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Keypoints: 14 

1. Comparison of the source models from tsunami and seismic data suggests a 15 

possible submarine mass failure during the earthquake. 16 

2. The tsunami dispersion effects on amplitudes depend on azimuth from the 17 

tsunami source, reflecting the directivity of tsunami source.  18 

3. Long wave simulation yields shorter travel times than the more accurate 19 

dispersive wave by 1 min for every 1,300 km on average.  20 

 21 

Abstract 22 

 We apply a genetic algorithm (GA) to find the optimized unit sources using 23 

dispersive tsunami synthetics to estimate the tsunami source of the 2012 Haida Gwaii 24 

earthquake. The optimal number and distribution of unit sources gives the sea surface 25 
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 2 

elevation similar to that from our previous slip distribution on a fault using tsunami 26 

data, but different from that using seismic data. The difference is possibly due to 27 

submarine mass failure in the source region. Dispersion effects during tsunami 28 

propagation reduce the maximum amplitudes by up to 20% of conventional linear 29 

long wave propagation model. Dispersion effects also increase tsunami travel time by 30 

approximately 1 min per 1,300 km on average. The dispersion effects on amplitudes 31 

depend on the azimuth from the tsunami source reflecting the directivity of tsunami 32 

source, while the effects on travel times depend only on the distance from the source.   33 

 34 

Introduction 35 

 Tsunami is a dispersive wave that may contain a wide range of wavelengths 36 

from a couple tens to several hundreds of kilometers. The long wave assumption 37 

breaks down and dispersion effect becomes significant at short wavelengths for 38 

earthquakes with a steep dipping fault plane [e.g., Gusman et al., 2009; Inazu and 39 

Saito, 2014] or submarine mass failures [e.g., Synolakis et al., 2002; Watts et al., 40 

2003; Grilli and Watts, 2005; Løvholt et al., 2005; Tappin et al., 2014]. For such cases 41 

the Boussinesq equations are solved instead of the linear long wave equations 42 

[Tanioka, 1999; Saito et al., 2010; Kirby et al., 2013; Baba et al., 2015]. Weak 43 

dispersion at long periods, due to the seawater compressibility, the elasticity of the 44 

Earth, and the gravitational potential variation effects [Watada et al., 2014], causes 45 

travel time delay relative to linear long wave and initial phase reversal at far-field.  46 

This dispersion effect can be ignored for near-field (0 – 500 km) tsunami observations 47 

and it is a common practice to generate tsunami synthetics by solving the linear 48 

shallow water equations [e.g., Titov et al., 2005; Fujii and Satake, 2006; Lorito et al., 49 

2011; Gusman et al., 2012]. The dispersion effect must be considered when tsunami 50 
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observations are in the mid-field (500 – 2,000 km) and far-field (>2,000 km) [Watada 51 

et al., 2014; Allgeyer and Cummins, 2014; Yoshimoto et al., 2016]. 52 

 In this paper, the tsunami source of the 2012 Haida Gwaii earthquake (Mw 7.8) 53 

is first estimated using mid-field (500 – 2,000 km) tsunami observations. We apply a 54 

genetic algorithm (GA) to find the optimal number and distribution of unit sources. 55 

We describe the features in the optimum initial sea surface elevation model that is 56 

obtained by tsunami waveform inversion and compare the initial sea surface elevation 57 

with the ones computed from existing fault slip models inverted from tsunami and 58 

seismic waves. We explore the consequences of ignoring the dispersive effects in 59 

tsunami source estimation and tsunami wave prediction. To evaluate the dispersion 60 

effects on tsunami propagation, we compare the simulation results of linear wave and 61 

dispersive wave from the best tsunami source model in terms of maximum amplitude 62 

and travel time.   63 

  64 

The 2012 Haida Gwaii earthquake and tsunami 65 

 An earthquake with moment magnitude (Mw) 7.8 occurred off Haida Gwaii, 66 

British Columbia, Canada on 28 October 2012. The earthquake source mechanism 67 

[Lay et al., 2013], aftershock relocation [Kao et al., 2015], and its tsunami impact 68 

[Leonard et al., 2014; Fine et al., 2015] have been previously studied. The tsunami 69 

generated by this earthquake was recorded in near-field at tide gauges, in mid-field at 70 

DART buoy systems, the NEPTUNE cabled bottom pressure gauges and bottom 71 

pressure gauges on an OBS array in the Cascadia subduction zone and in far-field at 72 

DART buoy systems [Lay et al., 2013; Fine et al., 2015; Sheehan et al., 2015; 73 

Gusman et al., 2016]. The bottom pressure gauges consist of Absolute Pressure 74 

Gauges (Lamont Doherty Earth Observatory – LDEO) and Differential Pressure 75 
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Gauges (Scripps Institution of Oceanography – SIO, and Woods Hole Oceanographic 76 

Institution – WHOI) [Sheehan et al., 2015; Gusman et al., 2016]. The peak amplitudes 77 

at mid-field DART and OBS stations ranged from 2 to 5 cm. In this study we use the 78 

mid-field tsunami waveforms at 8 DARTs and 19 LDEOs for tsunami waveform 79 

inversion (orange and blue circles in Figure 1). Then, we employ four tide gauge 80 

waveforms in the near-field, four WHOI waveforms in the mid-field, and three DART 81 

waveforms in the far-field for tsunami source model validation (green circles in 82 

Figure 1).  83 

 84 

Figure 1. Map of tsunami observation stations. Orange and blue circles indicate 85 

DART and LDEO stations, respectively, that are used in tsunami inversion. Green 86 

circles indicate tide gauges (Henslung Cove, Bella Bella, Port Hardy, and Winter 87 

Harbour), WHOI differential pressure gauges (J06B, J23B, J27B, and J28B), and 88 

DARTs (D46408, D46413, and D51407) that are not used in tsunami inversion but 89 

are used for tsunami source model validation. Contours represent great circle 90 
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distances in km from the earthquake’s epicenter (red star). 91 

 92 

Methodology 93 

Genetic algorithm to estimate the initial sea surface elevation 94 

 Without using earthquake fault parameters, initial sea-surface elevation in the 95 

source region can be estimated by inversion of tsunami waveforms [Satake et al., 96 

2005, Saito et al., 2010; Hossen et al., 2015; Mulia and Asano, 2015]. A combination 97 

of genetic algorithm (GA) methods for tsunami source inversion [Mulia and Asano, 98 

2015; 2016] is used in this study to determine the initial sea surface elevation in the 99 

source region of the 2012 Haida Gwaii earthquake. The method uses a two-100 

dimensional Gaussian shape water surface displacement with a characteristic 101 

horizontal wavelength of 40 km as a unit source inside the source area. Initially, we 102 

distribute 189 unit sources at 15 km equidistant interval covering the source area 103 

(green dots in Figure 2). Unlike most of other tsunami inversion techniques that fix 104 

the distribution of unit sources (Figure 2a), our GA uses the least squares method 105 

iteratively to find the optimal number and distribution of unit sources. In the 1st stage, 106 

the GA selects the optimal unit sources among the initial ones. This leads to a 107 

reduction of the unit sources because the GA removes any unit source that has similar 108 

information in terms of surface height from the adjacent source points (black dots in 109 

Figure 2b) [Mulia and Asano, 2016]. In the 2nd stage, the GA adjusts the locations of 110 

the selected unit sources from the 1st stage in order to further improve the waveform 111 

fit [Mulia and Asano, 2015]. The GA selects the next distribution of unit sources that 112 

produces a better waveform fit than the previous distribution. This is done iteratively 113 

until the conditions for convergence are met, which is when the number of GA 114 

generations is larger than 500 and the average fitness change over 50 GA generations 115 
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is less than or equal to 1 × 10-6. As a result, the spatial distribution of the unit sources 116 

will be scattered throughout the source area non-equidistantly (black dots in Figure 117 

2c).  118 

 119 

Cost function 120 

 The cost function for the GA measures the fit between observed and synthetic 121 

seafloor pressure waveforms. We quantify the waveform fit based on a combination 122 

of root mean square error (RMSE) and Pearson correlation coefficient (r) [Mulia and 123 

Asano, 2015] (see supplementary text). The correlation of the data is normalized 124 

as 𝑅𝑅 = 0.5(𝑟𝑟 + 1), so that it falls in the range of [0, 1]. The cost function (𝐸𝐸) is a 125 

summation of RMSE and R for all time windows, which can be written as: 126 

𝐸𝐸 = �[𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘 + (1 − 𝑅𝑅𝑘𝑘)]
𝑁𝑁

𝑘𝑘=1

 128 

(1) 127 

where 𝑘𝑘 denotes the respective time window and 𝑁𝑁 is the total number of windows. 129 

 130 

Synthetic tsunami waveforms 131 

 We construct two sets of tsunami Green’s functions. The first Green’s function 132 

is built from linear long waves that are produced by solving the linear shallow water 133 

equations [Satake, 1995]. The tsunami source model estimated by GA inversion using 134 

this Green’s function is named as the LM source model. The second Green’s function 135 

is built from synthetic tsunami waveforms that include the dispersive effects of the 136 

surface gravity wave and those imposed from the Earth model (i.e., the elasticity of 137 

the Earth, compressibility of seawater, and gravitational potential change due to water 138 

and earth mass movement) [Watada et al., 2014]. The tsunami source model estimated 139 
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by GA inversion using this Green’s function is named as the DM source model.  140 

 The linear long wave is simulated by a finite difference method with a staggered 141 

grid scheme [Satake, 1995]. The size of the modeling grid is 1 arc-min and the time 142 

interval is 1 s. To include the dispersion effects, the simulated linear long waves are 143 

corrected by a phase correction method [Watada et al., 2014]. The phase correction 144 

method keeps the linearity of tsunami waves and its computational cost is low. These 145 

features make the method suitable for building tsunami Green’s functions for tsunami 146 

waveform inversion [e.g., Gusman et al., 2015; Yoshimoto et al., 2016].  147 

 During the 2nd stage of GA inversion the locations of unit sources are moving 148 

within the area of the initial 189 unit sources. For every new location of unit source, 149 

synthetic tsunami waveforms at the stations are computed by applying nearest 150 

neighbor-weighted interpolation of waveforms from four nearest initial unit sources 151 

[Mulia and Asano, 2015]. The weights are determined by the distances from the new 152 

unit source location to the four nearest initial unit sources. For the final distribution of 153 

unit sources, the synthetic tsunami waveforms are computed by the method described 154 

in the previous paragraph.   155 

 156 

Dispersive tsunami propagation model 157 

  To simulate ocean-wide dispersive tsunami propagation, the phase correction 158 

method is applied for all grids in the modeling domain. We first store the simulated 159 

linear long waves at all grids and then we apply the phase correction method to all of 160 

them. This process needs a large computer memory. For efficiency, we choose 15 s of 161 

time interval, 6 arc-min for the computational grid size (the grid dimension is 701 162 

times 551), and a total simulation time of 10 hours. With this computation setup, we 163 

need to apply the phase correction method for 386,251 tsunami traces, and the matrix 164 
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size to store the whole waveforms is 2,400 × 386,251.  165 

 166 

 167 

Figure 2. Initial sea surface elevations from a) the initial source model with fixed unit 168 

sources (green dots), b) the 1st stage source model for which GA reduced the number 169 
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of unit sources (black dots) of the initial distribution, c) the 2nd (final) stage source 170 

model for which GA optimized the distribution unit sources (black dots), d) a fault 171 

slip model of the 2012 Haida Gwaii earthquake estimated using tsunami waveforms 172 

[Gusman et al., 2016], e) a fault model of the 2012 Haida Gwaii earthquake estimated 173 

using teleseismic waveforms [USGS], and f) the submarine mass failure model, green 174 

rectangle indicates the failure area. The positive contour interval is 0.2 m, the 175 

negative contour interval is 0.1 m, and the bathymetric features shown in the 176 

background. 177 

 178 

Results and Discussion 179 

Initial sea surface elevation   180 

 For the DM source model, the GA produces an optimum distribution of 41 unit 181 

sources (black dots in Figures 2c and 3b). This optimum distribution is obtained after 182 

1,040 GA runs in the 1st stage and 2,132 GA runs in the 2nd stage. We show that our 183 

GA method has the ability to represent non-uniform distribution of unit sources. More 184 

unit sources are located around region B near the coast than around region A near the 185 

trench (Figures 2c and 3b). A tsunami source model with fixed number and location 186 

of unit sources (Figure 2a) failed to capture the complexity of the tsunami source. 187 

 Our preferred tsunami source model (DM) shows that secondary sea surface 188 

elevation in region B (Figure 2c) is distinctly separated from main sea surface 189 

elevation in region A near the trench. The main uplift region A has a maximum uplift 190 

of 1.1 m that is above the trench and the secondary uplift region B has a maximum 191 

uplift of 0.9 m that is located above the unique and complicated steep bathymetry near 192 

the Queen Charlotte Fault (Figure 2c). Our previous result for this event assuming a 193 

fault model [Gusman et al., 2016] shows a significant slip on the shallowest fault near 194 
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the trench (which corresponds to region A) and bathymetric slope displacement effect 195 

near the coast (region B) (Figure 2d). We interpreted that the sea surface elevation 196 

near the coast was almost entirely from the horizontal motion of the steep slope, 197 

rather than vertical deformation from faulting [Gusman et al., 2016].  198 

 We compare our initial sea surface elevation with that from a fault slip 199 

distribution obtained by the USGS (United States Geological Survey) 200 

(http://earthquake.usgs.gov/earthquakes/eventpage/usp000juhz#finite-fault) which 201 

was inverted from teleseismic body and surface waves. The initial sea surface 202 

elevation pattern near the trench between our model (Figure 2c) and the USGS model 203 

(Figure 2e) are similar, but around region B, the USGS model does not produce a sea 204 

surface elevation unlike our tsunami source model.  One possible explanation is that 205 

the sea surface elevation is produced by a source mechanism that does not generate 206 

teleseismic waveforms, such as submarine mass failure (SMF) which may occur on a 207 

steep bathymetric slope [Grilli and Watts, 2005; Ma et al., 2013; Tappin et al., 2014]. 208 

Wide area in region B has bathymetric slope angle larger than 20° (Figure S1) which 209 

is one of the factors that make the region susceptible to slope failure [Varnes, 1984; 210 

Highland and Bobrowsky, 2008].  211 

 The USGS source model underestimate the observed amplitude of the first 212 

tsunami peak in the mid-field by a factor of almost a half (Figure S2a). We attempt to 213 

add a SMF source with parameters of width = 40 km length = 5 km, thickness = 250 214 

m, slope = 15°, and slide direction = 225° by the method described in previous studies 215 

[Watts et al., 2005; Heidarzadeh and Satake, 2015]. This SMF model produces sea 216 

surface uplift near region B, similar to the DM source, but also produces subsidence, 217 

which is not modeled in the DM source (Figure 2f). The maximum and minimum sea 218 

surface deformation are 4 and -5 m, respectively. Simulation results show that the 219 
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combined USGS fault slip model and the SMF model produce the larger tsunami peak 220 

amplitude at mid-field stations (Figure S2b) than the USGS model, but the computed 221 

waveforms are not as close to the observations as the DM source. Therefore, this SMF 222 

model should not be considered as a realistic SMF model. 223 

 224 

Dispersion effects on estimation of tsunami source 225 

 The initial sea surface elevation pattern that is estimated from the long wave 226 

tsunami Green’s function (LM source model) (Figure 3a) is different from the one 227 

estimated from Green’s function that includes the wave dispersion effects (DM source 228 

model) (Figure 3b).  Both LM and DM source models have main and secondary uplift 229 

regions (A and B regions), but their size and locations are different. The LM source 230 

model has a maximum uplift near the trench (0.6 m) that is almost a half of that in the 231 

DM source model. The locations of uplift regions appear to be pushed away from the 232 

stations distinctively at around the trench and also around region B (Figures 3a and 233 

3b). This is mainly because the tsunami wave computed by the linear long wave 234 

approximation arrives earlier than the one that considers the dispersive effects. 235 

 The matches between the synthetic and observed tsunami waveforms, which are 236 

used in the inversions for the LM and DM source models, are equally good (Figures 237 

3c and 3d). The tsunami waveform match for the DM source model (dispersive 238 

propagation model was used) is slightly better with a smaller root mean square error 239 

of 0.0103 m compared to 0.0106 m for the LM source model (linear propagation 240 

model was used). Although the waveform matches from the LM and DM source 241 

models are equally good, their sea surface elevation patterns are different (Figures 3a 242 

and 3b) as described above.  243 

 244 
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 245 

 246 

Figure 3. Two possible instantaneous sea surface elevations for the 2012 Haida Gwaii 247 

earthquake tsunami. a) Sea surface elevation of the source model (LM) estimated 248 

using linear long wave synthetics. b) Sea surface elevation of the source model (DM) 249 

estimated using dispersive wave synthetics that consider the dispersive surface gravity 250 
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wave and the Earth model. Green dots represent the initial unit source distribution, 251 

and the black dots represent the final unit source distribution which are estimated by 252 

the genetic algorithm. Stations in c and d are used for the inversion, while stations in e 253 

and f are used only for validation. Gray traces (c, d, e and f) indicate observed 254 

tsunami waveforms. Blue traces indicate tsunami waveforms simulated by c) the 255 

linear long wave propagation model and e) the dispersive wave propagation model 256 

from the LM source model. Red traces (d and f) indicate tsunami waveforms 257 

simulated by the dispersive wave propagation model from the DM source model.  258 

 259 

 To validate the initial sea surface elevations, we compare the observed and 260 

simulated tsunami waveforms from the LM (Figure 3a) and DM (Figure 3b) source 261 

models at near-, mid-, and far-field stations that are not used in the inversion (Figures 262 

3e and 3f). We first simulate the tsunami from the LM source model using the linear 263 

long wave propagation model to maintain the consistency (Figure S3). The simulated 264 

arrival time at the far-field DART stations are earlier than the observations. Then we 265 

use the dispersive propagation model for tsunamis from the LM and DM source 266 

models. We computed waveforms at: 1) Near-field tide gauge stations in British 267 

Colombia, Canada which are located 0 – 500 km from the source; 2) mid-field WHOI 268 

stations located 500 – 2,000 km to the south of the source; 3) far-field DART stations 269 

located more than 2,000 km from the source and near the Hawaiian and Aleutian 270 

Islands (green circles in Figure 1).  271 

 The tsunami waveforms both from the LM and DM source models fit well the 272 

observations at the near- and mid-field stations (Figures 3e and 3f). The good fits at 273 

the mid-field stations (WHOIs) are expected because the tsunami waveforms used in 274 

the inversions (DARTs and LDEOs) are located around these WHOI stations, and the 275 
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effects of different propagation models are not very significant in the near-field. The 276 

underestimation of the first peak amplitude by the LM source model becomes more 277 

significant as the travel time increases from mid- to far-field stations (Figure 3e). In 278 

the far-field, the first peak of the simulated tsunami waveforms at D46408 and 279 

D46413 are underestimated (71% and 66% of the observation, respectively), although 280 

the first peak at D51407 fits fairly well the observation (Figure 3e). The tsunami 281 

waveforms at far-field stations from the DM source model match well the 282 

observations both in terms of timing and amplitude (Figure 3f).  This result suggests 283 

that the DM source model is more reliable than the LM source model.  284 

  285 

Dispersion effects on maximum amplitude and travel time 286 

 We further explore the dispersion effects on tsunami propagation by using the 287 

DM source model (Figure 3b) for the linear long wave and dispersive wave 288 

simulations. In this experiment we simulate the tsunami for the wider region of the 289 

Pacific Ocean to measure the maximum tsunami amplitude and travel time 290 

distributions. The maximum tsunami amplitude distributions are compared by 291 

calculating the amplitude ratio between the one simulated by the linear long wave 292 

propagation model (Figure 4a) and the one simulated by the dispersive wave 293 

propagation model (Figure 4b). The travel time difference of the two tsunami 294 

propagation models is obtained by comparing the timing of the peak amplitude of the 295 

first wave cycles from the same source model.  296 

  The distribution of maximum amplitude ratios show that the dispersive effects 297 

are more significant in the southwest direction (Figure 4c) perpendicular to the 298 

elongated shape of the tsunami source (Figure 3b), indicating the tsunami source 299 

directivity. Compared to the dispersive wave simulation, the linear long wave 300 
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simulation produces up to approximately 20% higher amplitude in the southwest 301 

direction. This indicates that the tsunami propagating to the southwest azimuth has a 302 

range of wavelengths with various phase speeds and its shorter wavelength 303 

component has a slower propagation speed compared to the longer ones. As a result, 304 

these shorter wavelengths propagate behind the longer wavelengths (Figure S4 and 305 

Movie S2), thus reducing the overall maximum amplitude. The tsunami propagating 306 

to the south has a predominant long wavelength, therefore, the computation of wave 307 

amplitude by using the linear long wave approximation is valid even for a long 308 

distance as far as 5,000 km (Figures 4c, S4, and Movies S1-S2). The area of high 309 

amplitude ratio becomes smoothly wider from the source in Haida Gwaii in the 310 

southwest direction to the shallow bathymetry around the Hawaiian and Aleutian 311 

Islands. Because of the complex and shallow bathymetry surrounding the Hawaiian 312 

and Aleutian Islands, the amplitude ratio patterns behind these island chains are rather 313 

complicated (Figure 4c). 314 

 The phase velocity of linear long wave is generally faster than the dispersive 315 

wave and the difference is the minimum at wave period of around 1,000 s (see Figure 316 

5a in Watada et al. [2014]). The differences of phase velocities become larger for both 317 

longer and shorter periods. As a result, the travel time difference between the linear 318 

long wave simulation and dispersive wave propagation become larger at location 319 

farther from the source region (Figure 4d). For the case of the 2012 Haida Gwaii 320 

earthquake the tsunami travel time difference is approximately 1 min for every 1,300 321 

km on average (Figure 4d and S5). This value can also be obtained from the phase 322 

velocities of the linear long wave of 198 m/s and the dispersive wave of 196 m/s 323 

when assuming an average ocean depth of 4 km and a wave period of 1,000 s. 324 

Tsunami travel time delay relative to the linear long wave has been observed in 325 
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previous studies [Rabinovich et al., 2011; Watada et al., 2014]. Our estimated travel 326 

time delay rate is consistent with the observed travel time delay at DART stations 327 

during the 2010 Chile and 2011 Tohoku tsunamis [Watada et al., 2014] (Figure S6). 328 

This is because waves with periods of 900 - 2,000 s will arrive at almost the same 329 

time (as shown in the dispersive curve in Watada et al. [2014]), their phase velocity is 330 

the fastest, and most tsunamis including the 2010, 2011, and 2012 events produced 331 

waves within the period range.   332 

 333 

 334 

Figure 4. a) Maximum amplitude distribution from the DM source model computed 335 

by the linear long wave propagation model. b) Maximum amplitude distribution from 336 
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the DM source model computed by the dispersive wave propagation model. c) Ratio 337 

distribution between the linear and dispersive maximum amplitudes. d) Travel time 338 

difference map between the first tsunami cycles of the linear long wave and dispersive 339 

wave. Contours represent great circle distances in km from the earthquake’s epicenter 340 

(blue star). 341 

 342 

Conclusions  343 

 Optimizing unit sources using the genetic algorithm yielded two possible initial 344 

sea surface elevation models as a tsunami source of the 2012 Haida Gwaii earthquake. 345 

The first one is computed by the linear long wave propagation model (for the LM 346 

source model), and the second one contains the dispersive effects of surface gravity 347 

wave and the Earth model (for the DM source model). The initial sea surface 348 

elevations of the DM source model is more reliable because it can satisfy the 349 

observed tsunami waveforms at tide gauges and offshore pressure gauges in the near-, 350 

mid-, and far-fields. The linear long wave synthetics from the LM source model does 351 

not predict the arrival times and amplitudes at the far-field stations well. Our 352 

preferred sea surface elevation model has two peaks similar to our fault slip inversion 353 

result using tsunami waveforms [Gusman et al., 2016]. Because the fault slip 354 

distribution from the seismic wave analysis only produced significant uplift near the 355 

trench, our preferred sea surface model (DM source model) may hint a submarine 356 

mass failure at the steep bathymetric slope near the Queen Charlotte Fault. 357 

 Compared to the dispersive wave simulation, the linear long wave simulation 358 

produces up to approximately 20% higher amplitude to the southwest azimuth 359 

perpendicular to the elongated shape of the tsunami source. This shows the directivity 360 

effect on amplitude estimate which is dependent on the shape of tsunami source. 361 
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 The dispersive effects of the surface gravity wave and the Earth model can 362 

reduce the maximum tsunami amplitude. The degree of amplitude reduction at a point 363 

of interest depends on the wavelength of predominant tsunamis that pass through that 364 

point. The dispersion effects on amplitude reduction is more significant for shorter 365 

tsunami wavelengths. The dispersion effects also reduce the tsunami propagation 366 

speed. For the case of the 2012 Haida Gwaii earthquake the tsunami travel time delay 367 

relative to linear long wave due to the dispersion effects is approximately 1 min per 368 

1,300 km on average. This tsunami propagation speed reduction value is likely 369 

applicable to tsunamis propagating in the deep open ocean.   370 

 371 
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