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Abstract
The topology of the gene-regulatory network has been extensively analyzed. Now, given

the large amount of available functional genomic data, it is possible to go beyond this and

systematically study regulatory circuits in terms of logic elements. To this end, we present

Loregic, a computational method integrating gene expression and regulatory network data,

to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-

input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating

a common target. We attempt to find the gate that best matches each triplet’s observed

gene expression pattern across many conditions. We make Loregic available as a general-

purpose tool (github.com/gersteinlab/loregic). We validate it with known yeast transcription-

factor knockout experiments. Next, using human ENCODE ChIP-Seq and TCGA RNA-Seq

data, we are able to demonstrate how Loregic characterizes complex circuits involving both

proximally and distally regulating transcription factors (TFs) and also miRNAs. Furthermore,

we show that MYC, a well-known oncogenic driving TF, can be modeled as acting indepen-

dently from other TFs (e.g., using OR gates) but antagonistically with repressing miRNAs.

Finally, we inter-relate Loregic’s gate logic with other aspects of regulation, such as indirect

binding via protein-protein interactions, feed-forward loop motifs and global

regulatory hierarchy.

Author Summary

Gene expression is controlled by various gene regulatory factors. Those factors work coop-
eratively forming a complex regulatory circuit genome wide. Corruptions of regulatory
cooperativity may lead to abnormal gene expression activity such as cancer. Traditional
experimental methods, however, can only identify small-scale regulatory activity. Thus, to
systematically understand the cooperativity between and among different types of regula-
tory factors, we need the efficient and systematic computational methods. Regulatory
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circuits have been suggested to behave analogously to the electronic circuits in which a
wide variety of electronic elements work coordinately to function correctly. Recently, an
increasing amount of next generation sequencing data provides a great resource to study
regulatory activity. Thus, we developed a general-purpose computational method using
logic-circuit models from electronics and applied it to a human leukemia dataset, identify-
ing the genome-wide cooperativity of transcription factors and microRNAs.

This is a PLOS Computational BiologyMethods paper

Introduction
The rapidly increasing amount of high throughput sequencing data offers novel and diverse re-
sources to probe molecular functions on a genome-wide scale. Integrating and mining these
various large-scale datasets is both a central priority and a great challenge for the field of func-
tional genomics and necessitates the development of specialized computational tools.

Gene expression is a complex process that achieves both spatial and temporal control
through the coordinated action of multiple regulatory factors (RFs) [1–3]. These regulatory
factors affecting gene expression take several forms, such as transcription factors (TFs), which
directly or indirectly bind DNA at promoter and enhancer regions of their target genes, and
non-coding RNAs (e.g. miRNAs) [4,5]. RFs can act as activators or repressors, but ultimately,
the target gene expression is determined by combining the effects of multiple regulatory fac-
tors. As a large amount of genomic data has become available, it is possible to systematically
study the genomic functions of various RFs and see how they interact with each other in order
to regulate target gene expression.

In the past decade, an increasing number of experimental and computational studies have
focused on analyzing links between RFs from various biological characteristics such as protein-
protein interactions, sequence motifs in cis-regulatory modules of TF binding sites,
co-associations of TFs in binding sites, and co-expressions of TF target genes [1,5–8]. However,
to date, large-scale studies have generally been limited to identifying RF “wiring relationships”
(e.g. co-binding, co-association), leaving untouched the cooperative patterns among RFs that
drive the biological functions behind the wiring diagrams (e.g. which RFs are most likely to co-
operate with each other). In this study, we use data derived from ChIP-Seq and RNA-Seq ex-
periments to predict the cooperative patterns between RFs as they co-regulate the expression of
target genes. On a genome-wide scale ChIP-Seq provides regulatory information about wiring
between RFs and targets, while RNA-Seq provides gene expression data; by combining these
two data types we are able to go beyond the regulatory activities of individual RFs and investi-
gate the relationships between higher order RF groups.

Cells achieve tremendous diversity in their gene expression programs, in large part due to
cooperation among RFs, which may individually act as activators or repressors [9]. While the
individual activity of many RFs remains to be characterized, their combined actions determine
the expression pattern of their target gene. Here, we seek to systematically describe RF coopera-
tion using logic models.

At a high level, the gene regulatory network can be regarded as analogous to an electronic
circuit insofar as both gene networks and electronic circuits have inputs and outputs related by
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certain rules. Therefore, we can build on the vast electronics knowledge base to draw useful in-
sights for understanding and probing biological regulation. For example we can apply regulato-
ry combinatorics, a key design principle in electronics, [10] to the study of gene regulation
using logic gate models. A logic gate is a discrete, high-level functional module that describes
the relationship between a system’s Boolean input and output elements. By applying logic func-
tions to study TF interactions in E. coli and S. cerevisiae, Mangan et al.[11] found that the logic
gate is a simple but useful framework for understanding regulatory cooperativity among RFs.
While this model is not able to capture the very complex regulatory patterns that may be char-
acterized by continuous models [12,13], it is computationally efficient, and it is comprehensive
enough to meaningfully describe a large variety of regulatory networks on a genome-wide scale
in multiple organisms. Here, we present a computational method that streamlines the process
of inferring logical cooperative relationships among RFs without requiring any prior informa-
tion regarding their individual activity (as activators or repressors). We successfully apply our
algorithm towards developing a comprehensive map of gene regulation.

In numerous cases, gene regulation can be regarded as a logical process, described by a logic
gate model, where RF expression levels are the input variables and the target gene expression is
the output [3,11,14–22]. For example, DNA sequence motifs have been found to work together
following standard combinatorial logic (AND, OR and NOT) to match gene expression pat-
terns [23]. By contrast, TFs can indirectly control gene expression without binding to regulato-
ry sequence elements but rather connecting with other bound TFs through protein-protein
interactions [2,24]. As such, in order to describe this process we need a more complex logic
pattern. In this respect, we use general logic-circuit models to describe the logic operations for
regulatory modules, consisting of multiple RFs and their common target genes.

The three basic logic operators, AND, OR, and NOT, can be combined in a variety of ways
to describe all possible logical operations [11]. For any two-input-one-output scenario there
are 16 possible logic gates (including all possible logic combinations between positive and nega-
tive regulators) (Materials and Methods). These logic gates represent a useful and systematic
framework for describing complex interactions between RFs and targets. Previous studies took
advantage of binarized regulatory data (provided by perturbation experiments, such as TF
knock-outs) and Boolean models in order to capture the logic processes that describe the inter-
actions of TFs [25]. The simple binary operations in the Boolean model are computationally ef-
ficient for large-scale datasets. However, previous efforts focused only on a small set of TFs and
target genes, missing patterns from genome-wide identification and characterization of logic
operations in gene regulation. In addition, numerous other important regulatory factors, such
as miRNAs and TFs distally bound to target enhancer regions, have been not been covered in
previous regulatory analyses.

By combining the activity of RFs and their respective targets on a genome-wide scale, a big-
ger picture emerges: the gene regulatory network. To better understand this network we ex-
plore the interactions among its various components and features. Mathematically, it can be
modeled as a directed network with a hierarchical structure comprising of top, middle, and
bottom layers [5,26–28]. Previous studies have shown that the middle levels RFs play impor-
tant roles in gene regulation. Another feature of gene regulatory networks is the network motif.
A common motif is the feed-forward loop (FFL), which consists of two RFs acting on a com-
mon target, while one RF regulates the other. FFLs can be classified into eight types based on
the combination of the two RFs acting as activators and/or repressors. Previous studies in yeast
[11] looked at a small set of FFLs and have shown that they interact following logic operations.
Thus, it is interesting to investigate how the logic operations associate with various regulatory
network features.
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In this paper, we present a novel computational method, Loregic, which integrates gene ex-
pression and regulatory data to characterize RFs on a genome-wide scale using logic-circuit
models. Loregic classifies individual regulatory factors into functional modules (i.e., regulatory
triplets) and reveals how these modules act functionally as logic circuits. We apply Loregic to
study regulatory factors (TFs and miRNAs) in the yeast cell cycle and human cancer datasets.
We also illustrate our method’s applicability to predict logical cooperation for two regulatory
features: indirectly bound TFs and FFLs.

Results
Loregic takes as inputs two types of data: a regulatory network (defined by RFs and their target
genes) and a binarized gene expression dataset across multiple samples. The binarized gene ex-
pression data (1-on and 0-off) is simple but useful in representing the network RFs’ activities
on target genes. The inputs can be chosen from different resources to meet the user’s needs. In
this paper, we used BoolNet [29] to obtain binarized gene expressions. Loregic describes each
regulatory module (triplet) using a particular type of logic gate; i.e. the gate that best matches
the binarized expression data for that triplet across all samples. Formally, a triplet is described
as RF1-RF2-T, where RF1 and RF2 are regulators (e.g. TFs) and T is the target. Note, however,
that T itself could be a regulator participating in another triplet. Loregic scores the agreement
between the triplet’s cross-sample expression and the idealized expression pattern of each of
16 possible logic gates using Laplace’s rule of succession (Materials and Methods). A high score
implies a strong cooperation between the activities of the two RFs on the target as described by
the matched logic gate. If such a logic gate is found, we define the triplet as “consistent” with
the respective logic gate (i.e. the triplet is described as “logic-gate-consistent” or “gate-
consistent”). In the case that no best-matching logic gate is found (e.g. all logic gates score low,
or there are tied scores between multiple logic gates), we define the triplet as inconsistent with
all logic gates (i.e., “gate-inconsistent”). This negative result suggests that the two-input-one-
output model cannot appropriately describe the gene regulation, perhaps due to the fact that
more RFs are involved and thus a more complex model should be used (Discussion). In this
paper, we evaluate Loregic’s ability to analyze transcription factors, miRNAs and their target
genes. In detail, our method comprises of six major steps (Fig. 1):

Step A. Input gene regulatory network consisting of regulatory factors and their target genes;

Step B. Identify all RF1-RF2-T triplets where RF1 and RF2 co-regulate the target gene T (note
that T can also be an RF);

Step C. Query binarized gene expression data for each triplet;

Step D. Extract the triplet’s gene expression data;

Step E. Match the triplet’s gene expression against all possible two-input-one-output logic
gates based on the binary values;

Step F. Find the matched logic gate if the triplet is gate-consistent, and calculate the consis-
tency score (Fig. 2);

Finally, Steps C-F are repeated for all triplets in the regulatory network, and all logic-
gate-consistent triplets are identified.

The gate-consistent triplets can be further mapped onto other regulatory features (Discus-
sion). In this paper we describe two applications leveraging the logic-gate-consistent triplet
data: 1) prediction of logic operations for 1) indirectly bound TFs and 2) feed-forward loops.

Loregic: Characterization of the Regulatory Logic
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Fig 1. Loregic workflow. A: Loregic first inputs a gene regulatory network that consists of regulatory factors and their target genes;B: Next, it identifies all
possible RF1-RF2-T triplets where RF1 and RF2 co-regulate the target gene T. Note that T can be also a RF;C: Loregic queries binarized gene expression
data for each triplet, andD: it extracts the triplet’s binarized gene expression data; E: Loregic matches the triplet’s gene expression against all 16 possible
two-input-one-output logic gates based on the binary values, and F: finds the matched logic gate if the triplet is gate-consistent, and calculates the
consistency score. Then, Loregic repeats stepsC-F for all triplets from StepB in the regulatory network and finds all logic-gate-consistent triplets. In StepG,
the gate-consistent triplets can be further mapped onto other regulatory features such as: 1) indirectly bound TFs and 2) feed-forward loops.

doi:10.1371/journal.pcbi.1004132.g001
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Applications
We studied Loregic’s ability to characterize gene regulation in both small and complex biologi-
cal systems. In particular we analyze two datasets: the cell cycle dataset in yeast, a common
model organism, and a well characterized human leukemia dataset.

Yeast (S. Cerevisiae) constitutes a small but well-studied biological system. The large variety
of publicly available gene regulation and expression data makes yeast an ideal model organism
to test and validate our algorithm. As an example, we use Loregic to predict logic cooperations
among TFs. We validate our results using data from genome-wide TF knockout experiments.

By contrast, human cancers are much more complex biological systems and we use them to
illustrate how Loregic can accommodate many different types of regulators (e.g. TFs, miRNAs,
distal regulators) within the same framework. Specifically, we use Loregic to study acute

Fig 2. Procedures for mapping logic gates and calculating consistency scores. In this mock example we have binarized expression values for an RF1-
RF2-T triplet across a dataset of 20 samples; i.e.,m = 20 binary vectors. There are 5 vectors with RF1 = 0 and RF2 = 0, all of which have output of T = 0 (red),
so (RF1 = 0, RF2 = 0, T = 0) is chosen as the most suitable triplet-logic gate match, and its succession probability s1 = (5+1)/(5+2) = 6/7 with n1 = 5 andm1 = 5
by Laplace’s rule of succession. Next, there are 5 vectors with RF1 = 0 and RF2 = 1, four of which have output of T = 0 (green), and one of which has output of
T = 1. We choose (RF1 = 0, RF2 = 1, T = 0) as the most common triplet with its succession probability s2 = (4+1)/(5+2) = 5/7 with n2 = 4 andm2 = 5, because
for the given input the majority of cases have zero as the output value. Similarly, when RF1 = 1 and RF2 = 0, T = 0 is chosen (magenta) because it appears
more than T = 1, and its succession probability s3 = (5+1)/(5+2) = 6/7 with n3 = 5 andm3 = 5. Finally, when RF1 = 1 and RF2 = 1, T = 1 is chosen (orange)
because it appears four times while T = 0 appears only once, and its succession probability s4 = (4+1)/(5+2) = 5/7 with n4 = 5 andm4 = 5. Combining the
outputs chosen for four different input combinations of RF1 and RF2, we obtain the triplet’s truth table, and find that it best matches the AND logic gate. As
such we consider this triplet to be consistent with the AND gate, and calculate its consistency score to beCAND = s1 *s2 *s3 *s4 = 0.37.

doi:10.1371/journal.pcbi.1004132.g002
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myeloid leukemia (AML), a quickly progressing cancer with low five-year survival rates
(<25%), expected to cause over 10,000 deaths in the USA in 2014 [30]. We extracted gene reg-
ulatory network data from the ENCODE leukemia cell line, K562, and gene and miRNA ex-
pression datasets for AML from TCGA.

Yeast TFs are cooperative during cell cycle. We used Loregic to characterize the TF-TF-
target logics during the yeast cell cycle (Materials and Methods) and found 4,126 TF-TF-tar-
get triplets that are gate-consistent (Fig. 3A, S1 Table). There are totally 39,011 TF-TF-target
triplets with 2464 unique targets in yeast cell cycle data. The 4,126 gate-consistent triplets
include 757 unique targets. Among the gate-consistent triplets, we found that “T =
RF1�RF2” (i.e., AND gate), “T = ~RF1�RF2”, and “T = RF1�~RF2” logic gates, have more
triplets matched than all other gates, where ‘~’ and ‘�’ represent the NOT and AND logic op-
erators respectively. It is worth noting that, having randomly assigned TFs as RF1 and RF2,
the “T = ~RF1�RF2” and “T = RF1�~RF2” logic gates are symmetric. The AND gate triplets
indicate that both TFs are required in order to activate the expression of their target gene
(see discussion of other logic gates in S1 Fig). After matching all triplets against logic gates,
we looked at variations in matched logic gates for particular types of triplets (RF1, RF2, X),
that share regulatory factors (RF1 and RF2) but have distinct targets (T = X) (Fig. 3B). As a
result we were able to distinguish three categories for this triplet group: 1) “homogenous”
gate-consistent triplets—matching the same logic gate across all targets (e.g., top table); 2)
“inhomogeneous” gate-consistent triplets—matching different logic gates across all targets
(e.g., middle table); and 3) non-gate-consistent triplets, i.e. triplets inconsistent with all logic
gates across all targets (e.g., bottom table).

Logic operations between TF-TF, miRNA-TF, and distTF-TF across targets in acute my-
eloid leukemia. Next, we characterized TF-TF, miRNA-TF, and distTF-TF logic operations
by integrating ENCODE and TCGA AML datasets using Loregic, where distTF represents a
TF regulating its target through a distal regulatory region such as an enhancer, whereas the
canonical TF regulation is assumed to occur at the proximal promoter (Materials and Meth-
ods, and S2–4 Tables). In total, we identified 50,865 TF1-TF2-target triplets and 821 distTF-
TF-target triplets. By integrating miRNA-targets data (Materials and Methods), we were
able to identify 56,944 miRNA-TF-target triplets, in which RF1 is an miRNA, RF2 is a TF,
and the target is a gene co-regulated by the respective miRNA and TF. Fig. 4 shows the dis-
tributions, by logic gate, of these gate-consistent triplets. For example in Fig. 4A, we found
that the gate-consistent TF-TF-target triplets preferentially match the OR gate (2505 trip-
lets). The gate-consistent triplets from TF-TF-target, miRNA-TF-target, and distTF-TF-tar-
get include 1005 (~55% of 1824 unique targets from 50,865 TF-TF-target triplets), 1672
(~76% of 2210 unique targets from 56,944 miRNA-TF-target triplets), and 66 (~58% of 113
unique targets from 821 distTF-TF-target triplets) unique targets, respectively (Materials
and Methods).

In the 16 logic gates, RF1 and RF2 are not necessarily symmetric. To test the relative balance
of TFs, miRNAs, and distTFs as regulators in RF1-RF2-target triplet, we randomly assigned
TFs as RF1 and RF2, and looked at the variations between potentially symmetrical logic gate
pairs (e.g. T = RF1+~RF2 vs T = ~RF1+RF2 or T = RF1 vs T = RF2) in terms of matched trip-
lets. As expected, we found no significant differences for the TF-TF-target triplet (Fig. 4A).
However the miRNA-TF-target and distTF-TF-target triplets are different (Fig. 4B and 4C),
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suggesting that miRNAs and distTFs (as RF1) interact with TFs (as RF2) following different
regulatory logics. For these scenarios, the “T = RF2” gate matches more triplets than any other
gate, suggesting that in AML the dominant regulators of target expression are the promoter-
binding TFs rather than miRNAs or distTFs.

Validation
We assessed the biological relevance of the insights into gene regulation gained by using logic
circuit models, by comparing our results with experimental observations described in literature
for yeast and human regulatory factors.

Fig 3. Cooperative logics found by Loregic for yeast regulatory triples. A—Loregic gives for each triplet a matched logic gate as shown in the table. The
bar plot shows the distribution of 4126 gate-consistent TF-TF-target triplets across matched logic gates. The symmetric gate pairs are marked using
diamonds on top of bars with identical superscript numbers due to randomly assigning TFs as TF1 or TF2. B—Top: an example RF pair (RF1 is YML113W,
RF2 is YBR083W) with “homogenous” gate-consistent triplets—matching the same, logic gate across all targets; middle: an example RF pair (RF1 is
YKL015W, RF2 is YKL032C) with “inhomogeneous” gate-consistent triplets—matching different logic gates across all targets; and bottom: an example RF
pair (RF1 is YMR037C, RF2 is YOR344C) with non-gate-consistent triplets, i.e. triplets inconsistent with all logic gates across all targets.

doi:10.1371/journal.pcbi.1004132.g003
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Fig 4. Distributions by logic gate of all gate-consistent human regulatory triples in acute myeloid leukemia. A—TF-TF-target triplets. The symmetric
gate pairs are marked using diamonds on top of bars with identical superscript numbers;B—miRNA-TF-target triplets;C—distTF-TF-triplets. The triplets
from B andC have different distributions from A, including notably at symmetric gates because their RF1s are miRNA/distTF. Also, the “T = RF2” gate
matches more triplets than any other gate in B andC.

doi:10.1371/journal.pcbi.1004132.g004
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Deleting TFs that form cooperative logic gates gives rise to significantly higher fold
changes of target gene expression. We used yeast genome-wide TF knockout experiments
to validate the TF logic from gate-consistent triplets. The yeast TF knockout experiments
give information regarding fold changes in gene expression as a result of deleting a single
TF [31,32]. Using these knockout datasets, we found that if a target gene is regulated by two
cooperative TFs in an AND relationship, and thus it is most likely that the presence of both
TFs is required to turn on the target gene (S1 Fig), the deletion of either TF impacts the tar-
get expression. For example, in analyzing 871 AND-gate-consistent triplets, we found that
deleting either of their TFs gave rise to substantial down-regulation of their target genes, i.e.,
the logarithm expression fold changes were significantly less than zero (t-test p-value =
0.068). For the triplets consistent with non-cooperative gates such as “T = RF1” or “T =
RF2” (i.e., only one TF controls the target regulation), we found that the target gene is more
affected (down-regulated) by the removal of the dominant RF (i.e., RF1 for “T = RF1” con-
sistent triplets, RF2 for “T = RF2” consistent triplets) than the removal of the other one
(t-test p-value< 0.0004 for 811 triplets consistent with “T = RF1” or “T = RF2”).

AML-related TFs play a dominant role in regulating target gene expression. Next, we
showed that Loregic can make interpretable gate assignments for a cancer-related TF, MYC,
which has been found to universally amplify target gene expressions in lymphocytes [33].
We identified 2,153 MYC-TF-target triplets (i.e., RF1 is MYC, RF2 is chosen from other TFs
from ENCODE, and T is target), and found that 905 of them are gate-consistent. The two
most enriched logic gates are “T = RF1” (133 triplets, hypergeometric test p-value< 4.3�10-
27) and “T = RF1+RF2 (OR)” (211 triplets, hypergeometric test p-value< 1.1�10-21)
(Fig. 5A). For the 133 triplets consistent with “T = RF1” with RF1 being MYC, our model
predicted that high expression of MYC is necessary and sufficient for high target gene ex-
pression. For the 211 triplets consistent with “T = RF1+RF2” with RF1 being MYC and RF2
being other TFs, our model predicted that high expression of MYC is sufficient but not nec-
essary for high target expression. Both of the most commonly observed scenarios indicate
that high MYC expression is sufficient for high target expression. These results support the
recent findings that MYC plays a universal amplifier role in gene expression.

Finally, we analyzed all the triplets associated with all AML-related TFs, where RF1 is cho-
sen from AML-related TFs, RF2 is chosen from non-AML related TFs, and T is their common
target. The AML-related TFs were TFs whose genes have been observed as mutated in some
AML sample [34]. We found that “T = RF1” and “T = ~RF1” (Fig. 5B) are the most enriched
matched logic gates for these TFs. However, we did not find any enrichment for these two
gates in triplets containing only non-AML TFs. These results suggest that the AML-related TFs
play a dominant role in regulating target expression in this cancer.

Loregic applications for other regulatory features

Classification of logic-gate-consistent triplets with indirectly bound TFs. TFs can regu-
late target genes without binding directly to regulatory regions by instead forming protein-
protein interactions with already bound TFs [2]. We suggest that evaluating the cooperative
logic of TF pairs along with the analysis of promoter motifs can give insights regarding this
type of TF-binding activity. We studied TF promoter motifs in target promoter regions
(1,000 bps in yeast and 5,000 bps in human upstream of the transcription start site) [35–38].
In a number of cases even when the logic gate assessment predicted cooperation between
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the two TFs, we could not find a binding motif for one of these TFs (i.e., a Position Weight
Matrix) in the target gene’s promoter region. This suggests that the motif-missing TF is
only involved with the target gene indirectly—perhaps through a protein-protein interac-
tion (specifically for this assessment, we define a TF binding motif are missing if we couldn’t
find any matches in target promoter sequences for TF motifs with at least 80% Position
Weight Matrix (PWM) similarity using matchPWM(. . ., min.score = “80%”) in [39]. Out of
948 yeast TF-TF-target triplets consistent with “T = RF1�RF2” (AND gate) (Fig. 6), 348
have one TF whose motif is not present in the target’s promoter region. The same holds true
for 364 out of 1,100 for “T = RF1�~RF2” and 377 out of 1,095 for “T = ~RF1�RF2”, a sym-
metric logic gate pair. Similarly, in the human leukemia dataset, we found that from 888
TF-TF-target triplets consistent with AND gates, 71 have one TF whose motif is not present
in the target’s promoter. For example (S2 Fig), the triplet of (RF1 is USF2, RF2 is NFYB, T is
YPEL1) is consistent with the AND gate, and both TFs have motifs in the YPEL1 promoter
region. By contrast, the AND-consistent triplet, (RF1 is USF2, RF2 is NFE2, T is NBPF1)
has a USF2 motif but not an NFE2 motif in NBPF1’s promoter region, which is explained
by reports that USF2 and NFE2 are connected through protein-protein interactions and
that NFE2 regulates NBPF1 through indirect binding [2]. As such, it is possible that those
TFs with absent motifs (as above) can potentially regulate their targets by cooperating with
directly bound TFs through protein-protein interactions, a phenomenon that has been

Fig 5. Distributions by logic gate of gate-consistent human regulatory triples associated with AML-related TFs. The bar color represents-log10(hyper-
geometric enrichment p-value) (Materials and Methods). A—The triplets in which RF1 is MYC, RF2 is chosen from other human TFs, and T is a common
target. The two most enriched logic gates are “T = RF1” (133 triplets, hyper-geometric test p(133, 2153, 1110, 50865)< 4.3*10-27) and “T = RF1+RF2 (OR)”
(211 triplets, hyper-geometric test p(211, 2153, 2505, 50865)< 1.1*10-21), which supports the finding that MYC is a universally amplifier for its target
expression;B—the triplets in which RF1 is chosen from AML-related TFs, RF2 is chosen from TFs not relating to AML, and T is a common target as shown in
top, and the triplets in which both RF1 and RF2 are chosen from TFs not relating to AML, and T is a common target as shown in bottom. “T = RF1” and “T =
~RF1” are the two most enriched matched logic gates when RF1 is AML-related TF, which implies that AML-related TFs dominate the regulation of their
target expression.

doi:10.1371/journal.pcbi.1004132.g005
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previously observed [2,24,40–42]. Moreover, we further classified those triplets with indi-
rectly bound TFs using their matched logic gates, and identified the indirectly bound TFs
cooperating with bound TFs to regulate their targets in a logical way (S5 and S6 Tables).

Logic gates for feed-forward loops. Feed-forward loops (FFLs) are RF1-RF2-T triplets in
which RF1 also regulates RF2. FFLs have been found to be important motifs in regulatory
networks, with many interacting by following logic operations [11]. We apply Loregic to
find the logic operations that characterize the FFLs from a genome-wide perspective in both

Fig 6. Promoter motifs for AND-consistent yeast triplets with directly and indirectly bound TFs.We present two example yeast triplets, (RF1 is the TF
YEL009C, RF2 is the TF YER040W, T is the gene YDL066W) at top and (RF1 is the TF YNL216W, RF2 is the TF YNL167C, T is the gene YHR033W) at
bottom, both of which are consistent with the AND gate by Loregic. Both TFs in the top triplet have motifs in the target promoter region, but only one TF,
YNL216W, in the bottom triplet has a motif in the target promoter region. The other TF, YNL167C, cooperates with YNL216W in an AND logical relation via
protein-protein interaction.

doi:10.1371/journal.pcbi.1004132.g006
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the yeast cell cycle and human leukemia cancer datasets. For the yeast regulatory network,
we found that from a total 5707 FFLs, 659 constitute gate-consistent triplets. Out of these,
162 are consistent with the AND gate (with enrichment by hypergeometric test p-value
<1.3�10-3), and 159 are consistent with “T = RF1” (with enrichment by hypergeometric test
p-value <7.5�10-5) making them the dominant logic gates for yeast FFL. These results
match previous experiments that have shown that the majority of FFLs are of the so-called
coherent type 1, in which RF1 activates RF2, and both activate the target [11].

Next, we looked at FFLs from human leukemia TF-TF-T triplets (23,385 FFLs in total), and
found that the two most abundant matched logic gates are “T = RF1” (1,306 FFLs with enrich-
ment by hypergeometric test<3.4�10-9) and “T = RF1+~RF2” (1,765 FFLs with enrichment by
hypergeometric test<1.7�10-5). Both gates match the logics of the coherent type 4 FFL, where
RF1 down-regulates RF2, RF2 down-regulates target, and RF1 activates target as described in
[11]. This suggests that the master TF (RF1) of the FFL aims to activate the target, but due to
the gene down-regulation action from the secondary TF (RF2), it must simultaneously down-
regulate RF2. Moreover, we did not find any enriched logic gates among the triplets that do not
form FFLs in both yeast and human.

miRNAs and MYC down-regulate each other. MYC (described above) and miRNAs have
been found to down-regulate each other by forming double down-regulatory FFLs in leuke-
mia [43]. We identified 1,805 miRNA-MYC-target triplets with 117 miRNAs, 1,143 of
which are gate-consistent. From these triplets, 446 match “T = RF2” when RF2 is MYC (hy-
pergeometric test p-value< 2.5�10-124), and 201 match “T = ~RF1+RF2” when RF1 is a
miRNA and RF2 is MYC (hypergeometric test p-value< 4.1�10-25). These two dominant
logic gates also match the logic for the coherent type 4 FFL as described in [11]. As expected,
these results imply that miRNAs repress target gene expressions, while MYC activates target
gene expressions and simultaneously down-regulates the miRNAs. We also found 56 gate-
consistent miRNA-MYC-target triplets matching “T = ~RF1�RF2” when RF1 is a miRNA
and RF2 is MYC, and 16 triplets matching “T = ~RF1” with RF1 being a miRNA. These two
logics match the coherent type 2 FFL[11]. This result suggests that miRNAs repress the ex-
pression of both MYC and the target gene, while MYC activates the target. In short, these
matched logic gates support the notion that the miRNAs and MYC form a double-negative
regulatory loop in this system.

Logic circuit analysis of regulatory pathways and hierarchies. Target gene expression is a
complex process controlled by multiple RFs whose own expressions are in turn dictated by
other RFs, forming regulatory pathway cascades. Analyzing these pathways in a systematic
fashion, we are able to get a comprehensive picture of a particular gene regulation. Going be-
yond the prediction of the cooperative logics of individual RFs that directly regulate a target,
we are interested in identifying all the logic gates matching triplets involved in the target regu-
latory pathway, in order to obtain a coherent logic circuit pathway. This logic circuit pathway
depicts the logical relationship between all RFs in the regulatory pathway of a target gene. For
example in Fig. 7A, Loregic found that there are two regulatory pathways regulating the target
gene, PPIL2 in human K562. PPIL2 is an important cyclophilin member in immunological
suppression These two pathways contain 4 logic-gate-consistent triplets forming a two-layer
hierarchical structure. By replacing these triplets with corresponding matched logic gates, we
obtain the logic circuit regulatory pathways for the target gene (Fig. 7B). Studying the circuit
logic gates, we are able to deduce the Boolean logic equation that describes the logical relation-
ship between all RFs in the regulatory pathways of the target gene. In addition, a variety of
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regulatory pathways can be connected to form gene regulatory networks, which have the hier-
archical structures [5,26–28]. TFs typically lie at higher layers than non-TFs in hierarchical
gene regulatory networks. We found that the consistency scores of the triplets with TF targets
are significantly greater than the ones with non-TF targets in both yeast and human (K-S test
p value< 4e-6 in yeast and< 0.04 in human), which implies that the regulatory co-operation
at higher hierarchical layers more likely follows a clear “logical pattern”. We also constructed
the regulatory hierarchical networks with top, middle and bottom layers using yeast TFs [5],
and found that the scores for the gate-consistent triplets targeting the bottom TFs are lower
than the ones targeting middle and top TFs (S3 Fig), which implies that the regulations of
middle and top TFs more likely follow logical operations than the bottom TFs.

Discussion
Loregic is a multi-purpose computational method that uses logic-circuit models to characterize
the cooperativity among regulatory factors such as TFs and miRNAs by integrating gene

Fig 7. Depiction of two logic circuit regulatory pathways targeting PPIL2. Two logic circuit regulatory pathways targeting the PPIL2 gene, an important
cyclophilin member in immunological suppression, are found by Loregic: 1: PPIL2 is co-regulated by HDAC2 and SP1 forming the triplet of (RF1 is HDAC2,
RF2 is SP1, T is PPIL2), which is consistent with the “T = ~RF1+RF2” gate (the ORN gate[22]), and SP1 is co-regulated by EGR1 and NFYA forming the
triplet of (RF1 is EGR1, RF2 is NFYA, T is SP1), which is consistent with the “T = ~RF1*~RF2 (the NAND gate); 2: PPIL2 is also co-regulated by BRF1 and
NFE2 forming the triplet of (RF1 is BRF1, RF2 is NFE2, T is PPIL2), which is consistent with OR gate, and NFE2 is co-regulated by TAL1 and GATA2 forming
the triplet of (RF1 is TAL1, RF2 is GATA2, T is NFE2), which is also consistent with OR gate. We replace the triplets on these pathways using matched logic
gates, and depict the pathways using logic circuits to summarize the regulatory logics targeting PPIL2 at the pathway level.

doi:10.1371/journal.pcbi.1004132.g007
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expression and regulatory network data. Given the multitude of high quality expression (e.g.,
RNA-seq, small RNA-seq), and regulation (e.g., ChIP-seq, CLIP-seq, DNase-seq) datasets
available, Loregic can be further used to study cooperations among other regulatory elements
such as splicing factors, long non-coding RNAs, etc., or RF cooperations during other biologi-
cal processes such as embryonic developments for the model organisms in modENCODE proj-
ect [44]. To our knowledge, the present study describes for the first time the use of 16 logic
operations to perform a comprehensive genome-wide analysis of regulatory triplets.

We tested Loregic using two-RFs-one-target triplets, focusing on scenarios where the RFs
are either two TFs or one TF and one miRNA or distTF. However, we can extend Loregic to an-
alyze regulatory modules with multiple RFs and multiple target genes using higher-order logic
circuit models discussed as above if there is enough supporting data. Loregic is also compatible
with other discretization methods including using any custom-made binarized gene expression
data as input. Loregic uses the gene expression dynamics across samples at the logical level to
characterize the regulatory cooperativity. To capture the logical cross-sample dynamics, we
recommend the binarization methods such as BoolNet [29]. Unlike traditional ways using a
uniform cutoff strategy such as median value, this method customizes the binarization cutoff
for each gene based on its expression dynamic patterns across samples. We compared BoolNet
with another method, ArrayBin [45], which uses an adaptive approach to binarize high-
throughput gene expression data (Materials and Methods).

In our analysis, we found triplets that were inconsistent with all the logic gates. There are
several potential explanations for such cases. First, the cooperative patterns of two RFs might
follow a more complex mechanism, perhaps one that depends on timing or the phosphoryla-
tion state of the RF, which our model does not take into account. Second, the target gene might
be regulated by more than two RFs, and thus a higher-order logic circuit model with multiple
inputs (>2) as discussed above might be required to capture the RF-target logic. Finally, the
target gene expression may also be impacted by stochastic signals, which may necessitate more
advanced models such as Fuzzy logic models [12,46].

One of Loregic’s functionalities is relating triplet logics to any set of regulatory network fea-
tures. Here, we map the logic-gate-consistent triplets to two regulatory features: promoter se-
quence motifs and feed-forward loops. Loregic’s results can also be directly applied to
differentially assess the abundance of various types of logic gates among other gene regulatory
features such as regulatory hierarchies we analyzed in this paper. A potential future application
would be identifying logic cooperations between and among RFs at different hierarchical layers
in the network, which may potentially help understand cooperations among even larger order
regulatory groups. In addition, we can use a series of cascaded logic-gate-consistent triplets to
capture the logical cooperations of more complex hierarchical structures such as regulatory
pathways across multiple layers in hierarchical gene regulatory networks.

In summary, Loregic systematically characterizes genetic regulatory cooperativity using
logic-circuit models. This algorithm is widely applicable for the study of regulatory mecha-
nisms and to the assembly of the full panoramagram of gene regulatory activity.

Materials and Methods

Gene expression, transcription factor and miRNA datasets
We analyzed the gene expression in yeast using three well-studied cell-cycle datasets: 1) alpha-
factor time course with 18 time points (0, 7’, . . ., 119’); 2) cdc15 time course with 24 time points
(10’, 30’, . . ., 290’) and 3) cdc28 time course with 17 time points (0, 10’, . . ., 160’) [47,48]. We
combined all three datasets (5,581 genes and 59 time points) and normalized gene expressions
for each time point by centering the mean to zero. For gene regulation in yeast, we used 176

Loregic: Characterization of the Regulatory Logic

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004132 April 17, 2015 15 / 21



transcription factors with their target genes identified in [49,50], and found 39,011 TF-TF-tar-
get triplets with 2464 unique targets.

In the study of gene expression in human leukemia, we obtained RNA-seq RPKM expres-
sions from The Cancer Genome Atlas Data Portal [51] for 19,798 protein-coding genes and
705 miRNAs across 197 and 188 AML samples, respectively. For each sample, we standardized
the log(RPKM+1) across all genes. We identified 50,865 TF1-TF2-target triplets with 1824
unique targets using ChIP-seq data (70 TFs) from ENCODE K562 cell line [5] and 821 distTF-
TF-target triplets with 113 unique targets, where distTFs were predicted to bind distal regulato-
ry regions [52]. By integrating miRNA- and TF-target pairs in K562, we were able to identify
56,944 miRNA-TF-target triplets with 2210 unique targets in which RF1 is an miRNA, RF2 is a
TF, and the target is their co-regulated gene. The miRNA-target pairs that we used for human
K562 cell line in this paper were the overlapped pairs among widely used public databases for
predicting miRNA-target relationships described in [53].

Converting gene expression changes over conditions to Boolean values
In this paper, we binarized the gene expression levels to Boolean values 1 and 0 to represent
high and low gene expression, respectively, using BoolNet. Loregic is also compatible with
user-inputted, customized binary gene expression data [29]. BoolNet assigns Boolean values to
expression data on the basis of modular co-expression patterns by k-means clustering across
inputted samples and therefore accounts for differences in the dynamic ranges of expression
among genes in the input data. After conversion, we found that in yeast 79% of values are 0
(low expression level) and 21% are 1 (high expression level) while in human 42% of values are
0 and 58% are 1. To test the robustness of Loregic to different binarization methods, we com-
pared BoolNet with another method, ArrayBin [45], which uses an adaptive approach to binar-
ize high-throughput gene expression data. We found that the 81% yeast and 85% human TF-
TF-target triplets have the same best-matched logic gates found by Loregic between two binari-
zation methods. Also, the consistency scores for those triplets between two methods are highly
correlated (Yeast, cor = 0.80; Human, cor = 0.97) (S4 Fig). Human has higher correlation be-
cause it has more data samples (200 samples) than yeast (59 samples).

Mapping and scoring RF1-RF2-T triplets to 16 logic gates
Mathematically, a logic gate can be described by the truth table that lists the outputs of the
logic gate for each allowed combination of inputs. For a two-input-one-output logic gate, each
of the two input variables may take on either of the two possible values, 0 or 1; thus, the truth
table will contain four binary two-element vectors representing all the possible combinations
of the two input variables i.e., v1 = (0,0), v2 = (0,1), v3 = (1,0), v4 = (1,1), where vi is the vector
representing ith input combination i = 1,2,3,4. The truth table output will be a vector with four
elements, with each element having two possible values 0 or 1. Thus there are 24 possible com-
binations of 0 and 1 for the output vector, and hence, there are 16 possible two-input-one-out-
put truth tables. The 16 different truth tables correspond to 16 logic gates as shown in S1 Fig.
The three basic logic operations, AND (“�”), NOT (“~”) and OR (“+”) are used to express all
the 16 possible logic gates.
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We denote fg(vi) the function to obtain the output value from the ith input vector vi in the
logic gate g, with i = 1,2,3,4. For example for the AND logic gate we have:

f ANDðv1Þ ¼ f ANDð0; 0Þ ¼ 0 � 0 ¼ 0

f ANDðv2Þ ¼ f ANDð0; 1Þ ¼ 0 � 1 ¼ 0

f ANDðv3Þ ¼ f ANDð1; 0Þ ¼ 1 � 0 ¼ 0

f ANDðv4Þ ¼ f ANDð1; 1Þ ¼ 1 � 1 ¼ 1

In our model, the two RFs (RF1, RF2) in a regulatory triplet RF1-RF2-T, serve as inputs, while
the common target gene T is the output—the result of the fg acting on the (RF1, RF2)
binary vector.

Form samples, we denote*x ,*y , and*z as them-dimensional binary vectors containingm
binarized expression values for RF1, RF2, and T respectively. Loregic identifies the logic gate
whose truth table best matches the input/output data as follows. For the input vector vi, we de-

note asmi ¼
Xm

j¼1
Iðx½j� ¼ vi½1�ÞIðy½j� ¼ vi½2�Þ the number of samples (x[j], y[j]) matching

vi, where I(.) is indicator function, x[j] and y[j] are j
th elements of*x and*y; with j = 1,2,. . .,m,

and i = 1,2,3,4. Thus we havem =m1+m2+m3+m4. Second, given a logic gate g, we denote

ni ¼
Xm

j¼1

Iðz½j� ¼ f gðx½j�; y½j�ÞIðx½j� ¼ vi½1�ÞIðy½j� ¼ vi½2�Þ

as the number of z[j], j = 1,2,. . .,m target binary samples matching the logic gate g output
f g(vi), for the vi input vector. Next we calculate s

g
i = (1+ni)/(2+mi) as the succession probability

matching the vi of g by Laplace’s rule of succession [54]. The succession probabilities are used
to simply but rigorously penalize logic-gate assignments that were distinguished from alterna-
tive logic gates on the basis of only a small number of observations. As such, given the binar-
ized expression data,*x ,*y , and*z for the RF1-RF2-T triplet, the consistency score for the logic
gate g, Cgð*x; *y; *z ) is given by the product of the succession probabilities for four input
types, sg1; s

g
2; s

g
3; s

g
4as follows:

Cgð*x;*y;*z ) ¼
Y4

i¼1

sgi ð*x;*y;*zÞ ¼
Y4

i¼1

1þ ni

2þmi

Finally, we choose the logic gate with the highest consistency score as the best matched logic
gate for the analyzed triplet. In the event of a tie among two or more logic gates for the highest
consistency score, we consider the triplet to be gate-inconsistent. Note that according to
Laplace’s rule of succession, if there is no data available for a triplet, thenm = ni =mi = 0, and
for each logic gate the consistency score by the succession rule is 1/2�1/2�1/2�1/2 = 1/16,
which is the probability of a random guess from 16 logic gates. Fig. 2 exemplifies the calculation
of the consistency score for a mock TF1-TF2-T triplet across a dataset of 20 samples. In order
to identify and remove potentially spurious logic gate assignments, we calculate a permutation
score for each triplet over the 16 logic gates as follows: We suppose that the triplet matches the
kth logic gate, gk. We replace the target gene, T by a randomly selected geneM times (here we
useM = 1000), and define its permutation score, as p(gk) = (the number of replacement triplets
that can be identified as gate-consistent with matched gk)/M. A high permutation score implies
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that random effects may cause the matched logic gate. In this paper, we only keep the gate-con-
sistent triplets with permutation scores less than 0.1.

Enrichment of particular logic gates among consistent triplets by hyper-
geometric test
Given a set of triplets (e.g., the triplets in which RF1 is MYC) and a particular logic gate g, we
calculate a hyper-geometric enrichment p-value to describe the enrichment of triplets consis-
tent with the gate g as opposed to other gates as follows: The p-value is equal

topðkg ; k;Kg ;NÞ ¼
Xk

i¼kgþ1

Kg

i

 !
N � Kg

k� i

 !

N

k

 ! , where k is the number of triplets in the set,

kg is the number of triplets consistent with the gate g in the set, Kg is the total number of triplets
consistent with the gate g, and N is the total number of triplets.

Supporting Information
S1 Fig. Truth tables of all 16 two-input-one-output logic gates. Each of the four two-row col-
umns of 0s and 1s of the Input block represents one of the four possible combinations of input
values to a two-input logic gate. Each of the four columns of 0s and 1s in the Output block re-
ports the output value of each logic gate for the input combination specified in the correspond-
ing column from the Input block. The last column of the Output block summarizes the
function of each logic gate in the context of gene regulation.
(TIF)

S2 Fig. Promoter motifs for two AND-consistent human triplets in Integrative Genomics
Viewer (IGV).We present two example human triplets, (RF1 is USF2, RF2 is NFYB, T is
YPEL1) at top and (RF1 is USF2, RF2 is NFE2, T is NBPF1) at bottom, both of which are con-
sistent with AND gate by Loregic. Two TFs in the top triplet have motifs at target promoter re-
gion (red and purple bars in IGV), but only one TF, USF2 in the bottom triplet has motif at
target promoter region (red bars only in IGV). The other TF, NFE2 cooperates with USF2 in
an AND logical relation via protein-protein interaction.
(TIF)

S3 Fig. Scores of logic-gate-consistent triplets targeting the transcription factors at top,
middle and bottom hierarchical layers in yeast. Boxplot displays the score distributions of
the logic-gate-consistent triplets with targets being TFs at three different hierarchical layers:
top, middle and bottom. The TFs at bottom have lower scores than others in yeast.
(TIF)

S4 Fig. Consistency scores of logic-gate-consistent triplets using the binarized datasets
from two methods, BoolNet and ArrayBin. Scatterplots (left: yeast, right: human) display the
consistency scores of logic-gate-consistent triplets that best match the same logic gates by Lore-
gic using two binarized datasets: one is from the BoolNet method in this paper (x-axis), and an-
other is from the ArrayBin method (y-axis) [45]. The scores are highly correlated between two
methods (correlation = 0.80 in Yeast, and 0.97 in Human).
(TIF)

S1 Table. The logic-gate-consistent yeast regulatory triplets of (TF1, TF2, target): Column
1, TF1; Column 2, TF2; Column 3, common target; Column 4, matched logic gate; Column
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5, triplet’s con-sistency score to matched logic gate.
(TXT)

S2 Table. The logic-gate-consistent human regulatory triplets of (TF1, TF2, target): Col-
umn 1, TF1; Column 2, TF2; Column 3, common target; Column 4, matched logic gate;
Column 5, triplet’s consistency score to matched logic gate.
(TXT)

S3 Table. The logic-gate-consistent human regulatory triplets of (miRNA, TF, target): Col-
umn 1, miRNA; Column 2, TF; Column 3, common target; Column 4, matched logic gate;
Column 5, triplet’s consistency score to matched logic gate.
(TXT)

S4 Table. The logic-gate-consistent human regulatory triplets of (distTF, TF, target): Col-
umn 1, distTF; Column 2, TF; Column 3, common target; Column 4, matched logic gate;
Column 5, triplet’s consistency score to matched logic gate.
(TXT)

S5 Table. The cooperative logic-gate-consistent yeast regulatory triplets with indirect bind-
ing TFs: Column 1, TF1; Column 2, TF2; Column 3, common target; Column 4, number of
TF1 binding motif found at target’s promoter (i.e., 1000 bps upstream of target transcrip-
tion start site); Column 5, number of TF2 binding motif found at target’s promoter.
(TXT)

S6 Table. The cooperative logic-gate-consistent human regulatory triplets with indirect
binding TFs: Column 1, TF1; Column 2, TF2; Column 3, common target; Column 4, num-
ber of TF1 binding motif found at target’s promoter (i.e., 5000 bps upstream of target tran-
scription start site); Column 5, number of TF2 binding motif found at target’s promoter.
(TXT)
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