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Abstract. Second order Sobolev metrics are a useful tool in the shape
analysis of curves. In this paper we combine these metrics with varifold-
based inexact matching to explore a new strategy of computing geodesics
between unparametrized curves. We describe the numerical method used
for solving the inexact matching problem, apply it to study the shape
of mosquito wings and compare our method to curve matching in the
LDDMM framework.
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1 Introduction

Closed, unparametrized plane curves are used to represent the outline or shape of
objects and as such they arise naturally in shape analysis and its applications [14];
these include medical imaging, computer animation, geometric morphometry
and other fields. Analysis of shapes and their differences relies on the notion of
distance between shapes. To define such a distance, we start from a Riemannian
metric on the space of curves and compute its induced geodesic distance.

We consider in particular second order Sobolev metrics with constant co-
efficients. These are Riemannian metrics on Imm(S1,Rd), the space of regu-
lar, parametrized curves and they are invariant under the reparametrization
group Diff(S1). Hence they induce a Riemannian metric on the quotient space
π : Imm(S1,Rd) → Imm(S1,Rd)/Diff(S1)

.
= Bi(S

1,Rd) of unparametrized
curves, whose elements are the shapes of objects one is interested in. To compute
the geodesic distance between two shapes π(c0), π(c1) it is necessary to find
minizing geodesics between the orbits π(ci) = ci ◦Diff(S1).

In previous work [1] we achieved this by discretizing the diffeomorphism group
Diff(S1) and its action on curves to obtain a numerical representation of the
orbit c1 ◦ Diff(S1). Here we adopt a different approach. The varifold distance
dVar between curves, defined in Sect. 2.2, has reparametrizations in its kernel,
meaning dVar(c0, c1) = dVar(c0, c1 ◦ ϕ) and hence we can check equivalence of
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shapes or unparametrized curves via

π(c0) = π(c1) ⇔ c0 ∈ c1 ◦Diff(S1) ⇔ dVar(c0, c1) = 0 .

Because the constraint dVar(c0, c1) = 0 is difficult to encode numerically we relax
it and solve an inexact matching problem instead. Given two curves c0, c1, to
find the geodesic between the shapes they represent, we minimize

E(c) + λdVar(c(1), c1) ,

over all paths c = c(t, θ) with c(0) = c0, where E is the Riemannian energy and
λ a coupling constant; see Sect. 2.3 for details.

We describe the numerical implementation in Sect. 3 and then apply in Sect. 4
the proposed framework to analyse the shape of mosquito wings [13] and to
classify fish outlines [7] using geodesic distances and spectral clustering. We also
compare the behaviour of Sobolev metrics with curve matching in the LDDMM
framework.

2 Mathematical background

2.1 Sobolev metrics on shape space of curves

The space of smooth, regular curves with values in Rd is denoted by

Imm(S1,Rd) =
{
c ∈ C∞(S1,Rd) : ∀θ ∈ S1, c′(θ) 6= 0

}
, (1)

where Imm stands for immersions. We call such curves parametrized, because as
maps from the circle they carry with them a parametrization; we will define the
space Bi,f (S1,Rd) of unparametrized curves in (5). The space Imm(S1,Rd) is
an open subset of the Fréchet space C∞(S1,Rd) and therefore can be considered
as a Fréchet manifold. Its tangent space Tc Imm(S1,Rd) at any curve c is the
vector space C∞(S1,Rd) itself.

We denote the Euclidean inner product on Rd by 〈·, ·〉. Differentiation with
respect to the curve parameter θ ∈ S1 is written as cθ = ∂θc = c′. For any
fixed curve c, we denote differentiation and integration with respect to arc
length by Ds = 1

|cθ|∂θ and ds = |cθ|dθ, respectively. A path of curves is a

smooth map c : [0, 1] → Imm(S1,Rd) and we denote the space of all paths by
P = C∞([0, 1], Imm(S1,Rd)). The velocity of a path c is denoted by ct = ∂tc = ċ.

Definition 1. A second order Sobolev metric with constant coefficients is a
Riemannian metric on the space Imm(S1,Rd) of parametrized curves of the form

Gc(h, k) =

∫
S1

a0〈h, k〉+ a1〈Dsh,Dsk〉+ a2〈D2
sh,D

2
sk〉ds , (2)

where h, k ∈ Tc Imm(S1,Rd) are tangent vectors, aj ∈ R≥0 are constants and
a0, a2 > 0. If a2 = 0 and a1 > 0, then G is a first order metric and if a1 = a2 = 0
it is a zero order or L2-metric.



Note that the symbols Ds and ds hide the nonlinear dependency of Gc on the
base point c. We use arc length operations in the definition of G to ensure that
the resulting metric is invariant under the action of the diffeomorphism group of
S1. The invariance property in turn allows us to define, using G, a Riemannian
metric on the shape space of unparametrized curves.

The Riemannian length of a path c : [0, 1]→ Imm(S1,Rd) is defined via

L(c) =

∫ 1

0

√
Gc(t)(ct(t), ct(t)) dt . (3)

The induced geodesic distance between two given curves c0, c1 of the Riemannian
metric G is then the infimum of the lengths of all paths connecting these two
curves, i.e.,

dist(c0, c1) = inf {L(c) : c ∈ P, c(0) = c0, c(1) = c1} .

We can find critical points of the length functional by looking for critical points
of the energy

E(c) =

∫ 1

0

Gc(t)(ct(t), ct(t)) dt . (4)

The geodesic equation which corresponds to the first order condition for critical
points, DE(c) = 0, is in the case of Sobolev metrics a partial differential equation
for the function c = c(t, θ). Solutions of this equation are called geodesics, and
are locally distance-minimizing paths. Local and global existence results for
geodesics of Sobolev metrics were proven recently in [3, 4, 12] and they serve
as the theoretical foundation of the proposed numerical framework: they tells
us that the geodesic distance between two curves can always be realized by a
path between them, i.e. we can compute the geodesic distance by finding the
energy-minimizing path.

Unparametrized curves. Two curves that differ only by their parametrization
represent the same geometric object. In the context of shape analysis it is therefore
natural to consider them equal, i.e., we identify the curves c and c ◦ ϕ, where ϕ
is a reparametrization. We use as the reparametrization group the group,

Diff(S1) =
{
ϕ ∈ C∞(S1, S1) : ϕ′ > 0

}
,

of smooth diffeomorphisms of the circle. This is an infinite-dimensional regular
Fréchet Lie group [10]. Reparametrizations act on curves by composition from
the right, i.e., c ◦ ϕ is a reparametrization of c.

To define the quotient space of unparametrized curves we need to restrict
ourselves to free immersions, i.e. those upon which the diffeomorphism group
acts freely. In other words

c ∈ Immf (S1,Rd) ⇔
(
c ◦ ϕ = c ⇒ ϕ = IdS1

)
.



This restriction is necessary for technical reasons; in applications almost all curves
are freely immersed. The space

Bi,f (S1,Rd) = Immf (S1,Rd)/Diff(S1) , (5)

of unparametrized curves is the orbit space of the group action restricted to free
immersions. This space is again a Fréchet manifold although constructing charts
is nontrivial in this case [5].

A Riemannian metric G on Imm(S1,Rd) is said to be invariant with respect
to reparametrizations if is satisfies

Gc◦ϕ(h ◦ ϕ, k ◦ ϕ) = Gc(h, k) ,

for all ϕ ∈ Diff(S1). Sobolev metrics with constant coefficients are invariant
with respect to reparametrizations and we have the following result concerning
induced metrics on the quotient space.

Theorem 2. An Sobolev metric with constant coefficients on Imm(S1,Rd) in-
duces a metric on Bi,f (S1,Rd) such that the projection π : Immf (S1,Rd) →
Bi,f (S1,Rd) is a Riemannian submersion.

The geodesic distance of the induced Riemannian metric on Bi,f (S1,Rd) can be
calculated using paths in Imm(S1,Rd) connecting c0 to the orbit c1 ◦Diff(S1),
i.e., for π(c0), π(c1) ∈ Bi,f (S1,Rd) we have,

dist
(
π(c0), π(c1)

)
= inf

{
L(c) : c ∈ P, c(0) = c0, c(1) ∈ c1 ◦Diff(S1)

}
.

In the same way the action of other groups can be factored out if the metric
has a corresponding invariance property. We will consider later the action of the
group of orientation-preserving Euclidean motions SE(d) = SO(d) nRd,

(A, b).c = A.c+ b, (A, b) ∈ SO(d) nRd .

The corresponding geodesic distance on the space Bi(S
1,Rd)/SE(d) is then

dist
(
π(c0), π(c1)

)
=inf

{
L(c) : c ∈ P, c(0) = c0, c(1) ∈ c1 ◦ SE(d)×Diff(S1)

}
.

2.2 Varifold distance on the space of curves

A second construction of a distance on the space of curves arises from the frame-
work of geometric measure theory by interpreting curves as currents or varifolds.
These concepts go back to the works of Federer but have been recently revisited
within the field of shape analysis as practical fidelity terms for diffeomorphic
registration methods [6, 8]. Instead of relying on a quotient space representation,
the core idea is to embed curves in a space of distributions. While the most
general approach is explained in [9], the following gives a condensed overview
adapted to the case of interest to this paper.

Let C0(Rd × S1) be the space of continuous functions vanishing at infinity.



Definition 3. A varifold is an element of the distribution space C0(Rd × S1)∗.
The varifold application µ : c 7→ µc associates to any curve c ∈ Imm(S1,Rd) the
varifold µc defined, for any ω ∈ C0(Rd × S1), by

µc(ω) =

∫
S1

ω

(
c(θ),

c′(θ)

|c′(θ)|

)
ds . (6)

The essential property is that µc is actually independent of the parametrization
in the sense that for any reparametrization ϕ ∈ Diff(S1), one has µc◦ϕ = µc.
Thus the map c 7→ µc projects to a well-defined map from Bi,f (S1,Rd) into the
space of varifolds. Note however that the space of varifolds contains many other
objects as well.

Distances between curves can be defined by restricting a distance or pseudo-
distance defined on the space of varifolds. A simple approach leading to closed
form expressions is to introduce a reproducing kernel Hilbert space (RKHS)
of test functions and to use the corresponding kernel metric. Specifically, we
consider kernels on Rd × S1 of the form k(x, u, y, v)

.
= ρ(|x − y|2).γ(u · v), i.e.,

k is the product of a positive, continuous radial basis function ρ on Rd and
a positive, continuous zonal function γ on S1. To any such k corresponds a
RKHS H of functions, embedded in C0(Rd × S1) with a dual metric 〈·, ·〉Var on
the corrsponding dual space H∗ of varifolds. The reproducing kernel property
implies—cf. [9] for details—that for any curves c1, c2 we have

〈µc1 , µc2〉Var =

∫∫
S1×S1

ρ(|c1(θ1)−c2(θ2)|2)γ

(
c′1(θ1)

|c′1(θ1)|
· c
′
2(θ2)

|c′2(θ2)|

)
ds1 ds2 . (7)

Now, taking dVar(c1, c2) = ‖µc1 − µc2‖Var = 〈µc1 − µc2 , µc1 − µc2〉
1/2
Var, the results

of [9] imply the following theorem.

Theorem 4. If ρ and γ are C1 functions, ρ is c0-universal and γ(1) > 0, then
dVar defines a distance between any two closed, unparametrized, oriented and
embedded curves. In addition, the distance is invariant with respect to the action
of rigid transformations.

Note that we require the stronger condition that the curves under consideration
have to be embedded. On the bigger space of immersions, as considered in the
previous section, the induced distance can degenerate.

Invariance to rigid transformations means that for any (A, b) ∈ SE(d),
dVar(A.c1 + b, A.c2 + b) = dVar(c1, c2). It is also possible to construct distances
that are invariant with respect to changes of orientation: to achieve this one
simply selects kernels satisfying γ(−t) = γ(t).

Broadly speaking, the varifold distance (7) results in a localized comparison
between the relative positions of points and tangent lines of the the two curves,
quantified by the choice of kernel functions ρ and γ. As such, they do not derive
from a Riemannian structre and there is no notion of geodesics in a shape space
of curves. However, they provide a very efficient framework for defining and
computing fidelity terms in relaxed matching problems as explained below.



2.3 Inexact matching on the shape space of curves

In this section we combine Sobolev metrics and varifold distances to com-
pute geodesics on shape space via a relaxed optimization problem. Because
reparametrizations lie in the kernel of the varifold distance,

dVar(c0, c1 ◦ ϕ) = ‖µc0 − µc1◦ϕ‖Var = ‖µc0 − µc1‖Var = dVar(c0, c1) ,

we can reformulate the problem of finding geodesics as a constrained minimization
problem,

dist(π(c0), π(c1))2 = inf
{
E(c) : c ∈ P, c(0) = c0, d

Var(c(1), c1) = 0
}
. (8)

where dVar(c(1), c1) is the varifold distance between the endpoint of the path c(1)
and the target curve c1.

Because it is difficult to numerically encode the constraint dVar(c(1), c1) = 0,
we minimize the relaxed Lagrangian functional instead,

dist(π(c0), π(c1))2 ≈ inf
{
E(c) + λdVar(c(1), c1)2 : c ∈ P, c(0) = c0

}
. (9)

If we minimize the relaxed functionals with an increasing sequence λ → ∞,
we would expect the minimizers to converge to the solution of the constrained
minimization problem. For now we solve the problem with a fixed, large value of λ.
This does not yield a geodesic with the correct endpoint, but the distance is small
in practice. In the future we plan to analyze the problem using an augmented
Lagrangian approach to automatically choose a suitable value for λ.

Considering additionally the action of the Euclidean motion group SE(d) and
using the invariance of the varifold distance under this group action we obtain
the minimization problem

inf
{
E(c) + λdVar(c(1), A.c1 + b)2 : c ∈ P, c(0) = c0, (A, b) ∈ SE(d)

}
. (10)

to find geodesics on the space Bi.f (S1,Rd)/SE(d).

3 Implementation

The H2-metric on spline-curves. In order to discretize the Riemannian
energy term in the optimization problem (9), we discretize paths of curves using
tensor product B-splines with Nt ×Nθ knots of orders nt = 2 and nθ = 3,

c(t, θ) =

Nt∑
i=1

Nθ∑
j=1

ci,jBi(t)Cj(θ) . (11)

Here Bi(t) are B-splines defined by an equidistant simple knot sequence on
[0, 1] with full multiplicity at the boundary points, and Cj(θ) are defined by an



equidistant simple knot sequence on [0, 2π] with periodic boundary conditions;
for details see [1]. Note that the full multiplicity of boundary knots in t implies

c(0, θ) =

Nθ∑
j=1

c1,jCj(θ) , c(1, θ) =

Nθ∑
j=1

cNt,jCj(θ) .

Thus the end curve c(1) is given by the control points cNt,j . We approximate the
integrals in the energy functional (4) using Gaussian quadrature with quadrature
sites placed between knots.

Some notes on previous work: to solve the geodesic boundary value problem
on shape space, we have proposed in [1] a method that involves discretizing
the reparametrization group Diff(S1) using B-splines. However, the action of
the reparametrization group is by composition, which does not preserve the
B-spline space. To overcome this we added a projection step, where we project
the composition c ◦ ϕ back into the spline space. This has the disadvantage that
the projection smoothes out details of the original curve, depending on how
many control points are used and which parts of the curve are reparametrized.
Furthermore, this methods requires a good choice of an initial path, which turned
out to be a nontrivial obstacle in examples where the shapes under consideration
are sufficiently different from each other. These considerations are our motivation
to consider inexact matching with a varifold distance.

The varifold distance on spline curves. Our discretization of the varifold
distance on spline curves builds on existing code for polygonal curves. Given
two spline curves c1 =

∑Nθ
j=1 c1,jCj and c2 =

∑Nθ
j=1 c2,jCj , a simple way of

discretizing the varifold distance (7) is to approximate the splines by polygonal
curves, i.e., choose sample vertices v1,k = c1(θk) and v2,k = c2(θk) with θk ∈ S1

for 1 ≤ k ≤ P and θP+1 = θ1. In future work we plan to calculate the varifold
distance directly for spline curves, without the approximating step used here.

Denoting the edge vectors e1,k = v1,k+1 − v1,k and e2,k = v2,k+1 − v2,k, the
inner product (7) for the two polygonal curves c̃1 and c̃2 becomes

〈µc̃1 , µc̃2〉Var =

P∑
k,l=1

|e1,k|.|e2,l|.γ
(
e1,k

|e1,k|
· e2,l

|e2,l|

)∫∫
[0,1]2
ρ(|v1,k + t1e1,k − v2,l − t2e2,l|2) dt1 dt2 .

In general, there is no closed form expressions for the double integral and hence
we use a numerical approximation: we evaluate the integrand at the central point
(t1, t2) = (1

2 ,
1
2 ), leading to the discrete approximation

〈µc1 , µc2〉Var ≈
P∑

k,l=1

|e1,k|.|e2,l|.γ
(
e1,k

|e1,k|
· e2,l

|e2,l|

)
.ρ

(∣∣∣∣v1,k + v1,k+1

2
− v2,l + v2,l+1

2

∣∣∣∣2
)



and the corresponding expression for the distance dVar. The total error resulting
from both the polygonal approximation and the integral approximation can be
shown to be of the order of O(max{|θk+1 − θk|}).

Additionally, we can compute the gradient of the discrete inner product with
respect to, say, the spline coefficients c1,j , usign the chain rule. Indeed, denoting
A the approximation of 〈µc1 , µc2〉Var,

∂v1A = ∂x1
A.∂v1x1 + ∂e1A.∂v1e1

where x1,k = (v1,k+v1,k+1)/2 is the edge midpoint. The gradients ∂x1A and ∂e1A
are easily computed from the expression for A, while ∂v1,lx1,k = (δk−1(l)+δk(l))/2
and ∂v1,le1,k = δk−1(l)− δk(l). Finally, to obtain the gradient with respect the
c1,j we apply the chain rule a second time, noting that ∂c1,jv1,k = Cj(θk).

Our implementation includes many different choices of admissible kernel
functions ρ and γ, including the ones presented in [9].

The inexact matching functional. With the discretization described above,
the optimization problem (10) becomes an unconstrained optimization problem
for the control points ci,j the rotation matrix A and the translation vector b. We
choose a Limited-memory BFGS (L-BFGS) method to solve this problem, as
implemented in the HANSO library [11] for Matlab, where we supply the formula
for the gradient of the target function, see [1] and [9] for the specific formulas.

We initialize the optimization problem with the constant path c(t, θ) = c0(θ).
Note that this overcomes one of the major drawbacks of the framework developed
in [1], which requires an initial path without singularities connecting the given
curves c0 and c1. To speed up the optimization we implemented a multigrid
method, i.e., we first solve the geodesic problem with a coarser spline discretization
and use the resulting optimal path to initialize the minimization of the original
problem. A comparison of the resulting computation times can be seen in Table 1.
The obtained computation times are of the same order of magnitude as those of
the SRV framework [15]4.

We also experimented with an implementation using automatic differentia-
tion for the gradient calculation. While our implementation of the gradient is
approximatively three times faster then the gradient computated with automatic
differentiation, the resulting computation time for the optimization differed in
average only by 51% percent, see Table 1. Automatic differentiation will allow
us to implement, with little additional effort, a much wider class of Riemannian
metrics, including curvature- and length-weighted metrics. See [2, 12] for an
overview of several Riemannian metrics on the space of curves.

For our previous method [1] we achieved a great speed-up of the optimization
using a second order trust-region method—requiring us to compute the Hessian
of the Riemannian energy. We tried this as well for this problem, but achieved
no improvement in convergence. We speculate that this is due to the fact that

4 We used the publicly available Matlab implementation, which can be downloaded at
http://ssamg.stat.fsu.edu/software.



Computation Times L-BFGS Multigrid Aut. Diff.

Mosquito Wings 1.9s 1.0s 3.0s
Surrey Fish 3.1s 1.7s 4.7s

Table 1: Average computation time (3.5 Ghz Core i7U) of the geodesic dis-
tance between mosquito wings (first line) and between shapes from the Surrey
fish database (second line). The used methods are: L-BFGS without multigrid,
with multigrid and with gradient calculation done via automatic differentiation
(without multigrid).

the Hessian of the varifold distance is degenerate due to its kernel containing
reparametrizations.

4 Experiments

Influence of the weight λ. The weight λ for the fidelity term has a big influence
on the quality of the matching. The solution of the optimization problem for
different values of λ is depicted in Fig. 1, and one can see that a good final
matching requires a choice of a large enough λ. Choosing λ too large, on the
other hand, will make the functional too rigid, and the resulting deformation will
be far from a geodesic. In the presence of noice, a large λ might also result in
overfitting. In future work we plan to investigate how to choose this parameter.

Fig. 1: Influence of the weight λ on the quality of the matching: Minimizers of
(10) for λ = 0.3, 1 and 5. The target curve is depicted in blue.

Towards a comparison with LDDMM curve matching. Curve matching
frameworks based on the LDDMM model such as [8, 9] are also formulated as
relaxed optimizations involving the same varifold fidelity terms like (9) with the
difference that curve evolution is governed by an extrinsic and dense deformation
of the plane and the metric on the shape space is now induced from a metric
on the diffeomorphism group. Yet the parallels between the two formulations
and algorithms should allow one to draw some insightful comparisons of the
two models. Although this topic will need to be treated more extensively in
future work, we show in Fig. 2 a simple example illustrating the difficulty, in
the LDDMM setting, to generate a deformation that is able to stretch a thin
structure in contrast with the intrinsic metric approach of this paper.



Fig. 2: Geodesics at time steps 0, 0.3, 0.6, 1. First row: Inexact H2-metric. Second
row: LDDMM matching obtained using the algorithm of [9]. Note that in the
latter case, increasing the weight of the fidelity term or varying deformation
scales do not in fact lead to significanty better matching results than shown here.

Shape clustering. We next illustrate the discriminative power of our method
for the problem of finding different clusters within a population of shapes. We
focus on a small subset of n = 54 shapes from the Surrey fish dataset and compute
all the pairwise matchings between them. We then obtain a distance matrix given
by the geodesic distance of the H2-metric. Due to the asymmetry of inexact
matching, we symmetrize the distance matrix a posteriori. In order to extract
meaningful clusters, we use the spectral clustering framework presented in [16]:
the p-nearest neighbour graph is constructed based on the distance matrix (we
use p = 12 here) and the eigenvectors of the Jordan & Weiss normalized graph
Laplacian are computed. Then each shape i is mapped as the i-th row vector of
the n× k matrix of the first k eigenvectors and a k-means algorithm is used to
separate those points into k clusters.

The results of this approach for k = 7 clusters is shown in Fig. 3. Overall, up
to a few exceptions, the method is able to discriminate well between the different
classes of this particular population with an accuracy comparable to using the
LDDMM framework for measuring shape distances but with significantly faster
computation of the distance matrix.

Mosquito wings. Finally we want to demonstrate our numerical framework
by providing a simple analysis of a set of mosquito wings. The data consists of
the boundary curves c1, . . . , c126 of 126 mosquito wings. The acquisition of the
data is described in the article [13], where the authors analyzed the data using
a polar coordinate system to describe each wing via the distance function from
its centroid. Using inexact geodesic matching we use as a template the Karcher
mean c̄ of the data, with respect to the Sobolev metric. In the tangent space
of the mean we represent each curve cj by the initial velocity vj = Logc̄(cj) to
the geodesic connecting c̄ and cj . We then do a PCA with respect to the inner
product Gc̄ of the data in the linear tangent space. Fig. 4 depicts the data set



Fig. 3: The results of the cluster analysis for 54 shapes from the Surrey fish
dataset obtained from the spectral clustering method.

after projecting onto the subspace spanned by the first two principal components,
and the geodesic in the direction of these to directions. It seems to suggest that
the two principal directions control the thickness of the wings, and the depth of
the fold at the end, respectively.

5 Conclusions

In this article we present a new numerical method to compute geodesics for
second order Sobolev metrics. The proposed algorithm is based on previous work
on Sobolev metrics [1] and the varifold distance [9]. Since reparametrizations
are in the kernel of the varifold distance we avoid having to discretize the
reparametrization group Diff(S1) to solve the geodesic boundary value problem
on shape space. This allows us to overcome certain problems of the framework
presented in [1]. Furthermore this new approach is better suited for generalization
to shape spaces of unparametrized surfaces. Additionally, since we are now using
an L-BFGS method—this only requires the computation of the gradient but
not of the Hessian—it will be possible to generalize this framework with little
additional effort to a much wider class of metrics. We plan to follow these lines
of research in future work and use it to investigate methods for a data-driven
choice of a Riemannian metric for applications in shape analysis.
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5. Cervera, V., Mascaró, F., Michor, P.W.: The action of the diffeomorphism group
on the space of immersions. Differential Geom. Appl. 1(4), 391–401 (1991)

6. Charon, N.: Analysis of geometric and functional shapes with extensions of currents.
Application to registration and atlas estimation. Ph.D. thesis, ENS Cachan (2013)

7. F. Mokhtarian, S. Abbasi, J.K.: Efficient and robust shape retrieval by shape
content through curvature scale space. In: Proc. First Int’l Conf. Image Database
and Multi-Search. pp. 35–42 (1996)

8. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric
curve mapping. International Journal of Computer Vision 80(3), 317–336 (2008)

9. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface
comparison and registration with oriented varifolds. Computer Vision and Pattern
Recognition (CVPR) (2017)

10. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis, Mathematical
Surveys and Monographs, vol. 53. American Mathematical Society (1997)

11. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods.
Mathematical Programming pp. 1–29 (2013)

12. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces
of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1),
74–113 (2007)

13. Rohlf, F.J., Archie, J.W.: A comparison of Fourier methods for the description of
wing shape in mosquitoes (Diptera: Culicidae). Syst. Biol. 33(3), 302–317 (1984)

14. Srivastava, A., Klassen, E.: Functional and Shape Data Analysis. Springer Series in
Statistics (2016)

15. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic
curves in Euclidean spaces. IEEE T. Pattern Anal. 33(7), 1415–1428 (2011)

16. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)


