
Parallel Monte Carlo Search for Hough Transform

Raul H. C. Lopes1, Virginia N. L. Franqueira2, Ivan D. Reid1 and
Peter R. Hobson1

1College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge,
UB8 3PH, UK
2College of Engineering and Technology, University of Derby, Derby, DE22 1GB, UK

E-mail: 1raul.lopes@brunel.ac.uk, ivan.reid@brunel.ac.uk,

peter.hobson@brunel.ac.uk, 2v.franqueira@derby.ac.uk

Abstract.
We investigate the problem of line detection in digital image processing and in special how

state of the art algorithms behave in the presence of noise and whether CPU efficiency can be
improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition,
and parallel computing.

The starting point of the investigation is the method introduced in 1962 by Paul Hough for
detecting lines in binary images. Extended in the 1970s to the detection of space forms, what
came to be known as Hough Transform (HT) has been proposed, for example, in the context of
track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem
of line detection, for example, into one of optimization of the peak in a vote counting process
for cells which contain the possible points of candidate lines. The detection algorithm can
be computationally expensive both in the demands made upon the processor and on memory.
Additionally, it can have a reduced effectiveness in detection in the presence of noise.

Our first contribution consists in an evaluation of the use of a variation of the Radon
Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then,
parallel algorithms for variations of the Hough Transform and the Radon Transform for line
detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection
is also introduced. Their algorithmic complexities are discussed. Finally, implementations on
multi-GPU and multicore architectures are discussed.

1. Introduction
We consider in this paper the problem of detecting straight lines in computer image processing,
a recurring problem in areas as diverse as lane detection in vehicle vision-systems [1] or the use
of the Hough Transform in muon tracks detection in the Large Hadron Collider [2, 3, 4].

We assume that a set of pixel coordinates is given as input. We do not deal with how the
pixels are obtained. We also assume that, due to errors in the processes of data collection and
transformation to digital images, pixels from the original lines may be missing, and noise and
small deviations may be present.

A trivial brute-force algorithm can easily be devised that would test co-linearity of points
with all lines defined by two pairs of input pixels. Such algorithm could be trivially parallelized,
but the work demanded for N2 pixels would be limited by an inferior bound of Ω(N3), with
each pixel being tested for co-linearity with all other ones.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362648978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


As a more work efficient alternative, we consider the Hough Transform (HT), and its
most used variation proposed by Duda and Hart. The foundations of algorithms and their
complexity are discussed. Also discussed is their effectiveness in the presence of noise. The
Radon Transform, that actually predates them, is introduced and discussed as an alternative to
use in the presence of images with noise. For variations of those transforms possible sequential
algorithms are discussed with their respective work complexity. It is shown that variations
of both HT and RT can be demanding on both CPU and memory. As a result, it may be
necessary to consider the possibility of reducing execution time by using parallel and probabilistic
algorithms.

The main contributions of this work consist in introducing parallel algorithms for both the
Hough transform and a discretized version of the Radon transform. Important issues in relation
to the parallel algorithms introduced are: work complexity, scalability in the presence of parallel
processing and variations of computer architectures, correctness of computation in the presence
of concurrency in access to data. A performance evaluation of the parallel algorithms introduced
is discussed.

2. The Hough Transform
The Hough transform (HT) was introduced as a patent for an analogue device that was,
according to Rosenfeld [5], the first to describe the idea of mapping the pixels of a figure in
a plane X − Y to a parameter plane of intercept-slope, as depicted in figure 1. Rosenfeld [5] is
credited by Hart [6] as the first to introduce an algorithm to compute the HT. Rosenfeld used
the fundamental idea of the HT that collinear points in the initial input, when mapped to an
intercept-slope, parameter space become concurrent lines.

Figure 1: Hough transform map of collinear points to intersection of lines

One problem in this parameterization is that if two points in the input define a line that is
almost parallel to the x-axis, their projections will meet in the infinite, and that leads to an
unbound search. Rosenfeld proposed to address this by scanning the input twice at right angles.
A second problem is that the input of the algorithm consists only of pixels, and any pair of them
determines a line. Rosenfeld suggested representing the transform as an array of counters. Peak
detection or a threshold can be used to select the most promising candidate lines.

Motivated by the idea of using a parameterization of the line that is invariant to translation
and rotation of geometric figures, Hart [6] started using the normal parameterization of the line,
algebraically defined by equation 1 below:

y = − cos θ/ sin θ + ρ/ sin θ (1)

Duda and Hart [7] introduced the map from (x, y)-space to the (ρ, θ)-space. The Duda-
Hart-Hough method, now consists of computing, for a point (xi, yi) and a possible angle θ,



(a) Image with Gaussian noise (b) Image processed by HT in OpenCV

Figure 2: DHHT processing of image with noise

the respective ρ, that satisfies equation 1. Again, the computational work is unbounded if all
possible values of θ are considered. Borrowing from Rosenfeld, the transform is proposed to be
mapped into an array of counters indexed by discrete values for both θ and ρ. The work of
the algorithm now consists in constructing a histogram and counting, for each pair (ρ, θ), the
number of points that solve equation 1, which corresponds to the number of intersections of
sinusoidals in (ρ, θ)-space, and number of collinear points in (x, y)-space.

The elements of an algorithm based one the Duda-Hart-Hough Transform (DHHT) described
in [7] are thus:

• ρ ∈ R and θ ∈ [0, π);

• ρ̂, discretized ρ, in the range of the size of the image;

• θ̂, the discretized number of intervals of θ;

• an array of counters, indexed by (ρ̂, θ̂), each position counting the number of points mapped
by equation 1 to the respective interval.

In this section and the rest of the paper, it is assumed than an image is a grid of pixels
and N denotes its number of rows (or columns), Np denotes the number of non-blank points,
points that are part of valid lines or noise present in the image, and M represents the number
of discrete values of θ.

The algorithm for the DHHT as described above has then a complexity that depends on the
resolution of θ and is bound by Ω(MNp), given that all possibly valid points must be considered
at all possible values of θ. It is important to notice that Np is limited from above by the
dimensions of the image, which is quadratic in N . In the extreme, the algorithm can exhibit a
behaviour that approaches the cube of N , in the presence of images with a lot of noise and with a
number rows approximating the number of columns. This is exemplified by the figure 2a, where
the grid has 1024 rows and columns, and the presence of Gaussian noise would demand around
the cube of the number of rows in floating points operations. In a sequential implementation,
this is possibly too much if many images are to be processed in a short time.

The idea of Hough transform algorithm has come to be mostly associated with some variation
of the transform as described by Duda and Hart [7], which will be called in the future Duda-
Hart-Hough algorithm. It is implemented, for example, in the open source package OpenCV
[8]. Its limitations become evident both in processing time and effectiveness when applied to
images with noise. Figure 2a shows one line additive Gaussian at amplitude 37, as generated
by the library CImg. In figure 2b, the result of applying the OpenCV implementation of a



Hough transform algorithm to figure 2a is shown: close to three thousand lines are detected by
OpenCV, which, of course, were not present in the input figure.

3. The Radon Transform
Hart’s idea of using the normal plane for a mapping from the (x, y)-space was actually first
used in the Radon Transform (RT). Brady [9], and, independently, Götz and Druckmüller [10],
introduced the Discrete Radon Transform (DRT) that, at a cost of extra time complexity, has
an inverse, fundamental in image reconstruction, and is well-conditioned in the presence of noise.

The RT takes the projection of the images at a set of angles, which maps the image into
the Radon space. The discretization of the Radon Transform computes the projection as a
summation of intensities along a set of angles. It takes into account the quantization of the
lines normal parametrization, and, most importantly, that lines are approximated by pixels, a
pixel being just a point in a grid. The integration of the original RT is then approximated by
a summation of intensities of points lying in one unit wide strips of pixels. The range of angles
values to be used will then be in Θ(M), but M here is the side of the smallest square grid
containing the image.

The accumulation of intensities adds, for each angle θ in the range M , the intensity at pixel
(x, y) to an accumulator R(d, θ) where

d = bx cos θ + y sin θ + 1/2c (2)

This clearly leads to an algorithm that is cubic in the number of grid rows: the computation
being a nest of three loops ranging on angle values , rows and columns. The work complexity is
a tight Θ(N3), given that M is equal to N .

It leads inevitably to a work-intensive computation, but Brady [9] shows that the DRT
defines a transform that has a well defined inverse and is robust in the presence of noise. The
plot in figure 3 shows the sum of intensities computed for figure 2a. The projection with highest
intensity clearly identifies the only line in figure 2a with the only peak in the plot.

Figure 3: DRT plot showing strip of highest intensity

The DRT solves the limitations of the Hough transform algorithms in the presence of noise,
but that at the expense of CPU resources.



4. Parallel DHHT algorithm
Parallel realizations of the DHHT will assume its limitations in dealing with noise and the
impossibility of having an inverse transform, and try to gain in execution time, preferably in
a scalable way. It is important to observe that parallel techinques applicable to the DHHT
should be almost certainly be suitable to a DRT algorithm. A parallel DHHT algorithm (or a
DRT one) will have to deal essentially with three steps:

• In parallel, map the application of equation 1 to all pairs of possibles values of θ̂ and all given
points. This is a step that can be trivially parallelized to make use of as many processors
as the architecture makes available and run in O(MN/P ), where P denotes the number of
processors.

• Perform in parallel the increments of the array of counters. This step is non-trivial and has
the potential to reduce the algorithm to a serialization given that for the same θi and two
different points, one sole ρk will be produced and the same array counter will be incremented
simultaneously with a possible loss of data.

• Select the pairs of (ρ, θ) that represent lines. This step can be trivially made parallel if a
threshold approach is used as in the case of the OpenCV library [8]: in parallel select all
pairs (ρ, θ) whose array counters lie above some given threshold. The work complexity will

be limited by size of the image divided by the number of processors, giving O(N
2

P ).

An obvious way to parallelize the second step above consists in completely banning
interference: parallelize only over the range of θ values and all (ρ, θ) counters to be incremented
will be different. This and the other two parallel steps define a first and simple parallel DHHT.
That, however, doesn’t scale with the hardware. The OpenCV library, for example, uses a
range of 180 values of θ. It would mean doing 180 parallel steps: each would perform a loop
over input points to perform in parallel 180 counter additions. A modern GPU can do at least
2000 additions in parallel, and the latest Intel AVX512 instructions perform 16 operations per
core, with a Xeon Phi showing 72 cores capable of running 288 parallel threads.

A second algorithm dealing with non-deterministic interference might do:

• In parallel for a set of pairs (θi, pj), where θi is an angle and pj is some input point, and
compute the respective ρ using equation 1. This leaves open the possibility of scheduling
in parallel all possible pairs of angles and points, or a subset of them enough to keep all
processors busy.

• In parallel, for each computed ρ mark a compare area indexed by (θi, ρ) with (θi, pj).

• There will be concurrent writes in the compare area, but only one process will win, that
process will increment the real (ρ, θ) counter. Other pairs are postponed for a next round.

That algorithm, here identified as parht, does the equivalent of a simpler compare-and-swap
without using any locks. The upper bound of work is that of a sequential increment.

The third parallel variation of the DHHT, would realize the counter increment step in parallel
by structuring it as follows:

• In parallel, mark 1 in an auxiliary counter indexed by (θ, ρ, p), where p = (x, y) is the point
used in the application of equation 1.

• In parallel, apply a segmented reduction indexed by (ρ, θ) to the auxiliary counters of the
previous step.

• In parallel, add the resulting counter, one per value of (ρ, θ), to the (ρ, θ) accumulator.

The first and third sub-steps can be computed with parallel work of O(N) each. The third

step is computable in O(N lgN) work, giving a time bound in O(N lgN
P ), where P is the number

of parallel processing units available.



It is important to notice that, again, in the first sub-step, the number of combinations of θ
angles and points scheduled in parallel is left open. That would depend on how much memory
is available for the auxiliary counter on the parallel device. On a 4GB RAM GPU, and with
N equal to 4096 (pixels per line), all possible pairs of 1024 points and 256 values of θ could be
processed in parallel.

5. Parallel Radon Transform
The DRT has been implemented on a mesh of N2 processors, where N is the number of lines
in the mesh and the grid [11]. Such a mesh can, theoretically be simulated in a GPU, at the
expense of N GPU steps for each mesh parallel step.

A more realistic approach, identified here as pardrt, would consist in running the external
loop in one parallel step over the range of angles being used, which we have previously describe
as the first and cleanest parallel algorithm for the DHHT.

It can be presented as two nested loops, consisting of:

• In parallel for each possible angle do N2 sequential steps.

• Each of N2 sequential steps would update the intensity accumulator R(d, θ), base on
equation 2, as described in section 3.

The algorithm shows work complexity of O(N3), and it could run in O(N2) time if enough
processors are available, making it näıvely scalable. In the presence of multiple GPUs or many-
core CPUs, this still presents a limitation in scalability: images will possibly be limited to 4
thousand lines, while the number of available CPUs may double that.

6. Monte Carlo Search Hough Transform
Any Hough transform algorithm will be limited by the fact that in principle the number of pixels
to be considered may limit any algorithm to work in Ω(N2), even when one assumes that grid
of points is already in memory. Randomized versions of the HT go back to Kyriati et al in [12],
which showed experimentally that it is possible to accelerate shape detection and obtain results
identical to the standard HT, by using a fraction of the given points. Their algorithm is a
classical case of a Monte Carlo algorithm, where some randomized procedure defines a sample of
the input points to use and a stopping criterion can lead the algorithm to finish the computation
before it reaches any good result. The process of course can be repeatedly run to produce a
Las Vegas algorithm [13] that eventually correctly detects the same shapes as a complete Hough
transform algorithm.

The features of the parallel MCS algorithm, here identified as parmcsdrt, can be
summarized as composed of the following elements:

• Selection: a sample of pixels is taken from the given input.

• Expansion: In parallel, for each sampled pixel and each value of θ, (ρ, θ) is computed.

• Simulation: In parallel, counters are incremented.

• Backpropagation: a pair (ρ, θ) with a peak counter is prioritized for future tests with new
samples.

• Parallel tree growth: as many branches of the tree can be grown in parallel as there are
cores or SIMD parallelism available.

7. Implementation evaluation
Several parallel variations of the HT and the DRT were implemented. This section describes
the evaluation of the implementation of the parallel algorithms identified in the previous sections
as parht, pardrt and parmcsdrt.



The implementations were written in C++, using libraries of basic parallel operations for
multi-core platforms and GPUs, as identified below:

• Implemented in C++, using the library Threading Building Block (TBB) for multi-core
execution.

• Implemented using the library Thrust, for GPU execution.

7.1. Line detection in the presence of noise
Tests were perform to study the efficiency of the algorithms in line detection and the scalability
and speed in the presence of parallel architectures. Table 1 shows a set of 6 different images,
all produced as jpeg files by the library CImg. The column pixels indicates the size of the
image while the column points shows the number of non-blank points. All images contain
exactly one line and with Gaussian noise at amplitude 5 or 37, as indicated in the respective
column. Tests were performed using the OpenCV implementation of the HT, and the pardrt
implementation. All tests performed with pardrt successfully identified the line from the noise
as indicated by a unique peak counter as shown, for example in figure 3, of the images indicated
as N37.1024. The column HT uses ’-’ to indicate cases where both the OpenCV and the
parht implementations failed to clearly indicate a small set of candidate lines, as in the case of
figure 2b, which shows the close to three thousands detected by OpenCV (or parht) for the 1
line figure N37.1024.

Table 1: Images used and lines detected

Image Pixels Noise HT pardrt
N5.4096 224 5 yes yes
N5.2048 222 5 yes yes
N5.1024 220 5 yes yes
N37.4096 224 37 - yes
N37.2048 222 37 - yes
N37.1024 220 37 - yes

7.2. Performance scalability
Performance scalability tests were performed for parallel implementations of the HT (parht)
and DRT (pardrt) algorithms. In each case, three different parallel C++ codes were developed,
but different technologies were used to target the diverse architectures: parallel OpenMP
offered by the GCC compiler; parallel multi-core using the Intel TBB library, also available in
GCC; and GPU architecture, using the library Thrust.

The table 2 shows execution times for images shown in table 1. Times were obtained for
an OpenMP implementation, compiled with GCC (-fopenmp −O3), running on GNU Linux
Centos 7, Intel Xeon E5-2680 v3 (2.50GHz). The Dual K20 shows time obtained on dual GPU
K20 system, running Ubuntu 15.10 and Nvidia toolkit 7.5, on an older single socket Intel E-
5430. Noticeable points about the numbers are: the best speed-up is obtained at at 5.04 on 6
cores, (efficiency 84%); drops in efficiency are shown from 6 to 12 cores, due to cache/hit miss,
and even more at 24 cores; drop from 12 to 24 cores: cache hit/miss and non locality of data
across physical processors; huge drop in performance for 224 is again due to hit/miss ratio in
processor’s caches; the performance of the multi-gpu code is significantly affected by the PCI
bus of the older machine hosting

An implementation of the algorithm described as parmcsdrt was tested on the same multi-
core architecture as above. The implementation used samples of 1024 points, in a sequence



Table 2: Performance of pardrt OpenMP implementation

Image 1 core 6 cores 12 cores 24 cores Dual K20
N37.4096 1144s 272.3s 154.6s 83.92s 33.6s
N37.2048 87.31s 24.07s 14.92s 8.181s 3.0s
N37.1024 7.762s 1.548s 0.843s 0.46s 0.18s

of rounds until a peak was detected. Tests of the algorithm for the images in table 2 show a
reduction of a factor of 7 to 8 in the time demanded to run the tests with the same lines detected.
For example, the image identified as N37.4096 demanded 18.15 seconds to process on 6 cores.

8. Conclusion
The paper discusses variations of the HT and the DRT. Experimental evidence of an important
weakness of the HT is shown. The theoretical computational bounds of both transform are
shown, which make clear their limitations in the presence of big images and noise. Parallel
algorithms are introduced and the possibility of using parallel Monte Carlo search to accelerate
the HT is discussed, and an algorithm presented.

An experimental evaluation of a parallel algorithm for the DRT is presented which shows
a good speedup for up to 12 cores. More extensive tests must be performed to investigate the
relatively weak performance on mulli-GPU architectures and the parallel Monte Carlo search.

9. Acknowledgments
Lopes, Reid and Hobson are members of the GridPP collaboration and wish to acknowledge
funding from the Science and Technology Facilities Council, UK.

References
[1] Mineta K, Unoura K and Ikeda T 2000 Honda R&D Technical Review 12 101–108
[2] Amram N 2008 Hough Transform Track Reconstruction in the Cathode Strip Chambers in ATLAS Ph.D.

thesis Tel Aviv University CERN-Thesis-2008-062
[3] Filho L M D A and Seixas J 2016 XII Advanced Computing and Analysis Techniques in Physics Research URL

https://indico.cern.ch/event/34666/contributions/813547/attachments/683827/939317/skeleton.pdf

[4] Amstutz C et al. 2016 20th IEEE Real Time Conference, Padova, Italy URL
http://bura.brunel.ac.uk/bitstream/2438/13222/1/Fulltext.pdf

[5] Rosenfeld A 1969 Picture Processing by Computer (Academic)
[6] Hart P E 2009 IEEE Signal Processing Magazine 26 18–22
[7] Duda R and Hart P 1971 Use of the hough transformation to detect lines and curves in pictures Tech. Rep. 36

AI Center, SRI International 333 Ravenswood Ave, Menlo Park, CA 94025 SRI Project 8259 Comm. ACM,
Vol 15, No. 1

[8] Bradski G 2000 Dr. Dobb’s Journal of Software Tools 25 120–126
[9] Brady M L 1998 SIAM Journal of Computing 27 107–119

[10] W A Götz and H J DruckMüller 1996 Pattern Recognition 29 711–718
[11] Cypher R E and ans L Snyder J L C S 1990 SIAM Journal of Computing 19 805–820
[12] Yla-jaaski A and Kiryati N 1994 IEEE Transactions on Pattern Analysis and Machine Intelligence 16 911–

915
[13] Motwani R and Raghavan P 1995 Randomized Algorithms (Cambridge University Pess)
[14] Bergen J R and Shvaytser H 1991 Journal of Algorithms 12 639–656
[15] Browne C, Powley E, Whitehouse D, Lucas S, Cowling P I, Rohlfshagen P, Tavner S, Perez D, Samothrakis

S and Colton S 2012 IEEE Transactions on Computational Intelligence and AI Games 4 1–49


