 

"Better clean this mess up a bit. How do I em... grey 'em again?" 



 
But all participants suggested that additional improvements be made to address the 
scalability issue. The 'increasing depth' approach suggests that a hierarchical 
modelling capability would be useful and this was explicitly requested by one of the 
participants (4b). Indeed, this suggestion also compliments the observation in section 
5.2.1 that participants often wanted to "dig into" specific nodes at more detail, to find 
the source of the violations. 
 

 
Figure 4: An illustration of the Scalability issues faced by participants 

 
 



 
Figure 5: Greying-out, as provided by JITTAC 

 
The participants’ 'increasing scope' approach suggests that there could be multiple 
simultaneous models at the same level of granularity, each containing a sub-set of 
the partitions and their relationships. Here navigation between these models could 
be based on the architect's selection of a particular partition and a drop down selection 
of the other models within which that partition appears. This implies a possible pre-
session analysis where sets of partitions are composed based on cluster analysis [63], 
clone analysis [64] or connectivity analysis (for example, sub-sets could be formed, 
based on articulation vertices [65] when the entire partition set is modelled as a 
dependency graph). The current JITTAC implementation allows for simultaneous 
models of the system but for no such sub-set analysis.  
 
5.2 What facilities of RT-RM are of interest to architects during architecture 
reconciliation? (RQ2) 
 
5.2.1 Interactive Analysis of the Abstract Model 
In all of the participants' sessions they manipulated the abstract architectural model to 
obtain real-time feedback about the system. From the think-aloud data it became 
apparent that there were two rationales underpinning this behaviour and these are 
listed in Table 3. The first was that the participants used the model to focus in on 
particular violations at more detailed levels of granularity. To illustrate, consider this 
segment of Participant 1's think-aloud when considering a violating edge between two 
nodes that modelled two packages: 
 

"That’s probably class <X>. I'm nearly sure. Let me just... (grabs class <X> from the 
package explorer and drops it on the canvas making a new node in the architectural model)... 

aah yes…, that accounts for well over half of them (the violations)" 
 
This type of analysis was apparent in four of the five sessions and happened seven 
times in total over these four sessions. It was always based on a strong hypothesis as 
to the source code element causing the violations, and these hypotheses were right in 



six of the seven episodes. Consequently, it can be considered a more optimal 
alternative than scanning through the “Architectural Relations" listing provided by the 
tool to identify prevalent offenders, where a prevalent offender can be defined as a 
source code entity that is frequently a start-point or end-point of the dependencies 
underpinning a violating edge.  
 
This behaviour hints at an incongruity between the participants' needs and the 
“Architecture Relations” view, suggesting that (O6) approaches like these should 
provide architects with ranked lists of source code sources and targets 
underpinning each violating dependency in the Reflexion model, at different levels 
of granularity, where this ranking reflects their prevalence of occurrence. 
 
The second rationale for iterative analysis was to evaluate potential code changes 
before making them. To illustrate this, consider participant 3 when he found an 
interface in an implementation module: 
 

"Interface in wrong package... OK, let’s look at what would change if we moved it (drags a 
class from the package explorer to an existing interface vertex)... its fixed it..”.” …Oh really 

cool.... that's really cool" 
 
Later, at the end of the session, when prompted about his feelings about the approach 
the participant said: 
 

"modelling the changes before you commit to them, that's really clever" 
 
A similar quote was given by participant 2 who also trialled a proposed change at the 
modelling level. In that case, he backed out of the change because the modelling 
exercise showed him that the proposed change would introduce a circular 
dependency: 
 

"aha.. a circular dependency: that’s why (the class was placed in what he thought was an 
inappropriate location)" 

 
Overall, three participants demonstrated this behaviour, a total of six times during 
their sessions, all actively commenting on its utility during the course of their session. 
This suggests that one of the core benefits of the real-time approach is the ability to 
model code changes in advance of actual change. Both this and the rationale of 
focusing in on violations argue strongly for (O7) the ability to quickly and easily alter 
the model and mappings at various levels of granularity and to provide real-time 
feedback on the effects of these alterations as part of any RM type approach. This is 
an advantage/usage we did not originally consider when proposing RT-RM.  
 

Case 
Study 

Rationale 
Focus on Violation Evaluating Code change 

1 3 1 
2 2 2 
3 1 2 
4a 1 0 
4b 0 1 

Table 3: Rationale for Iterative Analysis of the Reflexion Model 



 
 
5.2.2 De-Novo Mapping 
The tooling in this study allowed participants to create a mapping between the source 
code and their model in two ways: 
 

1. They could build their models in advance and only then map the source code 
elements to those models to see if the edges were as they hypothesized. We 
called this approach Retrospective Mapping. 

 
2. They could drag elements from the package explorer and drop them on the 

canvas directly to make Reflexion model vertices and see the resultant edges 
appear. In this instance they did not explicitly commit themselves to expected 
edges, and we called this behaviour De-Novo Mapping. 

 
The researchers were not prescriptive in the approach to be adopted by participants. 
Participant 4a and 4b used the Retrospective approach. Only on one occasion did 4a 
drag and drop a source code element directly into the architecture as a new 
component. He said: “I am doing this because I do not know how this element 
works”. All the other participants used a mixed approach but predominantly relied on 
the De-Novo approach as their sessions progressed. For example, Participant 1 
preferred to drag and drop the elements of the source code into the model as 
components directly:  
 
“(After dragging a package onto the canvas) This works reasonably well to the way... it just 

makes it convenient and it makes things quicker”. 
 
While these three participants did use the Retrospective approach, their adoption of it 
was short-lived and seemed to be based on our presenting both options to them in the 
initial demonstration. This is best illustrated by a quotation from Participant 2:  
 

“(Tries the Retrospective approach) OK, why would I do that?…”. 
 
This is interesting because Retrospective Mapping aligns with the classical RM 
approach. But three of the five participants preferred to use De-Novo mapping. This 
suggests that (O8) an advantage of RT-RM is that, often participants prefer to build 
their models directly from the source code, with real-time feedback, without 
explicitly stating a model in advance. This type of behaviour was also seen when 
participants wanted to focus in on the cause of violations as discussed in section 5.2.1.  
 
5.2.3 Drag-and-Drop versus Lexical Mapping 
Participant 4a and 4b came from the same company and their systems adhered to a 
company-wide standard (layered) architecture. Regardless, the mappings required by 
these participants differed hugely. This can be seen by the fact that Participant 4b 
used eight mappings during his session and Participant 4a used 56. In Participant 4b’s 
system, the packages in the package explorer directly related to each tier (some utility 
nodes were the exception). In Participant 4a’s system, each package contained 
elements from each tier, leading to a much greater mapping effort for the participant 
when using the tool's drag-and-drop facility. The result was that Participant 4a 



typically had 1-1 mappings between source code elements (packages) and 
components, while Participant 4b had, on average, 1:5.6 mappings between them.  
 
In the interview after his session Participant 4a expressed the desire for a lexical 
mapping facility in the tool, as per the original Reflexion Modelling tool developed by 
Murphy et al.: the jRMTool [61]. This was because his team’s conventions demanded 
that the individual elements in each package had lexical signals as to their tier 
placement but that they were not placed in packages based on that layering. 
Interestingly, this issue also arose, to a degree for Participant 1 and Participant 2. In 
both systems several of the interfaces were placed within one 'interface-collection' 
package. While the participants were happy to drag these interfaces out individually, 
it would have been helpful if interface nodes could have been formed, based on the 
lexical matching evident between the implementation package and their associated 
interface within this ‘interface-collection’ package. However the vast majority of their 
mappings were suited to drag-and-drop operations, as were all of Participant 3’s. 
These findings suggest that (O9) architects should be offered a drag-and-drop 
mapping facility and a lexical mapping facility. 
 
This raises interesting questions about the potential for confusion if both facilities 
were to be offered in conjunction with each other. For example: when the drag-and-
drop mapping facility conflicts with the lexical mapping facility, which one should 
take precedence? Additionally, will architects forget which of the two mapping 
facilities they used for certain parts of the source, or which one has precedence in the 
case of overlaps? 
 
Indeed, even with just the drag-and-drop mapping facility available, Participants 1, 2 
and 4b mentioned difficulties in keeping track of the unmapped parts of the codebase. 
While the code mapped to each vertex was made explicit in the outline view, no 
perspective illustrating the unmapped source code was available in JITTAC and this 
proved to be a problem. This difficulty would likely be exacerbated by the availability 
of more than one mapping-based strategy and so should be addressed. Hence (O10) 
architects should be made aware of the source code that remains unmapped for 
each architectural model they create. 
 
With respect to the precedence of drag-and-drop or lexical mapping, participant 4a 
mentioned that “(while) lexical analysis would come in handy... many files would not 
fall under a lexical definition (convention)” This is entirely plausible: situations 
where conventions demand more than one naming approach, or simple programmer 
inexperience may lead to lower naming consistency in a software system that remains 
unnoticed for long periods of time. In addition, drag-and-drop was appropriate for the 
vast majority of mappings in three of the five case studies. This suggests that if both 
modes of mapping were to be made available at the same time, drag-and-drop 
should have default primacy, but the architect should be able to change this default. 
 
5.3 Does real-time architectural violation identification prompt the removal of 
violations in commercial practice, during architectural reconciliation and, if so, 
where is the locale of change? (RQ3) 
  
Table 4 presents the results of an analysis of the architectural violations identified by 
the participants in the study over several iterations of the RM process. As described 



earlier we consider an iteration as a distinct phase in the sessions where participants 
define or augment their as-intended architectural model of the system, make mappings 
between that model and the source code, and possibly, subsequently analyse or 
manipulate that model to explore and assess any violations. So for example, 
participant 2 created seven models, each an expansion of the previous model in that 
additional parts of the system were included each time. Each time the expanded model 
required additional mappings to the source code. For four of the seven models he 
assessed and explored the violations he had identified. The three other expansions 
highlighted no new violations. 
 
 

Case Violations Identified 
Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 

1 1(10) 0 1(33) 2 (26)1    
2 1 (10) 0 1 (3) 0 1 (10) 0 3 (1156) 
3 0 1(26) 1 (86)     
4a 0 1 (2) 3 (31)     
4b 1 (43) 1 (90) 1 (16) 1 (5)    

Table 4: Violations Identified per Iteration 
 
The number in parenthesis in each cell in Table 4 represents the number of source 
code dependencies underpinning the violations identified. The number before the 
parentheses represents the number of violations, as measured by actual edges between 
vertices in the Reflexion model. For example the Reflexion model from iteration five 
of Participant 2’s session is presented in Figure 2. In this model we see the 10 source 
code dependencies on one edge that were introduced in iteration five and the three 
source code dependencies that were introduced in iteration three on another edge. The 
10 violations introduced in iteration one are not visible in the figure as they reflected a 
mistake in the mapping from source code to vertices in the Reflexion model and the 
participant changed the mapping before iteration two to remove them. Mapping 
changes like this are signalled by highlighting in Table 4. 
 
It should be noted that, even with the large number of violations identified in Table 4, 
the level of violation removal was quite low. At the time of the post-session interview, 
several months after the empirical session, several violations had been addressed but 
no architect had removed more than 50% of the violations identified and two of the 
architects had removed none. In addition, the architects had no plans to address the 
remaining violations in the future. 
 
5.3.1 Locale of Change 
Table 5 documents the changes that programmers made to the system to address the 
violations they identified. As shown in Table 4 and in Table 5, three of the 
participants changed mappings during their session. These reflected genuine mapping 
mistakes, where the name of classes and packages suggested to them that they 

                                                 
1 As shown in Figure 4 this participant created a ‘Rest-of-System’ vertex, connecting it to his existing 
model, during this iteration. The reason that the number reported in this cell does not tally with the 
violations that can be seen in Figure 4 is that the participant subsequently inspected these dependencies 
(after the session) and, in our retrospective interview, stated that the violating edge incident on the 
‘Rest-of-System’ vertex with 1151 dependencies was not, in fact, a violation.  



belonged to Reflexion model vertices other than those that they actually belonged to. 
To illustrate, consider Participant 4a’s utterance: 
 

“Oh so… I haven’t got to mapping this into the correct location yet!”  
 
As shown in Table 5, in two instances (Participant 2 and 4) these redefined mappings 
served to address a ‘violation’, but in the other it had no effect. 
 

Case  
Study 

Resultant Change Focus 
Code Architectural Model Mapping 

1  Add  
2  Add, Trial Yes 
3 Yes NoDen  
4a   Yes 
4b    

Table 5: Change Focus 
 
Interestingly all bar two of the participants chose to change the architectural model, 
after discussing the issue with other members of their development teams. For 
example, Participant 1, after discussing the issue some time later with his team stated: 
 
"I talked to the team.... They said no way. We've got to bypass them (interfaces) or else we'd 

hammer it (the system's performance)" 
 
The architect agreed and changes were made to the architectural model of the system, 
rather than the system itself. This is an example of the case 'Add' where developer 
insight led the architect to change the as-intended architectural model to achieve 
additional architectural goals. This was also evident in case study 2, again for 
performance reasons. 
 
There was also a related situation ('NoDen') where a participant agreed to change the 
model, not because the implemented architecture (as embodied by the source code 
dependencies) improved adherence to architectural goals but because it did not 
denigrate adherence to the currently stated architectural goals and because the 
violating dependencies were widespread in the code. Thus they would take some 
effort to remove. This is illustrated by a quote from Participant 3: 
 
"If we go down to separately versioned components (only) then the API becomes God... vitally 
important. (Otherwise its) difficult to get specific resources for this. It’s perceived in terms of 
finding time, which is a tough argument to make to management. It's funny (because) it adds 

to the maintenance overhead, so I'm very keen on (refactoring the code)" 
 
Finally, as discussed in section 5.2.1, there was another situation where the architect 
trialled the proposed changes at the RM level (‘Trial’) and it showed him a knock-on 
effect (a circular dependency) that he considered outweighed the potential benefits of 
aligning the code with the architecture. Hence, he reversed his change at the RM 
level, resulting in only a temporary change at the architectural model level. 
 
So it seems that (O11) RT-RM, while prompting some removal of violations, is not 
sufficient to prompt removal of all, or the majority of, the violations identified when 



applied retrospectively on a system that has drifted for some time. In situations 
where the architects do move to address architectural violations, they are more 
likely to change the architectural description than the source code. 
 
 
5.4 What are the factors that influence the removal of violations during RT-RM 
architectural reconciliation, in commercial software systems? (RQ4) 
 
The findings from this study indicate that there are several factors that influence the 
removal of violations and several factors which then influence the site at which the 
removal is performed. As discussed above, the site at which removals are performed 
can depend on architectural agendas (in this case ‘performance’) which are currently 
deemed more important than the architectural agendas espoused in the as-intended 
architecture, Alternatively, they can depend on the effort associated with changing the 
source code (when the violation does not denigrate the architecture). 
  
In terms of whether a violation is removed in the first place, the participants cited 
several considerations. They cited the non-availability of resources to undertake the 
required re-structuring of the code-base, the lower priority associated with 
restructuring than enhancing the current systems’ functionalities and the embedded-
ness of the identified violations. This last rationale suggests that, if architectural 
reconciliation can be achieved in a JIT fashion, then the violations might be identified 
before they would become embedded, as it would warn programmers as they 
introduce the violations, not retrospectively.  
 
With respect to the violations that were addressed, only one participant changed the 
source code. This participant (3) was an architect who had extensively coded on the 
project, identified a violation that ‘particularly offends’ him and identified the change 
required: re-directing a localized set of calls to an existing interface. He stated that 
there were no gains to be made by by-passing the interface in this situation, and thus, 
that coupling should be decreased.  
 
 
6 Discussion 
Many of the observations reported above (O1, O5, O6, O9 and O10) highlight 
potential future directions for RM. For example, the architectural templates 
suggestion (O1), and the inclusion of drag-and-drop and lexical mapping (O9) serve 
to enrich the modelling and consistency goals of these approaches. While we are 
aware of no academic work on desirable strategies for mapping code entities to 
architectural vertices in the Reflexion model, we are aware of commercial tool-sets 
that allow both (for example Structure101 [46]). 
The suggestion that there should be an interface template, echos the findings of 
Knodel and Popescu [33] who suggested that ports should be associated with 
architectural vertices in Reflexion models, constraining the allowable dependencies 
on those vertices to defined interfaces. More generally, Pruijt and Brinkkemper [58] 
argue for richer architectural modelling of systems, which could also include layering 
constructs.  
 
O5, O6 and O10 suggest enriching the visualization interface presented to the 
architect. Under these suggestions, architects would be able to scale the approach to 



large architectural models, identify classes that cause a significant amount of 
violations, and identify code that was as yet unmapped. Koschke and Simon [51] have 
implemented hierarchical RM, as have a number of the commercial providers (for 
example [66]) towards the scalability issue. Unmapped code was highlighted by a 
view in the original RM tool (the jRMTool). But a review of the literature in the area 
suggests that the proposal to rank classes in order of significance, in terms of the 
violations they prompt, is novel. 
 
With respect to O7: real-time feedback when (easily) manipulating the model and 
mappings, Buckley et al. performed two in-vivo case studies with a RM approach on a 
commercial Learning Management System (LMS) in IBM (Buckley et al. 2008). The 
second of these case studies implied the need for such a facility. There, the participant 
used the technique to remove the GUI layer of the LMS, so that the rest of the system 
could be integrated into another IBM system (Workspace Collaborative Learning). As 
in the studies here, the participant worked exclusively at the modelling level before 
proceeding to make the necessary code changes (in that case without real-time 
feedback). He cited the detail of code change, and subsequent compiler errors, as the 
reason for approaching the task at the RM level. 
 
This behaviour can be contextualized in terms of the cognitive dimensions proposed 
by Blackwell et al [67]. Specifically, code is a ‘viscous’ representation to change due 
to its inherent level of detail and because programmers often face situations where 
code change prompts ripple effects they have not foreseen. Working at the abstract 
level provided by RM provides a less viscous representation that facilitates the 
cognitive dimension of ‘provisionality’: the ability to check out certain implications 
of change, before actually performing or reversing that change.  
 
Of the more surprising requests from participants (O2, O3) one was for feature-
oriented RM where individual features would form the individual vertices of a 
Reflexion model and this model would act as a dependency analysis vehicle for 
architects. Such an environment would be in the spirit of FEAT [68] where the level 
of visualization would be increased from Feature contents, as in FEAT, to feature 
contents and inter-feature dependencies. The participants’ comments hinted at the 
requirement for a Feature Location Technique as part of this environment and an 
iterative process for this is envisaged, in line with the process proposed by Kastner et 
al. [69]. In this process users would seed the tool with elements of the source code 
they associate with the feature and the tool would iteratively apply Feature Location 
Techniques to that seed set. The results would then be fed back to the user via a 
Reflexion model, as suggestions that can be accepted or rejected by the architect, for 
further applications of Feature Location techniques.  
 
O4 suggests that the inability of traditional RM to go beyond source code 
dependencies is an issue for the architects. This has been noted in general in the 
literature [70] and has been the subject of some preliminary investigation [71].  
 
One of the core advantages of RM proposed in the literature was the architects pre-
commitment to an expected architectural model [13-14]: When the system was parsed 
and shown to differ from that architectural expectation the architect’s subsequent 
surprise created an element of “cognitive conflict” between expectation and reality, 
driving further investigation [14]. 



  
Instead, the behaviour observed here (O8) suggests that architects would prefer to 
create their model directly from the source code, retrospectively analysing the 
relationships that appeared rather than pre-committing to a set of expected 
relationships. Regardless, in most of the cases observed architects did seem to bring 
expectations to their iterations: specifically that communication should happen 
through interfaces, and between adjacent layers only. They also brought expectations 
as to the location of the dependencies underpinning the identified violations. So, it 
seems more likely that the architects just found the explicit statement of these 
expectations/their model un-necessary and dragging-and-dropping from the package 
explorer less clunky. This is evidenced by quotations like those presented in section 
5.2.2. 
 
In terms of O11, which refers to the likelihood of identified violations being removed, 
the study reflects other studies in the area, in that the findings were mixed. While 
Knodel et al. [52] and Kolb et al. [19] report that violations were addressed in their 
case study, Rosik et al [20] found that they were not. Other studies have reported that 
only academic researchers removed identified violations [15, 21]. In this study, some 
were removed but the majority remained. It seems that factors such as programmer 
availability, the embedded-ness of the violations and organizational priorities make 
the removal of violations company-specific. These findings suggest that future 
empirical studies in this area might usefully consider JIT violation notification, varied 
commercial contexts and be longitudinal in nature, to assess the subsequent outcomes 
of violation identification.  
 
Also in relation to O11, when violations were removed, the majority of them were 
done at the model level, not at the code. Similarly, Buckley et al. [14] reported that 
when the as-implemented architecture of the system under study was shown to the 
system architect, he noted that the as-implemented architecture was inconsistent with 
how he viewed the system, but that it was correct and valid, in that it did not 
compromise any of the system’s architectural goals. Given the extent to which the as-
implemented architecture was embedded in the system, he adopted a ‘NoDen’ type 
behaviour and stated that he was going to change his own (internal) architectural 
model of the system. A similar behaviour was observed in a longitudinal architectural 
conformance study in IBM [20]. There, the architectural model was changed to 
accommodate a legacy component and to obfuscate several ‘trivial’ violations. 
However, in that instance, the hidden violations grew over time, resulting in bigger 
violations. These complimentary findings suggest that architects are more likely to 
approach consistency through modification of the as-intended model rather than the 
code-base, largely for pragmatic reasons, but also for the reason that insights from 
developers working on a system are seen as a legitimate input to the definition of a 
system’s architecture [1, 35].  
 
The findings with respect to the architectural templates desired (O1) and the locale of 
change subsequent to violation identification (O11), provide an interesting 
commentary on the architectural agendas at play during these software systems’ 
development. Specifically, the systems seem to have been built with modularity and 
maintainability as a primary architectural concern. Defining APIs to packages and 
programming to those APIs (as per the as-intended architectures of four of these 
systems), divides the systems into more manageable, information-hiding [72] 



partitions. The APIs expose only limited details of these partitions to the rest of the 
system, a well-accepted approach to reducing complexity and easing maintainability 
[73]. Likewise programming to these APIs and programming to a layered 
architectural style (as in 2 of the case studies) facilitates replace-ability [74] as can be 
prompted, for example, by the evolution of new services, or new database and 
presentation layer technologies. 
 
System performance is another apparent architectural requirement for some of the 
systems studied. Specifically, in two cases the development team highlighted their 
system-performance concerns to the architect, objecting to the programming-to-
interfaces style the architect proposed. This illustrates a distributed cognition model of 
software across the team [75], highlighting the conflicting agendas of performance 
and maintainability in these instances. Tellingly, in both cases, the architect ultimately 
deferred to the development team and accepted the violations as necessary, suggesting 
that the performance requirement out-ranked the maintainability requirement at that 
point in time. This also suggests that the relative importance of performance over 
maintainability, as a non-functional requirement, may grow over time in line with 
customer concerns, as systems become larger and processing becomes more involved.  
 
Finally, given the financial nature of all these systems, it is interesting to note that 
performance and modularity were the only two architectural requirements that arose 
during the case studies. It could be expected that issues such as security and 
traceability would also be major concerns in the development of such systems. The 
most likely reason for their non-emergence during this analysis is scoping: the 
technique applied only focused on the (java) source code dependencies in the systems 
whereas these other non-functional requirements were handled within the systems’ 
frameworks.  
 
Whatever the rationale underpinning the locale of change, these findings imply that 
the labels ‘Architecture Conformance’ [42, 52] or ‘Compliance Checking’ [9, 40] 
when applied to this field, are misnomers. They convey the impression that the code 
should conform to the as-intended architecture. Better labels would be ‘Architecture 
Consistency’ [77] or ‘Architecture Reconciliation’ [35], where the implication is that 
consistency between the architecture and the source code is the goal, regardless of the 
appropriate site-of-change. 
 
 
7 Threats to Validity and Reliability  
Validity refers to the extent to which empirical results are meaningful [77]. A related 
concern is reliability, which refers to consistency in data gathering and data analysis 
[77]. This section assesses the validity and reliability issues that can arise in (multi-
)case studies [78] and the steps that were taken to mitigate against these concerns in 
this instance. With respect to validity, it discusses these issues under the validity-
categorization schema of Shuttleworth [79]: 
 
Construct validity is the degree to which the measurements taken relate to the 
phenomena under-study. Here the phenomena were the participants’ usage of RT-RM 
(the perspectives and facilities they used/desired) and their removal of architectural 
violations (in terms of the extent of removal, locale of removal and rationale for 



removal/persistence). The measurements were the videoed protocol of the participants, 
their think-aloud data and their retrospective interviews. 
 
The observation-type measurements we employed could report directly on many of 
the phenomena under study (for example the ‘architectural-style perspectives’ and the 
‘interactive analysis’ usage). However, other phenomena could not be assessed so 
directly (for example ‘factors that influenced violation removal’, and the desire for a 
‘Feature Oriented’ perspective). Analysis of think-aloud data and retrospective 
interviews were employed to report on these phenomena, and such analysis is open to 
individual interpretation and subjectivity, thus threatening the construct validity of the 
study. The researchers counteracted this possibility through discussion meetings 
where each researcher who analysed the data independently presented their results to 
another researcher who adopted and argued a counter position (colloquially known as 
a “devil’s advocate” role [79]). In addition, we employed a participatory verification 
step, where the five participants reviewed our findings on their sessions for 
misinterpretations and inconsistencies. 
 
Internal validity is the extent to which independent variables (and only independent 
variables) affect the dependent variables in controlled experiments. Even though in-
vivo case studies cannot be equated to controlled studies, the presence of RT-RM, as 
embodied in JITTAC, could be considered an independent variable and the 
participants’ behaviour and desired enhancements could be considered the dependent 
variables in these studies. 
The presence of the research team at the sessions, and in performing the interviews 
afterwards, might be considered “another variable” that impacted on the dependent 
variable [80]. For example, it might have prompted participants to remove more 
violations and to suggest that the RT-RM approach, as embedded in JITTAC, was 
more congruent to their task than it was. Given the low rate of violation removal 
found in the studies, it is unlikely that the team’s presence prompted participants to 
remove more violations than they would have done otherwise. But if it did, the valid 
removal rate would be even lower than reported on here, reinforcing our findings.  
 
Many of the “congruent-to-task” improvements arose naturally in the think-aloud 
protocol, but there is the possibility that more would have been identified if 
participants had been reporting to someone else.  We attempted to mitigate this 
possibility by receiving these improvement-comments positively, with phrases like: 
‘Oh that’s very interesting’. 
 
External validity is the degree to which the conclusions of the study are applicable to 
software development in general. Our study was performed on five commercial 
systems from four different companies where four architects and one experienced 
developer (with some architectural responsibility for the system) performed in-vivo 
architecture reconciliation tasks. The systems had already been deployed and were of 
different sizes and ages. Three of them were extremely large systems and the others 
were of a realistic industrial scale. Hence, the study had high ecological validity, a 
subset of external validity that refers to the degree to which the study is representative 
of reality. 
 
However, all the participants used JITTAC and JITTAC embodies one specific 
variant of RT-RM only. Additionally, as with all in-vivo case studies of this depth, the 



number of data-points is limited and this lessens the external validity of the study in 
general. We would hope that other researchers would add to the evidence in this area 
by performing additional in-vivo case studies with other RT-RM approaches and tools. 
 
As stated above, reliability is concerned with the consistency of result 
gathering/analysis [77]. To improve reliability in data gathering, congruent data was 
collected from multiple sources. These included the video recordings of the sessions, 
participant interviews, participant-uttered observation and the screenshots collected. 
With respect to data analysis, two researchers independently analysed each session 
and had analysis-discussion meetings afterwards. As described above, in these 
meetings they each acted as devil’s advocate to the findings of the other researcher 
when their analyses did not align, serving to make the analysis more transparent 
(explicit), reliable and reasoned across the research team. In addition, each participant 
in the study reviewed the findings associated with their session for accuracy. 
 
Towards reliability going forwards, we documented in detail all the procedures 
(design and protocol) in each session so that the case study could be repeated in the 
future by other researchers. 
 
8 Conclusions 
This study has presented a number of observations from a multi-case study of RT-RM, 
identifying several utilities of the approach and several limitations. Most surprisingly 
it showed that (at least) four months after their sessions all the associated 
development teams had removed less than 50% of the architectural violations 
identified in their RM session and some had removed none. The primary reasons 
given were the effort involved, the organizations’ focus on new business goals and the 
lack of perceived importance of the violations identified in comparison to these new 
business goals.  
 
With regard to the architecture reconciliations that were achieved, the majority of 
practitioners using RM in these case studies favoured changes to the intended 
architecture rather than changes to the code. This reflected the teams' prioritization of 
performance, as embodied in the current implementation, over the longer-term 
maintainability gains implied by the intended architecture. In another case it reflected 
the (large) effort required to address violations that did not denigrate the architecture, 
in the opinion of the architect.  
 
Participants would generally like to have richer modelling facilities in such 
approaches. Specifically, their behaviours implied a need for certain architectural 
templates and the need for interface vertices. They would like modelling facilities to 
cope with larger scale models, and also expressed a need to expand the technique 
further, to model the event driven/dynamic behaviour of systems and to model 
systems in terms of their user functionalities. 
 
There were several usability issues that arose. On the positive side, the approach 
provided for real-time, iterative analysis of the system at the architectural model level, 
which allowed participants interactively assess changes to the code-base before they 
proceeded and allowed them check hypotheses on the specific location of 
architectural inconsistencies. In addition, participants predominantly chose to create 
elements of their architectural model directly from elements in their code base which, 



though inconsistent with the classical RM approach, was preferred by participants as 
less clunky. Such an approach seems intuitively to have less impact in terms of 
cognitive conflict, but the participants still seemed to have strong implicit 
expectations when they adopted this behaviour and so it is likely that cognitive 
conflict still played a motivating/focusing role. 
 
The participants’ behaviour suggested the need for both Drag-and-Drop and lexicon-
based mapping from the source code to the architectural elements in the as-intended 
model. The predominance of Drag-and-Drop in these session, allied with the 
perceived more approximate nature of lexicon-based mapping suggests that Drag-and-
Drop should be the default option, even if both were made available. However, 
participants expressed difficulty in remembering the mapping relationships that they 
had and hadn’t created, a difficulty that could be exacerbated by a second mapping 
facility. 
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