
Students’ and Professionals’ Perceptions of Test-driven
Development: A Focus Group study

ABSTRACT
We have conducted a qualitative investigation on test-driven
development (TDD) with focus groups in order to develop
insights on the opinions of developers using TDD regarding
the unintuitive process involved, its claimed effects, as well
as the context factors that can facilitate (or hinder) its appli-
cation. In particular, we conducted two focus group sessions:
one with professional developers and another with Master
students in Computer Science at the University of Basili-
cata. We used thematic analysis template (TAT) method for
identifying the patterns, themes, and interpretations in the
gathered data. The application of this qualitative method
allowed us to obtain a number of results that can provide di-
rections for future research. Our results can be summarized
as follows: (i) applying TDD without knowing advanced
unit testing techniques can be difficult; (ii) refactoring (one
of the phases of TDD) is not done as often as the process
requires; (iii) there is a need for live feedback in order for
the developers to understand if the TDD process is being
applied correctly; and (iv) the usefulness of TDD hinges on
the task and domain to which it is applied to.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Experimentation, Human Factors

Keywords
Focus group, qualitative investigation, test driven develop-
ment

1. INTRODUCTION
Test-driven development (TDD) is an iterative software

development technique where unit-tests are defined before
production code. In particular, this technique encourages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’16 April 4-8, 2016, Pisa, Italy.
Copyright 2016 ACM xxx-x-xxxx-xxxx-x/xx/xx...$15.00.
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

code development by repeating short cycles consisting of:
(i) writing a unit test for an unimplemented functionality
or behavior; (ii) supplying minimal amount of production
code to make unit tests pass; (iii) applying refactoring where
and when necessary; and (iv) checking that all tests are still
passing after refactoring [2]. The effects of these steps can
be summarized as follows: a shift in mindset from test-last
approach to test-first approach; developing code only to pass
tests; a focus on design quality through refactoring opera-
tions; and a growing set of regression test cases as a safety
net. It is claimed that TDD leads to better code quality due
to its focus on testing, and improves developers’ confidence
in their source code [1]. A number of quantitative empirical
investigations have been conducted on TDD (e.g., [5, 21]).
Results are somehow contrasting and inconclusive [22]. Even
more surprisingly, TDD has been marginally investigated
from a qualitative point of view and from the perspective
of the developer [13, 23]. Unlike quantitative investigations,
qualitative ones allow gaining an understanding of reasons
and motivations behind a given phenomenon [26].

In this study, we want to understand what are opinions
of developers using TDD regarding the process itself, its
claimed effects, as well as the context factors that can facili-
tate (or hinder) its application. In this respect, focus groups
have the advantage, over other qualitative approaches, of
producing interactions by focusing on the role of group rather
than on individuals. We conducted two focus group sessions
with five professional software developers, and 13 Master
students in Computer Science. Professional developers at-
tended a professionalization program in which TDD was pre-
sented. The students recently took a course about unit test-
ing and TDD. The first focus group session was aimed at
gathering the participants impression regarding their learn-
ing experience, whereas the second session aimed at explor-
ing issues related with TDD. We used thematic analysis
template (TAT) to analyze the recordings of focus group
sessions.

The reminder of this paper is organized as follows: back-
ground and related work on the measured and perceived
effectiveness of TDD is discussed in Section 2. We present
our resarch methodology, e.g. planning and design of our fo-
cus groups in Section 3. Results are provided and discussed
in Section 4. Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK
The effectiveness of TDD has been assessed through sev-

eral quantitative studies, and their results aggregated us-
ing systematic reviews and meta-analyses. Contradictory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362649072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

results regarding the effects of TDD on both software prod-
ucts (e.g., defects), and the software developers (e.g., pro-
ductivity) are reported [25, 20, 17]. Interestingly, one of
the secondary studies [4] suggested that the insufficient ad-
herence to the TDD protocol and insufficient testing skills
are among the factors hampering the industrial adoption of
TDD.

There is a smaller number of qualitative studies investi-
gating the perception of developers regarding the practise.
Mueller and Tichy [16] presented the results of using sev-
eral XP methodologies, including TDD, within a university
course. They reported that TDD was one of the most diffi-
cult techniques to adopt as writing test cases before coding
was at times considered impractical. Nevertheless, students
saw the benefits of TDD and ranked it as the best among
the practices used as it improved their confidence. Similarly,
Gupta and Jalote [7] report that students seemed to be more
confident that the testing effort applied by using TDD would
bring better results than in a traditional test-after-code set-
ting. They also identified the need of some upfront design.
On the other hand, Pancur et al. [19] reports that students
perceived TDD more difficult to adopt in comparison to pro-
fessionals. Students perceived TDD as a practice that hin-
ders their productivity, efficiency and quality. According
to professional software developers, TDD helps in devising
a better design, and preventing bugs; however, it does not
replace a QA engineer [22]. Moreover, TDD improves con-
fidence by minimizing the fear of breaking existing working
parts of the code once a new feature is implemented [6].

While quantitative studies provide objective frameworks
for assessing the effectiveness of TDD, their findings were
mostly inconclusive. On the other hand, qualitative studies
enable more deeper understanding. In this respect, exist-
ing qualitative studies relied upon non-interactive research
methods such as questionnaires. Our study differs from ex-
isting work above with the qualitative research methodology
employed, i.e. focus groups, in order to develop a better
understanding of the underlying phenomena. Our study en-
ables relatively deeper insights, since our results are based
on not only individual perspectives, but also the collective
understanding reached through interaction. Further, we in-
cluded both students and professionals in our study, as pre-
vious work highlighted some differences among them.

3. THE FOCUS GROUP
Increased attention in empirical methods has also inter-

ested software engineering. A broader range of empirical
methods are available in software engineering arsenal so that
appropriate methods can be selected and used for each re-
search problem [9].

The focus group method is quick to use and cost-effective
to obtain qualitative insights and feedback [10]. It can be
defined as a research technique that collects data through
group interaction on a topic determined by the researcher [15].
Thus, focus groups are carefully planned discussions that
the researcher designs to obtain personal perceptions of in-
dividuals (or participants, from here on) arranged in groups
on a defined area of interest. Focus groups allow the col-
lection of qualitative information and have the benefits of
producing upfront and sometimes insightful information. In
addition, this kind of research strategy is fairly inexpensive
and fast to use even if it shares weaknesses with other kinds
of qualitative methods. For example, results may be biased

by group dynamics and sample size (a typical group size
should range in between 3 and 12). There are several text-
books and detailed guidelines available on how to plan and
run focus groups (e.g., [18]). We present the main steps of
our research according to the template suggested by Kontio
et al. [10]. This template has been suggested for research in
software engineering.

3.1 Defining research problem
Rather than providing quantifiable responses to a specific

research question, a focus group study provides a flow of in-
put and interaction among participants related to a given
topic of interest [12]. The initial objective of our study
is to provide insights regarding the adoption and use of
TDD. What are the reasons to use TDD? In what con-
texts? What does a group think developers can achieve by
using TDD? What are possible effects when adopting TDD?
In Sections 3.3 and 3.4, we framed those discussion points
when planning the second focus groups, for both students
and professionals.

3.2 Selecting participants
We conducted two focus groups, one involving five pro-

fessionals and another involving 13 Master students. As
for professionals, they attended a training course for pro-
fessional adjournment on agile software development. The
greater part of this course was devoted to introduce TDD
and to apply it on actual cases. The course lasted about
eight weeks (with four hours of frontal lessons per week)
and included homework and workshops working individu-
ally and in pairs. Each homework had to be completed in
one week.

Industrial experience of professionals ranged between one
and ten years. One of the professionals (i.e., the most ex-
perienced developer) had a Master degree in Computer Sci-
ence, while the others had a Bachelor degree in Computer
Science. All the professionals had knowledge of testing ap-
proaches and techniques (e.g., integration testing, system
testing) before our focus group took place.

Participants in the second focus group were students en-
rolled into an Informative System (IS) course of the Master
program in Computer Science at the University of Basili-
cata. This course had elements regarding software testing,
software development process, software maintenance, agile
development techniques with a focus on TDD, regression
testing, and refactoring. Homework and classwork were also
conducted to let students experiment and use TDD, regres-
sion testing, and selected testing framework, namely JU-
nit.1 The programming language of reference used through-
out the class and for the homework was Java. Students had
all passed exams related to the following courses: Procedu-
ral Programming, Software Engineering I, Object-Oriented
Programming I and II, and Databases. Their prior knowl-
edge can be considered rather homogeneous. The same lec-
turer held both training and IS courses. Both professionals
and students were familiar with TLD. That is, a more tradi-
tional development technique, in which unit tests are written
after a feature (or a set of related features) are considered
completed by developers.

1http://junit.org
2In this context defined as the code-based properties for cre-
ating and maintaining the developed solution.

Table 1: Initial template for TAT analysis
ID Theme Discussion
1.1 TDD learning experience Reveals what were the positive and negative points encountered when learning TDD
1.2 Improvements Reveals what can be done better to improve the negative points in the learning experience
1.3 Classwork and homework Reveals the challenges encountered while tackling the assignments used to practice TDD
1.4 Appreciations Reveals appreciations specifically for other peers or lecturers
2.1 TDD in practice Reveals challenges regarding the application of the TDD process
2.2 Task specification Reveals the influence of task and context on the application of TDD
2.3 Effects of TDD Reveals the perceived effects of TDD on several dimensions

Table 2: Final themes and sub-themes identified after TAT analysis
ID Theme Sub-theme

2.1
TDD in practice
(focus on process)

a) TDD internal process characteristics (testing, refactoring)
b) External process characteristics (pair-programming)

2.2
Specification of tasks
(levels of details)

c) Differences with TLD
d) Nature of the task (greenfield, legacy)

2.3
Effects of TDD
(internal quality,2 external quality,3 productivity)

e) Differences with TLD
f) Existing experience (novice, professionals)

3.3 Planning and conducting sessions
We held two sessions for each focus group (i.e., four ses-

sions in total). The first session of each focus group lasted for
30 minutes. The second session of each focus group lasted
for about one hour. Both sessions were conducted on the
same day. The topics of the sessions were the same for pro-
fessionals and students. The first session was mostly a pi-
lot, primarily intended to practice our focus group process.
Topics discussed in the first session concerned course and
classwork, as well as homework and workshops. During the
second session, discussion focused in TDD-specific themes.

We started with an overview of the study objectives and
a short introduction of the ground rules for discussions dur-
ing the sessions. We ensured that the participant’s opinions
represented actual situations by guaranteeing confidentiality
and anonymity of discussions. The sessions were conducted
in the Italian language, and audio-recorded so that tran-
scripts could be prepared in order to document the points
that were raised. The lecturer of training and IS courses was
the facilitator for all the two sessions of each focus group.
The role of the facilitator in the sessions was to make sure
that important topics were touched, limit discussion’s side-
tracks, and encourage the participants to express their opin-
ions. The facilitator did not take an otherwise active part
in the discussion. In addition to the facilitator, there was
also another researcher responsible for the collection of notes
from the discussions.

Discussions were semi-structured, with pre-defined themes,
but not specific questions. A set of themes were proposed
by each researcher and successively compared and internally
discussed (Section 3.4). This did not limit the dialog and
allowed us to touch all the aspects that participants found
more relevant.

3.4 Analysis
Audio recordings and notes taken by the researchers were

transcribed and anonymized. They represent the data on
which we base our analysis. We used thematic analysis tem-
plates (TAT) [8] to analyze the data. Thematic analysis

3In this context defined as the thoroughness of the developed
solution.

is a qualitative method used to identify patterns, themes,
and interpretations in the data [3, 14]. The main differ-
ence between TAT and a conventional thematic analysis is
the use of template documents. A template is a set of ini-
tial themes that are studied. Templates are developed by
researchers based on their experience and knowledge of the
phenomena under investigation. However, templates are not
fixed as their content can evolve as analysis progresses. We
utilized TAT because of its flexibility and swiftness [8]. In
our case, templates were created on the basis of our previ-
ous experience in teaching and researching TDD. The TAT
was independently carried out by all researchers manually
(i.e., without using specialized software). No disagreement
regarding the chosen themes was found. In Table 1, we show
the resulting template. The first focus group covered themes
1.1 to 1.4. In particular, theme 1.4 was introduced to deal
with social acceptability issues [10]. The second focus group
covered themes 2.1 to 2.3. For the second focus groups, the
themes emerging from data were consolidated in the final
set presented in Table 2. Each of the three main themes
focused on a particular facet, reported in parentheses. Each
theme was articulated into sub-themes. The focus of the
sub-themes are also reported in parentheses.

4. RESULTS
The results from the previously identified themes are pre-

sented below grouped by session.

4.1 First session
A broad discussion on themes 1.1 to 1.4 is not possible due

to both space restrictions and minor relevance with respect
to the main focus of this paper.

Theme 1.1) TDD was interesting to learn.

Although professionals and students usually use TLD in
their work or in university courses, they found TDD inter-
esting as a different software development technique. They
did not exclude the potential use of TDD in the future. This
is a positive point related to their learning experience. On

the other hand, participants considered classwork delivery
time (3 hours) too short, and felt under pressure for de-
livery on time. In addition, participants found some class-
work/homework requirements unclear.

Theme 1.2) Simple exercises should be used to
internalize TDD.

The attendees suggested to choose less complex classwork/
homework with well defined requirements description.

Theme 1.3) Tasks and their specification some-
times made it difficult to accomplish assign-
ments.

Professionals and students encountered different challenges
while they tackled the assignments used to practice TDD.
Students had no experience in dealing with existing software.
This represented a challenge for them because some of the
assigned homework involved working with existing software.
The English language used to specify the requirements of all
assignments was another challenge because both profession-
als and students usually implement requirements specified
in Italian language.

Theme 1.4) Appreciation for the lecturer.

Participants expressed appreciations for the lecturer because
they were available to explain both requirements and code.

4.2 Second session
We report the results according to the themes shown in

Table 2. For each of the main themes, we report main find-
ings and results emerging from sub-themes. Interestingly,
for both themes 2.2 and 2.3 the discussion was concerned
with the differences between TDD and TLD.

4.2.1 TDD in practice

Theme 2.1) Process-related characteristics re-
strain the application of TDD.

a) TDD internal process characteristics
Although the three steps of the TDD process were eas-
ily understood, participants agreed that their application
presents several hurdles. The first step—writing a test for a
non-existing functionality—requires, except for trivial cases,
a good knowledge of unit-testing patterns and unit-testing
framework. One example is writing a failing unit test for a
new feature which depends on another entity, e.g.; another
class. The lack of knowledge of test doubles [24] (some-
times referred as impostor pattern) and mocking frameworks
can make the application of TDD inherently difficulty. On
the other hand, a more traditional approach (e.g., TLD)
is not restricting in such regards as it allows developers to
implement required dependencies that can be later tested to-
gether. Although participants were accustomed to use refac-
toring techniques, they candidly acknowledged that refac-
toring is more often neglected. The reasons are: (i) the dif-
ficulty of identifying refactoring opportunities and (ii) the

less desirability of refactoring when compared to the more
fulfilling task of re-starting the TDD cycle by implementing
a test case for a new feature. We can postulate that a better
IDE support can be beneficial in both circumstances.

The participants, being freshly introduced to TDD, ac-
knowledged that they could not judge whether TDD was be-
ing applied correctly. One of the participants declared that
“it is easy to fool yourself with TDD.” The perceived lack
of confidence was suggested to be the reason to fall back to
a test-last approach. Tools4,5 that give live feedback about
developer’s conformance to TDD exists, but their effective-
ness is not sufficiently studied [4]. We can postulate that
the use of these tools can be beneficial for TDD novice de-
velopers. We advise this point as a possible future direction
for TDD research work.
b) External process characteristics
Participants deemed that TDD is regarded as an activity
that should be embraced by the whole development team.
Participants also practiced TDD in pairs, and recognized it
as a good fit for pair-programming.

4.2.2 Specification of tasks

Theme 2.2) The task is critical.

c) Differences with TLD
During training course, professionals deliberately practiced
TDD on several tasks of different complexity and nature.
The same held for students. Some tasks focused on the
implementation of algorithms, others on architectural prob-
lems (e.g., focusing on the interaction between components).
Some tasks were greenfield (i.e., the task is tackled from
scratch), while others were brownfield (i.e., some of the com-
ponents were already in place and the task consisted in mod-
ifying or adding functionalities).

TDD is better suited for smaller tasks, whereas its appli-
cation to a larger task was found undesirable. On the other
hand, in presence of a really simple task or a task for which
the developer has good knowledge of the domain, applying
TDD or TLD did not seem to matter as personal experience
trump the specific technique.

TDD was recognized useful within an unknown domain
as it allows the development of more explorative solutions;
whereas TLD is to be preferred when a comprehensive plan
of action is available. Finally, TDD is to be preferred when
task requirements are likely to change.
d) Task nature
TDD could help understanding legacy code, but only when
a test suite is already in place. Otherwise, TLD is preferred.

4.2.3 Effects of TDD

Theme 2.3) There are tradeoffs between inter-
nal and external quality, and productivity.

e) Differences with TLD
The discussion of the effects of TDD also concerned how
they vary in comparison with TLD. Participants discussed

4Besouro - http://github.com/brunopedroso/besouro
5Pulse - https://github.com/sbastn/pulse

peculiarities of TDD and TLD, rather than trying to artic-
ulate which one is better than the other. From the discus-
sion regarding this topic, different outlooks emerged between
novice and professional participants. Hence, results regard-
ing sub-theme f) are based on the existing experience of
participants.
f) Existing experience
Novice developers thought TDD improved their productivity
because bugs are promptly found. Alongside, the emphasis
of TDD on writing tests, and the high rate at which they
are run helps to find bugs not only in production code but
also in test code. Secondarily, participants perceived posi-
tive effects on external quality. TDD manifested its biggest
drawback is in terms of internal quality. The process encour-
ages developers to write quick-and-dirty production code to
make the tests pass, provided that refactoring is then ap-
plied. However, participants acknowledged that refactoring
is often ignored. This is considered to be the reason for
detrimental effects of TDD on internal quality. On the other
hand, TLD is considered to benefit internal quality. The pro-
fessional participants stressed how TDD is time-taking and
detrimental for productivity. Their explanation is that the
small increment developed with TDD—without a general
idea—made them reconsider their previous implementation
decisions and forced them to change parts of the existing
code. The result of a meta-analysis [20], focusing on the
difference between the application of TDD in industry and
academia, supports the claimed drop in productivity. Our
rationale is that experienced developers tend to strictly fol-
low the process, whereas novices are more likely to interpo-
late TDD with TLD.

4.3 Threats to Validity
Focus groups could be prone to problems associated with

qualitative data. As the developers of methods/approaches
may also act as the researcher responsible for focus group
sessions, researcher biases could be present either during
the planning, during the sessions themselves, or during the
analysis [11]. This kind of bias is not present in our study
because we developed neither TDD not TLD. To further
deal with possible threats to the validity of our results, we
used disciplined, objective, and rigorous instrumentation,
and data analysis methods [9]. In addition, all our results
are based on traceable data. Other possible threats to the
validity are related to focus group weakness [10]: group dy-
namics,6 social acceptability,7 hidden agendas,8 and limited
comprehension.9 As for group dynamics, we used semi-
structured discussion techniques and the facilitator balanced
discussions and activated less active participants. Social ac-
ceptability weakness was mitigated by laying out appropri-

6As a focus group discussion takes place without predefined
format, it is possible that group dynamics or communication
styles influence the level of activity.
7It can influence points made during discussion. For ex-
ample, it is possible that a participant volunteers incorrect
information and disagreement may take place accordingly.
8Examples of possible biases are: business relationships be-
tween participants, motivation to appear in favorable light
or not because of result publication, and internal politics of
participants’ companies.
9Time for discussions is limited and communication hap-
pens most often only only verbally during the discussion.
Complex issues or points could not be understood by all
participants.

ate ground rules in the beginning. The moderator took his
role in driving the discussion in order to avoid as much as
possible social acceptability issues. Hidden agendas did not
affect our study results because business relationships among
participants in each session were not present. In addition, it
was clearly communicated to participants that results will
be presented in anonymous form. We also emphasized that
study results could be important for both academy and in-
dustry. As for limited comprehension, we selected partici-
pants of equal expertise in each session, namely professionals
and students. It is worth mentioning that secrecy does not
affect the validity of obtained results because relevant infor-
mation concerned with proprietary or business reasons was
not discussed in our focus group sessions.

5. CONCLUSION AND FUTURE WORK
In this paper, we reported the results of two focus groups

in which students and professional software developers dis-
cussed their experience carrying out programming tasks of
different nature using test-driven development (TDD). We
held two sessions for each focus group (i.e., four sessions in
total). The first session dealt with high-level topics regard-
ing the courses where participants studied and experimented
TDD. The most important result is that TDD was interest-
ing to learn. Both students and professionals agreed on this
point. The second session touched more practical aspects re-
lated to TDD. We used thematic analysis templates (TAT)
when discussing: the challenges that TDD process poses,
the context—with a particular focus on the programming
task—that can hamper or support the use of TDD, and the
different effects TDD has on common aspects, like software
quality and developers’ productivity. Regarding TDD pro-
cess, we found that:

• Applying TDD without knowing advanced unit testing
techniques (e.g., mocking), can be difficult.

• Refactoring is not done as often as the process requires.
• There is a need for live feedback to ensure that TDD

is being applied correctly.
• TDD works better if used in conjunction with pair-

programming.
We believe that our results can provide further research

opportunities. For example, when studying the efficacy of
TDD, the ability of the study’s participants to apply ad-
vanced testing and refactoring techniques should be taken
into account. When studying TDD, we recommend that
IDEs to support the process informing the developer when
TDD is not being applied correctly.

Regarding the kind of tasks to which TDD is applied, we
found that:

• TDD suits small task better.
• TDD is preferred for tasks which domain is not well

know, i.e. for exploration.
• TDD is applicable to legacy code already covered by

unit tests.
In this regard, one of our future endeavors is to test the

hypothesis that TDD works better with high-granular re-
quirements rather than coarse requirements through a con-
trolled experiment. The use of TDD with legacy code also
represents a challenge for future research.

Regarding the effects of TDD when compared to test-last
development (TLD), we found that:

• Novices believed that TDD improves productivity at
the expenses of internal quality.

• TLD yields a better internal quality over TDD.
• Professional deemed that TDD decreases productivity.

We recommend future work to investigate how the appli-
cation of TDD by developers of different experience impacts
software attributes such as internal and external quality, as
well as productivity. Finally, we recommend the use of fo-
cus groups as a tool to efficiently generate hypotheses, that
can be later tested using quantitative methodological ap-
proaches.

6. REFERENCES
[1] D. Astels. Test Driven Development: A Practical

Guide. Prentice Hall Professional, 2003.

[2] Beck. Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[3] V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative research in psychology,
3(2):77–101, 2006.

[4] A. Causevic, D. Sundmark, and S. Punnekkat. Factors
Limiting Industrial Adoption of Test Driven
Development: A Systematic Review. In Software
Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on, pages
337–346. IEEE, 2011.

[5] D. Fucci and B. Turhan. On the role of tests in
test-driven development: a differentiated and partial
replication. Empirical Software Engineering,
19(2):277–302, 2014.

[6] A. Geras, M. Smith, and J. Miller. A prototype
empirical evaluation of test driven development. In
Software Metrics, 2004. Proceedings. 10th
International Symposium on, pages 405–416, 2004.

[7] A. Gupta and P. Jalote. An experimental evaluation
of the effectiveness and efficiency of the test driven
development. In Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International
Symposium on, pages 285–294, 2007.

[8] N. King, C. Cassell, and G. Symon. Using templates
in the thematic analysis of texts. Essential guide to
qualitative methods in organizational research, pages
256–270, 2004.

[9] J. Kontio, J. Bragge, and L. Lehtola. The Focus
Group Method as an Empirical Tool in Software
Engineering. In Guide to Advanced Empirical Software
Engineering, chapter 4, pages 93–116. Springer
London, London, 2008.

[10] J. Kontio, L. Lehtola, and J. Bragge. Using the Focus
Group Method in Software Engineering: Obtaining
Practitioner and User Experiences. In Proceedings of
the International Symposium on Empirical Software
Engineering, pages 271–280. IEEE, 2004.

[11] J. Langford and D. McDonagh. Focus Groups:
Supporting Effective Product Development. CRC
Press, 2003.

[12] L. Lehtola and S. Kujala. Requirements Prioritization
Challenges in Practice. In Proceedings of International
Conference On Product Focused Software Process
Improvement, pages 497–508. Springer, 2004.

[13] A. Marchenko, P. Abrahamsson, and T. Ihme.
Long-term effects of test-driven development A case
study. In Proceedings of Internation Confernce on

Agile Processes in Software Engineering and Extreme
Programming, pages 13–22. Springer, 2009.

[14] M. B. Miles and A. M. Huberman. Qualitative data
analysis: An expanded sourcebook. Sage, 1994.

[15] D. L. Morgan. Focus Groups. Annual Review of
Sociology, 22:129–152, 1996.

[16] M. Muller and W. Tichy. Case study: extreme
programming in a university environment. In
Proceedings of the 23rd International Conference on
Software Engineering, pages 537–544, May 2001.

[17] H. Munir, M. Moayyed, and K. Petersen. Considering
rigor and relevance when evaluating test driven
development: A systematic review. Information and
Software Technology, 2014.

[18] J. Nielsen. The Use and Misuse of Focus Groups.
IEEE Softw., 14(1):94–95, Jan. 1997.

[19] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar.
Towards empirical evaluation of test-driven
development in a university environment. In
EUROCON 2003. Computer as a Tool. The IEEE
Region 8, volume 2, pages 83–86 vol.2, 2003.

[20] Y. Rafique and V. B. Misic. The Effects of
Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. Software Engineering,
IEEE Transactions on, 39(6):835–856, 2013.

[21] I. Salman, A. T. Misirli, and N. Juristo. Are Students
Representatives of Professionals in Software
Engineering Experiments? In Procedings of
International Conference on Software Engineering,
pages 666–676, 2015.

[22] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep,
and H. Erdogmus. What Do We Know about
Test-Driven Development? IEEE Software,
27(6):16–19, 2010.

[23] M. Siniaalto and P. Abrahamsson. A comparative case
study on the impact of test-driven development on
program design and test coverage. In Proceedings of
the International Symposium on Empirical Software
Engineering and Measurement, pages 275–284.
ACM/IEEE Computer Society, 2007.

[24] P. Tahchiev, F. Leme, V. Massol, and G. Gregory.
JUnit in action. Manning Publications Co., 2010.

[25] B. Turhan, L. Layman, M. Diep, H. Erdogmus, and
F. Shull. How effective is test-Driven Development.
Making Software: What Really Works, and Why We
Believe It, pages 207–217, 2010.

[26] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering. Springer, 2012.

