
Proving Opacity via Linearizability:
A Sound and Complete Method

Alasdair Armstrong1, Brijesh Dongol1, and Simon Doherty2

1 Brunel University London, UK
2 University of Sheffield, UK

Abstract. Transactional memory (TM) is a mechanism that manages thread syn-
chronisation on behalf of a programmer so that blocks of code execute with the
illusion of atomicity. The main safety criterion for transactional memory is opac-
ity, which defines conditions for serialising concurrent transactions.
Verifying opacity is complex because one must not only consider the orderings
between fine-grained (and hence concurrent) transactional operations, but also
between the transactions themselves. This paper presents a sound and complete
method for proving opacity by decomposing the proof into two parts, so that each
form of concurrency can be dealt with separately. Thus, in our method, verifi-
cation involves a simple proof of opacity of a coarse-grained abstraction, and a
proof of linearizability, a better-understood correctness condition. The most dif-
ficult part of these verifications is dealing with the fine-grained synchronization
mechanisms of a given implementation; in our method these aspects are isolated
to the linearizability proof. Our result makes it possible to leverage the many
sophisticated techniques for proving linearizability that have been developed in
recent years. We use our method to prove opacity of two algorithms from the liter-
ature. Furthermore, we show that our method extends naturally to weak memory
models by showing that both these algorithms are opaque under the TSO mem-
ory model, which is the memory model of the (widely deployed) x86 family of
processors. All our proofs have been mechanised, either in the Isabelle theorem
prover or the PAT model checker.

1 Introduction

Transactional Memory (TM) provides programmers with an easy-to-use synchronisa-
tion mechanism for concurrent access to shared data. The basic mechanism is a pro-
gramming construct that allows one to specify blocks of code as transactions, with
properties akin to database transactions [16]. Recent years have seen an explosion of
interest in TM, leading to the implementation of TM libraries for many programming
languages (including Java and C++), compiler support for TM (G++ 4.7) and hard-
ware support (e.g., Intel’s Haswell processor). This widespread adoption coupled with
the complexity of TM implementations makes formal verification of TM an important
problem.

The main safety condition for TM is opacity [14, 15], which defines conditions for
serialising (concurrent) transactions into a sequential order and specifies which data
values transactions may read. A direct proof of opacity must somehow construct an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

appropriate serialisation of the transactions. This is complicated by the fact that trans-
actions are not constrained to read the most recently committed value at any given ad-
dress. Because of this, several “snapshots” of the transactional memory must be made
available to each transaction.

This situation may be contrasted with the well-known correctness condition lin-
earizability [17]. Unlike opacity, linearizability proofs only need to consider a single
value of the abstract object. Operations never “look back in time” to some earlier state,
and linearizability proofs are therefore less complex. Furthermore, there is a rich litera-
ture on the verification of linearizability (see [12] for a survey), whereas the verification
of opacity has received much more limited attention. Techniques exist for verifying
linearizability using data-refinement [10, 25], separation logic and other program log-
ics [27, 6], and model-checking [23, 4, 5]. With the possible exception of data refine-
ment, none of these techniques are available for the verification of opacity.

These observations motivate us to explore methods for recasting the problem of
verifying opacity to that of verifying linearizability, and this paper presents one such
method. Briefly, our method involves the construction of a coarse-grained abstraction
(CGA) that serves as an intermediate specification between the TM implementation to
be verified and opacity itself. Our method requires us to prove that this CGA is opaque.
But, as we shall see, the CGA features a coarse grain of atomicity and a simplified state
space, relative to the original implementation. These features make verifying opacity
of the CGA very straightforward. Importantly, we do not need to consider the complex
interleaving and fine-grained synchronisation mechanisms of the original implementa-
tion in this part of the proof. Our method also requires us to prove the linearizability
of the original TM implementation where the CGA becomes the abstract specification.
Only at this point is it necessary to consider the fine-grained synchronization of the ac-
tual TM implementation. But for this linearizability proof we can leverage the powerful
techniques for verifying linearizability that have been developed in recent years.

We adapt a result from [9] to prove that our method is sound: any verification us-
ing our technique guarantees opacity of the original algorithm. We also show that our
method is complete: for any opaque TM implementation, there must exist an opaque
CGA, such that the original implementation is linearizable with respect to the CGA.
We use our method to prove opacity of two TM implementations: the Transactional
Mutex Lock [7], and the more sophisticated and practical NORec algorithm [8]. In ad-
dition, we show that our method extends to weak memory models: we verify opacity of
both TML and NORec under TSO memory.

For full details of our mechanisations see our extended report [2], which includes
all mechanisations, and further descriptions of our proofs.

2 Transactional Memory

In this section, we describe the interface provided by the TM abstraction, and give an
example of a transactional memory algorithm: the simple but efficient Transactional
Mutex Lock (TML) by Dalessandro et al. [7]. Then we formalise opacity as defined
by Guerraoui and Kapalka [15]. Our formalisation mainly follows Attiya et al. [3],

Listing 1 The Transactional Mutex Lock (TML) algorithm
1: procedure INIT

2: glb ← 0

3: procedure TXBegint

4: do loct← glb
5: until even(loct)

6: procedure TXCommitt

7: if odd(loct) then
8: glb ← loct + 1

9: procedure TXReadt(a)
10: vt←mem(a)
11: if glb = loct then
12: return vt
13: else abort

14: procedure TXWritet(a, v)
15: if even(loct) then
16: if !cas(&glb, loct, loct+1)
17: then abort
18: else loct++
19: mem(a)← v

but we explicitly include the prefix-closure constraint to ensure consistency with other
accepted definitions [21, 15, 16].

To support transactional programming, TM provides a number of operations3 to
developers: operations to start (TXBegin) or to end a transaction (TXCommit), and
operations to read or write shared data (TXRead, TXWrite). These operations can be
invoked from within a program (possibly with some arguments, e.g., the address to be
read) and then will return with a response. Except for operations that start transactions,
all other operations can respond with a special abort value, thereby aborting the whole
transaction.

Transactional Mutex Lock (TML). The TML algorithm is presented in Listing 1. It pro-
vides the four operations, but operation TXCommit in this algorithm never responds
with abort. TML adopts a very strict policy for synchronisation among transactions: as
soon as one transaction has successfully written to an address, other transactions run-
ning concurrently will be aborted if they subsequently invoke a TXRead or TXWrite
operation on any address. For synchronisation, TML uses a global counter glb (ini-
tially 0), and each transaction t uses a local variable loct to store a local copy of glb.
Variable glb records whether there is a live writing transaction, i.e., a transaction which
has started, has neither committed nor aborted, and has executed a write operation. More
precisely, glb is odd if there is a live writing transaction, and even otherwise. Initially,
there are no live writing transactions and thus glb is even.

Histories. As is standard in the literature, opacity is defined over histories, which are
sequences of events that record all interactions between the TM and its clients. Each
event is either the invocation or response of some TM operation. Possible invocations
and their matching response events are given by the function M . For transaction t,
address a and value v (taken from a set V), we have

M(TXBegint) = {TXBegint}
M(TXCommitt) = {TXCommitt,TXAbortt}

M(TXWritet(a, v)) = {TXWritet,TXAbortt}
M(TXReadt(a)) = {TXReadt(v) | v ∈ V } ∪ {TXAbortt}

3 In this paper, we use the word ‘operation’ in two senses. Here, we mean ‘operation’ as a
component of the TM interface. Later, we use ‘operation’ to mean the instance of an operation
within an execution. Both senses are standard, and any ambiguity is resolved by the context.

We let TXBegint denote the two-element sequence 〈TXBegint,TXBegint〉,
let TXWritet(x, v) denote 〈TXWritet(x, v),TXWritet〉 and TXReadt(x, v)
denote 〈TXReadt(x),TXReadt(v)〉, and finally let TXCommitt denote
〈TXCommitt,TXCommitt〉. We use notation ‘·’ for sequence concatenation.

Example 1. The following history is a possible execution of the TML, where the ad-
dress x (initially 0) is accessed by two transactions 2 and 3 running concurrently.

〈TXBegin3,TXBegin2,TXBegin3,TXBegin2,TXWrite3(x, 4)〉 ·
TXRead2(x, 0) · 〈TXWrite3〉 · TXCommit3

Note that operations overlap in this history. For example, the invocation TXBegin2

appears between the invocation and response of transaction 3’s TXBegin operation.
This overlapping means that this history represents an execution with both concurrent
transactions, and concurrent operations. There is an important subset of histories, called
alternating histories that do not have overlapping operations. That is, a history h is
alternating if h = ε (the empty sequence) or h is an alternating sequence of invocation
and matching response events starting with an invocation and possibly ending with an
invocation. Alternating histories represent executions in which the TM operations are
atomic. Note that transactions may still be interleaved in an alternating history; only
concurrency between operations is prohibited.

For a history h = 〈h1, h2, . . . hn〉, let h|t be the projection onto the events of trans-
action t and h[i..j] be the sub-sequence of h from hi to hj inclusive. We will assume
that h|t is alternating for any history h and transaction t. Note that this does not neces-
sarily mean h is alternating itself. Opacity is defined for well-formed histories, which
formalise the allowable interaction between a TM implementation and its clients. A
projection h|t of a history h onto a transaction t is well-formed iff it is ε or it is an
alternating sequence of t-indexed invocations and matching responses, beginning with
TXBegint, containing at most one each of TXBegint and TXCommitt, and contain-
ing no events after any TXCommitt or TXAbortt event. Furthermore, h|t is com-
mitted whenever the last event is TXCommitt and aborted whenever the last event
is TXAbortt. In these cases, the transaction h|t is completed, otherwise it is live. A
history is well-formed iff h|t is well-formed for every transaction t. The history in Ex-
ample 1 is well-formed, and contains a committed transaction 3 and a live transaction 2.

Opacity. The basic principle behind the definition of opacity (and similar definitions) is
the comparison of a given concurrent history against a sequential one. Opacity imposes
a number of constraints, that can be categorised into three main types:

– ordering constraints that describe how events occurring in a concurrent history may
be sequentialised;

– semantic constraints that describe validity of a sequential history hs; and
– a prefix-closure constraint that requires that each prefix of a concurrent history can

be sequentialised so that the ordering and semantic constraints above are satisfied.

To help formalise these opacity constraints we introduce the following notation. We
say a history h is equivalent to a history h′, denoted h ≡ h′, iff h|t = h′|t for all
transactions t ∈ T . Further, the real-time order on transactions t and t′ in a history h

is defined as t ≺h t
′ if t is a completed transaction and the last event of t in h occurs

before the first event of t′.
Sequential history semantics. We now formalise the notion of sequentiality for transac-
tions, noting that the definitions must also cover live transactions. A well-formed history
h is non-interleaved if transactions do not overlap. In addition to being non-interleaved,
a sequential history has to ensure that the behaviour is meaningful with respect to the
reads and writes of the transactions. For this, we look at each address in isolation and
define the notion of a valid sequential behaviour on a single address. To this end, we
model shared memory by a set A of addresses mapped to values denoted by a set V .
Hence the type A→ V describes the possible states of the shared memory.

Definition 1 (Valid history). Let h = 〈h0, . . . , h2n−1〉 be an alternating history end-
ing with a response (recall that an alternating history is a sequence of alternating invo-
cation and response events starting with an invocation). We say h is valid if there exists
a sequence of states σ0, . . . , σn such that σ0(a) = 0 for all addresses a, and for all i
such that 0 ≤ i < n and t ∈ T :

1. if h2i = TXWritet(a, v) and h2i+1 = TXWritet then σi+1 = σi[a := v]; and
2. if h2i = TXReadt(a) and h2i+1 = TXReadt(v) then both σi(a) = v and σi+1 =
σi hold; and

3. for all other pairs of events σi+1 = σi.

A correct TM must ensure that all reads are consistent with the writes of the exe-
cuting transaction as well as all previously committed writes. On the other hand, writes
of aborted transactions must not be visible to other transactions. We therefore define a
notion of legal histories, which are non-interleaved histories where only the writes of
successfully committed transactions are visible to subsequent transactions.

Definition 2 (Legal history). Let hs be a non-interleaved history, i an index of hs, and
hs′ be the projection of hs[0..(i−1)] onto all events of committed transactions plus the
events of the transaction to which hsi belongs. We say hs is legal at i whenever hs′ is
valid. We say hs is legal iff it is legal at each index i.

This allows us to define sequentiality for a single history, which we additionally lift to
the level of specifications.

Definition 3 (Sequential history). A well-formed history hs is sequential if it is non-
interleaved and legal. We let S denote the set of all well-formed sequential histories.

Transactional history semantics. A given history may be incomplete, i.e., it may contain
pending operations, represented by invocations that do not have matching responses.
Some of these pending operations may be commit operations, and some of these com-
mit operations may have taken effect: that is, the write operations of a commit-pending
transaction may already be visible to other transactions. To help account for this pos-
sibility, we must complete histories by (i) extending a history by adding responses to
pending operations, then (ii) removing any pending operations that are left over. For
(i), for each history h, we define a set extend(h) that contains all histories obtained
by adding to h response events matching any subset of the pending invocations in h.
For (ii), for a history h, we let [h] denote the history h with all pending invocations
removed.

Definition 4 (Opaque history, Opaque object). A history h is final-state opaque iff
for some he ∈ extend(h), there exists a sequential history hs ∈ S such that [he] ≡
hs and furthermore ≺[he]⊆≺hs. A history h is opaque iff each prefix h′ of h is final-
state opaque; a set of histories H is opaque iff each h ∈ H is opaque; and a TM
implementation is opaque iff its set of histories is opaque.

In Definition 4, conditions [he] ≡ hs and ≺[he]⊆≺hs establish the ordering constraints
and the requirement that hs ∈ S ensures the memory semantics constraints. Finally, the
prefix-closure constraints are ensured because final-state opacity is checked for each
prefix of [he].

Example 2. The history in Example 1 is opaque; a corresponding sequential history is

TXBegin2 · TXRead2(x, 0) · TXBegin3 · TXWrite3(x, 4) · TXCommit3
Note that reordering of TXRead2(x, 0) and TXBegin3 is allowed because their corre-
sponding transactions overlap (even though the operations themselves do not).

3 Proving opacity via linearizability

In this section, we describe our method in detail, and we illustrate it by showing how to
verify the simple TML algorithm presented in Section 2. Briefly, our method proceeds
as follows.

1. Given a TM implementation, we construct a coarse-grained abstraction (CGA).
This intermediate abstraction supports the standard transactional operations (begin,
read, write and commit), and the effect of each operation is atomic. The states of
this abstraction are simplified versions of the states of the original implementation,
since the variables that are used for fine-grained synchronisation can be removed.

2. We prove that this CGA is opaque. The coarse-grained atomicity and simplifed
state space of this abstraction mean that this opacity proof is much simpler than the
direct opacity proof of the original implementation. Importantly, we do not need to
consider the fine-grained synchronisation mechanisms of the original implementa-
tion in this part of the proof.

3. We prove that the original TM implementation is linearizable with respect to the
CGA. Only at this point is it necessary to consider the complex interleaving and
fine-grained synchronization of the actual TM implementation. As we noted in the
introduction, for this linearizability proof we can leverage the powerful techniques
for verifying linearizability that have been developed in recent years.

Formally, we regard our TM implementations, and our CGAs as sets of histories (con-
sistent with the definition of opacity). The histories of the TM implementation must
model all possible behaviours of the algorithm, and therefore some of these histories
may contain overlapping operations. However, because the operations of the CGA are
atomic, all the histories of the CGA are alternating.

Because the histories of each CGA are alternating, it is possible to prove that the
original TM implementation is linearizable with respect to the CGA. To show how
this works, we briefly review the definition of linearizability [17]. As with opacity, the

formal definition of linearizability is given in terms of histories: for every concurrent
history an equivalent alternating history must exist that preserves the real-time order
of operations of the original history. The real-time order on operations4 o1 and o2 in a
history h is given by o1 ≺≺h o2 if the response of o1 precedes the invocation of o2 in h.

As with opacity, the given concurrent history may be incomplete, and hence, may
need to be extended using extend and all remaining pending invocations may need to
be removed. We say lin(h, ha) holds iff both [h] ≡ ha and ≺≺[h]⊆≺≺ha hold.

Definition 5 (Linearizability). A history h is linearized by alternating history ha iff
there exists a history he ∈ extend(h) such that lin(he, ha). A concurrent object is
linearizable with respect to a set of alternating histories A (in our case a CGA) if for
each concurrent history h, there is a history ha ∈ A that linearizes h.

In the remainder of this section, we flesh out our technique by verifying the TML
algorithm presented in Section 2.

A coarse-grained abstraction Pseudocode describing the coarse-grained abstraction
that we use to prove opacity of the TML is given in Listing 2. Like TML in Listing 1,
it uses meta-variables loct (local to transaction t) and glb (shared by all transactions).
Each operation is however, significantly simpler than the TML operations, and performs
the entire operation in a single atomic step. The code for each operation is defined by
wrapping the original code in an atomic block. However, the atomicity of the resulting
method means that further simplifications can be made. For example, in the TXRead
operation, the local variable vt is no longer needed, and so can be removed. Likewise,
CAS of the TXWrite operation is no longer required, and can also be dropped.

This basic strategy of making each operation atomic and then simplifying away any
unnecessary state is sufficient for the examples we have considered. Indeed, when we
apply our technique to the substantially more complicated NoRec algorithm, we find
that the simplification step removes a great deal of complexity, including the entirety of
NoRec’s transactional validation procedure (Section 5).

Finding a CGA for any given TM algorithm is generally straightforward. We can
provide three simple steps, or heuristics, that can be applied to find a useful CGA for
any transactional memory algorithm. (1) We make every operation atomic in a naive
way, essentially by surrounding the code in atomic blocks. (2) Much of the complex-
ity in a transactional memory algorithm is often fine-grained concurrency control, such
as locking, ensuring that each operation remains linearizable. This fine grained concur-
rency control can be removed in the CGA. (3) Concurrent/linearizable data structures in
the implementation of the algorithm can be replaced by simple abstractions, that need
not be implementable. For example, in the NORec algorithm (see Section 5) the write
set and read sets are replaced with ordinary sets, and the validation routine becomes a
predicate over these sets.

Opacity of the coarse-grained abstraction We turn now to the question of proving that
our CGA is opaque. While our TM implementations and CGAs are sets of histories,
it is convenient to define these models operationally using labelled transition systems

4 Note: this differs from the real-time order on transactions defined in Section 2

Listing 2 TML-CGA: Coarse-grained abstraction of TML
1: procedure INIT

2: glb ← 0

3: procedure ATXBegint

4: atomic
5: await even(glb)
6: loct← glb

7: procedure ATXCommitt

8: atomic
9: if odd(loct) then

10: glb++

11: procedure ATXReadt(a)
12: atomic
13: if glb = loct then
14: return mem(a)
15: else abort

16: procedure ATXWritet(a, v)
17: atomic
18: if glb 6= loct then
19: abort
20: if even(loct) then
21: loct++; glb++
22: mem(a)← v

that generate the appropriate sets of histories (so that the labels of the transition systems
are invocation or response events). We do this for two reasons. First, the algorithms of
interest work by manipulating state, and these manipulations can be mapped directly
to labelled transition systems. The second reason relates to how we we prove that our
CGAs are opaque.

We prove that our CGAs are opaque using techniques described in [11]. This means
we leverage two existing results from the literature: the TMS2 specification by Doherty
et al. [11], and the mechanised proof that TMS2 is opaque by Lesani et al. [21]. Using
these results, it is sufficient that we prove trace refinement (i.e., trace inclusion of visible
behaviour) between TML-CGA and the TMS2 specification. The rigorous nature of
these existing results means that a mechanised proof of refinement against TMS2 also
comprises a rigorous proof of opacity of TML-CGA.

Although TMS2 simplifies proofs of opacity, using it to verify an implementation
still involves a complex simulation argument [20]. On the other hand, using TMS2
to prove opacity of a coarse-grained abstraction (CGA) is simple: the operations of the
CGA are atomic, and hence, each of its operations corresponds exactly one operation of
TMS2. This one-one correspondence also makes the invariants and simulation relations
needed for the proof straightforward to establish. There are at most four main proof
steps to consider, corresponding to the main steps of the TMS2 specification.

Theorem 1. TML-CGA is opaque.

Linearizability against the coarse-grained abstraction Having established opacity of
TML-CGA, we can now focus on linearizability between TML and TML-CGA, which
by Theorem 2 will ensure opacity of TML. As with the opacity part, we are free to use
any of the available methods from the literature to prove linearizability [12]. We opt
for a model-checking approach; part of our motivation is to show that model checking
indeed becomes a feasible technique for verifying opacity.

We use the PAT model checker [26], which enables one to verify trace refinement (in
a manner that guarantees linearizability) without having to explicitly define invariants,
refinement relations, or linearization points of the algorithm. Interestingly, the model
checker additionally shows that, for the bounds tested, TML is equivalent to TML-
CGA, i.e., both produce exactly the same set of observable traces (see Lemma 1 below).

PAT allows one to specify algorithms using a CSP-style syntax [18]. However, in
contrast to conventional CSP, events in PAT are arbitrary programs assumed to execute

atomically — as such they can directly modify shared state, and do not have to com-
municate via channels with input/output events. This enables our transactional memory
algorithms to be implemented naturally. We obtain the following lemma, where con-
stant SIZE denotes the size of the memory (i.e., number of addresses) and constant V
for the possible values in these addresses.

Lemma 1. For bounds N = 3, SIZE = 4, and V = {0, 1, 2, 3}, as well as N = 4,
SIZE = 2, and V = {0, 1}, TML is equivalent to TML-CGA.

4 Soundness and completeness

We now present two key theorems for our proof method. Theorem 2, presented below,
establishes soundness. That is, it states if we have an opaque CGAA (expressed as a set
of alternating histories), and a TM implementation H (expressed as a set of concurrent
histories) such that every history inH is linearizable to a history inA, then every history
in H is opaque. We prove Theorem 2 using the following lemma, which essentially
states our soundness result for individual histories, rather than sets of histories.

Lemma 2 (Soundness per history [9]). Suppose h is a concrete history. For any al-
ternating history ha that linearizes h, if ha is opaque then h is also opaque.

The main soundness theorem lifts this result to sets of histories. Its proof follows from
Lemma 2 in a straightforward manner (see [2] for details).

Theorem 2 (Soundness). Suppose A is a set of alternating opaque histories. Then a
set of histories H is opaque if for each h ∈ H, there exists a history ha ∈ A and an
he ∈ extend(h) such that lin(he, ha).

The next two results establish completeness of our proof method. Theorem 3 states
that given an opaque TM implementationH (expressed as a set of concurrent histories)
we can find a set of alternating opaque histories A such that every history in H can
be linearized to a history in A. Here, A is the CGA of our method. We prove this
theorem using Lemma 3, which essentially states our completeness result for individual
histories.

Lemma 3 (Existence of linearization). If h is an opaque history then there exists an
alternating history ha such that lin(h, ha) and ha is final-state opaque.

Proof. From the assumption that h is opaque, there exists an extension he ∈ extend(h)
and a history hs ∈ S such that [he] ≡ hs and ≺[he]⊆≺hs. Our proof proceeds by
transposing operations in hs to obtain an alternating history ha such that lin(he, ha).
Our transpositions preserve final-state opacity, hence ha is final-state opaque.

We consider pairs of operations ot and ot′ such that ot ≺≺hs ot′ , but ot′ ≺≺[he] ot,
which we call mis-ordered pairs. If there are no mis-ordered pairs, then lin(he, hs), and
we are done. Let ot and ot′ be the mis-ordered pair such that the distance between ot
and ot′ in hs is least among all mis-ordered pairs. Now, hs has the form . . . otgot′
Note that g does not contain any operations of transaction t, since if there were some
operation o of t in g, then because opacity preserves program order and ot ≺≺hs o, we

would have ot ≺≺[he] o. Thus o, ot′ would form a mis-ordered pair of lower distance,
contrary to hypothesis. For a similar reason, g does not contain any operations of t′.
Thus, as long as we do not create a new edge in the opacity order ≺hs, we can reorder
hs to (1) . . . got′ot . . . or (2) . . . ot′otg . . . while preserving opacity. A new edge can be
created only by reordering a pair of begin and commit operations so that the commit
precedes the begin. If ot is not a begin operation, then we choose option (1). Otherwise,
note that ot′ cannot be a commit, because since ot′ ≺≺[he] ot, t′ ≺ t, and thus t could
not have been serialised before t′. Since ot′ is not a commit, we can choose option (2).
Finally, we show that the new history has no new mis-ordered pairs. Assume we took
option (1). Then if there is some o in g such that ot ≺≺[he] o we would have ot′ ≺≺[he] o,
and thus o, ot′ would form a narrower mis-ordered pair. The argument for case (2) is
symmetric. Thus, we can repeat this reordering process and eventually arrive at a final-
state opaque history ha that has no mis-ordered pairs, and thus lin(he, ha). ut

Theorem 3 (Completeness). IfH is a prefix-closed set of opaque histories, then there
is some prefix-closed set of opaque alternating histories A such that for each h ∈ H
there is some h′ ∈ A such that lin(h, ha).

Proof. Let A = {h′.h′ is final-state opaque and ∃h ∈ H.lin(h, h′)}. Note that both
the set of all opaque histories and the set of linearizable histories of any prefix-closed
set are themselves prefix-closed. Thus, A is prefix closed. Because A is prefix-closed,
and each element is final-state opaque, each element of A is opaque. For any h ∈ H,
Lemma 3 implies that there is some ha ∈ A that linearizes h. ut

Note that the proof of Theorem 3 works by constructing the CGA A as a set of alter-
nating histories. To construct the operational model that generates this set, we use the
heuristics described in Section 3.

5 The NORec algorithm

In this section, we show that the method scales to more complex algorithms. In particu-
lar, we verify the NORec algorithm by Dalessandro et al. [8] (see Listing 3), a popular
and performant software TM.

The verification for NORec proceeds as with TML. Namely, we construct a coarse-
grained abstraction, NORec-CGA (see Listing 4), verify that NORec-CGA is opaque,
then show that NORec linearizes to NORec-CGA. As with TML, we do not perform a
full verification of linearizability, but rather, model check the linearizability part of the
proof using PAT. The proof that NORec-CGA is opaque proceeds via forward simula-
tion against a variant of TMS2 (TMS3), which does not require read-only transactions
to validate during their commit, matching the behaviour of NORec more closely. We
have proved (in Isabelle) that despite this weaker precondition for read-only commits,
TMS2 and TMS3 are equivalent by proving each refines the other. Further details of
TMS3 and proofs (including mechanisation) may be found in our extended paper [2].
The following theorem (proved in Isabelle) establishes opacity of NORec-CGA.

Theorem 4. NORec-CGA is opaque.

Listing 3 NORec pseudocode
1: procedure TXBegint

2: do loct← glb
3: until even(loct)

4: procedure Validatet

5: while true do
6: timet← glb
7: if odd(timet) then goto 6
8: for a 7→ v ∈ rdSett do
9: if mem(a) 6= v then abort

10: if timet = glb then return timet

21: procedure TXWritet(a, v)
22: wrSett← wrSett ⊕ {a 7→ v}

23: procedure TXReadt(a)
24: if a ∈ dom(wrSett) then
25: return wrSett(a)

26: vt←mem(a)
27: while loct 6= glb do
28: loct← Validatet

29: vt←mem(a)

30: rdSett← rdSett ⊕ {a 7→ vt}
31: return vt

11: procedure TXCommitt

12: if wrSett = ∅ then return
13: while !cas(glb, loct, loct + 1) do
14: loct← Validatet

15: for a 7→ v ∈ wrSett do
16: mem(a)← v

17: glb ← loct + 2

Listing 4 NORec-CGA: Coarse-grained abstraction of NORec
1: procedure ATXBegint

2: return

3: procedure ATXCommit(t)
4: atomic
5: if wrSett = ∅ then return
6: else if rdSett ⊆ mem then
7: mem ←mem ⊕ wrSett
8: else abort

9: procedure ATXWritet(a, v)
10: wrSett← wrSett ⊕ {a 7→ v}

11: procedure ATXReadt(a)
12: atomic
13: if a ∈ dom(wrSett) then
14: return wrSett(a)
15: else if rdSett ⊆ mem then
16: rdSett ← rdSett ⊕ {a 7→ v}
17: return mem(a)
18: else abort

Next, we have a lemma that is proved via model checking [2].

Lemma 4. For bounds N = 2, SIZE = 2 and V = {0, 1}, NORec is equivalent to
NORec-CGA.

TMS3 and NORec-CGA are similar in many respects. They both use read and write
sets in the same way, and write-back lazily during the commit. The only additional
information needed in the simulation is keeping track of the number of successful com-
mits in NORec-CGA. Thus, the simulation relation used in the proof of Theorem 4
above is straightforward (see [2]). On the other hand, proving opacity of the fine-
grained NoRec implementation directly would be much more difficult as we would
need to concern ourselves with the locking mechanism employed during the commit
to guarantee that the write-back occurs atomically. However, this locking mechanism is
effectively only being used to guarantee linearizability of the NORec commit operation,
so it need not occur in the opacity proof. Lesani et al. have directly verified opacity of

Opacity proofs

NORec-CGA

NORec-TSONORec

NORec2-CGA

NORec2

TML-CGA

TML-TSOTML

TMS2 specification TMS3 specification
Equivalence proof

Linearizability proofs

Fig. 1. Overview of proofs

NORec [20]. In comparison to our approach, they introduce several layers of interme-
diate automata, with each layer introducing additional complexity and design elements
of the NORec algorithm. Overall, their proofs are much more involved than ours.

6 Weak Memory Models

We now demonstrate that our method naturally extends to reasoning about opacity of
TM implementations under weak memory. We will focus on TSO in this Section, but
our arguments and methods could be extended to other memory models. Note that we
cannot employ a data-race freedom argument [1] to show that TML or NORec running
on TSO are equivalent to sequentially consistent versions of the algorithms. This is
because transactional reads can race with the writes of committing transactions (this
is true even when we consider the weaker triangular-race freedom condition of [24]).
This racy behaviour is typical for software transactional memory implementations.

There are two possibilities for verifying our TM algorithms on TSO. (1) Leveraging
a proof of opacity of the implementation under sequential consistency then showing
that the weak memory implementation refines this sequentially consistent implementa-
tion. (2) Showing that the implementation under weak memory linearizes to the coarse-
grained abstraction directly. This approach simply treats an implementation executing
under a particular memory model as an alternative implementation of the CGA algo-
rithm in question.

In this paper, we follow the second approach, which shows that model checking
linearizability of TSO implementations against a coarse-grained abstraction is indeed
feasible. We verify both TML and NORec under TSO within the PAT model checker.

Due to the transitivity of trace inclusion, the proof proceeds by showing that the
concrete implementation that executes using relaxed memory semantics linearizes to
its corresponding coarse-grained abstraction. We use constant BSIZE to bound the
maximum size of the local buffer for each transaction.

Lemma 5. For bounds N = 2, SIZE = 2, BSIZE = 2 and V = {0, 1}, TML under
TSO is equivalent to TML-CGA and NORec under TSO is equivalent to NORec-CGA.

7 Conclusions

Our main contributions for this paper are as follows. (1) We have developed a complete
method for proving opacity of TM algorithms using linearizability. This allows one to

Listing 5 Abstraction used to verify TML in [9] is not opaque
1: procedure Begint

2: return
3: procedure Writet(a, v)
4: atomic
5: return abort or mem(a)← v

6: procedure Committ

7: return
8: procedure Readt(a)
9: atomic

10: return mem(a) or return abort

reuse the vast literature on linearizability verification [12] (for correctness of the fine-
grained implementation), as well as the growing literature on opacity verification (to
verify the coarse-grained abstractions). (2) We have demonstrated our technique using
the TML algorithm, and shown that the method extends to more complex algorithms by
verifying the NORec algorithm. (3) We have developed an equivalent variation of the
TMS2 specification, TMS3 that does not require validation when read-only transactions
commit. Because TMS3 specifies equivalent behaviour to TMS2 while simplifying its
preconditions, it is a preferable model for performing simulation proofs. (4) We have
shown that the decomposition makes it possible to cope with relaxed memory by show-
ing that both TML and NORec are opaque under TSO.

An overview of our proofs is given in Fig. 1. The equivalence proof between TMS2
and TMS3 as well as the opacity proofs between the CGAs and TMS2/3 specifica-
tions have been mechanised in Isabelle, whereas the linearizablity proofs are via model
checking in PAT. We note that during our work, we developed a variation of NORec
(called NORec2) which allows read operations to lookup values in the read set rather
than querying shared memory, and demonstrated that this variation aborts less often
than the existing NORec algorithm. We were able to quickly verify this modified algo-
rithm. For more details, see [2].

Related work. Derrick et al. give a proof method that inductively generates a lin-
earized history of a fine-grained implementation and shows that this linearized history
is opaque [9]. Although checking opacity of a linearized history is simpler than a proof
of opacity of the full concurrent history, one cannot consider their proof method to be a
decomposition because the main invariant of the implementation must explicitly assert
the existence of an opaque history (see Section 7). However, these methods suggest a
crucial insight: that linearizability provides a sound method for proving opacity.

The basic idea of using a linearized history to verify opacity appears in [9], but their
proof technique has little in common with ours. The abstraction that Derrick et al. use to
motivate linearizability is given in Listing 5. Note that the read and commit operations
in this abstraction perform no validation, and this abstraction is not opaque by itself.
Therefore, it cannot be as a genuine intermediate specification. Instead, the steps of this
abstraction are explicitly coupled with the linearization points of the fine-grained TML
implementation, and it is this coupled system that is shown to be opaque. It is currently
unclear if such a method could scale to more complex algorithms such as NORec, or to
include weak memory algorithms.

Lesani and Palsberg have developed a technique that allows opacity to be checked
by verifying an invariant-like condition called markability [22]. Lesani et al. have de-
veloped a second method [20] that proves opacity using the intermediate TMS2 spec-
ification [11, 21] using stepwise refinement against several intermediate layers of ab-
straction. Guerraoui et al. have developed an approach, where a set of aspects of an

algorithm are checked, followed by model checking over a conflict-freedom condition
that implies opacity [13]. Koskinen and Parkinson [19] have a technique where they de-
scribe a push/pull model of transactions, and note that opaque transactions are a special
case of push/pull transactions that do not pull during execution. This allows opacity to
be proven via mapping the algorithm to the rules of the push/pull automata, which are
stated in terms of commutativity conditions. In the context of our work, one could see
such push/pull automata as an alternative to TMS2—one could use their proof technique
to prove that our CGAs are opaque, and then use traditional linearizability verification
techniques. As such, our work allows for an additional degree of proof decomposition.
A key advantage of our method is that it is agnostic as to the exact techniques used for
both the linearizability and opacity verifications, allowing for full verification by any
method, or as in our case a mix of full verification and model-checking.

Experiences. Our experiences suggest that our techniques do indeed simplify proofs of
opacity (and their mechanisation). Opacity of each coarse-grained abstraction is gener-
ally trivial to verify (our proofs are mechanised in Isabelle), leaving one with a proof
of linearizability of an implementation against this abstraction. We emphasise that the
method used for the second step is limited only by techniques for verifying lineariz-
ability. We have opted for a model checking approach using PAT, which enables lin-
earizability to be checked via refinement. It is of course also possible to perform a full
verification of linearizability. Furthermore, we note that we were able to use the model-
checking approach to quickly test small variants of the existing algorithms.

Future work. Our work suggests that to fully verify a TM algorithm using coarse-
grained abstraction, the bottleneck to verification is the proof of linearizability it-
self [12]. It is hence worthwhile considering whether linearizability proofs can be
streamlined for transactional objects. For example, Bouajjani et al. have shown that
for particular inductively-defined data structures, linearizability can be reduced to state
reachability [4]. Exploration of whether such methods apply to transactional objects re-
mains a topic for future work. Establishing this link would be a useful result — it would
allow one to further reduce a proof of opacity to a proof of state reachability.

Acknowledgements. We thank John Derrick for helpful discussions and funding from
EPSRC grant EP/N016661/1.

References

1. Adve, S.V., Aggarwal, J.K.: A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst. 4(6), 613–624 (Jun 1993)

2. Armstrong, A., Dongol, B., Doherty, S.: Reducing Opacity to Linearizability: A Sound
and Complete Method. ArXiv e-prints (Oct 2016), https://arxiv.org/abs/1610.
01004

3. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language perspective on
transactional memory consistency. In: Fatourou, P., Taubenfeld, G. (eds.) PODC ’13. pp.
309–318. ACM (2013)

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state reachabil-
ity. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP. LNCS,
vol. 9135, pp. 95–107. Springer (2015)

5. Cerný, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking of lin-
earizability of concurrent list implementations. In: CAV. LNCS, vol. 6174, pp. 465–479.
Springer (2010)

6. Chakraborty, S., Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability
proofs. Logical Methods in Computer Science 11(1) (2015)

7. Dalessandro, L., Dice, D., Scott, M.L., Shavit, N., Spear, M.F.: Transactional mutex locks.
In: D’Ambra, P., Guarracino, M.R., Talia, D. (eds.) Euro-Par (2). LNCS, vol. 6272, pp. 2–13.
Springer (2010)

8. Dalessandro, L., Spear, M.F., Scott, M.L.: NORec: streamlining STM by abolishing owner-
ship records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP. pp. 67–78. ACM
(2010)

9. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verifying opacity of a
transactional mutex lock. In: FM. LNCS, vol. 9109, pp. 161–177. Springer (2015)

10. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: FORTE. LNCS, vol. 3235, pp. 97–114. Springer (2004)

11. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

12. Dongol, B., Derrick, J.: Verifying linearisability: A comparative survey. ACM Comput. Surv.
48(2), 19 (2015)

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories. Dis-
tributed Computing 22(3), 129–145 (2010)

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chatterjee, S.,
Scott, M.L. (eds.) PPOPP. pp. 175–184. ACM (2008)

15. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lectures on Dis-
tributed Computing Theory, Morgan & Claypool Publishers (2010)

16. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edition. Synthesis Lectures
on Computer Architecture, Morgan & Claypool Publishers (2010)

17. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS 12(3), 463–492 (1990)

18. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

19. Koskinen, E., Parkinson, M.: The push/pull model of transactions. In: PLDI. PLDI ’15,
vol. 50, pp. 186–195. ACM, New York, NY, USA (Jun 2015)

20. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software transac-
tional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. pp. 516–530.
Springer Berlin Heidelberg (2012)

21. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop on the The-
ory of Transactional Memory (2012)

22. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC. LNCS, vol. 8784,
pp. 391–405. Springer (2014)

23. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying linearizability via
optimized refinement checking. IEEE Trans. Software Eng. 39(7), 1018–1039 (2013)

24. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.
In: DHondt, T. (ed.) ECOOP 2010, LNCS, vol. 6183, pp. 478–503. Springer Berlin Heidel-
berg (2010)

25. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique for lin-
earizability of concurrent data structures. ACM TOCL 15(4), 31:1–31:37 (2014)

26. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fairness. In:
CAV. LNCS, vol. 5643, pp. 709–714. Springer (2009)

27. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, University of
Cambridge (2007)

