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The high-Reynolds-number structure of the laminar, chaotic and turbulent attractors is

investigated in a two-dimensional Kolmogorov flow. The laminar attractors include the

families of multi-phased travelling waves and quasi-periodic standing waves both of which

form the backbone of the transition to a turbulent flow. At leading order, each laminar

attractor under study is obtained by solving the Euler equations on a manifold subject

to the appropriate periodicity and symmetry conditions. The manifold is determined by

a finite number of vorticity equations, these being required to suppress the secular terms

at the next order. Our results show that, for the multi-phased travelling waves, the first

phase velocity can be determined by an integral conservation law for kinetic energy and

the subsequent phase velocities can be evaluated by a nonlinear eigenvalue problem. The

results also reveal that whereas viscosity determines the smallest scales and controls the

amplitude of the flow, the inertial terms govern the shape and form of the flow. The com-

parison of our analytical predictions for evaluating the stable single-phased travelling wave

with the direct numerical simulation of the Navier–Stokes equations has been undertaken,

the agreement being excellent. For sufficiently high Reynolds number, after the bifurcation

to chaotic flow, all of the multi-phased travelling waves and quasi-periodic standing waves

become unstable non-wandering sets. Based on the above new findings for these unstable

non-wandering sets and other travelling and standing waves of this kind in phase space,

necessary conditions for the invariant manifolds of the chaotic and turbulent attractors

are obtained, these necessary conditions being conjectured to be also sufficient.

Key Words: singular perturbations, waves, Navier–Stokes equations

1 Introduction

Free-space high-Reynolds-number laminar flow has not been extensively studied using

perturbation theory despite having long been viewed as a missing ingredient in the un-

derstanding of the elementary interaction of vortices and the development of statistical

models for turbulent flow [3]. The extent of the use of asymptotic analysis in this case

may be contrasted with the study of wall-bounded shear flows at high Reynolds number,

with the latter having achieved significant success in the application of boundary-layer
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theory over many decades. The most prominent examples include uniform flow over a

semi-infinite plate [30, 31], Hagen-Poiseuille flow [29] or vortex-wave interaction the-

ory [11], the nonlinear analytical predictions in [29] having been confirmed numerically

in [9]. More recently, asymptotic analysis has also succeeded in predicting the shrink-

age of the domain of attraction of the basic flow for both plane Couette flow and plane

Poiseuille flow [7].

For many decades, leading scientists have articulated the importance of the study

of the Navier–Stokes equations using viable formal perturbation schemes [3, 8, 40]. In

1948, Hopf made conjectures regarding the attractors of the Navier–Stokes equations; in

particular, their response to an increase in Reynolds number and their relationship with

turbulent flow. Alas, he eventually concluded that [13] “the way to a successful attack

on them seems hopelessly barred.” A decade later, in Kolmogorov’s 1958 seminar on

dynamical systems and hydrodynamic stability, eight open problems were introduced. It

is Kolmogorov’s fifth open problem that guides us in this article towards a successful

strategy of attack on the analysis of the attractors, namely [3] “the mathematical theory

of partial differential equations containing a small parameter multiplying the term with

the highest derivative; until now only such phenomena as boundary layers or interior

layers have been studied.” Fortunately, the most recent progress on Kolmogorov’s fifth

open problem presents us with an opportunity to address Hopf’s open problems on the

attractors of the Navier–Stokes equations in a simple free-space high-Reynolds-number

flow.

In the context of transition to turbulence, the attractors of the Navier–Stokes equa-

tions were first studied by Landau [18] and Hopf [13] who envisaged a sequence of at-

tractors which were at first periodic with a single frequency and then quasi-periodic with

a growing number of fundamental frequencies as the Reynolds number increased. Each

attractor originated at one of an infinite sequence of bifurcations. This infinite sequence

of attractors was subsequently limited to the Ruelle–Takens scenario, which predicted

that a quasi-periodic solution with more than three fundamental frequencies is, in gen-

eral, unstable [24, 27]. Hopf [13] also conjectured that, owing to the action of viscosity,

these attractors resided on a finite-dimensional invariant manifold in phase space. More

recently, further evidence has been provided that viscous effects are not entirely confined

to small scales; that is, the inviscid dominance on the broader scales needs to be supple-

mented due to the occurrence of vortex eruptions [6]. These are sporadic events involving

unsteady separations and breakups of the local and global flow structure which originate

from viscous effects.

While Kolmogorov [3] was the first to anticipate the link between the attractors of

the Navier–Stokes equations and high-Reynolds-number asymptotic methods, the firm

foundation of this subject was laid by Kuzmak [16] in his study of ordinary differential

equations. His analysis facilitated the determination of limit cycles or periodic attractors.

Luke [20] extended the methods of Kuzmak to partial differential equations which allowed

the prediction of the single-phased travelling wave. Luke’s analysis was itself extended

to multi-phased travelling waves by Ablowitz and Benney [1]. Meanwhile, equivalent

results were derived by Whitham using the averaged Lagrangian principle [41]. Out of all

possible approaches, it is the method of Kuzmak–Luke which we choose for investigating

the attractors of the Navier–Stokes equations in this article (see the discussion in [39]).



Kolmogorov’s attractors 3

8.30
15.8

15.3 16.4
17.8

21.5 25.7

R
SS TW SW SW+TW

SS+TW TWSS

22

TTW

Figure 1. A symbolic diagram specifying the laminar attractors of Kolmogorov flow for

aspect ratio k = 1, forcing wavenumber K = 2 and Reynolds number in the range 0 6

R < 25.7 (see [2] and Section 2 for the definition of Reynolds number R): stable steady

states are denoted by SS; stable single-phased travelling waves by TW ; stable periodic

standing waves by SW , stable two-phased travelling waves by TTW and bistability of

two types of attractor by +. The flow becomes chaotic for Reynolds number greater than

25.7.

The method of Kuzmak–Luke has recently been successful in describing single-phased

travelling waves on the upper-energy solution branch in two-dimensional plane Poiseuille

flow [39]. The presence of viscous boundary layers added complexity to this demanding

problem; namely, the Fredholm alternative could not be applied. Even after the neces-

sary modulation equations had been determined, it was impossible to demonstrate their

sufficiency. Despite the mathematical difficulty faced in our earlier study, we have found

a way to discover the high-Reynolds-number asymptotic structure. Essentially, the at-

tractor is obtained by solving the Euler equations on a manifold subject to periodicity

and symmetry conditions. This structure does not apply to the two-phased travelling

wave due to the injection of vortex sheets from the walls into the body of the flow. In

other words, the method of Kuzmak–Luke turns out to be invalid for all flows involv-

ing separation into the inviscid bulk. Therefore, transition to turbulence could not be

investigated in the context of two-dimensional plane Poiseuille flow.

In order to gain physical understanding of the transition from laminar to turbulent

flows, Kolmogorov also proposed a simplified hydrodynamic model: an incompressible

viscous fluid on a torus under the action of a prescribed forcing [4]. It is usually taken

to be two-dimensional with harmonic forcing. This Kolmogorov flow is more tractable

than other simplified models because it has no walls. There are three main advantages

associated with periodic boundary conditions. Firstly, whole families of laminar attrac-

tors in the transition to turbulence are amenable to asymptotic methods. Secondly, the

absence of viscous boundary layers allows the application of the Fredholm alternative

which simplifies our analysis of the manifold. Thirdly, the bifurcations occur at much

lower Reynolds number in comparison to wall-bounded shear flows, which produces the

significant advantage of substantially reducing the dimension of phase space. Finally,

we note that interior viscous layers have been observed at very large Reynolds num-

ber [15, 25]. Henceforth, it is assumed that there are no interior viscous layers in the

cases studied herein.

Two-dimensional Kolmogorov flow has been widely studied in terms of varying the

aspect ratio of the domain [25] and different choices of forcing wavelength [2, 26, 28]. More

recent studies are dominated by numerical computations and the dynamical systems point

of view [10, 12, 15, 19]. While our asymptotic analysis is applicable to a range of aspect

ratios, forcing wavelengths and Reynolds numbers, the examples provided in this article

focus on two-dimensional Kolmogorov flow with the particular choice of aspect ratio and
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Table 1. Summary of the symmetries of non-wandering sets in two-dimensional plane

Poiseuille flow and two-dimensional Kolmogorov flow for aspect ratio k = 1 and forcing

wavenumber K = 2 (see [2] and Section 2 for the definition of Reynolds number R).

single-phased two-phased periodic
travelling wave travelling wave standing wave

plane shift-and-reflect shift-and-reflect not
Poiseuille symmetry symmetry in the applicable

flow second phase

Kolmogorov shift-and-reflect shift-and-reflect shift-and-rotate
flow symmetry symmetry in the symmetry for Reynolds

second phase number 16.4 < R < 17.0

forcing wavenumber in [2]. Figure 1 summarizes the laminar attractors for a range of

Reynolds number. The single-phased and two-phased stable travelling waves are denoted

by TW and TTW , respectively. We note that there are no stable travelling waves with

three phases in Figure 1. Furthermore, there are two families of periodic standing waves

separated by a nonlocal bifurcation and no stable standing waves with two (or three)

fundamental frequencies have been reported for this aspect ratio and forcing wavelength.

The stable periodic travelling waves are denoted by SW in Figure 1.

In order to find the appropriate solution, it is necessary that we incorporate any in-

variance of non-wandering sets under the relevant symmetry groups. In our earlier study

of two-dimensional plane Poiseuille flow [39], the shift-and-reflect symmetry provided an

additional condition for the single-phased travelling wave. Furthermore, our numerical

simulations indicated that the two-phased travelling wave in plane Poiseuille flow does

demonstrate a shift-and-reflect symmetry even though it is observed only in the new

phase which was acquired at the supercritical Hopf bifurcation. In the current study of

Kolmogorov flow, we benefit from the fact that the symmetry structure has been compre-

hensively identified in [2], the structure for the single-phased and two-phased travelling

waves being the same as in the two-dimensional plane Poiseuille flow (see Table 1). In all

of these cases, symmetry also offers the significant advantage of reducing the dimension

of phase space.

The purpose of this article is to address Hopf’s conjecture by investigating the different

manifolds associated with laminar, chaotic and turbulent attractors. Of these, the invari-

ant manifold of the turbulent attractor is of greatest interest. Since it is not possible to

apply asymptotic analysis directly to the turbulent attractor - an indirect approach has

been adopted. Our indirect approach is based on gaining as much insight as possible into

the high-Reynolds-number structure of the laminar attractors involved in the transition

to turbulence. Accordingly, we investigate the families of both multi-phased travelling

waves and quasi-periodic standing waves for Kolmogorov flow, manifolds being sought

for each case.

Section 2 describes the mathematical model for two-dimensional Kolmogorov flow

which will be studied herein. The asymptotic analysis of the family of multi-phased
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travelling waves is undertaken in Section 3, the manifold being determined by solvability

conditions. Section 4 briefly summarizes the analysis of the manifold for the family of

quasi-periodic standing waves, the analysis being similar to the previous section. Sec-

tions 5 and 6 utilize the results from Section 3 to expand the description of the asymp-

totic solution of single-phased and two-phased travelling waves, respectively. Section 5

also presents a comparison of the analytical predictions for the single-phased travelling

wave with the results of direct numerical simulation of the Navier–Stokes equations. In

Section 7, based on the newly acquired results for these unstable non-wandering sets

in Sections 3 and 4, necessary conditions for the invariant manifolds of the chaotic and

turbulent attractors are obtained. Finally, Section 8 gives a brief discussion of the results.

2 Mathematical model

In this section, the initial boundary value problem for an incompressible viscous fluid on a

two-dimensional torus under the action of harmonic forcing is introduced and scaled. We

define ρ to be the density, ν the kinematic viscosity and G a constant pressure gradient.

The two-dimensional Navier–Stokes and continuity equations are

∂q∗

∂t∗
+ (q∗

· ∇
∗)q∗ +

1

ρ
∇

∗p∗ = ν∆∗q∗ +
G

ρ
f

and

∇
∗
· q∗ = 0,

respectively, in which (x∗, y∗)T are the spatial coordinates, t∗ is time, q∗ = (u∗, v∗)T are

the fluid velocities, p∗ is pressure, Gf/ρ is the body force and f = (f, 0)T . The periodic

boundary conditions are

q∗(0, y∗, t∗) = q∗(L∗/k, y∗, t∗), q∗(x∗, 0, t∗) = q∗(x∗, L∗, t∗),

where L∗ is the domain width and k is the aspect ratio. We transform to dimensionless

variables via

x∗ =
L∗x

2π
, y∗ =

L∗y

2π
, t∗ =

L∗t

2πU∗
, u∗ = U∗u, v∗ = U∗v, p∗ = ρU∗ 2p,

where U∗ = GL∗2/(2π)2ρν. The governing equations become

∂q

∂t
+ (q · ∇)q +∇p = ǫ [∆q + f ] (2.1)

and

∇ · q = 0, (2.2)

in which ǫ is the reciprocal of the Reynolds number R given by

0 < ǫ =
1

R
=

2πν

U∗L∗
≪ 1

and q is the velocity vector (u, v)T . The periodic boundary conditions become

q(0, y, t) = q(2π/k, y, t), q(x, 0, t) = q(x, 2π, t). (2.3)
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The kinetic energy is defined by E = q · q/2 and the vorticity by ω = ∂v/∂x−∂u/∂y. We

consider Kolmogorov flow with the monochromatic forcing f(y) = K3 cos(Ky), where K

is the forcing wavenumber.

Basic Kolmogorov flow q = (K cos(Ky), 0)T and p = constant is an exact solution of

the governing equations. The linear stability of this steady state has been investigated

analytically [21]. (For k = 1 and K = 2 in Figure 1, this steady state is stable for

0 6 R < 2.) The flow typically undergoes a number of bifurcations as the Reynolds

number is increased [2, 26, 28], the attractors in the form of multi-phased travelling

waves being the main topic of our analysis. We note that our analysis will not be valid

for long domains (k ≪ 1) or for large forcing wavenumber (K ≫ 1).

3 Multi-phased travelling wave

The following analysis applies to the whole family of multi-phased travelling waves. Each

member of this family has a different shift-and-reflect symmetry condition and a different

definition of the stream function. Therefore, these details, which are specific to a family

member, are postponed until Sections 5 and 6.

3.1 The leading-order problem

The inviscid leading-order problem is considered and it is assumed that there are no

interior layers.We adoptN fast phases θ(j) defined by ∂θ(j)/∂x = k and ∂θ(j)/∂t = −σ(j),

where σ(j) is a constant frequency and N ∈ {1, 2, 3}. The limitation to a maximum of

three phases follows from the Ruelle–Takens scenario [24, 27]. (The possibility of N > 3

will be discussed in Section 7.) Expansions are introduced of the form

u ∼ u0(θ(1), θ(2), . . . , θ(N), y) + ǫu1(θ(1), θ(2), . . . , θ(N), y),

v ∼ v0(θ(1), θ(2), . . . , θ(N), y) + ǫv1(θ(1), θ(2), . . . , θ(N), y),

p ∼ p0(θ(1), θ(2), . . . , θ(N), y) + ǫp1(θ(1), θ(2), . . . , θ(N), y),

E ∼ E0(θ(1), θ(2), . . . , θ(N), y) + ǫE1(θ(1), θ(2), . . . , θ(N), y),

ω ∼ ω0(θ(1), θ(2), . . . , θ(N), y) + ǫω1(θ(1), θ(2), . . . , θ(N), y),

as ǫ→ 0. At leading order, we obtain

L̄u0 +

N
∑

j=1

k
∂p0
∂θ(j)

= 0, (3.1 a)

L̄v0 +
∂p0
∂y

= 0, (3.1 b)

N
∑

j=1

k
∂u0
∂θ(j)

+
∂v0
∂y

= 0, (3.1 c)

with the differential operator

L̄ =

N
∑

j=1

k(u0 − U(j))
∂

∂θ(j)
+ v0

∂

∂y
,
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periodic boundary conditions

[u0, v0, p0](0, θ(2), . . . , θ(N), y) = [u0, v0, p0](2π, θ(2), . . . , θ(N), y),

[u0, v0, p0](θ(1), 0, . . . , θ(N), y) = [u0, v0, p0](θ(1), P(2), . . . , θ(N), y),

... (3.2)

[u0, v0, p0](θ(1), θ(2), . . . , 0, y) = [u0, v0, p0](θ(1), θ(2), . . . , P(N), y),

[u0, v0, p0](θ(1), θ(2), . . . , θ(N), 0) = [u0, v0, p0](θ(1), θ(2), . . . , θ(N), 2π),

U(j) = σ(j)/k, P(2) and P(3) are constant periods. Quasi-periodicity requires that 2π/σ(1),

P(2)/σ(2) and P(3)/σ(3) are not rational multiples of each other. We take the curl of

(3.1 a)-(3.1 b) to obtain L̄ω0 = 0 where the leading-order vorticity ω0 is given by

ω0 =

N
∑

j=1

k
∂v0
∂θ(j)

−
∂u0
∂y

.

The constant U(1) is determined by an integral conservation law during the transient

prior to the formation of the attractor (see [39]); henceforth, knowledge of this constant

will be assumed while investigating the equations for the attractors. We note that the

phase velocity U(1) is not dependent on the exact structure of the solution which classifies

the first phase as a travelling wave of the first kind (see, for example, [5]). The remaining

constants U(2) and U(3) are chosen such that a nonlinear eigenvalue problem is satisfied.

Accordingly, these phase velocities are dependent on the detailed structure of the solu-

tion which classifies them as travelling waves of the second kind (see, for example, [5]).

Knowledge of the spectrum of this eigenvalue problem is essential in order to determine

the travelling waves with more than one phase.

3.2 Solvability conditions

At next order, we have

Lz =





∆u0 + f(y)

∆v0
0



 , (3.3)

where

L =

























L̄+

N
∑

j=1

k
∂u0
∂θ(j)

∂u0
∂y

N
∑

j=1

k
∂

∂θ(j)
N
∑

j=1

k
∂v0
∂θ(j)

L̄+
∂v0
∂y

∂

∂y

N
∑

j=1

k
∂

∂θ(j)

∂

∂y
0

























, z =





u1
v1
p1



 ,

∆ =





N
∑

j=1

k
∂

∂θ(j)





2

+
∂2

∂y2
,



8 W. R. Smith et al.

with the periodic boundary conditions

[u1, v1, p1](0, θ(2), . . . , θ(N), y) = [u1, v1, p1](2π, θ(2), . . . , θ(N), y),

[u1, v1, p1](θ(1), 0, . . . , θ(N), y) = [u1, v1, p1](θ(1), P(2), . . . , θ(N), y),

... (3.4)

[u1, v1, p1](θ(1), θ(2), . . . , 0, y) = [u1, v1, p1](θ(1), θ(2), . . . , P(N), y),

[u1, v1, p1](θ(1), θ(2), . . . , θ(N), 0) = [u1, v1, p1](θ(1), θ(2), . . . , θ(N), 2π).

The right-hand side of (3.3) contains terms which, if not removed, would prevent the

first correction (3.3)-(3.4) from having a solution. In this subsection, these terms are

eliminated. Equation (3.3) is linear and thus the Fredholm alternative may be applied.

The kernel of the adjoint problem corresponds to

L∗r = 0 (3.5)

in which

L∗ =





















−L̄+

N
∑

j=1

k
∂u0
∂θ(j)

N
∑

j=1

k
∂v0
∂θ(j)

−

N
∑

j=1

k
∂

∂θ(j)
∂u0
∂y

−L̄+
∂v0
∂y

−
∂

∂y

−

N
∑

j=1

k
∂

∂θ(j)
−
∂

∂y
0





















, r =





a

b

c



 ,

with the periodic boundary conditions

[a, b, c](0, θ(2), . . . , θ(N), y) = [a, b, c](2π, θ(2), . . . , θ(N), y),

[a, b, c](θ(1), 0, . . . , θ(N), y) = [a, b, c](θ(1), P(2), . . . , θ(N), y),

... (3.6)

[a, b, c](θ(1), θ(2), . . . , 0, y) = [a, b, c](θ(1), θ(2), . . . , P(N), y),

[a, b, c](θ(1), θ(2), . . . , θ(N), 0) = [a, b, c](θ(1), θ(2), . . . , θ(N), 2π).

We will also require the definition

〈 . 〉T =
1

Ω

∫ 2π

y=0

∫ P(N)

θ(N)=0

. . .

∫ P(2)

θ(2)=0

∫ 2π

θ(1)=0

. dθ(1)dθ(2) . . .dθ(N)dy,

where

Ω = (2π)2
N
∏

j=2

P(j).

It follows from the Fredholm alternative that if r is in the kernel of the adjoint problem

(3.5)-(3.6), then our linear problem for the first correction (3.3)-(3.4) can only have a

solution if

〈a [∆u0 + f ] + b∆v0〉T = 0 (3.7)
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for any r. Five linearly independent solutions of the adjoint problem (3.5)-(3.6) have

been determined in [34, 39]:

r1 = (0, 0, 1)T , r2 = (1, 0, u0)
T , r3 = (0, 1, v0)

T , r4 = (u0, v0, p0 + E0)
T ,

r5 =





∂

∂y
(ωm−1

0 ),−

N
∑

j=1

k
∂

∂θ(j)
(ωm−1

0 ),−
(m− 1)

m
ωm
0





T

,

for m ∈ IN and m > 1. The first three solutions are trivial solvability conditions owing to

the periodicity. The solutions r5 correspond to a basis of the vector space of polynomials

over the field of real numbers [39]. As the leading-order problem has shift-and-reflect

symmetry (see Table 1), odd values of m in the fifth solvability condition also produce

trivial equations [39]. We now consider the non-trivial solvability conditions. (i) If we

substitute the fourth vector r4 into (3.7) and integrate by parts, then we obtain the

kinetic energy solvability condition

〈





N
∑

j=1

k
∂u0
∂θ(j)





2

+

(

∂u0
∂y

)2

+





N
∑

j=1

k
∂v0
∂θ(j)





2

+

(

∂v0
∂y

)2

− u0f

〉

T

= 0. (3.8)

(ii) If we substitute the fifth vector r5 into (3.7) and again employ integration by parts,

then we have the vorticity solvability conditions

〈

(m− 1)ωm−2
0











N
∑

j=1

k
∂ω0

∂θ(j)





2

+

(

∂ω0

∂y

)2






+ ωm−1

0

df

dy

〉

T

= 0, (3.9)

for m = 2, 4, 6, . . . .

These solvability conditions are necessary to define the manifold in phase space and

control the amplitude of the flow. They would also be sufficient provided we have found

all of the linearly independent solutions of the adjoint problem (3.5)-(3.6). Evidence that

our solvability conditions are sufficient for the single-phased travelling wave is presented

in Section 5. Provided we assume that the solvability conditions correspond to reformu-

lations of (2.1)-(2.2), then this evidence also implies sufficiency for the quasi-periodic

travelling waves (see the discussion in [34]).

The assumption that the solvability conditions of the Navier–Stokes equations corre-

spond to reformulations of (2.1)-(2.2) should be viewed in the context of the literature.

We consider three nonlinear differential equations in which the first correction is not

self-adjoint: KdV [33], the Rayleigh–Plesset equation [37] and the single-mode rate equa-

tions [36]. In all three cases, the null space of the adjoint equation may be entirely

determined and the solvability conditions all correspond to reformulations of the original

equations. Hence, our assumption that the solvability conditions correspond to reformu-

lations of (2.1)-(2.2) is consistent with all of the problems which are not self-adjoint in

the literature.

Ablowitz and Benney [1] studied the nonlinear Klein–Gordon equation. For this equa-

tion, the first correction is self-adjoint, so the first correction and its adjoint have identical

null spaces. The null spaces contain first derivatives of the leading-order solution with

respect to each phase; that is, the number of solvability conditions increases as the num-
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ber of phases increases. The first derivatives of the leading-order solution with respect to

each phase are also in the null space of the first correction (3.3)-(3.4); however, our first

correction is not self-adjoint and therefore these derivatives are not in the null space of

the adjoint problem (3.5)-(3.6).

The vorticity solvability conditions (3.9) present a significant challenge for numerical

methods. Ifm≫ 1 andN = 1, then double integrals of Laplace type need to be evaluated.

If m ≫ 1 and N = 2, then triple integrals of Laplace type are required. These integrals

limit the numerical results in Sections 5 and 6.

4 Quasi-periodic standing wave

The asymptotic analysis of the family of quasi-periodic standing wave is an adaptation

of the analysis of the family of multi-phased travelling wave in Section 3. In the interest

of brevity, we only outline the result.

4.1 Leading-order problem

We adopt N fast time scales T(j) with

dT(j)

dt
= Ω(j),

where the frequencies Ω(j) need to be chosen so that the period of oscillation is a constant

on the T(j) scale and N ∈ {1, 2, 3}. We introduce expansions of the form

u ∼ u0(x, y, T(1), T(2), . . . , T(N)) + ǫu1(x, y, T(1), T(2), . . . , T(N)),

v ∼ v0(x, y, T(1), T(2), . . . , T(N)) + ǫv1(x, y, T(1), T(2), . . . , T(N)),

p ∼ p0(x, y, T(1), T(2), . . . , T(N)) + ǫp1(x, y, T(1), T(2), . . . , T(N)),

ω ∼ ω0(x, y, T(1), T(2), . . . , T(N)) + ǫω1(x, y, T(1), T(2), . . . , T(N)),

as ǫ→ 0. At leading order, we obtain

L̂u0 +
∂p0
∂x

= 0, L̂v0 +
∂p0
∂y

= 0,
∂u0
∂x

+
∂v0
∂y

= 0, (4.1)

with the differential operator

L̂ =

N
∑

j=1

Ω(j)
∂

∂T(j)
+ u0

∂

∂x
+ v0

∂

∂y
,

the periodic boundary conditions

[u0, v0, p0](0, y, T(1), . . . , T(N)) = [u0, v0, p0](2π/k, y, T(1), . . . , T(N)),

[u0, v0, p0](x, 0, T(1), . . . , T(N)) = [u0, v0, p0](x, 2π, T(1), . . . , T(N)),

[u0, v0, p0](x, y, T(1), . . . , T(N)) = [u0, v0, p0](x, y, T(1) − nP̂(1), . . . , T(N)),

... (4.2)

[u0, v0, p0](x, y, T(1), . . . , T(N)) = [u0, v0, p0](x, y, T(1), . . . , T(N) − nP̂(N)),
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n is an integer and P̂(j) are constant periods. As in Section 3, quasi-periodicity requires

that none of P̂(1)/Ω(1), P̂(2)/Ω(2) and P̂(3)/Ω(3) are rational multiples of another. The

constants Ω(j) with j ∈ {1, 2, 3} are chosen such that the periodicity conditions (4.2) are

satisfied on the T(j) scale.

4.2 Solvability conditions

The two solvability conditions are
〈

(

∂u0
∂x

)2

+

(

∂u0
∂y

)2

+

(

∂v0
∂x

)2

+

(

∂v0
∂y

)2

− u0f

〉

S

= 0, (4.3)

〈

(m− 1)ωm−2
0

[

(

∂ω0

∂x

)2

+

(

∂ω0

∂y

)2
]

+ ωm−1
0

df

dy

〉

S

= 0, (4.4)

for m ∈ IN and m > 1 in which

〈 . 〉S =
1

Ω

∫ P̂(N)

T(N)=0

. . .

∫ P̂(2)

T(2)=0

∫ P̂(1)

T(1)=0

∫ 2π

y=0

∫ 2π/k

x=0

. dxdydT(1)dT(2) . . . dT(N),

where

Ω =
(2π)2

k

N
∏

j=1

P̂(j).

We note that symmetry conditions, such as the shift-and-rotate symmetry, would make

(4.4) degenerate for odd values of m (see Table 1). The solvability conditions (4.4) for

even positive values of m are necessary to define the manifold for the quasi-periodic

standing waves. The kinetic energy solvability condition (4.3) is also necessary if the

problem for the first correction is to have a solution.

As in Section 3, the vorticity solvability conditions (4.4) present a significant challenge

for numerical methods. For example, if m ≫ 1 and N = 1 for a periodic standing wave,

then triple integrals of Laplace type are required.

5 Single-phased travelling wave

5.1 Introduction

This simpler case with a single phase is used to illustrate the asymptotic structure of

one of Kolmogorov’s attractors analysed in Section 3 and the role played by symmetry.

The single-phased travelling wave corresponds to a relative equilibrium (steady state in a

moving frame). Numerical simulations indicate that single-phased waves travelling in the

positive x-direction dynamically develop shift-and-reflect symmetry which is imposed in

the form (see Table 1)

[u, v](x, π + y, t) = [u,−v]
(

x+
π

k
, π − y, t

)

.

Figure 2(a) shows a snapshot of a travelling wave with R = 15, k = 1 and K = 2 which

exhibits this symmetry. The numerical method described in [38] has been employed on a



12 W. R. Smith et al.

 0  1  2  3  4  5  6
 0

 1

 2

 3

 4

 5

 6

     1.5
       1
     0.5
       0

    -0.5
      -1

    -1.5

 0  1  2  3  4  5  6
 0

 1

 2

 3

 4

 5

 6      1.5
       1
     0.5
       0

    -0.5
      -1

    -1.5

x

x

y

y

(a)

(b)

Figure 2. Comparison of the streamlines for a single-phased travelling wave with

Reynolds number R = 15, aspect ratio k = 1 and forcing wavenumber K = 2 plotted in a

coordinate system moving with the phase velocity U(1) = 1.55× 10−2: (a) direct numeri-

cal simulation of the Navier–Stokes equations (2.1)-(2.3); and (b) asymptotic analysis of

the Navier–Stokes equations in Sections 3 and 5.

80×80mesh. A second single-phased wave travelling in the positive x-direction is found by

the transformation y → y+π as described in [2]. The corresponding waves in the negative

x-direction are generated by the transformation (x, y, u, v) → (−x,−y + π/2,−u,−v).

The set of solutions connected by these two group operations forms a group orbit; only

one member of this group needs to be calculated.

5.2 Analysis

In this subsection, the general analysis of Section 3 is applied to the relative equilib-

rium. We have a single phase (θ(1) = θ). The periodic boundary conditions (3.2) are

supplemented by the shift-and-reflect symmetry condition

[u0, v0](θ, π + y) = [u0,−v0](θ + π, π − y).

We define a stream function ψ(θ, y) by the equations

u0 = U(1) +
∂ψ

∂y
, v0 = −k

∂ψ

∂θ
.

The vorticity equation may be rewritten as

∂ψ

∂y

∂ω0

∂θ
=
∂ψ

∂θ

∂ω0

∂y
(5.1)

in which

ω0 = −k2
∂2ψ

∂θ2
−
∂2ψ

∂y2
, (5.2)
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Figure 3. Scatter plot of the stream function ψ versus the vorticity ω with Reynolds

number R = 15, aspect ratio k = 1 and forcing wavenumber K = 2 for the single-

phased travelling wave in Figure 2(a). The absence of a first integral of (5.1) in the form

ω0 = V (ψ) is demonstrated.

with the periodic boundary conditions

ψ(0, y) = ψ(2π, y), ψ(θ, 0) = ψ(θ, 2π) (5.3)

and shift-and-reflect symmetry condition

ψ(θ, π + y) = −ψ(θ + π, π − y). (5.4)

Before we proceed with the analysis of (5.1)-(5.4), two points are noteworthy: (i) The

phase velocity U(1) has been eliminated from (5.1)-(5.4). The transient problem must

be considered to determine its value. (ii) The absence of a first integral of (5.1) in the

form ω0 = V (ψ) is shown in Figure 3. Therefore there is no maximum-entropy configu-

ration [14, 22, 23] for this travelling wave in contrast to two-dimensional plane Poiseuille

flow [39].

The periodicity in θ allows us to express the stream function as a complex Fourier

series

ψ =

∞
∑

n=−∞

cn(y)e
inθ,

where c−n = c∗n and ∗ denotes complex conjugate. We note that only a finite number

of the cn are non-zero because viscous effects would reappear at leading order when

n = O(R1/2). Using (5.1)-(5.2), we obtain the system of ordinary differential equations

in y
∞
∑

j=−∞

j
dcn−j

dy

[

d2cj
dy2

− k2j2cj

]

=

∞
∑

j=−∞

(n− j)cn−j

[

d3cj
dy3

− k2j2
dcj
dy

]

(5.5)

for n ∈ IN. The periodic boundary conditions and the shift-and-reflect symmetry condi-

tions become cn(0) = cn(2π), cn(π−y) = −cn(π+y) if n is even and cn(π−y) = cn(π+y)

if n is odd. The third-order ordinary differential equations (5.5) have only two boundary

conditions for each n ∈ IN. One solvability condition (3.9) for n = 0 and two solvabil-

ity conditions (3.9) for each value of n 6= 0 are required to ensure a unique solution is
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obtained. The solution determined in this manner must also satisfy the kinetic energy

solvability condition (3.8).

5.3 Numerical method

The numerical method is based on an approximate solution of the leading-order problem

in the form of a truncated double Fourier series. The periodicity boundary conditions (5.3)

and shift-and-reflect symmetry condition (5.4) will be exactly satisfied by this series, but

equations (3.8), (3.9) and (5.1) will not. The truncated double Fourier series is

ψ =

neven
∑

n=0

sodd
∑

s=1

ans sin(sy) cos(2nθ) +

neven
∑

n=1

sodd
∑

s=1

bns sin(sy) sin(2nθ)

+

nodd
∑

n=0

seven
∑

s=0

cos(sy) [cns cos((2n+ 1)θ) + dns sin((2n+ 1)θ)] , (5.6)

where the coefficients ans, bns, cns and dns parameterize an M -dimensional phase space

in which

M = sodd(2neven + 1) + 2(seven + 1)(nodd + 1).

In order to determine these M unknowns, we require M equations. Using the orthogo-

nality properties of circular functions, we require the following equations to hold in order

to satisfy (5.1):

∫ 2π

y=0

∫ 2π

θ=0

{

∂ψ

∂y

∂ω0

∂θ
−
∂ψ

∂θ

∂ω0

∂y

}

sin(sy) cos(2nθ)dθdy = 0,

for n = 0, . . . , neven and s = 1, . . . , sodd − 1 and

∫ 2π

y=0

∫ 2π

θ=0

{

∂ψ

∂y

∂ω0

∂θ
−
∂ψ

∂θ

∂ω0

∂y

}

sin(sy) sin(2nθ)dθdy = 0,

for n = 1, . . . , neven and s = 1, . . . , sodd − 1. Similar algebraic equations are formulated

for the third sum in (5.6). In total, we have r equations of this form in which

r = (sodd − 1)(2neven + 1) + 2seven(nodd + 1).

An r-dimensional manifold is now constructed using the M − r solvability condi-

tions (3.9). We define a vector function on the phase space as follows

Φ = (Φ1,Φ2, . . . ,ΦM−r)

in which Φ1 is the left-hand side of (3.9) with m = 2, Φ2 is the left-hand side of (3.9) with

m = 4, . . . , ΦM−r is the left-hand side of (3.9) with m = 2(M − r). The M − r equations

given by Φ = 0 complete the system of M equations. We note that the equation Φ = 0

describes an r-dimensional manifold in the M -dimensional phase space.

The double integrals above are performed using the NAG routine D01EAF which

employs an adaptive subdivision strategy and the resulting system of nonlinear algebraic

equations is solved via the modified Powell hybrid method in NAG routine C05NBF.
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5.4 Numerical results

We now seek a comparison with the direct numerical solution shown in Figure 2(a) for

the single-phased travelling wave at R = 15, k = 1 and K = 2 (see Figure 1). In order

to gain suitable resolution in (5.6), we adopt neven = 2, nodd = 1, seven = 4 and sodd =

4 which corresponds to a truncation of the order of R1/2, a 31-dimensional manifold

and a 40-dimensional phase space. This resolution may be evaluated by considering the

numerical error in the kinetic energy solvability equation (3.8), which is 2.6 × 10−2 for

this truncation. The prediction of the travelling wave is shown in Figure 2(b). The stream

function has been plotted with the same contours as in Figure 2(a) in order to facilitate

comparison. The agreement between Figures 2(a) and 2(b) is remarkable given that the

next term in the expansion is O(1/R). In fact, the errors appear at O(1/R2).

6 Two-phased travelling wave

6.1 Introduction

We are now in a position to investigate how the asymptotic structure of the single-phased

travelling wave in Section 5 is transformed by the Hopf bifurcation at a Reynolds num-

ber of approximately 22 (see Figure 1). The two-phased travelling wave corresponds to

a relative periodic orbit (a flow which is periodic in a moving frame). In the Carte-

sian coordinate system, a relative periodic orbit is a time-dependent velocity field which

satisfies

q(x, y, t+ T ) = q(x+∆x, y, t), (6.1)

for constant period T and constant spatial translation ∆x. Furthermore numerical sim-

ulations show that a two-phased wave travelling in the positive x-direction will have the

following spatio-temporal symmetry (see Table 1)

[u, v](x, π + y, t) = [u,−v]

(

x+
π

k
, π − y, t+

T

2

)

. (6.2)

Three other two-phased travelling waves may be generated by the same transformations

as described for single-phased travelling waves in Section 5.1 and in [2].

6.2 Analysis

The general analysis of Section 3 is now applied to the relative periodic orbit with N = 2.

We have the shift-and-reflect symmetry condition in the second phase

[u0, v0](θ(1), θ(2), π + y) = [u0,−v0]

(

θ(1), θ(2) +
P(2)

2
, π − y

)

,

in which the period P(2) is specified to be

P(2) = 2π

(

1−
U(2)

U(1)

)

. (6.3)

The restriction (6.3) on the period follows from (6.2); it is also consistent with (6.1).

Furthermore, quasi-periodicity requires that U(2)/U(1) is not a rational number. We note
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that it would be incorrect to specify P(2) to be an arbitrary constant in this case even

though it was permitted to specify the period in previous studies [32, 35]. We now redefine

the stream function ψ(θ(1), θ(2), y) by the equations

u0 = U(1) +
∂ψ

∂y
, v0 = −k

(

∂ψ

∂θ(1)
+

∂ψ

∂θ(2)

)

.

The nonlinear eigenvalue problem, which determines the two-phased travelling wave, is

given by

∂ψ

∂y

(

∂ω0

∂θ(1)
+

∂ω0

∂θ(2)

)

+ λ
∂ω0

∂θ(2)
=
∂ω0

∂y

(

∂ψ

∂θ(1)
+

∂ψ

∂θ(2)

)

, (6.4)

in which the eigenvalue λ = U(1) − U(2) and

ω0 = −k2

(

∂2ψ

∂θ2(1)
+ 2

∂2ψ

∂θ(1)∂θ(2)
+

∂2ψ

∂θ2(2)

)

−
∂2ψ

∂y2
, (6.5)

with the periodic boundary conditions

ψ(0, θ(2), y) = ψ(2π, θ(2), y), (6.6 a)

ψ(θ(1), 0, y) = ψ(θ(1), P(2), y), (6.6 b)

ψ(θ(1), θ(2), 0) = ψ(θ(1), θ(2), 2π), (6.6 c)

shift-and-reflect symmetry condition in the second phase

ψ(θ(1), θ(2), π + y) = −ψ

(

θ(1), θ(2) +
P(2)

2
, π − y

)

(6.7)

and solvability conditions (3.9).

We now proceed to the analysis of the nonlinear eigenvalue problem. The periodicity

in θ(1) and θ(2) allows us to introduce the complex Fourier series

ψ =
∞
∑

l=−∞

∞
∑

n=−∞

cl,n(y)e
iφl,n ,

where φl,n = lθ(1) + 2πnθ(2)/P(2) and c−l,−n = c∗l,n. We note that only a finite number

of the cl,n are non-zero because viscous effects would appear at leading order when

l = O(R1/2) or n = O(R1/2). Using (6.4)-(6.5), we have for l ∈ IN and n ∈ IN

λ
2πn

P(2)

(

d2cl,n
dy2

− k2A2
l,ncl,n

)

+

∞
∑

r=−∞

∞
∑

s=−∞

Ar,s

(

d2cr,s
dy2

− k2A2
r,scr,s

)

dcl−r,n−s

dy

=

∞
∑

r=−∞

∞
∑

s=−∞

Al−r,n−s

(

d3cr,s
dy3

− k2A2
r,s

dcr,s
dy

)

cl−r,n−s,

in which Al,n = l+2πn/P(2). The boundary conditions become cl,n(0) = cl,n(2π), cl,n(π+

y) = −cl,n(π − y) if n is even and cl,n(π + y) = cl,n(π − y) if n is odd. To complete the

nonlinear eigenvalue problem, we have one solvability condition (3.9) for l = n = 0 and

two solvability conditions (3.9) for every other combination of l and n. Any such solution

must also satisfy the kinetic energy solvability condition (3.8). A numerical solution
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Figure 4. Projections of (A) four unstable single-phased travelling waves and (B) a four

stable two-phased travelling waves onto the (x1, x2) plane. The parameters are Reynolds

number R = 25, aspect ratio k = 1 and forcing wavenumber K = 2 and the numerical

simulation takes place on a 80×80 mesh. Single-phased and two-phased waves are studied

in Sections 3 and 5 and Sections 3 and 6, respectively.

would require the evaluation of triple integrals of Laplace type in (3.9) which is beyond

the scope of this article.

6.3 Direct numerical simulation

A comparison of the stable two-phased travelling waves and unstable single-phased trav-

elling waves is now sought. We adopt the parameters R = 25, k = 1 and K = 2. A direct

numerical simulation is then undertaken on a 80× 80 mesh. The solution approaches a

stable two-phased travelling wave propagating in the positive x-direction. In a similar

manner to [2], we define

x1 =
1

2π2

2π
∫

y=0

2π
∫

x=0

u sin(y) dxdy, x2 =
1

2π2

2π
∫

y=0

2π
∫

x=0

u cos(y) dxdy.

Figure 4 shows a two-dimensional projection of phase space in which this two-phased

wave is the figure-of-eight shape in x2 > 0. A second stable two-phased wave travelling

in the positive x-direction is found by the transformation y → y + π (shown in x2 < 0

in Figure 4). The corresponding waves in the negative x-direction are generated by the

transformation (x, y, u, v) → (−x,−y + π/2,−u,−v), these being shown in x1 > 0 and

x1 < 0 in Figure 4.

For comparison, unstable single-phased travelling waves are evaluated at the same

Reynolds number using the asymptotic approach in Section 5. We require neven = 2,

nodd = 2, seven = 5 and sodd = 5 in (5.6) which corresponds to a truncation of the

double Fourier series of the order of R1/2, a 50-dimensional manifold and a 61-dimensional

phase space. The resolution may be assessed by considering the numerical error in the

kinetic energy solvability equation (3.8), which is 3.6 × 10−2 for this truncation. The

other three travelling waves are generated by using the symmetries. These four unstable

non-wandering sets are also shown in Figure 4.

The stable two-phased travelling waves and unstable single-phased travelling waves in
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Figure 4 represent two solution branches. The two-phased waves originated at a super-

critical Hopf bifurcation from the branch of single-phased waves and, at this bifurcation,

the single-phased waves have lost their stability (R = 22 as shown in Figure 1). The two

solution branches may be seen to have moved apart as the Reynolds number increased

from R = 22 to R = 25. If we adopt α =
√

x21 + x22 as a measure of (local) amplitude,

then the amplitude of the single-phased wave is always greater than the amplitude of the

two-phased wave. Amplitudes are governed by the solvability conditions (3.9) for both

single-phased and two-phased waves.

7 Chaotic/turbulent attractor

Ladyzhenskaya [17] established the existence of the chaotic or turbulent attractor for the

two-dimensional Navier–Stokes equations. The asymptotic analysis in this article does

not apply directly to the chaotic or turbulent attractor. Our indirect approach exploits

the well-known fact that the invariant manifold of these attractors must contain any

unstable non-wandering sets. For sufficiently high Reynolds number, after the bifurcation

to chaotic flow, these unstable non-wandering sets not only comprise the families of

travelling and standing waves studied in Sections 3 and 4, but also any other unstable

travelling and standing waves in phase space. Provided the following conditions hold

(i) the leading-order problem is governed by the Euler equations; and

(ii) an appropriate symmetry exists to eliminate the trivial solvability conditions;

then the equations (3.8)-(3.9) and (4.3)-(4.4) are necessary conditions to describe these

travelling and standing waves. Therefore, the invariant manifold of the chaotic or turbu-

lent attractor must encompass the manifolds given by (3.8)-(3.9) and (4.3)-(4.4). As these

non-wandering sets in the invariant manifold are unstable, it should be borne in mind

that the manifolds (3.8)-(3.9) and (4.3)-(4.4) may have more than three fundamental

frequencies; that is, N > 3 in Sections 3 and 4.

Based on our asymptotic analysis, we conjecture that the invariant manifold for the

chaotic or turbulent attractor is defined by

lim
τ→∞

I1(τ) = lim
τ→∞

I2(τ ;m) = 0, (7.1)

in which

I1(τ) ≡

〈

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂v

∂x

)2

+

(

∂v

∂y

)2

− uf

〉

,

I2(τ ;m) ≡

〈

(m− 1)ωm−2

[

(

∂ω

∂x

)2

+

(

∂ω

∂y

)2
]

+ ωm−1df

dy

〉

and

〈 . 〉 =
1

τ

∫ τ

t=0

∫ 2π

y=0

∫ 2π

x=0

. dxdydt,

where m = 2, 4, 6, . . . , κ. The upper bound κ arises from the finite number of degrees of

freedom required to describe the attractor. In the case of the turbulent attractor, the

number of degrees of freedom in a domain of size (L∗/k)× L∗ may be assumed to be of
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the order of

ζ =
L∗ 2

λ2Kk
,

in which λK is Kraichnan’s length. The upper bound κ is itself bounded above by ζ, but

κ will be much less than ζ in practice.

The necessity of conditions (7.1) may be seen by considering the equations

∂E

∂t
+

∂

∂x
(u[p+ E]) +

∂

∂y
(v[p+ E]) = ǫ

{

∂

∂x

(

u
∂u

∂x
+ v

∂v

∂x

)

+
∂

∂y

(

u
∂u

∂y
+ v

∂v

∂y

)

−

(

∂u

∂x

)2

−

(

∂u

∂y

)2

−

(

∂v

∂x

)2

−

(

∂v

∂y

)2

+ uf

}

, (7.2)

∂

∂t
(ωm) +

∂

∂x
(uωm) +

∂

∂y
(vωm) = ǫm

{

∂

∂x

(

ωm−1 ∂ω

∂x

)

+
∂

∂y

(

ωm−1∂ω

∂y

)

− (m− 1)ωm−2

[

(

∂ω

∂x

)2

+

(

∂ω

∂y

)2
]

− ωm−1df

dy

}

. (7.3)

Using periodicity, we integrate (7.2)-(7.3) to obtain

1

τ

∫ 2π

y=0

∫ 2π

x=0

E(x, y, τ) − E(x, y, 0) dxdy = −ǫI1(τ), (7.4)

1

τ

∫ 2π

y=0

∫ 2π

x=0

ω(x, y, τ)m − ω(x, y, 0)m dxdy = −ǫmI2(τ ;m). (7.5)

Provided the integrals on the left-hand side of (7.4)-(7.5) remain finite for large τ , the

left-hand side tends to zero as τ tends to infinity and equations (7.1) are necessary

conditions. Hence, the invariant manifold given by (7.1) bounds the chaotic or turbulent

attractor in phase space.

8 Summary and conclusions

In this article, we have investigated the high-Reynolds-number asymptotic structure of

the laminar attractors in a two-dimensional Kolmogorov flow. At leading order, the at-

tractors under study are assumed to be governed by the Euler equations. In this case, we

found no evidence for the existence of a first integral in the form of a maximum-entropy

configuration. At the next order, solvability conditions suppressing secular terms have

been determined. We found that these conditions correspond to a countably infinite

number of vorticity equations and a single kinetic energy equation. In this case, a finite

number of the vorticity solvability conditions determined a manifold. For each laminar

attractor, the Euler equations had to be solved on this manifold, subject to the appropri-

ate periodicity and symmetry conditions. Viscosity limited the dimension of phase space

via the smallest scales and, in each case, the manifold was of almost the same dimension

as its underlying phase space which made visualization difficult.

The analysis of single-phased and multi-phased travelling waves has revealed a novel

mathematical structure. For the single-phased travelling wave, we showed that the phase
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velocity is determined by the integral conservation law for kinetic energy and is com-

pletely independent of the detailed structure of the solution. Thus, we have discovered a

standard travelling wave of the first kind. For the multi-phased travelling wave, we found

that the first phase velocity is still determined by the integral conservation law for kinetic

energy and remains independent of the exact structure of the solution. However, in this

case, the integral conservation law is insufficient for the evaluation of subsequent phase

velocities. We demonstrated that these subsequent phase velocities can be determined as

eigenvalues in the process of finding the shape and form of the solution. In summary, the

first phase velocity corresponds to a travelling wave of the first kind, whereas the other

phase velocities behave consistently with travelling waves of the second kind.

As demonstrated in the course of our analysis, the effects of viscosity can be used

not only to evaluate the smallest scales, but also to determine the amplitude of the flow

via the manifold. We show that the shape and form of the flow is governed entirely by

the inertial effects at leading order. Furthermore, there are two clear indications that the

viscous terms can be entirely eliminated at order 1/R by the solvability conditions: (i) the

errors in the cross correlation in Table 1 of [38] are of the order of 1/R2; and (ii) the

agreement between direct numerical simulation and asymptotic analysis in Figure 2 is

also of the order of 1/R2.

The comparison of our analytical predictions for evaluating the stable single-phased

travelling wave with the direct numerical simulation of the Navier–Stokes equations has

been undertaken, the agreement being excellent. We drew two key conclusions from our

comparison. Firstly, the solvability conditions are not only necessary, but also sufficient

for the first correction to have a solution, provided we assume that the solvability con-

ditions correspond to reformulations of (2.1)-(2.2). Secondly, the proposed asymptotic

structure of the laminar attractors of the Navier–Stokes equations has been numerically

validated. The first conclusion also served to confirm the sufficiency of the modulation

equations in our previous analysis of two-dimensional plane Poiseuille flow [39].

We summarize our results on the invariant manifolds of laminar attractors. Our three

assumptions are as follows:

(i) The leading-order problem is governed by the Euler equations.

(ii) An appropriate symmetry exists to eliminate the trivial solvability conditions.

(iii) The solvability conditions correspond to reformulations of (2.1)-(2.2).

Assumptions (i) and (ii) are required to show necessity. Furthermore, if we also have

assumption (iii), then we may establish sufficiency. Given these three assumptions, the

invariant manifolds of multi-phased travelling waves and quasi-periodic standing waves

have been identified as (3.8)-(3.9) and (4.3)-(4.4), respectively. We note that these trav-

elling waves and standing waves will not only comprise those involved in the transition

process, but also any others of this kind in phase space.

For sufficiently high Reynolds number, after the bifurcation to chaotic flow, all of

the multi-phased travelling waves and quasi-periodic standing waves become unstable

non-wandering sets. Taking into account that the invariant manifold of the chaotic and

turbulent attractor must contain these unstable non-wandering sets and based on our

asymptotic analysis of the manifolds of these sets, necessary conditions have been iden-
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tified to enable us to bound the invariant manifold of the chaotic and turbulent flow in

phase space. These conditions constitute a finite number of vorticity conditions and a

single kinetic energy condition. We observe that, for more general flows, there should

also be a necessary condition for conservation of mass and two necessary conditions for

conservation of momentum.
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