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Abstract—This paper is concerned with the distributed filter-
ing problem for a class of discrete time-varying systems with
stochastic nonlinearities and sensor degradation over a finite
horizon. A two-step distributed filter algorithm is proposed
where the sensor nodes collaboratively estimate the statesof
the plant by exploiting the information from both the local
and neighboring nodes. The goal of this paper is to design the
distributed filters over a wireless sensor network subject to given
sporadic communication topology. Moreover, a resilient operation
is guaranteed to suppress random perturbations on the actually
implemented filter gains. An upper bound is first derived for the
filtering error covariance by utilizing an inductive method and
such an upper bound is subsequently minimized via iteratively
solving a quadratic optimization problem. To account for the
topological information of the sensor networks, a novel matrix
simplification technique is utilized to preserve the sparsity of
the gain matrices in accordance with the given topology and the
analytical parameterization is obtained for the gain matrices of
the desired sub-optimal filter. Furthermore, a sufficient condition
is established to guarantee the mean-square boundedness ofthe
estimation errors. Numerical simulation is carried out to verify
the effectiveness of the proposed filtering algorithm.

Index Terms—Resilient filter, wireless sensor networks, dis-
tributed filtering, stochastic nonlinearity, sensor degradation.

I. INTRODUCTION

The state estimation or filtering problem has proven to be
one of the fundamental issues in signal processing and control
engineering, and a number of algorithms have been proposed
in the literature, see e.g. [2], [4], [11], [12], [16], [19],[20],
[28], [30], [33], [34]. Accordingly, a core problem with the
widespread applications of wireless sensor networks (WSNs)
is to estimate the plant states based on noisy measurement
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outputs from distributed nodes. A seemingly natural way is to
employ the traditional Kalman filters by establishing a fusion
center in WSNs in order to collectall the measurements from
the individual sensors and then process the measurements ina
global sense. Unfortunately, due to the limited communication
capability and energy supply, it might be impossible for the
sensors to persistently forward the local messages to the fusion
center. As such, the so-calleddistributed estimation scheme
would be more preferable whose main idea is to estimate
the plant states based on both the local and the neighboring
information according to the topologies of WSNs. Recently,
various types of consensus protocols have been proposed with
aim to improve the efficiency of the distributed computation
and a rich body of literature has been available on the
consensus-based distributed filtering strategies, see e.g. the
seminal work in [25].

Up to now, much research effort has been made to the
distributed estimation problems over sensor networks [5],[13],
[23] and there have been mainly two general approaches
available in the literature. Thefirst one is so-called Kalman-
consensus filtering approach (see [1], [21], [24]) where the
distributed and cooperative filters are implemented by two
steps, that is, the local sensors first generate the optimal
estimates by using Kalman Filter and then a one(multi)-step
consensus is performed to spread the local information over
sensor networks. The stability and performance analysis of
this filtering approach has been addressed in [21], [24]. As
individual sensors cannot access to all the measurements,
the performance of a Kalman-consensus filter is naturally
inferior to that of the centralized Kalman filter. Nevertheless,
as pointed out in [1], the performance of this distributed
algorithm will asymptotically converge to that of the cen-
tralized one after a sufficiently large number of consensus
steps. Thesecondconsensus-based filtering scheme focuses
on suppressing the influence of external disturbances through
designing cooperative filtering schemes [29]. For example,in
[6], the distributedH∞ state estimation problem has been
investigated for discrete-time Markovian jump nonlinear time-
delay systems with incomplete statistics of transition probabil-
ity.

As is well known, nonlinearities exist in almost all practical
systems and the corresponding research on nonlinear control
problems has served as one of the mainstream areas in
systems and control communities. In certain noisy environ-
ments such as networked control systems, the nonlinearity
disturbances may result from randomly fluctuated network

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362648745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FINAL VERSION 2

conditions and/or communication constraints. In this case, the
so-called stochastic uncertainties would become inevitable that
might lead to serious degradation of system performance if not
properly dealt with. So far, there has been a growing research
interest in analysis and synthesis issues for the systems with s-
tochastic nonlinearities. Some representative results have been
reported in [10], [26], [38] and the references therein, where
sophisticated models have been proposed to characterize the
random occurrence of the nonlinearities through the statistics
(typically the first and second-order moments). On the other
hand, in engineering practice, the phenomenon of sensor
degradation may occur randomly as well, which is caused
by various factors ranging from sensors aging and sensor
intermittent failure to transmission congestions, see [22]. Some
research effort has been initiated on the estimation problem
with sensor degradations, see e.g. [8], [27], [31]. However,
when it comes to the distributed estimation problems, the
corresponding results have been very few, not to mention the
case where the stochastic nonlinearities are also a concern.
Such a situation gives the primary motivation of the present
investigation.

Another critical issue of practical significance in state
estimation problems is the resilience of the filters, which can
be understood as the insensitivity against possible parameter
variations/drifts in implementing the designed filters. Inmost
previous works, the filter algorithms have been developed
based on an implicit assumption that the designed filter gains
can be accurately realized. Such an assumption is, unfor-
tunately, not always true in practice due primarily to the
finite resolution instrumentation during filter implementation
and the round-off errors resulting from the fixed word length
in numerical computation. Since the performance of filters
can be extremely fragile to even tiny gain variations, it
is of vital importance to design resilient filters capable of
tolerating possible gain variations. In the past decade, much
work has been done to ensure the resilience (or non-fragility)
of the filters/estimators/controllers, see e.g. [8], [9], [18],
[31], [35]–[37]. For example, the problem of robust non-
fragile Kalman filter design has been studied in [35] for a
class of linear systems with norm-bounded uncertainties, and
some new criteria have been provided to guarantee the mean-
square stability in terms of the solutions to algebraic Riccati
equations. The minimum variance state estimation problems
have been considered in [8], [31] for linear and nonlinear
systems with both sensor failures and gain perturbations in
the case of centralized filtering.

Summarizing the above discussions, it can be concluded that
there is a lack of systematic investigation on the distributed
estimation problem for systems subject to stochastic nonlin-
earities, sensor degradation as well as filter gain perturbations
over wireless sensor networks with a given topology. As
such, the main purpose of this paper is to shorten such a
gap by designing distributed filters that are resilient to filter
implementation errors and robust to sensor degradations. The
main contributions can be highlighted as follows: 1) the system
under consideration is quite general that covers stochastic
nonlinearities and sensor degradation; 2) a resilient distributed
filtering algorithm is proposed so as to mitigate the adverse

effects induced by filter gain variations; 3) a matrix simpli-
fication approach is exploited in the filter design algorithm
to overcome the difficulties resulting from the sparsity of the
sensor networks; and 4) a criterion is established for the mean-
square boundedness of the estimator errors for the designed
time-varying distributed resilient filter.

Notation. Except where otherwise stated, the notations used
throughout the paper are standard.‖ · ‖ is the Euclidian norm
of real vectors or the spectral norm of real matrices and
‖ · ‖min represents the smallest singular value of a matrix..
M ′ denotes the transpose of a matrixM , andI represents the
identity matrix of appropriate dimensions. Fori = 1, 2, · · · , n,
the notationdiagn{Ai} stands for a block-diagonal matrix
where the square matricesAi are in the corresponding main
diagonal blocks.coln{xi} stacks the vectors as[x′

1, · · · , x
′
N ]′,

and{Mij}n×n represents a partitioned matrix, whereMij is
the (i, j)-th block submatrix.N represents the set of natural
numbers andE{.} stands for the expectation of a stochastic
variable{.}.

II. PROBLEM FORMULATION

A. Target plant and sensor network

In this paper, a sensor network consisting ofn sensor nodes
is exploited to measure the output of the target plant. We
denote the topology of the network by a directed graphG =
(V,E,H) of ordern with the set of nodesV = {1, 2, · · · , n},
the set of edgesE ⊆ V × V , and the weighted adjacency
matrix H = [aij ]n×n. The weighted adjacency matrix of the
graph is a matrix with nonnegative elementsaij satisfying the
propertyaij > 0 ⇐⇒ (i, j) ∈ E, which means that theith
node can receive the information from thejth node. All the
neighbors of nodei plus the node itself are denoted by the set
asNi , {j ∈ V |(i, j) ∈ E}.

Consider the following discrete time-varying target plant
with stochastic nonlinearities:

x(k + 1) = A(k)x(k) + f(k, x(k), ξ(k)) + w(k), (1)

wherex(k) ∈ R
nx is the state vector that cannot be measured

directly,f(k, x(k), ξ(k)) ∈ R
nx is the stochastic nonlinearities

to be defined later, andw(k) ∈ R
nx is a sequence of Gaussian

random variables with zero mean value and covariance matrix
Q(k) > 0. A(k) is a known time-varying matrix of appropriate
dimensions. The initial conditionx(0) is assumed to obey a
Gaussian distribution with meanµ0 and covariance matrixΣ0.

For theith (i = 1, 2, · · · , n) sensor node, the measurement
is described by:

yi(k) = γi(k)Ci(k)x(k) + gi(k, x(k), ζi(k)) + vi(k) (2)

whereyi(k) ∈ R
ny stands for the measurement information

from sensori and the measure noisevi(k) ∈ R
ny obeys a

Gaussian distribution with zero mean value and covariance
matrix Ri(k) > 0. The variableγi(k) accounting for the
sensor gain degradation has the probability density function
pik(.) on the interval[0, 1] with mean γ̄i(k) and variance
σ2
γi
(k). Ci(k) is a known time-varying matrix of appropriate

dimensions.
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The functions f(k, x(k), ξ(k)) ∈ R
nx and

gi(k, x(k), ζi(k)) ∈ R
ny represent the stochastic nonlinearities

satisfying f(k, 0, ξ(k)) = 0, gi(k, 0, ζi(k)) = 0 and the
following statistics:

E{f(k, x(k), ξ(k))|x(k)} = 0,

E{gi(k, x(k), ζi(k))|x(k)} = 0,
(3)

E
{
gi(k, x(k), ζi(k))g

′
j(k, x(k), ζj(k))|x(k)

}
= 0, i 6= j,

E

{[
f(k, x(k), ξ(k))
gi(k, x(k), ζi(k))

] [
f(s, x(s), ξ(s))
gi(s, x(s), ζi(s))

]′
∣
∣
∣
∣
∣
x(k)

}

= 0,

k 6= s,

E

{[
f(k, x(k), ξ(k))
gi(k, x(k), ζi(k))

] [
f(k, x(k), ξ(k))
gi(k, x(k), ζi(k))

]′
∣
∣
∣
∣
∣
x(k)

}

=

m∑

s=1

Πs(k)x
′(k)Γs(k)x(k),

(4)

where m is a given positive integer, andΠs(k) =

diag
{

Πs1(k),Π
(i)
s2 (k)

}

. Πs1(k), Π
(i)
s2 (k) and Γs(k) are

known matrices with compatible dimensions fors =
1, 2, · · · ,m.

B. Distributed resilient filter

A fundamental issue in wireless sensor networks is to design
the filters so as to restore the state vector in a cooperative
behavior. Note that, in practical applications, gain variations
often occur in the implementation of a filter due probably to
computational or tuning uncertainties. Since the performance
of the filter may be susceptible to the perturbations in gain
parameters, the design of resilient filters capable of tolerating
some level of gain variations is of engineering significance.

To observe the target plant through a network of intercon-
nected sensors, a two-step distributed estimator is proposed as
follows:

x̂i(k|k − 1) = A(k − 1)x̂i(k − 1|k − 1), (5a)

x̂i(k|k) = x̂i(k|k − 1) +
∑

j∈Ni

aij(Gij(k) + ∆ij(k))ỹj(k),

(5b)

with the initial value x̂i(0|0) = E[x(0)] = µ0, for i ∈ V .
Note thatx̂i(k|k− 1) and x̂i(k|k) are the one-step prediction
and the estimate of state vectorx(k), respectively.ỹi(k) =
yi(k) − γ̄i(k)Ci(k)x̂i(k|k − 1) is the innovation sequence
exchanged via the network. The matrixGij(k) ∈ R

nx×ny

represents the gain coefficients of the filters to be designed.
The term∆ij(k) ∈ R

nx×ny models the computational or
implementation error associated with the estimator gain, and
is assumed to have zero mean and a bounded second moment,
i.e.,

E[∆ij(k)] = 0, E[∆ij(k)∆
′
ij(k)] ≤ δijI, (6)

whereδij is a positive scalar. Moreover, throughout the paper,
we assume that all the stochastic variables, i.e.,∆ij(k), γi(k),

ξ(k), ζi(k), x(0), w(k) and vi(k), are white and mutually
independent.

For the convenience of later development, let us define the
local state prediction and local state estimation error vectors,
respectively, as follows:

ei(k|k − 1) , x(k)− x̂i(k|k − 1)

ei(k|k) , x(k)− x̂i(k|k).

Substituting (5a) into the state prediction error equation
yields

ei(k + 1|k) = A(k)ei(k|k) + f(k, x(k), ξ(k)) + w(k), (7)

and it can then be seen from (5b) that the dynamics of the
estimation errors evolves according to

ei(k|k) =ei(k|k − 1)−
∑

j∈Ni

aij(Gij(k) + ∆ij(k))
{

vj(k)

+ gj(k, x(k), ζj(k)) + γ̃j(k)Cj(k)x(k)

+ γ̄j(k)Cj(k)ej(k|k − 1)
}

, (8)

where γ̃i(k) = γi(k) − γ̄i(k). For the sake of simplicity, we
denote

e(k|k − 1) , coln{ei(k|k − 1)},

e(k|k) , coln{ei(k|k)},

and then (7)-(8) can be rearranged into a more compact form
as follows:

e(k + 1|k) = A(k)e(k|k) + ~f(k) + ~w(k),

e(k|k) =e(k|k − 1)−
n∑

i=1

Ei(G(k) + ∆(k))Hi

{

~g(k) + ~v(k)

+ Γ̃(k)C(k)~x(k) + Γ̄(k)C(k)e(k|k − 1)
}

,

where

A(k) , diagn{A(k)},
~f(k) , coln{f(k, x(k), ξ(k))},

C(k) , diagn{Ci(k)}, ~g(k) , coln{gi(k, x(k), ζi(k))}

~w(k) , coln(w(k)), Hi = diag{ai1I, · · · , ainI}

∆(k) , {∆ij(k)}n×n, G(k) , {Gij(k)}n×n

~v(k) , coln{vi(k)}, Γ̃(k) , diagn{γ̃i(k)I},

~x(k) , coln(x(k)), Γ̄(k) , diagn{γ̄i(k)I}

Ei , diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, I, 0, · · · , 0
︸ ︷︷ ︸

n−i

}.

Furthermore, by lettingK(k) = −
∑n

i=1 Ei(G(k)+∆(k))Hi,
we have

e(k|k) =(I +K(k)Γ̄(k)C(k))e(k|k − 1)

+K(k)
{

~g(k) + ~v(k) + Γ̃(k)C(k)~x(k)
}

(9)

To quantify the transient performance of the proposed
distributed resilient filter, a finite horizon quadratic filtering
cost function is introduced for the wireless sensor networks
as follows:

JT (G(T )) =

T∑

k=0

n∑

i=1

E[e′i(k|k)ei(k|k)] (10)
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where the setG(T ) = {G(k), k = 1, 2, · · · , T − 1} gathers
the filter coefficients in all theT steps. Define the error
covariances asPk|k−1 , E[e(k|k − 1)e′(k|k − 1)] andPk|k ,

E[e(k|k)e′(k|k)]. Obviously, the above quadratic filtering cost
function can be rewritten asJT (G(T )) =

∑T
k=0 tr

{
Pk|k

}
.

In the paper, we aim to design the optimal distributed filters
by solving the following optimization problem

JT = arg min
G(T−1)

JT (G(T )) (11)

III. PRELIMINARY

In this section, some preliminary knowledge is derived for
preparation. At the very beginning, the following lemmas are
introduced, which will be used to establish our main results.

Lemma 1 ( [7]): Let D = [dij ]p×p be a real-valued matrix
andB = diag{b1, b2, · · · , bp} be a diagonal random matrix.
Then

E[BDB′] =








E[b21] E[b1b2] · · · E[b1bp]
E[b2b1] E[b22] · · · E[b2bp]

...
...

. . .
...

E[bpb1] E[bpb2] · · · E[b2p]








⊙D,

where⊙ is the Hadamard product.
Lemma 2:Consider a discrete time-varying process with

stochastic nonlinearities given by (1). The system state covari-
anceX(k) , E[x(k)x′(k)] satisfies the following recursive
equation:

X(k + 1) =A(k)X(k)A′(k)

+

m∑

s=1

Πs1(k)tr {X(k)Γs(k)}+Q(k).

Proof: Substituting (1) intoX(k + 1) yields

X(k + 1)

= A(k)X(k)A′(k) + E[f(k)f ′(k)] + E[w(k)w′(k)],

where the cross terms vanish becausex(k), f(k) and w(k)
are mutually independent. From (4), it can be seen that

E[f(k)f ′(k)] =

m∑

s=1

Πs1(k)E[x
′(k)Γs(k)x(k)].

Note thatE[x′(k)Γs(k)x(k)] is a scalar, so its value will
not be changed by taking its trace as follows:

E[x′(k)Γs(k)x(k)] = tr {X(k)Γs(k)} ,

which concludes the proof.
The following lemma gives the dynamic evolution of the

prediction error covariance.
Lemma 3:Given the error covariancePk|k > 0 at stepk,

the prediction error covariance satisfies the following dynamic
equation:

Pk+1|k = A(k)Pk|kA
′(k) + F(k) +W(k), (12)

where

F(k) = 1n ⊗
m∑

s=1

Πs1(k)tr {X(k)Γs(k)} ,

W(k) = 1n ⊗Q(k).

Here, 1n ∈ R
n×n is a square matrix with all the elements

equal to one and⊗ is the Kronecker product.
Proof: The proof of this lemma is similar to Lemma 2,

and thus is omitted here for sake of brevity.
Lemma 4:The two-step distributed filters given by (5a)-

(5b) are unbiased and the corresponding estimation error
covariance can be given as follows:

Pk|k = E[(I +K(k)Γ̄(k)C(k))Pk|k−1(I +K(k)Γ̄(k)C(k))′]

+ E[K(k)~g(k)~g′(k)K ′(k)] + E[K(k)~x(k)~x′(k)K(k)]

+ E[K(k)Γ̃(k)C(k)~x(k)~x′(k)C′(k)Γ̃′(k)K ′(k)] (13)

Proof: In view of the initial estimatêxi(0|0) = E{x(0)},
it is obvious thatE{e(0|0)} = 0. Using the fact that the
stochastic nonlinearities and measurement noises are of zero
means, we obtainE{e(1|0)} = 0. Furthermore, we have
E{e(1|1)} = 0 sinceE[γ̃i(k)] = 0. By repeating such a proce-
dure, it can be concluded thatE[e(k|k−1)] = 0, E[e(k|k)] =
0. Thus, the unbiasedness of the proposed distributed filters
can be guaranteed. As for the error covariance, by applying
(9), we arrive at the following equation

Pk|k =E
[
(I +K(k)Γ̄(k)C(k))Pk|k−1(I +K(k)Γ̄(k)C(k))′

]

+ P + P
′ + E [K(k)~g(k)~g′(k)K ′(k)] + L + L

′

+ E [K(k)~v(k)~v′(k)K(k)] + R + R
′

+ E

[

K(k)Γ̃(k)C(k)~x(k)~x′(k)C′(k)Γ̃′(k)K ′(k)
]

,

where

P =E[(I +K(k)Γ̄(k)C(k))e(k|k − 1)(~g(k) + ~v(k),

+ Γ̃(k)C(k)~x(k))′K ′(k)],

L =E[K(k)~g(k)~v′(k)K ′(k)] + E[K(k)~g(k)~x′(k)C′(k)Γ̃′(k)]

R =E[K(k)~v(k)~x′(k)C′(k)Γ̃′(k)K ′(k)].

Noting that the prediction error vectore(k|k−1) is uncorrelat-
ed with ~g(k), ~v(k) and Γ̃(k), we have the termP vanished.
Also, exploiting the fact that the noises~g(k) and ~v(k) are
independent with each other and the initial state isx(0), one
can derive thatL = 0 andR = 0, which ends the proof.

In the above lemma, the dynamics of the error covariance
is presented, which turns out to be dependent on determined
by the network topology, the state transition matrix, the
measurement matrices and the statistics of stochastic nonlin-
earities, sensor gain degradations and external disturbances.
Unfortunately, due primarily to the existence of gain variations
in this paper, it is impossible to solve the error covariance
analytically, not to mention the further design of the optimal
gain coefficients. An alternative yet effective way for designing
the filters is to establish an upper bound on the estimation error
covariance.

Suppose that, for allk ≥ 0, there exist positive definite
matricesMk|k ≥ Pk|k. Define a finite horizon quadratic cost
function as follows:

J̄T (G(T )) =

T∑

k=0

tr
{
Mk|k

}
.
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It is clear thatJT (G(T )) ≤ J̄T (G(T )) which implies that
J̄T (G(T )) is an upper bound on the original cost function.
As a result, we can focus on minimizing this upper bound by
appropriately choosing the filter parameters, namely,

J̄T = arg min
G(T−1)

J̄T (G(T )).

A distinguished advantage of the above proposed scheme
lies in that it can solve some sort of optimization problems
where the analytical expression of the objective function is
unavailable. By constructing an analytical upper bound, one
can provide an alternative, feasible, yet sub-optimal option for
the filter design under guaranteed performance.

IV. SUB-OPTIMAL DISTRIBUTED RESILIENT FILTER

DESIGN

In this section, let us first derive an analytical upper bound
for the estimation error covariance of the system (9), and then
design the gainG(k) of the sub-optimal filter in order to
minimize the upper bound at each time-stepk.

For presentation convenience, some notations are introduced
as follows

K̄(k) , −
n∑

i=1

EiG(k)Hi, K̃(k) , −
n∑

i=1

Ei∆(k)Hi,

Υ(k) , ~g(k)~g′(k) + ~v(k)~v′(k)

+ Γ̃(k)C(k)~x(k)~x′(k)C′(k)Γ̃′(k).

Moreover, from the definition of the stochastic nonlinearity
gi(k, x(k), ζi(k)), we have

ℵ(k) , E[~g(k)~g′(k)] =

m∑

s=1

Πs2(k)tr[X(k)Γs(k)],

whereΠs2(k) , diag
{

Π
(1)
s2 (k), · · · ,Π

(n)
s2 (k)

}

. Additionally,
in light of Lemma 1, we have

E

[

Γ̃(k)C(k)~x(k)~x′(k)C′(k)Γ̃′(k)
]

= Ξ(k)⊙
(
C(k)X (k)C′(k)

)
,

where X (k) , 1n ⊗ X(k) and Ξ(k) , diag
{
σ2
γ1
(k)1n,

· · · , σ2
γn
(k)1n

}
. Therefore, the mean valuēΥ(k) , E[Υ(k)]

can be computed by

Ῡ(k) = ℵ(k) + diagn{Ri(k)} + Ξ(k)⊙
(
C(k)X (k)C′(k)

)
.

Now, we can derive the upper bound ofPk|k in the following
theorem.

Theorem 1:Consider the following difference equations

Mk+1|k = A(k)Mk|kA
′(k) + F(k) +W(k), (14a)

Mk|k =(I + K̄(k)Γ̄(k)C(k))Mk|k−1(I + K̄(k)Γ̄(k)C(k))′

+ λmax(Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k))Λ

+ K̄(k)Ῡ(k)K̄ ′(k) (14b)

with the initial condition M0|0 = P0|0 = Σ0, where
Λ , diag

{∑n
s=1 a

2
1sδ1sI, · · · ,

∑n
s=1 a

2
nsδnsI

}
. Then, the

inequalitiesPk|k ≤ Mk|k andPk+1|k ≤ Mk+1|k always hold
for all k ≥ 0.

Proof: Since the uncertainty∆(k) is of zero mean and
independent with other stochastic variables, (13) can be rewrit-
ten in the following form:

Pk|k = (I + K̄(k)Γ̄(k)C(k))Pk|k−1(I + K̄(k)Γ̄(k)C(k))′

+ E[K̃(k)Γ̄(k)C(k)Pk|k−1C
′(k)Γ̄(k)′K̃ ′(k)]

+ E[K̃(k)Υ(k)K̃ ′(k)] + K̄(k)Ῡ(k)K̄ ′(k). (15)

Subsequently, let us prove this theorem by induction. Assume,
inductively, thatPk−1|k−1 ≤ Mk−1|k−1. Applying (12) and
(14a), we have

Pk|k−1 −Mk|k−1

= A(k − 1)(Pk−1|k−1 −Mk−1|k−1)A
′(k − 1) ≤ 0,

which impliesPk|k−1 ≤ Mk|k−1. The differencePk|k −Mk|k

can be written as

Pk|k −Mk|k

≤ E

[

K̃(k)(Γ̄(k)C(k)Pk|k−1C
′(k)Γ̄(k)′ +Υ(k))K̃ ′(k)

]

− λmax

(

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

)

Λ. (16)

Moreover, sincePk|k−1 ≤ Mk|k−1, it follows that

E

[

K̃(k)(Γ̄(k)C(k)Pk|k−1C
′(k)Γ̄(k)′ +Υ(k))K̃ ′(k)

]

≤λmax

(

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

)

E

[

K̃(k)K̃ ′(k)
]

.

Now, we are in the position to tackle the term in the right-hand
side of the above equation. Utilizing algebraic transformations,
it is not difficult to verify that

K̃(k)K̃ ′(k) =

(
n∑

i=1

Ei∆(k)Hi

)(
n∑

i=1

Ei∆(k)Hi

)′

=







(
n∑

s=1

aisajs∆is(k)∆
′
js(k)

)

ij







n×n

.

Based on (6) and the fact that∆ij(k) are mutually independent
for i, j = 1, · · · , n, one has

E

[

K̃(k)K̃ ′(k)
]

≤ Λ. (17)

Together with (16)-(17), we can seePk|k ≤ Mk|k. The induc-
tive hypothesis implies thatPk|k ≤ Mk|k, which completes
the proof.

In the next step, we will design the optimal filter gains such
that the upper boundPk|k can be minimized at each step.
Before proceeding further, let us defineG(i)(k) to be theith
row of the block matrixG(k), i.e.,

G(i)(k) ,
[
Gi1(k), · · · , Gin(k)

]

andM
(i)
k|k−1 to be theith row of the block matrixMk|k−1.

Moreover, define

Mi(k) , Hi

[

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

]

Hi,

Ni(k) , M
(i)
k|k−1C

′(k)Γ̄(k)Hi.

By removing theb-th (b /∈ Ni) column block from the ma-
tricesNi(k) andG(i)(k), one can obtainN̄i(k) and Ḡ(i)(k),
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respectively. In addition, we let̄Mi(k) be a simplified matrix
by removing both theb-th row andb-th column block from
Mi(k) whenb /∈ Ni.

Theorem 2:Consider the time-varying system (1)-(2) with
distributed resilient filters given by (5a)-(5b). The upperbound
of the error covariance (14a)-(14b) can be minimized at each
step by choosing the parameters of filters as follows

Gij(k) =

{
0 aij = 0

(
N̄i(k)M̄i(k)

−1
)♯
, aij 6= 0

(18)

where (∗)♯ extracts the corresponding submatrix from the
matrix ‘∗’ associated with the parameterGij(k).

Proof: Taking the trace for the both sides of (14b) yields
that

tr{Mk|k}

=tr
{

(I + K̄(k)Γ̄(k)C(k))Mk|k−1(I + K̄(k)Γ̄(k)C(k))′
}

+ tr
{
K̄(k)Ῡ(k)K̄ ′(k)

}
+

n∑

i=1

n∑

j=1

a2ijδijnx

× λmax

(

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

)

. (19)

The first term in the right-hand side of (19) can be rewritten
into the following expression

tr
{

(I + K̄(k)Γ̄(k)C(k))Mk|k−1(I + K̄(k)Γ̄(k)C(k))′
}

= tr{Mk|k−1}+ 2tr{K̄(k)Γ̄(k)C(k)Mk|k−1}

+ tr{K̄(k)Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k)′K̄ ′(k)}.

Resorting to the properties of trace, we have

tr{EiG(k)HiMHiG
′(k)Ej}

= tr{EjEiG(k)HiMHiG
′(k)} = 0, for i 6= j (20)

for an arbitrary matrixM with appropriate dimensions. Notic-
ing the definition ofK̄(k) and exploiting (20), it is obvious
that

tr
{
K̄(k)Γ̄(k)C(k)Mk|k−1C

′(k)Γ̄(k)K̄ ′(k)
}

= tr

{
n∑

i=1

EiG(k)HiΓ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k)HiG

′(k)

}

.

As for the second term in the right-hand side of (19), one can
derive that

tr{K̄(k)Ῡ(k)K̄ ′(k)}

= tr

{
n∑

i=1

EiG(k)HiῩ(k)HiG
′(k)

}

.

Moreover, taking the partial derivation of the trace of the
matrix Mk|k with respect to the gain parametersG(k), we
have

∂tr{Mk|k}

∂G(k)

= −2

n∑

i=1

EiMk|k−1C
′(k)Γ̄(k)Hi + 2

n∑

i=1

EiG(k)Hi

×
[

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

]

Hi,

Since (19) is in a positive semi-definite quadratic form with
respect to the matrixG(k), in order to minimizetr{Mk|k},
we let its partial derivative be zero. As such, we have

n∑

i=1

EiG(k)Hi

[

Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k)

]

Hi

=

n∑

i=1

EiMk|k−1C
′(k)Γ̄(k)Hi, (21)

which is equal to the following equations containing sparse
matrices:

G(i)(k)Mi(k) = Ni(k)

for i = 1, · · · , n. Now, it remains to obtainG(i)(k) by solving
the above equations. Note that

Hi = diag{ai1I, ai2I, · · · , ainI}

where the elementaij = 0 when j /∈ Ni. Removing
the corresponding zero rows and zero columns fromMi(k)
and the corresponding zero columns fromNi(k), we obtain
the simplified matricesM̄i(k) and N̄i(k). Subsequently, we
can partition the matrices byMi(k) = {Mab(k)}n×n and
Ni(k) = {Nb(k)}1×n, and thus have

n∑

j=1

Gij(k)Mjb(k) = Nb(k), for b ∈ Ni

As for b /∈ Ni, we haveMjb(k) = Nb(k) = 0 and therefore
the above equation always holds. Moreover, forb /∈ Ni, we
can choose the coupling filter gainsGib(k) = 0 because the
local sensor cannot receive any message from its non-neighbor
nodes. As a result, it follows that

Ḡ(i)(k)M̄i(k) = N̄i(k), for i = 1, 2, · · · , n

Noticing that the matrixM̄i(k) is positive definite, we derive
that Ḡ(i)(k) = N̄i(k)M̄i(k)

−1 and, consequently, the param-
eter Gij(k) can be obtained by selecting the corresponding
column block matrix in the matrixN̄i(k)M̄i(k)

−1, which
ends the proof.

Remark 1:A crucial step for designing the filter gain is to
solve the equality (21). However, due to the sparsity of the
communication topology, there is a remarkable difficulty to
obtainG(k) directly. Actually, the diagonal entries of matrix
Hi are nonzero when the corresponding sensor is in the
neighboring set of sensori. In other words,aij > 0 if only if
j ∈ Ni, and thereforeHi is likely to be rank deficient, which
means thatMi(k) is also rank deficient. By employing the
matrix simplification technique proposed in the above proof,
we remove the zero columns and rows to guarantee the positive
definiteness of the simplified matrix̄Mi(k), which renders the
explicit expression ofG(k) possible.

V. BOUNDEDNESS ANALYSIS

In this section, we will discuss the mean-square bound-
edness of the estimation errors for the proposed distributed
resilient filter.

For convenience of discussion, without loss of generality,
we set the weightsaij = 1 for j ∈ Ni. Moreover, an
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assumption is introduced to place some constraints on the
system parameters:

Assumption 1:There exist positive real numbers̄a, c, c̄, τ̄ ,
λ, λ̄, q̄, r̄, κsi, κs, σ̄

2, such that the following bounds on ma-
trices are fulfilled for all i = 1, · · · , n, j = 1, 2, and
s = 1, · · · ,m:

‖A(k)‖ ≤ ā, c ≤ ‖Ci(k)‖min, ‖Ci(k)‖ ≤ c̄, tr{X(k)} ≤ τ̄ ,

‖Q(k)‖ ≤ q̄, λ ≤ ‖Γ̄(k)‖min, ‖Γ̄(k)‖ ≤ λ̄, ‖Ri(k)‖ ≤ r̄,

‖Πsj(k)‖ ≤ κsj , ‖Γs(k)‖ ≤ κs, σ2
γi

≤ σ̄2.

Denote k̄ , nλ̄c̄/λ2c2 and ζ̄ , maxi {
∑n

s=1 δis}. With
Assumption 1, we are able to establish a sufficient condition
for the mean-square boundedness of the estimation errors as
follows.

Theorem 3:Consider the time-varying system (1)-(2) with
the distributed resilient filters given by (5a)-(5b) whose gain
parameters are provided in Theorem 2. Under Assumption 1,
the filtering error dynamics is mean-square bounded, i.e.,

sup
k∈N

n∑

i=1

E[e′i(k|k)ei(k|k)] < ∞,

if the following inequality holds

ā2((1 + k̄λ̄c̄)2 + λ̄2c̄2ζ̄) < 1. (22)

Proof: It follows from (14a) and Assumption 1 that

‖Mk|k−1‖ ≤ ā2‖Mk−1|k−1‖+ ‖F(k)‖+ ‖W(k)‖.

Noting that

tr{X(k)Γs(k)} = tr
{
E[x′(k)Γs(k)x(k)]

}
≤ κsτ̄ ,

one has

‖F(k)‖ ≤ n

m∑

s=1

κs1κsτ̄ .

In addition, it can be seen that‖W(k)‖ ≤ nq̄. Therefore, we
can obtain the following inequality

‖Mk|k−1‖ ≤ ā2‖Mk−1|k−1‖+ n
m∑

s=1

κs1κsτ̄ + nq̄ (23)

Since we only care about the non-sparse part ofG(k), it is
not difficult to verify that (21) results in the following equation

n∑

i=1

EiG(k)Hi =

n∑

i=1

EiU(k)(Z(k))−1Hi (24)

where

U(k) , Mk|k−1C
′(k)Γ̄(k),

Z(k) , Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k).

Taking the norm for the both sides of the equation (24) yields
that

‖K̄(k)‖ ≤ n‖U(k)(Z(k))−1‖ ≤ n
λ̄c̄

λ2c2
= k̄

Thus, it is clear that

‖I + K̄(k)Γ̄(k)C(k)‖ ≤ 1 + k̄λ̄c̄ , b̄.

Moreover, we have

‖ℵ(k)‖ ≤
m∑

s=1

‖Πs2(k)‖‖tr[X(k)Γs(k)]‖ ≤
m∑

s=1

κs2κsτ̄

and

‖Ξ⊙ C′(k)X (k)C′(k)‖

=
∥
∥diagn{σ

2
γi
C′

i(k)X(k)Ci(k)}
∥
∥ ≤ σ̄2c̄2τ̄

Therefore, it is obvious that

‖Ῡ(k)‖

≤ ‖ℵ(k)‖+ ‖diagn{Ri(k)}‖+ ‖Ξ⊙ C′(k)X (k)C′(k)‖

≤
m∑

s=1

κs2κ2τ̄ + σ̄2c̄2τ̄ + r̄ , h̄ (25)

By letting ζ̄ = maxi {
∑n

s=1 δis}, we have

‖λmax(Γ̄(k)C(k)Mk|k−1C
′(k)Γ̄(k) + Ῡ(k))Λ‖

≤ (λ̄2c̄2‖Mk|k−1‖+ h̄)ζ̄ .

In light of (14b), it is straightforward to see that

‖Mk|k‖ ≤ (b̄2 + λ̄2c̄2ζ̄)‖Mk|k−1‖+ k̄2h̄+ h̄ζ̄

≤ ā2(b̄2 + λ̄2c̄2ζ̄)‖Mk−1|k−1‖+ h̄(k̄2 + ζ̄)

+ (b̄2 + λ̄2c̄2ζ̄)

(

n
m∑

s=1

κs1κsτ̄ + nq̄

)

where the second inequality comes from substituting (23).
Since ā2(b̄2 + λ̄2c̄2ζ̄) < 1, the sequence‖Mk|k‖ converges
eventually. Using the fact thatMk|k always is the upper bound
of the real estimation error covariancePk|k, we conclude that
the filtering error dynamics is mean-square stable, which ends
the proof.

Remark 2:According to (14b), it is clear that the gain
variations do have a great impact on the covarianceMk|k.
Moreover, it can be seem from condition (22) in the above the-
orem that, sinceλmax(Γ̄(k)C(k)Mk|k−1C

′(k)Γ̄(k)+Ῡ(k))Λ is
a multiplicative term in the proliferation ofMk|k, the sequence
{Mk|k} will diverge quickly if δij is too large. As such, it is
observed that a smaller gain variationδij is more beneficial
for the mean-square boundedness.

VI. A NUMERICAL EXAMPLE

In this section, a numerical example is employed to demon-
strate the effectiveness of the proposed distributed resilient
filter scheme. A target tracking scenario is used to justify its
potential applicability.

Consider a wireless sensor network withn = 4 sensor
nodes. The network topology is represented by a direct-
ed graphG = (V,E,H) with the set of nodesV =
{1, 2, 3, 4}, the set of edgesE = {(1, 1), (1, 2), (2, 2), (2, 3),
(3, 1), (3, 2), (3, 3), (4, 3)}, and the adjacency matrix

H =







1 0.3 0 0.1
0 1 0.2 0
0.5 1 1 0
0 0 0.8 1






.
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The discretized target system (1) with stochastic nonlinear-
ities is described by

x(k + 1) =

[
0.89 0.1 + 0.1cos(0.12k)
0 0.88

]

x(k) + w(k)

+ f(k, x(k), ξ(k)).

The initial values of the statex(0) and the process noisew(k)
follow the zero-mean Gaussian distribution with the respective
covariancesΣ0 = diag{2, 2} and Q(k) = diag{0.1, 0.15}.
The parameters of the measurement models of the sensors (2)
are described as follows:

C1(k) = [0.92 + 0.05cos(0.12k) 0.82]

C2(k) = [0.25 0.1 + 0.05sin(0.1k)]

C3(k) = [0.84 + 0.05cos(0.1k) 0.75 + 0.05sin(0.1k)]

C4(k) = [0.75 0.435]

Suppose that the stochastic variablesvi(k) are independent
zero-mean Gaussian white noise sequences with the covari-
ancesRi(k) = 0.25, i = 1, 2, 3, 4. The stochastic sensor gain
degradation of individual sensors has the following probability
density function

pik(s) =







0.05, s = 0
0.10, s = 0.5
0.85, s = 1

for i = 1, 2, · · · , 4. As such, the expectation and variance
can be easily calculated as̄γi(k) = 0.9 andσ2

γi
(k) = 0.065,

respectively. The stochastic nonlinearitiesf(k, x(k), ξ(k)) and
gi(k, x(k), ζi(k)) are selected as follows:

f(k, x(k), ξ(k)) =

[
0.1
0.2

]

(0.3sign(x(1)(k))x(1)(k)ξ(1)(k)

+ 0.4sign(x(2)(k))x(2)(k)ξ(2)(k))

gi(k, x(k), ζi(k)) = 0.3(0.3sign(x(1)(k))x(1)(k)ζ
(1)
i (k)

+ 0.4sign(x(2)(k))x(2)(k)ζ
(2)
i (k))

wherex(j)(k), ξ(j)(k) and ζ
(j)
i (k) (j = 1, 2) denote thejth

elements of the system statex(k), and the stochastic variables
ξ(k) and ζi(k), respectively. Obviously, the expectations and
the covariances of the above stochastic nonlinearities meet
the form in (3) and (4) with the integerm = 1, param-
eter matricesΠs1 = [0.1 0.2]′[0.1 0.2], Π

(i)
s2 = 0.09 and

Γs(k) = diag{0.09, 0.16}. The initial parameters of the filters
are chosen aŝxi(0|0) = 0 andM0|0 = 14 ⊗Σ0. Additionally,
assume thatδij = 0.1, for i, j = 1, · · · , n. We can compute
the filter gain parameters according to(14a), (14b), and(18),
and then exploit the algorithm given by (5a)-(5b) to estimate
the state vector in a distributed manner .

The simulation results are presented in Figs. 1-3. Among
them, Figs. 1-2 depict the trajectories of the true states
x(j)(k) and the corresponding estimatesx̂

(j)
i (k|k). To quantify

the estimation accuracy, the mean square estimation error is
defined as follows

MSE(k) =
1

T

T∑

t=1

n∑

i=1

e′i(k|k)ei(k|k)
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Fig. 1. The true statex(1)(k) and its estimateŝx(1)
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Fig. 3 presents the trace of the matrixMk|k calculated from
Theorem 1 and the mean square error (MSE) obtained from
T = 1, 000 independent experiments. The result confirms that
the solutions of the difference equation (14a)-(14b) are actually
the upper bounds of the error variance. Moreover, we compare
the MSE of our resilient distributed filter with that of the filter
proposed in [15]. Form the simulation results in Fig. 4, it
can be seen that our resilient distributed filter performs better,
which is not surprising as we have made specific efforts to
account for the stochastic gain variations, the nonlinearities
and the sensor gain degradation.
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Time k

 

 
Our resilient distributed filter
The distributed filter in [17]

Fig. 4. MSE Comparison for the proposed resilient filter and the filter in
[15].

VII. CONCLUSION

In this paper, we have investigated the distributed filtering
problem for discrete time-varying systems subject to compli-
cated stochastic phenomena including stochastic nonlineari-
ties, sensor degradation and gain variations. In the presence of
these stochastic phenomena, it is impossible to obtain the exact
error covariance in an explicit form, let alone the design ofthe
filter gains. To tackle this problem, a sub-optimal distributed
resilient filter design scheme has been established. Specifically,
we have derived a matrix difference equation whose solution
is the upper bound of the actual error covariance. Filter gains
have been designed through minimizing such an upper bound
at each step iteratively. After that, a sufficient conditionhas
been established to guarantee the mean-square stability of
the distributed resilient filter. Finally, the effectiveness of
the proposed filtering algorithm has been illustrated by a
numerical example. One topic of future research would be the
extension of our results to the systems with more complicated
dynamical behaviors addressed in [3], [14], [17], [32].
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