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ABSTRACTS   

The objective of this paper is to study the large deflection of a fully clamped sandwich beam under 

high-velocity impact by considering the time in-homogeneity of the core deformation. Firstly, a 

unified dynamic yielding criterion for metallic sandwich beams considering the mass 

redistribution along with the core compression is proposed. Different from the traditional yielding 

surface, when the core is partially densified, the yield surface is asymmetric. The well-known 

yielding criterion for the solid monolithic beam is a special case of our model. Moreover, a 

membrane factor is proposed and an analytical solution for the large deflection of the beam under 

blasting loading is given. Comparison of the analytical solutions with numerical ones reveals that 

the present analytical model improves the prediction accuracy of the high-velocity impact 

response of fully clamped sandwich beams. Moreover, the present analytical method can also be 

degenerated to predict the low velocity/energy impact response of sandwich beams. 
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1. Introduction 

Due to the light weight and high specific stiffness, sandwich structure is widely used in various 

important equipment, and attracts more and more attention. How to accurately predict the dynamic 

performance of the sandwich beams is always the frontier.  

Fleck and Deshpande [1] separated the responses of the beams into three stages, and analyzed 



the responses of the beams under blasting loading. Ashby [2] and Tan et al. [3] simulated the 

deformation of the foam structure by using ideal rigid-plastic locking model. Then, Lopatnikov et 

al. [4,5] extended their work by considering ideal locking elastic-plastic model. Later, Radford et 

al. [6] gives the peak and average stresses of the foam under impact loading. In 2007, Tillbrook et 

al. [7] measured the stresses on both the front and rear faces of the square-honeycombs by using a 

direct impact Kolsky bar. The experimental results show that under higher impact velocities, 

plastic wave propagation within the core results in the stress increase in the front face along with 

the increase of the velocity; whilst the rear face stresses remain approximately constant. Barnes et 

al. [8] and Gaitanaros et al. [9] presented the results of a study of the crushing behavior of 

open-cell Al foams under impact. They also found the in-homogeneous stress distribution in the 

sandwich beam. The stress behind the shocks was found to increase as square of velocity. The 

stress in front of the shock remained at a constant level that approximately corresponded to the 

initiation stress recorded in quasi-static crushing experiments. 

Without considering the coupling responses of the cover sheets and foam core, Qin and Wang  

[10,11] derived a yielding criterion for geometrically symmetric metal sandwich structures 

incorporating the effect of core strength. They obtained an analytical solution for the large 

deflection of a slender symmetric metal foam core sandwich beam with axial restraints under 

transverse loading by a flat punch. Based on that criterion, Qin and Wang [12] and Qin et al. [13]  

investigated the impulsive response of fully clamped symmetric metal sandwich beams by using 

the membrane factor method, in which interaction of bending and stretching is considered. Then 

Qin and Zhang [14,15] analyzed the low-velocity impact responses of fully clamped slender 

sandwich beams with geometrically asymmetric cross-section struck by a heavy mass. The 



yielding criteria for asymmetric sandwich structures were presented, and provided acceptable 

predictions of the low-velocity impact of fully clamped geometrically asymmetric slender 

sandwich beams.  

However, their models are based on the low-velocity impact or quasi-static loading. Moreover, 

as aforementioned, the stress distributions on the face sheets and in the core are velocity 

dependent. Under a high-velocity impact, the cellular core displays local deformation 

characteristics. As a result, the mass is reassigned in the space, which causes the time 

heterogeneity of the deformation. To per authors’ knowledge, this time heterogeneity due to the 

local deformation of the cellular core under high-speed impact has not yet been fully considered in 

the previous modeling. The dynamic yielding criteria considering the time heterogeneity for 

sandwich structure under high-speed impact should be further investigated. 

The objective of this paper is to establish the dynamic yielding criteria for a slender sandwich 

beam by including the time heterogeneity of the cellular core during the deformation under the 

high-velocity impact. A membrane factor for the dynamic responses of a metallic sandwich beam 

under the high-velocity impact is proposed to incorporating the large deformation effect. Based on 

the proposed dynamic yielding criteria and the membrane factor, the dynamic deformation of a 

fully clamped slender sandwich beam under blasting loading is predicted and corresponding 

comparison with the previous theoretical results are made. At last, the conclusion is given.  

2. Dynamic yielding criterion with time in-homogeneity for sandwich beams 

As shown in Fig. 1, we consider a slender metallic foam core sandwich beam with a rectangular 

cross-section and axial constraints. The sandwich beam is transversely loaded at its front face 

sheet by a blasting impulse. We assumed that the the front and back layers metals obey the 



rigid-perfectly plastic law with the yield strength are σf. During the deformation, the cellular foam 

core is gradually densified from the impact end to the opposite end. We ignore the shear force, and 

assume that the metal foam core with thickness C, z is the densification region, which is linearly 

varied with respect to the time ( .   0 (1 )CDz vt z     ). The metal foam cores obey the yield 

strength σc is molded as rigid-perfectly-plastic-locking RPPL material (Fig. 2). Geometric sizes and 

material characteristics can affect the composition of the structure. b is the width of the cross-section, 

and assume that the width is unit length. 

 

 

Fig. 1 Original and deformed cross-sections of the sandwich beam. 

 
Fig. 2 Typical dynamic stress-strain curves for the foam. The red line corresponds to rigid ideally-plastic-locking model. 

Herein, we define zp as the plastic neutral surface, which is marked out by dash dot line shown 

in Fig. 3. Then we have 
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Where σ(z) is the yielding strength of the materials, and  1D D    . εD is the densification 

strain. Along with the densification of the foam core, the plastic neutral surface gradually moves 

away from X-axis. When z=C (1-D) /2, zp has the maximum value. Then along with the further 

compression, the plastic neutral surface moves back to X-axis and coincides with X-axis when the 
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When x=C (1-D) /2, the interface between the compression region and the uncompressed region 

coincides with the neutral axis. As shown in Fig. 3, during the compression, the axial force N and 

the bending moment M could be expressed according the position of the neutral axis as follows.  



 

Fig.3 Distributions of the strain and stress on the cross-section of multilayer beam under bending moment and 

axial force. 

2.1. Case I: the plastic neutral axis moves away from X-axis, that is,  1 2Dz C    with 

zp=z

The resultants of the axial force N and the bending moment M for different values of η can be 

expressed as 
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where η is the neutral surface measured from the bottom face sheet, which is denoted by H=η 

×(2h+C-λεz). / ,pz z C  / ,h h C z C   ,  2r h C z C   ,  l C z z C   , the 

fully plastic membrane force is 2p c fN C h   , the fully plastic bending moment is 
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Eliminating the parameter η from Eqs. (3) and (4) and using the well-known Tresca-yield criterion, 
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4 12 (1 ) 2C h l E       . 

If the core strength is equal to that of the face-sheets, that is, 1  , 0D  , 0k  , 1 2r h  , 

1l  , Eq. (5) degenerates to the well-known yielding criterion for solid monolithic beam with 

rectangular cross-section [16], that is,  

2| | 1m n  .                   (6) 

2.2. Case II: the plastic neutral axis moves back to X-axis, that is, (1 ) 2Dz C    with 

( ) 2p Dz C z z    

The resultants of the bending moment M for different values of η can be expressed as 
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Similarly, we have the yield criteria in space (M, N) are 
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where 1 12 ( ) 2D DD lh l E         , 2 14 ( ) (1 ) 2 (1 ) 4DD h h r l E          , 

3 14 ( ) 2 (1 ) 4 ,D h h r l E        4 12 ( ) 2 .D DD lh l E         

Based on Eqs. (5) and (8), Fig. 4a shows the predicted dynamic yield surfaces for the metal 

sandwich along with the compression. When T=0, that is, the yield surface is just the surface 

predicted by Qin and Wang [11], shown as Fig. 4b. It is noticed that along with the core 

compression, the yield surface will be gradually reduced. After the core thickness keeps constant 

(core densified or the velocities of the face sheets arriving the same value), the yield surface is 

degenerated to the one given by Qin and Wang [12]. Seen as Fig. 4b, when the core is partially 

densified, the yield surface is asymmetric; whilst when the core is fully densified, the yield surface 

is identical to the initial one, which is symmetry. The variation of the dynamic yielding surface 



indicates that if the core inhomogeneity is ignored, the model may less prediction the deformation 

of the sandwich beam. 

It is seen that the present yield criterion considers the core deformation and the variation of the 

beam cross section during the compression. The variation of the neutral axis on the responses of 

the metallic sandwich is included. The previous yielding criteria for the deformation of sandwich 

beams or for solid monolithic beams are just the special cases of our results. It is also 

demonstrated that the quasi-static yield criterion becomes less accurate for the sandwich beam 

under the high-velocity impact when the core is compressed. 

In what follows, the yield criterion will be employed to derive the analytical solutions for the 

large deflection of fully clamped sandwich beams with a metal foam core, in which the interaction 

of bending and stretching is considered. Especially, during the densification of the core, the 

bending moment and the axial force of the sandwich beam could be determined as needed. 

 

 

Fig. 4 Dynamic yield surfaces for the compressed sandwich beam along with the compression. 

3. Analytical model for sandwich beams under blasting loading 

Seen as Fig. 5, the sandwich beam length is 2L and core thickness is C, the thicknesses of the 

front and back face-sheets are hf and hb, respectively. The core density is ρc, the uniaxial yield 



strengths of the transverse and longitudinal directions are σt and σl. (Assume that the tensile and 

compressive yield values are equal.) The core has a nominal compressive densification strain, εD. 

The face-sheet material has a density ρf and obeys to the rigid-ideally plastic model with a tensile 

strength σY. The boundary conditions for the sandwich beam are shown in Fig. 5. The back face is 

fully clamped at two outer supports while only the lateral displacements of the front face are 

constrained. These boundary conditions were the same as Liang et al. [17] (considered to be 

representative of ship hulls). This sandwich beam is impulsively loaded with an impulse I per unit 

length applied uniformly to the front face-sheet of the sandwich beam. 

  We consider the core with micro-inertial or shock wave effects and assume that the transverse 

compressive stress σt loads at the back face, the compressive stress σm loads at the front face, 

decelerating the front face as illustrated in Fig. 6. After the impulse impacting, the front face gets 

the velocity. In order to keep balance, a disturbance is propagated along the beam from the fixed 

ends to the midpoint and the core is gradually compressed, which is displayed in Fig. 7. Then the 

front face begins to decelerate, and the back face begins to accelerate, that is, phase I, Fig. 7a, and 

phase II, Fig. 7c. The front and back faces are coupled with each other in phases I and II. The core 

compression ends at time t =teq after which the beams deform as a system (phase III, Fig. 7e).  

     

 

Fig. 5 Geometry of the sandwich beam and schematic of the problem under consideration. 

 



 

Fig. 6 A sketch summarizing the model of the sandwich beam subject to impulse loading. 

 

3.1. Governing equations prior to the equalization of the face-sheet velocities (Coupling 

Response) 

  The governing equations for the motion of the front and back faces by assuming that the two 

face-sheets deflect independently. Employing the lumped mass approximation, the mass per unit 

length of the front and back faces are  

/ 2f f f cm h C   , / 2b b b cm h C   .                                            (9) 

With an impulse I applied uniformly to the front face of the sandwich beam, the initial velocity v0 

of the front face in this lumped mass model follows as 

0

f

I
v

m
 .                                                                    (10) 

  An extensive series of experiments had been performed by using foam impact in order to 

determine the functional relationship between pressure history and impact velocity. The theoretical 

prediction of peak pressure is given as Radford et al. [6]  

2

0 /peak t c DV     ,                                                          (11) 

which agrees well with the experimental measurements. 

The experimental data for the mean pressure is more accurately represented by the empirical fit, 

2

00.66 /m t c DV     .                                                        (12) 

 

3.1.1. Front face 

 

The front face begins to decelerate with the initial velocity v0. We have the velocity and deflection 



of the front face  
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When ε (t) = εD, full densification of the core will occur at a time tD, that is, 
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3.1.2. Back face 

Here we use the finite deflection solution along the lines of the impulsive solution of Tilbrook et 

al. [18] . There are three cases as follow: 

Case I: High strength core, that is, 2 23( / )t Y bh L  ;
 

In the initial phase I (Fig. 7a), the mid-span velocity and the deflection of the back face are 

( ) ,t

b

b

v t t
m


                                                                  (15) 

2( ) .
2

t

b

b

w t t
m


                                                                (16) 

A disturbance propagates from the central point to the fixed ends. When the plastic hinge arrives at 

the midpoint, we have ξ= L, that is, t= tI, with I

bv and I

bw , the first phase ends.  

In the phase II, the plastic hinges are fixed at the mid-span and the ends of the beam, as sketched 

in Fig. 5c, the mid-span deflection and the velocity of the back face are 

 



 
Fig. 7 (a) Velocity profile of the back face in phase I, (b) a free-body diagram of the left half back beam in phase I; 

(c) Velocity profile of the back face in phase II, and (d) a free body diagram of the left half back beam in phase II; 

(e) Velocity profile of the sandwich phase, and (f) a free body diagram of the half beam. 
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where 
31 b

b

N

L m
  , 2 / 4b Y bM h , b Y bN h . 

When the back face begins to decelerate, the acceleration is  and the time is tbd. From Eq. 

(18), we have,  
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When 0bv  , the back face arrests at the time 
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Case II: Intermediate strength core, that is, 2 2 2 2/ 3( / )Y b t Y bh L h L    ; 

Then, the mid-span deflection and the velocity of the back face are given by 
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And the times tbd and tbs are 
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Case III: Low strength core, that is, 2 2/t Y bh L  . 
 

In this case, the strength of the core is so soft that the back face will not deform. Thus, within the 

rigid-ideally plastic idealization, the back face does not deflect due to the pressure t  exerted by 

the core, and we have 0b bw w  .  

  Now the core compression ends when the core has been densified at t = tD, or when the front 

and back face-sheet velocities are equal at the mid-span, whichever occurs first. The detailed 

governing equations are given in Appendix A. 

 

3.2.

 

The membrane factor for the sandwich phase of motion (Overall response) 

  The core compression ends at time t =teq or t = tD, after which the beams deform as a system. Yu 

et al. [19] proposed a ‘membrane factor’ to consider the effect of axial force on the energy 

dissipation of a solid monolithic beam with large deflection. Here this method is extended to solve 

the dynamic response of large deflection of a fully clamped sandwich beam subjected to the high 

velocity impact. We assume that the longitudinal extension of the sandwich beam is 

1 2e e e  .                                                                   (22) 

where e1 and e2 are the axial extensions concentrated at the ends of the left-hand portion (see,  



Fig. 7f). The rate of the angular rotation at the hinges located at x=0 and x=L. The total elongation 

of the left-hand part of the sandwich beam and the angular rotation are 

2
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W
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W

L
  ,                                                             (23) 

where L0 is the half span length of the sandwich beam. W0 is the mid-span deflection of the 

sandwich beam. 

 According to the associated flow rule, we have 

.                                                       (24)                  

Using the associated flow rules of the yielding criteria given by Eqs. (5) and (8), the relations 

between the non-dimensional axial force n and the mid-span deflection W0 then can be expressed 

according to the positions of the plastic hinges. If the plastic hinges are at the mid-span, we have 
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where ,  1 2n h   , and

 

   2 2 / (1 ) 2Dn z h        . 

If the plastic hinges are at the supports, we have 
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where . 



From Eqs. (24), (25) and (26), we have the relationship between the deflection W0 and the 

non-dimensional axial force n, that is, 
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Rewriting Eq. (27), we have 
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where 1 01w W C , 2 02w W C . 

Substitution of Eq. (28) into Eqs. (5) and (8) leads to 
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Note that two hinges are located at x=0 and x=L, respectively. For half of the sandwich beam, 

the energy dissipation rate due to the plastic bending and the axial stretching can be calculated as 

, , , ,                (30) 

where M is the bending moment at the support, and Mm the bending moment at the mid-span. 

Substituting Eqs. (28) and (29) into Eq. (30), the sandwich beam is in a membrane state with 
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At this time, considering the moment of momentum for the left half of the beam, the governing 

equations for the sandwich beam with large deflection are written as 

                                           (32) 

                                                           (33) 

According to Eqs. (32) and (33), the responses of the sandwich beam with large deflection could 

be determined. 

4. Numerical Examples 

In order to examine the availability of the predicted model, we analyze the relationship between 

the face deflection and the strength of the core material. The beam geometrical parameters are: the 

beam aspect ratio 0.3c  . The sandwich beams have identical front and back faces ˆ 1h  , a 

face-sheet to core thickness ratio 0.1h  . For the core we have 0.02  , and the nominal 

densification strain εD=0.85. The longitudinal strength is assumed to be equal to the ideal value 

0.02l  . The transverse core strength 0.001 0.5t  .  

  In the calculation, we take 0.001t  or 0.5. The loading impulse 0.09I  . The same as 

Tilbrook et al. [18] , when 0.001t  , the deformation mechanism is in regime B (decoupled 



regime with full core densification, see, Appendix B). The core is relatively weak and unable to 

decelerate the front face significantly and we can neglect the loading to the back face. 

Densification of the core occurs over the entire sandwich beam span at t =teq resulting in a sudden 

jump of the mid-span back face velocity at the instant that the phase III commences. The support 

reaction is almost zero up to the core densification but displays a sudden rise when the sandwich 

phase of the motion commences. This support reaction continues to increase over the duration of 

the sandwich phase of the response. When t =teq, the core is full densified, the cross-section of the 

sandwich beam is symmetrical (as shown in Fig. 1d). When 0.5t  , the deformation mechanism 

is in regime A (decoupled regime with partial core densification, see, Appendix B). The front face 

velocity decreases linearly with the time, whist the back face velocity increases linearly until the 

face-sheet velocities equalize at the mid-span. When t=teq, the core is partial densified, the 

cross-section of sandwich beam is asymmetric (as shown in Fig. 1b).  

  Figures 8 and 9 show the comparison of the predicted results obtained by the present model and 

that of Tilbrook et al. [18] , as well as the numerical ones from FE simulation. In our modeling, 

the velocities of the front and back beams are coincided well with those given by FE simulation. 

The velocity of the front beam, predicted by Tilbrook et al. [18] , is larger than those given by FE 

simulation. The comparison indicates that our model in treatment of the core deformation is 

reasonable and could well describe the dynamic responses of sandwich beams under an impulse 

impact. Generally, considering the utility of the model, the average treatment (σm, see, Eq. 12) is 

reasonable and acceptable.  



 

Fig. 8 Analytical and FE predictions of the time histories of the mid-span velocities of front and back face-sheets. 

 

  

Fig.9 Analytical and FE predictions of time histories of the normalized mid-span deflection of back face sheet w
_

b. 

Fig. 10 gives the variation of the normalized mid-span velocity and mid-span deflection with 

respect to the time with the same core strength but selected values of the loading impulse. Seen as 

Fig. 10a, the deformation mechanisms are all in regime B (decoupled regime with full core 

densification). The mid-span velocity of the sandwich beam changes to another mode as the 

deflections exceed 1 D  because the variation of the axial force N and the bending moment M at 

this time. In Fig. 10b, for small impulse impacting, the mid-span deflection is less than the 

thickness of the sandwich beam. The deformation of the sandwich beam is coupling response 

dominated. Along with the increase of the loading impulse, the deformation of the sandwich beam 

is overall deformation stage dominated, and the time teq is decreased. It is seen clearly that on the 

time-scales, we can predict the front face and back face velocities and mid-span back face 



deflections.  

   

 

Fig. 10 Analytical predictions of the time histories of the normalized mid-span front and back face-sheet velocities 

and back face deflection for sandwich beams under different impulses. 

5. Conclusions 

 

  The response of fully clamped slender sandwich beams with changed cross-sectional neutral 

axis struck by an impulse is investigated in this paper. Under the high-speed impact, densification 

regions of the core are changed with the time, resulting in the variation of the neutral axis of the 

sandwich beam. The cross section of sandwich beam changes from asymmetry to symmetry along 

with the core deformation. Considering the inhomogeneity of the core deformation, the yielding 

criteria for sandwich beams are presented, which is available for the sandwich beams under high 

velocity impact, as well as the low velocity impact and quasi-static loading. 

  Based on the proposed dynamic yielding criteria, the governing equations for a sandwich beam 

under blasting loading are obtained by introduction the membrane factor to accounting for the 

large deflection. It is clear that the compressive stress σm of the core induced by high velocity 

impact should be considered in large deflection analysis, which plays an important role in the 

coupling response. The comparison between the theoretical prediction and numerical simulation 

indicates the availability and accuracy of the present model. 
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Appendix A 

End of core compression 

After the core compression ends, the face sheets move co-operatively and sandwich action 

dominates the response. Following Fleck and Deshpande [1], we assume that sandwich action 

commences at the time teq when core compression ends, that is, the core has densified at the 

supports, or the front and back face-sheet velocities are equal at the mid-span, whichever occurs 

first. 

There are three cases: 

Case I: 2 23( / )t Y bh L   

Equalizations of the velocities of the faces in this case can occur in the following three scenarios: 

(a) during phase I of the back face; (b) during phase II of the back face; or (c) after motion of the 

back face has ceased. 

Case I (a): Core compression ends during phase I of the back face motion. We obtain the time 

0 b f

I

m b t f

v m m

m m


 



                                                            (A1) 

For this solution to be valid we require that I It   

min( , )eq I D It t t                                                             (A2) 

If this inequality is not met, then core compression continues into phase II of the back face 

motion. 



2

2

eq t
b eq

b

w t
m


                                                                (A3) 

The core compression at mid-span and at the supports then follow as 
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Case I (b): Core compression ends during phase II of the back face motion. 
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min( , )I eq II D bst t t t                                                        (A5b) 

If neither inequality (2) nor (5b) is satisfied, then core compression continues after the back face 

has arrested. 

Case I(c): Core compression ends after the arrest of the back face. 

0f
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Case II: 
2 2 2 2/ 3( / )Y b t Y bh L h L     
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0 min( , )eq D bst t t                                                           (A7b) 

Case III: 2 2/t Y bh L   

Recall that in this case the transverse compressive strength of the core is insufficient to initiate 

deformation in the back face. Equalizations of the front and back face velocities occurs at teq either 

if the motion of the front faces ceases or (b) if core densification occurs. The midspan back face 

deflection wb and velocity vb are identically zero over the duration 0 eqt t  . 



 

Appendix B 

Regimes of behavior 

 

The response regimes of the sandwich beam can be defined by comparing various time-scales and 

summarized as: 

Regime A: Decoupled response with partial core densification:  

eq Dt t  and eq bdt t  

Regime B: Decoupled regime with full core densification: 

eq Dt t  and eq bdt t  

Regime C: Decoupled regime with full core densification: 

eq Dt t  and eq bdt t  

Regime D: Coupled response with full core densification: 

eq Dt t  and eq bdt t  
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Fig. 7 (a) Velocity profile of the back face in phase I, (b) a free-body diagram of the left half back 

beam in phase I; (c) velocity profile of the back face in phase II, and (d) a free body diagram of 

the left half back beam in phase II; (e) velocity profile of the sandwich phase, and (f) a free body 

diagram of the half beam. 
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Fig. 10 Analytical predictions of the time histories of the normalized mid-span front and back 

face-sheet velocities and mid-span back face deflection for sandwich beams under different 

impulses. 

 



 

 

 

 

 

Fig. 1. Original and deformed cross-sections of the sandwich beam. 

 

 

 

 

 
Fig. 2 Typical dynamic stress-strain curves for the foam. The red line corresponds to rigid ideally-plastic-locking model. 
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Fig.3 Distributions of the strain and stress on the cross-section of multilayer beam under bending moment and 

axial force. 
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Fig. 4 Dynamic yield surfaces for the compressed sandwich beam along with the compression. 

 



 

 

 

 

 

 

Fig. 5. Geometry of the sandwich beam and schematic of the problem under consideration. 

 

 



 

 

 

 

 

 

 

Fig. 6. A sketch summarizing the model of the sandwich beam subject to impulse loading. 



 

 

 

 

 

Fig. 7 (a) Velocity profile of the back face in phase I, (b) a free-body diagram of the left half back beam in phase I; 

(c) Velocity profile of the back face in phase II, and (d) a free body diagram of the left half back beam in phase II; 

(e) Velocity profile of the sandwich phase, and (f) a free body diagram of the half beam. 
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Fig. 8 Analytical and FE predictions of the time histories of the mid-span velocities of front and back. 
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Fig.9 Analytical and FE predictions of time histories of the normalized mid-span deflection of back face sheet w
_

b. 
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Fig. 10 Analytical predictions of the time histories of the normalized mid-span front and back face-sheet velocities 

and mid-span back face deflection for sandwich beams under different impulses. 

 


