
Investigating a Science Gateway for an Agent-Based
Simulation Application Using REPAST

Adedeji O. Fabiyi, Simon J.E. Taylor, Anastasia Anagnostou
Modelling and Simulation Group
Department of Computer Science

Brunel University London, United Kingdom
Email: Adedeji.Fabiyi@brunel.ac.uk

Mario Torrisi and Roberto Barbera
Department of Physics and Astronomy of the

University of Catania and INFN via S. Sofia 64
Catania, I-95123, Italy

Abstract—The benefits of using e-Infrastructure environments,
such as cloud, grid, and high performance computing, for
performing scientific experiments could be quite significant. In
particular, modeling and simulation, which can serve as a key
decision making and system analysis tool, could benefit immensely
from such environments ranging from issues of how a community
of practice could access a simulation to how it could be run
quickly. However, the access and use of these e-Infrastructure
environments may present a completely different set of challenges,
most especially for non-ICT users. Science Gateways (SG), which
are digital interfaces to advanced technologies, can be used to
overcome the challenges of running many simulations on e-
Infrastructures in a reasonable amount of time. In this work,
we developed a SG, based on the Liferay portal framework and
the Catania grid and cloud engine. We show how an Agent-
Based infection simulation, which has been implemented using the
Recursive Porous Agent Simulation Toolkit (REPAST) Simphony,
can be ported to a Science Gateway and deployed on distributed
computing infrastructures. This demonstration illustrates how
this technology can be used easily to allow multiple users across
the world to access a simulation and to execute their applications
in an e-Infrastructures environment.

Keywords—science gateways1; agent-based modelling and sim-
ulation; repast; infection model; liferay portal framework, catania
science gateway framework, e-Infrastructures

I. INTRODUCTION

To effectively control the transmission of infections a
thorough understanding of the determinants and patterns of the
spread of such infection is paramount. Scientists have used
simulation techniques to develop computer models, ranging
from deterministic to stochastic models, in order to model the
interactions between individuals within their social networks.
In particular, Agent-Based Modelling and Simulation (ABMS)
is used by different scientific domains to study the behaviour
of adaptive systems and usually complex social networks [1].
However, once a simulation has been developed, there may
be challenges in how a community of practice can access the
simulation and how it can be run quickly.

Agent-based models consisting of large populations of
agents are considered to be too slow to execute and, con-
sequently, analysis with ABMS may then be hampered by
poor performance due to the large number of replications that

1This work was part-funded by the H2020 project Energising Scientific
Endeavour through Science Gateways and e-Infrastructures in Africa (Sci-
GaIA) (Project Number: 654237).

these types of analysis require [2]. Advances in networking
and distributed computing techniques where different organi-
sations can combine researches and resources across multiple
administrative and organisational domains have changed the
way scientists perform their experiments [3]. This is realized
by the grid computing paradigm which Foster, Kesselman
and Tucke [4] defined as the coordinated resource sharing
and problem-solving in dynamic multi-institutional virtual
organisations. This has evolved into complex international
Information and Communications Technology (ICT) systems
referred to, in Europe, as e-Infrastructures. Using distributed
computing resources in this way to effectively run simulations
can potentially allow authorised scientists to access the simu-
lation and to increase computational power. On the other hand,
the deployment and use of these resources can be extremely
complex and could be quite a daunting experience which could,
in turn, prevent non-ICT experts from adopting the technology.

Historically, users often have to access resources by main-
taining their own software or make use of complex program-
ming languages via a command-line interface [5], and may
have to deal with other complex technical issues such as:
job service description languages, execution scripts and the
management of personal digital certificates across different
administrative domains. In view of this, this work has focused
on developing a simple but intuitive user interface, known as
a Science Gateway (SG), for running and analysing simula-
tion experiments of an ABMS model on different distributed
computing infrastructures. We have developed a SG, based on
the Liferay portal framework and the Catania grid and cloud
engine, by customising an existing open source SG framework
known as the Catania Science Gateway Framework (CSGF).

For the purpose of demonstrating how a SG can be used
to support world wide access to a simulation model and to
execute experiments on e-Infrastructures, we developed an
demonstration ABMS infection model, which has been imple-
mented using REPAST Simphony. The aim of the simulation
is to show how ABMS can study the behaviour of infections
with an annual outbreak by using appropriate input parameters
with respect to illustrating how SG can be used in this context,
particularly in Euro-African collaborations. We have shown
how a SG can be used to allow multiple users, across the world,
to access an ABMS running on the distributed computing
resources of e-Infrastructures.

The rest of the paper is structured as follows. In Section
II, relevant and related approaches for portal frameworks and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362648959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SG frameworks are briefly discussed. Section III introduces
the CSGF approach and discusses its various components.
Section IV presents a case study of the Agent-Based Infection
Simulation application that we ported on the SG. Section V
discusses the implementation of our ABMS on the CSGF SG.
The discussion and results of our findings are presented in
Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

A. Portal Frameworks

A portal is a single web-based environment that enables
the running of applications in a consistent and systematic way
[6]. It ensures the rapid development of portlets by enabling
a generic portlet repository where a large set of ready-to-
use portlets can be found. They help in building portlets
from reusable components and aid web developers in creating
attractive web portals on the fly. They do not, however, provide
back-ends that support Distributed Computing Infrastructure
(DCI) access.

There are different types of portal framework which can
be used to build portlets, rapidly. The two commonly used are
the Gridsphere and Liferay portal frameworks. According to
[7], the GridSphere portal framework was developed with a
view to improve on the lessons learned from past Grid portal
projects such as the Grid Portal Development Kit (GPDK)
and the Astrophysics Scientific Collaboratory (ASC) portal.
The motivation to develop the GridSphere portal framework
stems from the inability to reuse code in the presentation
layer and also due to the pervasiveness of many application
specific portals or stovepipe web applications that made code
re-usability extremely difficult. The Gridsphere architecture
takes two forms: the first is associated with the general portal
framework used for assisting virtual organizations (such as
scientists and project developers) and the other form aids in
the development of reusable modular components (portlets).

Liferay is a popular open source framework that enables
users to create attractive web portals [8]. It provides a runtime
environment for hosting java-based portlets. The web portals
that Liferay enables may consist of a wide range of applica-
tions such as blogs, wikis, discussion forums, shared calendar,
etc. According to [9], the Liferay portal framework, which
offers an easy-to-use Web 2.0 interface using Asynchronous
JavaScript and XML (AJAX) and other presentation layer tech-
nologies, is an award winning portlet container. It has features
such as Graphical User Interface (GUI) based personalization,
drag-and-drop portlets, dynamic navigation, and an instant-add
portlet library.

B. Science Gateways and Science Gateway Frameworks

Until recently, that the concept of SG framework and
application-specific SG started to become a common place,
early efforts to provide a more user friendly interface to access
e-Infrastructures was realised in the GPDK and the Open Grid
Computing Environments (GCE/OGCE) as described in the
work of Fox et al. [10]. They both make use of Java Com-
modity Grid (CoG) toolkit in order to provide the necessary
functionalities needed to implement the various DCI services
[11].

SGs are digital interfaces that provide access to advanced
technologies for the support of science and engineering re-
search and education [5]. They are usually implemented as
web and/or mobile applications and are used to provide access
to community resources such as software, data, and high-
performance computing. The concept of SG framework was
introduced to mitigate the shortcomings of portal frameworks
by facilitating a connection to back-end DCIs such as e-
Infrastructures.

Typically, in order to develop a SG, a developer may
either build from scratch (i.e. make use of a standard portal
framework) or customise an existing SG framework (built
on top of a portal framework together with the back-ends
that provide access to various DCIs)[12]. SG frameworks
connect to DCI back-ends by providing and exposing different
APIs and interfaces to support access to a large set of e-
Infrastructures. In such ways, instances of SG, which can
provide access to many different sets of distributed resources
for specific scientific domains, can be quickly developed
by customising specific SG frameworks. Examples of SG
frameworks include: The CSGF [13], Web Services Parallel
Grid Runtime and Developer Environment Framework (WS-
PGRADE/GUSE) workflow system [14], the Vine Toolkit [15],
GridPort [16] and a Framework for Domain-Specific Science
Gateways (InSilicoLab) [17]. These SG frameworks are more
generic and are usually not specialised for a certain scientific
domain. Scientists from different communities of practice can
make use of them with appropriate technical and development
support. Instances of a SG, on the other-hand, are more
specific to the needs of a given scientific community. They
are also known as application specific SGs. SGs belonging to
this category include: Diagnostic Enhancement of Confidence
by an International Distributed Environment (DECIDE) [18],
Grid Initiatives for e-Science virtual communities in Europe
and Latin America (GISELA) [9], Molecular Simulation Grid
(MoSGrid) Science Gateway [19], e-BioInfra [20] and the
VisIVO Science Gateways [21].

III. THE CATANIA SCIENCE GATEWAY
FRAMEWORK APPROACH

In our work, we adopted the CSGF approach for porting
our ABMS application onto the Africa Grid Science Gateway
(http://sgw.africa-grid.org/) (as part of an ongoing work on
promoting e-Infrastructures in Africa - see www.sci-gaia.eu).
At the heart of the CSGF is the Catania Grid and Cloud
Engine which consists of three different models, as seen in
Fig. 1. These are: The Job engine for job management, the
Data engine for moving data across different DCIs, and the
Users Tracking and Monitoring which contains functions used
to interact with the Users Tracking database [22]. The Job
engine is responsible for managing the entire cycle of job
execution. It ensures that all jobs being submitted through the
SG interface are properly executed. The Data engine ensures a
direct transfer of data between the SG and the e-Infrastructures.
The Users Tracking and Monitoring is a user tracking and
accounting tool used for storing information for each Grid
usage. In addition, there are also several interfaces to and
from the Catania Grid and Cloud Engine. These include the
SG interface which contains connectors to call the functions
of the Catania Grid and Cloud Engine and the interface to e-
Infrastructures, known as the Simple API for Grid Applications



Fig. 1. Catania Grid and Cloud Engine

(SAGA) and its Java implementation of the SAGA (JSAGA)
standard [9]. JSAGA enables interoperability between the
different infrastructure middleware and jobs can be submitted
to the different DCIs using this interface. The embedded
application layer contains the different applications, such as
our Agent-Based infection portlet, that have been ported on the
SG. The e-Infrastructures layer is where different distributed
systems (cloud, grid, dedicated high-performance computing
facilities) reside.

In a nutshell, the Catania Grid and Cloud Engine is the
software layer, based on SAGA, which allows applications to
run on different infrastructures using different middleware. The
CSGF has implemented different SGs with several applications
implemented as portlets. An API/software layer (Grid engine)
has connectors through to the portlets, so these portlets can
easily call the function of the Grid and Cloud engine, and
then the Grid and Cloud engine can call the function of the
JSAGA through its interface. The portlets can therefore be
executed on different e-Infrastructures in a seamless way [23].
As a consequence, when the functions of the Grid engine are
called, it will take care of executing jobs and moving data
on the different e-Infrastructures without actually knowing the
details of the implementation of the different middleware.

One major advantage of the CSGF is that in order to submit
a job to an e-Infrastructure, users do not need to have personal
digital certificates or belong to any virtual organization to use
the DCI. Proxy certificates which are mandatory for executing
actions on e-Infrastructures are created and implemented as
robot certificates [24]. These robot certificates, known as e-
Tokens, are usually stored on USB form factor smart cards, and
they are plugged into e-Token servers [22]. These certificates
identify a person responsible for an unattended service or
process acting on as client and/or server for a virtual research
community. Robot certificates have been created and deployed

on all regional infrastructures, so developers do not need
to worry about obtaining one. All that is required is VPN
access and they will be able to select a certificate from
the robot certificate server (e-Token server) to submit jobs,
thereby simplifying the job execution process. A developer
will, however, need to have registered to Catania’s virtual
private network (VPN) by requesting an account to be able
to access the e-Token server.

In a similar way, when a user wants to execute a job on e-
Infrastructures using the SG, users who do not have personal
certificates or do not belong to any virtual organisation can
still make use of the resources. To execute a job on the e-
Infrastructures, the user must log on to the SG by selecting
their respective Identity Federation and Identity Provider (a
service that authenticates the user to the SG) and submit
their federated credentials (containing a combination of user-
name and password). If this is successful, the SG checks a
Lightweight Directory Acces Protocol (LDAP), a registry that
consists of all user roles and privileges, to see if they belong
to any group and what roles and privileges they are entitled to.
If this action is successfully completed, the SG will retrieve
a proxy certificate (robot certificate) from the e-Token server,
on behalf of a user, and jobs can be executed on different
e-Infrastructures by using the JSAGA interface.

IV. CASE STUDY

To demonstrate how a SG can be used to execute an
application on e-Infrastructures, we developed an infection
model which was implemented in REPAST. The aim of the
demonstration is to show how scientists can access an ABS
model that is used to study the behaviour of infections with
an annual outbreak. This, therefore, illustrates how SGs can
be used in this context, particularly in Euro-African collabora-
tions. There are three (3) types of agent to represent namely:
the infected, susceptible and the recovered population. All
agents are randomly located in a Grid environment. Susceptible
agents try to avoid contact with infected agents.

When an infected agent approaches a cell with susceptible
agent, it infects one, randomly, selected agent. This susceptible
agent then becomes infected and can infect other susceptible
agents in turn. The infected, susceptible and recovered agents
are the input parameters that the user can modify in order
to experiment with different initial conditions. The user can
also specify the time (in years) that the simulation will
run. Therefore, the infection model portlet has four(4) input
parameters. These are:

• simulation period (specifies how many years the sim-
ulation will run),

• recovered count (specifies the initial recovered popu-
lation),

• infected count (specifies the initial infected popula-
tion) and

• susceptible count (specifies the initial susceptible pop-
ulation)

In the implementation of the ABMS infection model portlet
that will be explained in the next section, the ABS infection
model portlet allows multiple users to modify the input param-
eters and execute the simulation on DCIs from an interface that
hides all the complexity of the underlying technologies.



V. IMPLEMENTATING AN AGENT-BASED
SIMULATION APPLICATION ON THE LIFERAY

PORTAL FRAMEWORK AND THE CSGF

Liferay contains many built-in applications called portlets
[6]. To develop our infection model portlet, we adopted
the CSGF which was built on top of the Liferay portal
framework. Our infection simulation was deployed in a port-
let named myRepast-infection-portlet. In order to manage
the different portlet modes and the corresponding views
to display, myRepast-infection-portlet made use of Actions
enumeration (ACTION ACTIVATE, ACTION INPUT, AC-
TION SUBMIT and ACTION PILOT) and its correspond-
ing Views enumeration (VIEW ACTIVATE, VIEW INPUT,
VIEW SUBMIT and VIEW PILOT). myRepast-infection-
portlet extends the GenericPortlet class and overrides the class
methods. It defines the AppInit class which stores all the
values of the portlet preferences. These include the portlet
version, grid operation description, grid operation Id, number
of infrastructures, etc. Furthermore, the AppInput class which
stores all the application input values was also defined. This
contains all the input parameters that will be specified by
the user via the Infection Model portlet main page such as
the simulation period, recovered count, infected count and the
susceptible count. A constructor of this class, i.e the AppInput
class, was created and each of the input value was set to an
empty string. This is illustrated below:

class AppInput {
String inputValue; String inputValue2;
String inputValue3; String inputValue4;
String username; String timestamp;
String jobIdentifier;
String inputSandbox_inputFile;

Where inputValue, inputValue2, inputValue3, inputValue4
represents the simulation period, recovered count, infected
count and the susceptible count, respectively.The constructor
of the class was created and the input parameters were set to
empty strings.

public AppInput() {
inputValue= ""; inputValue2= "";
inputValue3= ""; inputValue4= "";
username= ""; timestamp = "";
jobIdentifier= "";
inputSandbox_inputFile = "";
}
In order to retrieve the given application values that is

being entered by the user (via the Infection Model portlet main
page), a method, getInputForm(), was used to manage all the
enumerated types containing all the JSP input parameters of
the infection model. This method is of the form:

void getInputForm(ActionRequest
request, AppInput appInput) {
appInput.inputValue = (String)
request.getParameter(i)
(Where i is the inputValue,
inputValue2, inputValue3, inputValue4
and the JobIdentifier, respectively).
}
The infection model together with its dependencies, such

as the REPAST libraries and the java runtime installation,
is deployed within a pre-configured Virtual Machine (VM)

Fig. 2. Portlet Lifecycle

image. When a user submits a job using the SG, this image
will be used to start a VM on a remote cloud site, from the
several infrastructures available in the portlet configuration.
The pilot script.sh, consisting of the instructions to start a
simulation, resides in the portlet context and it will be uploaded
to the remote VM as soon one becomes available. Snapshot
image of the VM is created along with the pilot script.sh that
is used to run the infection model. Whenever a simulation job
is submitted, the VM image will be started, according to the
parameters that were passed to the job, and the executable will
be performed using these parameters.

In order to run our infection model, we developed a shell
script executable for the execution of our infection model.
This script, named pilot script.sh, performs a simulation each
time a user submits a job by providing the necessary input
parameters. The script also creates an archive folder containing
all the generated output files in a single tar.gz file. When a user
submits a job, the portlet can retrieve all the input parameters
that the user specified using the getInputForm() method. These
jobs can be sent to the Catania Grid and Cloud engine by
using the SG interface. The job engine, by making use of the
JSAGA, can then manage the whole life cycle of the job from
the submission stage to the retrieval of the output files. (i.e
it takes care of the job submission, job status and the output
retrieval of the ABMS jobs).

Fig. 2 depicts the entire life-cycle of the portlet compo-
nents. Once a portlet is loaded and instantiated in a portal
container, such as the Liferay portal, the init() method is
called (which would initialize application preferences) and
all the configuration variables of the portlet are set. When a
user performs an action using the Infection Model portlet, the
processAction() method would be called which would in turn
call the render() method. This interaction sees an exchange



of data between both methods (processAction() and render()
method) and the java server pages (JSP) responsible for the
presentation of the ABMS application. When a portlet reaches
the end of its service, it is either relaunched by the init()
method, if there are more actions to be performed by the user,
or the portal container destroys the service using the destroy()
method and the cycle ends.

A. The interaction between the init(), processAction() and the
render() methods of the myRepast-infection-portlet main class

The Agent-Based infection application Java code,
myRepast-infection-portlet, extends the GenericPortlets class
and overrides methods such as: init(), doView(), doEdit(),
doHelp() and processAction(), and it uses two main methods
to exchange data to and from the JSP pages. This exchange
is seen between the processAction() and the render() methods
as seen in Fig. 2. These methods make it possible to
exchange parameters between the user and a portlet. The
processAction() method is responsible for the action being
selected by the user in the input forms. The render() method
determines the interface that is being shown to the user
as a consequence of the actions being performed by the
user. Elements of the processAction() and the render()
methods include the ActionRequest and the RenderRequest.
The processAction() receives an input parameter using the
ActionRequest and prepares the render object for the view
methods. The RenderRequest, on the other hand, is the inputs
for the view methods such as the doView(), doEdit() and
doHelp(). The Java code of the Agent-Based Simulation
application is illustrated below:

Class myRepast-infection-portlet
extends GenericPortlets {
Init (PortletConfig);
processAction (ActionRequest,
ActionResponse);
Render (RenderRequest, RenderResponse);
Destroy ();
Do View (Request, Response);
Do Edit (Request, Response);
Do Help (Request, Response);
}

In addition to the java class of the ABMS application,
myRepast-infection-portlet, there are other equally important
java classes which are used by the main Java class of the
ABMS application. These include the Applogger class, the
AppPreferences class, and the AppInfrastructureInfo class.
The Applogger.java is used to print out the console outputs
while the AppPreferences.java class is used for storing the
portlet preferences values. The AppInfrastructureinfo.java, on
the other hand, stores the required information to submit a job
into a given infrastructure.

Furthermore, there are different JSP pages which are used
by the Render() methods to present the desired views. These
include edit.jsp, help.jsp, input.jsp, submit.jsp and viewPi-
lot.jsp, depending on the views/interfaces that a user might
need to access. However, for the purpose of our Infection
Model portlet, we have only opted for both the input.jsp
and submit.jsp. Each interface is a JSP page of the ABMS
application and each JSP page produces an action. This action
will be taken by a method of the java source code, known as

the processAction(), and will be forwarded to another method
known as the doView() which can be used to switch between
different interfaces according to the given action.

In order to assign the correct view, based on the different
portlet modes (view, edit and help) and thus present the
appropriate user interface in proportion to user actions and
portlet status, the different JSP pages (input.jsp and submit.jsp)
are paramount. These are the different ABMS application
JSP pages that will be used by the Generic portlet java
class methods (doView, doEdit, and doHelp) to assign the
correct portlet view and present the appropriate user interface
according to the user action and portlet status.

B. Agent-Based Simulation Portlet Modes

The portlet specification defines three portlet modes:
VIEW, EDIT and HELP [25].

• View Mode: This generates a mark-up (i.e the normal
user interface of the ABMS),

• Edit Mode: This allows for the customisation of the
ABMS application and the setting of preferences.

• Help Mode: This explains the ABMS functionalities,
i.e., the usage instructions of the portlet.

Our Infection Model portlet has been developed with the
view mode that presents end users with the ABMS user
interface (input.jsp and submit.jsp). When the portlet status
is view mode, i.e. a user is currently on the view.jsp page
and performs an action, it initiates the processAction() method
and all input parameters being passed by the user are retrieved
via the ActionRequest. The processAction() then performs an
action and calls the RenderRequest which, in turn, calls the
doView() method. The doView() method then performs an
action and calls the view JSP page.

However, at the development stage, if the portlet is oper-
ating in the Edit mode, the render Request calls the doEdit()
method and it sets the configuration variables and calls the
necessary edit JSP page. Furthermore, if the portlet is operating
in the Help mode, the doHelp() method is initiated and the
help JSP page is displayed accordingly. It is also possible to
call a JSP page from another JSP page without using the
processAction() method. When the user is on the view.jsp
page, the RenderRequest can be called, which bypasses the
processAction(), as the doView() method calls the necessary
view JSP page.

C. Data Exchange (Interaction) between the myRepast-
infection-portlet main class and the ABMS application JSP
pages

Interaction takes place between the JSP pages of the ABMS
application and the Java code by using form statements to send
parameters between the Java code and the JSP pages. During
this interaction, there is a continuous data exchange between
the myRepast-infection-portlet class and the JSP pages which
present the necessary user interface of the ABMS application
back to the user and this interaction occur when users make
use of the ABMS application. In order to implement the flow
of data from the JSP pages of the application to the java code,
all the java input fields are placed in the JSP code web form.
i.e. <form action=<portlet: actionURL portlet Mode=view >.



In addition, within the java code (myRepast-infection-portlet
class), the input interface values will be obtained with the
methods: doView/doHelp/doEdit (RenderRequest request...)

In order to obtain the parameters, we just set the
string param i= request.getParameter(param name i); where
param name i is the portlet status and param i is the current
view. For the flow that sees the exchange of data from the Java
code to JSP, the input interface values inside the Java code will
be obtained using: doView()/doHelp()/doEdit() (RenderRe-
quest request) and to obtain the parameters, we just set string
param i=request.setAttribute (param name i, param value i);
and inside the JSP page, we load the parameter values with
<jsp:useBean id=param name k class= <variable type k>
scope=request>.

VI. DISCUSSION AND RESULTS

To develop a SG, that can support access to community
resources, we need to start by identifying specific needs for
that scientific domain. The specific needs associated with
our ABMS application include mechanisms to input data,
perform execution, and interpret results. All these requirements
and needs have been identified and captured on the SG.
Our demonstration infection model was ported on the Africa
Grid Science Gateway by customising an existing framework,
known as the CSGF, which is built on top of the Liferay
portal framework. This approach was mainly used due to the
availability of useful functionalities, portlets and backend with
access to various DCIs.

Within the SG, and along with other portlets belonging
to different communities of practices, the infection model
has been deployed in a portlet named Infection Model (see
Fig. 3). This has been developed to enable users to conduct
experiments with different input parameters and to obtain
results. As well as the results output file, the application
has a demonstration graph tool that allows users to see the
graphical visualisation of the results. This shows that SGs
can be developed to support online complex simulations in
an extremely easy to use manner.

To view the Africa grid SG, a user needs to access its
main page by using the web link https://sgw.africa-grid.org/.
This will take the user to the main page of the SG. In order
to access and use any application, on the SG, users need to
send the request to, and obtain federated credentials issued by
identity providers. If this request is granted, users can either
sign on to the SG, by clicking on the sign in tab, or attempt
to access any application from the applications menu bar and
click on the run icon. As a result, users will be re-directed to
a page that is made up of a number of identity federations,
where they would be required to select the one which they
belong. Within each identity federation, there are a number of
identity providers and, similar to the identity federations, users
would also be required to select an identity provider from their
respective identity federation.

If the process of identity federation and identity provider
are successfully completed, the user will be presented with a
login page where they can simply use their federated creden-
tials to logon to the SG. When an authorised user successfully
log on, they are presented with the application page that they
seek to use which, in our own case, is the Infection Model

Fig. 3. Infection Simulation application main page

portlet as shown in Fig. 3, where they can specify all the
input parameters that were described in section IV. After a
user has finished specifying the parameters and clicked on the
submit button, the Catania Grid and Cloud engine, using the
JSAGA, can submit jobs on different e-Infrastructures without
users knowing the implementation of the different middleware.
After submitting a job, users would be notified that their jobs
have been successfully submitted and then advised to check
the MyJobs portlet, a dedicated portlet where the status of all
running jobs as shown in Fig. 4, and done jobs can be found.
A done job status would be represented by a small folder icon,
also shown in Fig. 4, indicating that the job is ready and users
can download the output of the infection model for analysis.

The infection model portlet also has a visualize page with
a graph tool that allows users to see the graphical visualisation
of their results, as shown in Fig. 5. Consequently, when a job
is ready and the output is collected, a user can upload the
output file, using the infection model visualisation tool on the
SG and a graphical view of the job output would be generated.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have shown a new approach to executing
an ABMS application on e-Infrastructures. In order to capture
the requirements of an ABMS application, on a SG, we started
by identifying the simulation needs of our ABMS application.
These include input data, execution activities, and interpreta-
tion of results. All these requirements have been implemented
by adopting specific portal and SG framework, known as the
Liferay portal framework and the Catania Grid and Cloud
engine, respectively. The combination of both technologies
is what is known as the CSGF. They both help to provide
support for different aspects of the ABMS application and its
implementation. The support includes:



Fig. 4. MyJobs portlet showing the view of an Infection Simulation
application job in running status and a job that is ready to be downloaded

Fig. 5. Infection Simulation application Visualiser

• To help users specify different input parameters by
making use of an intuitive and user friendly interface,
implemented using the Liferay portal framework.

• The submission and execution of jobs on different e-
Infrastructures by making use of the Grid and Cloud
engine and its JSAGA functionalities.

• A graphical visualisation of the simulation output.

In order to support the access and execution of our ABMS
application, on worldwide infrastructures, we provided an
approach, known as SG, which captures and incorporates the
different ABMS requirements and needs. For the implementa-
tion of these requirements, and the ultimate execution of jobs
on the distributed systems, we adopted the CSGF approach that
merges the Liferay portal framework, for developing portlet
interface, and the Catania Grid and Cloud engine, which
handles the execution of jobs on different DCIs. By adopting
this approach, portlets can easily and efficiently be developed
and used to access and execute jobs on e-Infrastructures.

One limitation of our ABMS portlet is that jobs can only
be executed sequentially, i.e. instances of machines with single
cores can be used to run jobs in distributed environments.
As a consequence, future work in this area would investigate
how our ABMS can be used to execute parallel jobs by
making use of High Performance Computing (HPC) resources.
The aim is to enable faster execution as we do a series of
performance testing while running a number of experiments,
simultaneously. We also aim to compare our results with the
parallel implementation that is being done in some other, well-
known, SG frameworks such as the Web Service - Parallel Grid
Run-time and Application Development Environment (WS-
PGRADE) portal.

ACKNOWLEDGMENT

Special thanks go to the team at the University of Catania
for their support and the provision of the infrastructures that
enable the execution of our ABMS application jobs. This work
was part-funded by the H2020 project Energising Scientific
Endeavour through Science Gateways and e-Infrastructures in
Africa (Sci-GaIA) (project number 654237).

REFERENCES

[1] S. J. Taylor, A. Anagnostou, T. Kiss, G. Terstyanszky, P. Kacsuk, and
N. Fantini, “A tutorial on cloud computing for agent-based modeling &
simulation with repast,” in Simulation Conference (WSC), 2014 Winter.
IEEE, 2014, pp. 192–206.

[2] N. Collier, J. Ozik, and C. M. Macal, “Large-scale agent-based model-
ing with repast hpc: A case study in parallelizing an agent-based model,”
in Euro-Par 2015: Parallel Processing Workshops. Springer, 2015, pp.
454–465.

[3] E. Laure and Å. Edlund, “The e-infrastructure ecosystem: Providing
local support to global science,” Large-Scale Computing Techniques
for Complex System Simulations, vol. 80, p. 19, 2012.

[4] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” International journal of high
performance computing applications, vol. 15, no. 3, pp. 200–222, 2001.

[5] K. A. Lawrence, M. Zentner, N. Wilkins-Diehr, J. A. Wernert,
M. Pierce, S. Marru, and S. Michael, “Science gateways today and
tomorrow: positive perspectives of nearly 5000 members of the research
community,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 16, pp. 4252–4268, 2015.

[6] R. Sezov, Liferay in action: the official guide to Liferay portal devel-
opment. Manning Shelter Island, NY, 2012.



[7] J. Novotny, M. Russell, and O. Wehrens, “Gridsphere: a portal frame-
work for building collaborations,” Concurrency and Computation: Prac-
tice and Experience, vol. 16, no. 5, pp. 503–513, 2004.

[8] P. Sarang, Practical liferay: Java-based portal applications develop-
ment. Apress, 2009.

[9] E. Ingrà, F. Pistagna, R. Rotondo, R. Bruno, R. Ricceri, M. Fargetta,
R. Barbera, V. Ardizzone, A. Calanducci, D. Scardaci et al., “The gisela
science gateway,” 2014.

[10] G. Fox, D. Gannon, and M. Thomas, “Editorial: A summary of grid
computing environments,” CONCURRENCY AND COMPUTATION,
vol. 14, no. 13/15, pp. 1035–1044, 2002.

[11] J. Novotny, “The grid portal development kit,” Concurrency and Com-
putation: Practice and experience, vol. 14, no. 13-15, pp. 1129–1144,
2002.

[12] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko,
K. Karoczkai, and I. Marton, “Ws-pgrade/guse generic dci gateway
framework for a large variety of user communities,” Journal of Grid
Computing, vol. 10, no. 4, pp. 601–630, 2012.

[13] M. Fargetta, R. Barbera, and R. Rotondo, “A simplified access to grid
resources by science gateways,” in International Symposium on Grids
and Clouds and the Open Grid Forum, 2011.

[14] A. Balasko, Z. Farkas, and P. Kacsuk, “Building science gateways
by utilizing the generic ws-pgrade/guse workflow system,” Computer
Science, vol. 14, no. 2), pp. 307–325, 2013.

[15] M. Russell, P. Dziubecki, P. Grabowski, M. Krysinśki, T. Kuczyński,
D. Szjenfeld, D. Tarnawczyk, G. Wolniewicz, and J. Nabrzyski, “The
vine toolkit: A java framework for developing grid applications,” in
Parallel Processing and Applied Mathematics. Springer, 2007, pp.
331–340.

[16] M. Dahan and J. R. Boisseau, “The gridport toolkit: A system for
building grid portals,” in Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing. IEEE
Computer Society, 2001, p. 216.

[17] J. Kocot, T. Szepieniec, P. Wójcik, M. Trzeciak, M. Golik, T. Grabar-
czyk, H. Siejkowski, and M. Sterzel, “A framework for domain-specific
science gateways,” in eScience on Distributed Computing Infrastructure.
Springer, 2014, pp. 130–146.

[18] V. Ardizzone, R. Barbera, A. Calanducci, M. Fargetta, E. Ingrà,
G. La Rocca, S. Monforte, F. Pistagna, R. Rotondo, and D. Scardaci,
“A european framework to build science gateways: architecture and
use cases,” in Proceedings of the 2011 TeraGrid Conference: Extreme
Digital Discovery. ACM, 2011, p. 43.

[19] S. Gesing, R. Grunzke, J. Kruger, S. Herres-Pawlis, and A. Hoffmann,
“Challenges and modifications for creating a mosgrid science gateway
for us and european infrastructures,” in Science Gateways (IWSG), 2015
7th International Workshop on. IEEE, 2015, pp. 73–79.

[20] S. Shahand, A. Benabdelkader, M. M. Jaghoori, M. a. Mourabit,
J. Huguet, M. W. Caan, A. H. Kampen, and S. D. Olabarriaga,
“A data-centric neuroscience gateway: design, implementation, and
experiences,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 2, pp. 489–506, 2015.

[21] E. Sciacca, M. Bandieramonte, U. Becciani, A. Costa, M. Krokos,
P. Massimino, C. Petta, C. Pistagna, S. Riggi, and F. Vitello, “Visivo
workflow-oriented science gateway for astrophysical visualization,” in
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on. IEEE, 2013, pp. 164–171.

[22] R. Bruno, G. Allegri, G. Andronico, R. Barbera, F. Bitelli, A. Budano,
A. Calanducci, F. Celli, E. Costantini, M. Fargetta et al., “The aginfra
science gateway for agricultural sciences,” POS PROCEEDINGS OF
SCIENCE, pp. 20–pp, 2013.

[23] R. Barbera, R. Bruno, A. Calanducci, A. Messina, M. Pappalardo, and
G. Passaro, “The earthserver project: Exploiting identity federations,
science gateways and social and mobile clients for big earth data
analysis,” in EGU General Assembly Conference Abstracts, vol. 15,
2013, p. 5697.

[24] C. Casarino, G. Russo, G. Candiano, G. La Rocca, R. Barbera, G. Bo-
rasi, S. Guatelli, C. Messa, G. Passaro, and M. C. Gilardi, “A geant4
web-based application to support intra-operative electron radiotherapy
using the european grid infrastructure,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 2, pp. 458–472, 2015.

[25] “Portlet tutorial,” accessed: 2015-08-25. [Online]. Available:
http://jsr286tutorial.blogspot.co.uk/p/portletmode.html


