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ABSTRACT  

Each day the world's attention increases on how to minimize the energy consumption 

in order to reduce energy cost and carbon emissions as well as conserve the energy 

resources we have. Open-type vertical refrigerated display cabinets take the largest 

refrigeration load in a supermarket refrigeration system. One technique that has been 

used to improve the efficiency of such refrigeration equipment is to employ thermal 

energy storage inside. This approach will lead to improve the overall efficiency and 

also reduce the required cooling of the equipment due to the reduction of food 

temperature variation. This research project details the effect of phase change 

materials (PCMs) integration on the thermal performance of an open type multi-deck 

display cabinet in terms of energy savings, food product temperature improvements, 

cabinet air temperature and comparisons with conventional units. This work is 

divided into two parts of experiment and theoretical analysis. 

The experimental part included a series of tests that were carried out to determine 

that effect of incorporation of PCM through two types of display cabinets depending 

on their availability with nearly same design. Two integration procedures of PCM-

HEs with different PCM types were employed for each cabinet depending on its 

design. The test results showed that the energy saving of the cabinets with PCM 

significantly improved at climate class 3. In terms of product and cabinet air 

temperatures, the results also showed considerable benefit from reducing the 

maximum value of air temperature. Moreover, the defrost period was found to be the 

most affected parameter for the Norpe cabinet with PCM. It was approximately 5 min 

longer than the basic cabinet, which represented 70% of the original defrost time 

resulting in energy savings. It is worth noting that savings are a function of the 

ambient temperature, relative humidity, operational settings of the cabinet and PCM 

freezing point.  

The theoretical study involves a 2D CFD model established for the Norpe display 

cabinet. The model is used to investigate the effect of adding PCM-HE on the energy 

consumption of display cabinet, thermal performance and cabinet air temperatures in 

similar method and same test conditions. Validation was carried out by comparing 

experimental results. Calculations are carried out for this cabinet first without PCM 

integration, then with a container filled with pure water as a PCM. It has been shown 

that an enhancement of thermal system performance and reduction in the cabinet air 

and product temperatures when the cabinet is off and increasing defrost, on and off 

periods. It is also found that with PCM, the energy saving potential of the cabinet is 

significantly improved. In addition, in the CDF results, the defrost and compressor 

off intervals are the most affected factors for the modified cabinet. They are 

increased by approximately 98% and 50%, respectively, compared to those with the 

basic cabinet. Furthermore, a significant decrease (27%) in the number of starts/stops 

of the compressor is observed for the modified cabinet. Also optimum PCM 

container width was found to be 16 mm such that the required air flow pattern is still 

achieved. The effect of different conditions; ambient air and fan pressure jump, on 

the PCM effectiveness is also considered in this study. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Energy consumption and environmental impacts 

World energy demand has been increasing along with the growth of world population 

and economy. That increases greenhouse gas (GHG) emissions which contribute to the 

retrogradation of ambient air quality and environmental impacts. According to (IEA 

2010), global energy demand related to GHG emissions in the year 2030 will be 40% 

higher than 2007. Consequently, European Union countries have been developing an 

aspirant energy policy to tackle climate changes and harmful emissions.  In  the UK, the 

goals are a 60% and 80% reduction in GHG emissions by 2030 and 2050, respectively, 

compared to 1990 levels (CCC 2010). In contrast, a tendency of increasing food 

products consumption, which in them has an impact on GHG emissions, is still there. It 

is estimated that (20-30)% of GHG emissions is caused by the food industry in Western 

Europe (Tassou and Suamir, 2010). 

Energy use by manufacturing processes, food distribution and retail is considered one of 

the main sources of emissions. Approximately 7% of total emissions has resulted from 

food distribution and retail as reported by (DEFRA 2005). Refrigeration technology, 

which is progressively important in the food processing and preservation, is actually 

responsible for the major footprint on the environment. Suamir (2012) described that 

refrigeration is responsible for 15% of global electricity consumption. Therefore, 
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decreasing the energy demand of refrigeration unit in food sector has become one of the 

priorities in the reduction of GHG emissions.  

In the UK, annual CO2 emissions due to the energy consumption of major retail food 

outlets amount to 4 metric tons of indirect emissions (Raeisi et al. 2013; Tassou et al. 

2011).. Therefore, the world is progressively focussing its attention on how to minimize 

energy consumption in order to reduce energy costs and carbon emissions, as well as 

conserving the energy resources we already have. 

Supermarkets are viewed as one of the largest consumers of electric energy, of which 

50% relates to refrigeration systems and equipment (Tahir and Bansal 2005). In the UK, 

around 40%-50% of the total energy consumption of a typical store is used for 

refrigeration purposes, and around 70% of this refrigeration energy is required for open 

type display cabinets; thus the energy cost for such appliances is more expensive 

(Faramarzi 1999). UK food retailer consumes substantial amounts of energy with 

superstores accounting for between 3% and 5% of total electricity consumption (Tassou 

et al. 2007). Air conditioning and refrigeration systems contain potent GHG known as 

hydrofluorocarbons (HFCs), and the recent researches show global emissions of HFC 

have increased by more than 50% from 2007 to 2012 (Lunt et al. 2015). Also, Suamir 

(2012) stated that superstores are the principal source of (HFCs) emissions with their air 

conditioning and refrigeration equipment being responsible for 2 MtCO2e emissions. 

All those risks are driving the demand for the development of sustainable refrigeration 

technologies in supermarkets. 

1.2 Open-type refrigerated display cabinets 

Since the popularity of chilled food products progressively increased, techniques were 

developed to display the products in an attractive and accessible manner while still 

keeping their trophic characteristics (A. Hadawey 2006). Devices of food display first 

appeared in the 1930’s and involved air circulating around food stored in spaces which 

were then considered as display cabinets. Chilled display cabinets with different styles 

have started to appear and the temperature and airflow around the products, in the 

display area, were given a little attention. Open-type vertical multideck cabinets were 
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the most common types of display cabinets for chilled food applications. Nowadays, 

these cabinets are extensively used in retail stores in the United Kingdom and around 

the world to store and display dairy and food products in recommended allowable 

temperatures. Such a cabinet is common and preferred in order to save floor space, easy 

access to the products and maintain a sizeable retailing surface.  

Supermarkets are mainly dependent on refrigeration fixtures in order to maintain many 

types of perishable food in safe conditions.  The mainstay of the refrigerated products 

passageways is horizontal and vertical display cabinets, both open and closed. The total 

length of medium temperature, open-type, vertical, multideck, display cabinets may 

reach up to 100m in a typical superstore, altogether contributing considerably to the 

overall energy consumption. Therefore, finding new techniques to cut down the 

operating cost of such equipment will achieve higher profitability to the retailers (A. Al-

Sahhaf 2011).  

Although the close-type cabinets have higher efficiency, open-type display cabinets are 

still common and preferred as they are more attractive to the customers because the 

products are easy to reach and totally visible (Alzuwaid et al. 2015). However, due to 

the wide display area and the absence of doors in such cabinets create more difficulties 

in the reduction of energy consumption and the control of allowable food product 

temperatures. The research studies of total efficiency of those cabinets over the past 

years were good to achieve some improvements, but the need to manufacture and design 

such cabinets, with more energy efficient system which allows displaying food products 

at a lower cost of running, was rising due to increasing fuel prices. Many academic and 

industrial researchers are now following more efficient designs for open display 

cabinets. In such a ferociously competitive manufacturing, the food retailing sector, 

accomplishing even small developments will enhance the retailers’ profit, let alone 

longer shelf life and better products quality which will be achieved by preserving 

homogeneous and more stable products temperature. One of the improvements to the 

current designs that could be accomplished by install thermal energy storage (TES) 

inside the cabinet to reduce the energy consumption and that will be the goal of this 

project.  
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1.3 Thermal energy storage (TES) 

TES is a technique that stocks the extra thermal energy by using many different 

technologies that can accommodate a varied range of requirements allowing stored 

energy to be used in future. As examples; energy needs can be balanced between day 

and night times, solar energy in summer can be collected for use in winter and cold 

winter air can be given for air conditioning systems in summer time (E. Oró, de Gracia, 

et al. 2012). Mediums of storage could include; small and huge ice tanks, deep bedrocks 

of earth, deep aquifers, and phase change materials. TES sources can include; heat 

collected during off-peak times (lower electricity cost), heat from combined heat-power 

plants, extra heat gathered by renewable power plants, and industrial waste heat. Heat 

storage is considered a vital means for inexpensively balancing great shares of variable 

renewable energy production and integration of heating and electricity sectors in energy 

systems partially or totally fed by a renewable source. 

 

Figure  1.1 PCM effect 

 

TES scheme is used mainly in buildings and industrial processes in which thermal 

energy forms about 50% of the energy consumed (IRENA and ETSAP 2013). The 
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demand for such energy may differ from time to time. Thus, TES system helps balance 

energy supply and demand see Figure  1.1. Also, it can decrease energy consumption, 

peak demand, harmful emissions and cost. TES becomes important for electrical power 

storage in combination with solar power plants where solar energy can be stored for 

electricity production at no-sunlight times.  

TES systems are divided into three schemes; sensible, latent and chemical storages. The 

sensible TES stores energy by heating or cooling the storage mediums which could be 

water, rocks or sand. This type of TES is rather cheap and is applicable to central 

heating, domestic systems and industrial necessities, but needs big volumes due to its 

energy density is low (Demirbas 2006). On the other hand, the latent TES uses PCMs 

which allows greater storage abilities at nearly isothermal conditions with a limited 

temperature range and small unit size (El-Dessouky, 1997).  Finally, chemical TES, 

such as adsorption, has high energy density and can be used to store cold and heat, and 

control humidity. A number of researchers in some European countries are working to 

develop new techniques and materials that include TES integration into building walls 

and transfer of thermal energy between two places. Choosing the appropriate TES 

scheme is significant and needs accurate inspection. Among these options PCMs gets a 

great consideration.   

1.4  Phase change materials (PCMs)  

PCM is a material with a high heat of fusion which is capable of storing and releasing 

large amounts of energy during melting and solidifying processes that happen at a 

certain (transition) temperature. Energy is released or absorbed when the material 

changes its phase from liquid to solid and vice versa; hence, PCM is classified as latent 

heat storage (LHS) as shown in Figure 1.2. PCM-LHS can be done through solid–liquid 

(melting), liquid-solid (freezing), liquid–gas (vaporization) and solid–gas (sublimation) 

phase changes. However, the freezing/melting changes are the only phase changes used 

for PCMs. Although that vaporization phase changes do have a higher heat of 

transformation than freezing/melting transitions, they are not practical for use as (TES) 

due to the high pressures or large volumes required to store the materials in the gas 
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phase. Sublimation phase changes are normally slow and have the low heat of 

transformation.  

 

Figure 1.2 Principles of PCMs 

 

The liquid-solid transformation starts when the temperature decreases as PCM releases 

heat. When PCM reaches the temperature at which it changes phase (its freezing 

temperature) it releases large amounts of heat at a nearly constant temperature. The 

PCM continues to release heat without an important drop in temperature until all the 

material is transformed to the solid phase. When the ambient temperature around the 

solid material rises, the PCM starts to melt, absorbing large amounts of latent heat from 

ambient. A large number of PCMs are available in any required temperature range from 

−5 up to 190 °C (Kenisarin and Mahkamov 2007). In the human comfort range (20–

30) °C, some PCMs are very operative. They can store 5 to 14 times more heat per unit 

volume than conventional storage materials such as rock, masonry or water (Sharma et 

al. 2009). 

TES based PCM schemes can be categorized by the types of PCMs used; they are 

divided into organic or inorganic mixtures. Organic PCMs, such as fatty acids and 

paraffin, have self-nucleating properties but a lower thermal conductivity and higher 
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cost (Bruno 2005). Inorganic materials such as salt hydrates have good availability at a 

lower cost but exhibit difficulties in phase separation and their abilities to melt 

incongruently. It is, therefore, important to select the optimal PCM in any particular 

application to satisfy terms of operation and cost (Alzuwaid et al. 2015). It is common 

that using TES based on PCMs has played a key role in wide range of applications in 

the electronic, construction, biomedical and automotive industries (Pielichowska and 

Pielichowski 2014). Furthermore, using PCMs as a TES has played an effective role in 

the refrigeration systems by integrating them into the equipment, such as display 

cabinets, directly for energy savings and better controls.  

1.5 Water and Ice as a PCM 

Using water and ice as a TES in cool storages was available and known since more than 

a few thousands of years when the ice was stored underground during the winter and 

then used in the hot summer for cooling purposes. Furthermore, ice was transported 

until the mid-19th century for foodstuff preservation applications. In modern developed 

Countries, the best and first TES utilized to stock cooling capacity in refrigeration/air 

conditioning equipment was water and ice due its availability and stable characteristics 

(Demirbas 2006). Sensible heat systems based pure water improves the refrigeration 

performance by increasing evaporation temperatures; but, this requires large storage 

volume as the storage capacity is low. Unlike, the sensible ice-bank system has a 

substantially larger capacity of storage; however, it requires lower operation 

temperature causing higher energy consumption.  

Using the water as a solid/liquid PCM was more attractive and has wide applications 

due to high storage density (334kJ/kg) that can be released and absorbed during the 

phase changing processes. Moreover, any PCM should have high latent heat, suitable 

transition temperature, melt and freeze correspondingly, minimum sub-cooling, 

chemically stable, low cost, noncorrosive and nontoxic (Farid et al. 2004).  In the 

experimental part of this project, we have used the water as a PCM with some additives 

to improve and modify its characteristics to fit the current application. The PCM in the 

simulation part is pure water as we can control its properties. 
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1.6 PCM applications in refrigeration/ air conditioning 

Since the 1980s, PCMs have been found significant applications in big refrigeration and 

air conditioning schemes (WANG 2003). They were mainly employed to introduce 

capacity inside building energy systems to allow them to consider of variations in the 

daily cooling load. Low rate of heat transfer is the major drawback of PCM applications 

in refrigeration and air conditioning systems. The reasons for that are; moving the 

mushy zone away from the heat transfer surface causes an increase in the thermal 

resistance of the growing layer thickness of the molten/solidified medium. In the case of 

solidification, conduction is the only transport mechanism, and in most cases it is very 

poor. In the case of melting, natural convection can occur in the molten layer and this 

generally increases a bit the heat transfer rate compared to the solidification process (if 

the layer is thick enough to allow natural convection to occur), as well as low thermal 

conductivity of the PCMs used in such applications (Cabeza et al. 2002). Advanced 

techniques, to enhance the heat transfer, are presently employed to increase 

performance such as; greater heat transfer surfaces, direct contact systems and higher 

thermal conductivity, however, just partial progress is made which are not enough 

comparing to the cost. New approaches to PCM applications in refrigeration systems are 

being studied. 

1.7 Approach towards sustainability 

Different technologies related to energy storage have been established in recent times; 

LHS materials are one of them as they exhibit a higher density of heat comparing with 

SHS. Latent heat TES can provide significant development in the overall energy 

efficiency of the conventional display cabinet’s energy approach. This technique can 

also make substantial contribution to reduce the environmental impacts of supermarkets. 

This study aims to decrease further the energy consumption and CO2 emission savings 

potential of display cabinets through its integration with PCMs-TES systems. The 

research programme consists of two parts; experimental and simulation.  

The experimental part is based on two types of display cabinets (Bond and Norpe); each 

one incorporates with different TES module; PCM-heat exchanger module and PCM 

containers module. The approach employed is to use the available space of back duct to 
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install the TES units. The heat transfer between the TES units and the cabinet is 

achieved by the circulated air which will be in direct contact with all cabinet’s parts and 

products.  

The simulation part of the research programme is based on computational fluid dynamic 

(CFD) for Norpe cabinet and consisted of two parts.). The first part includes what we 

have done in the laboratory for the basic cabinet to compare the both results for 

validation and to give us the flexibility to explore the effect of more parameters. The 

second part involves adding the PCM at the suggested place and optimizing its 

thickness. 

1.8 Aims and objectives 

This research project aims to design, develop and investigate an open chilled display 

cabinet with integrated PCMs for latent thermal energy storage (TES). Thermal 

performance and energy consumption were considered in order to understand, identify, 

and consequently optimize various design parameters experimentally and numerically. 

The project included a number of sub-objectives as follows: 

1. To carry out comprehensive experimental tests on two types of conventional 

open multideck refrigerated display cabinets (Bond and Norpe cabinets) in order 

to investigate the performance of the cabinets over a range of operating 

conditions, and find the ideal conditions which are appropriate for our 

application. 

2. To modify the Bond refrigerated display cabinet by adding two different types 

of PCM heat exchangers after the evaporator in the airway and repeat the 

previous experiments at the same conditions to find what the difference in the 

results compared with the conventional case. 

3. To develop a proposed PCM (for Norpe cabinet) after some experimental trials 

for different ratios of different materials to be appropriate with the desired 

transition temperature. 
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4. To modify the Norpe refrigerated display cabinet by adding two PCM containers 

after the evaporator in the rear duct and run the tests again to examine the 

performance comparing to the corresponding basic cabinet. 

5. To develop and validate a 2D CFD model for the (Norpe) ordinary cabinet at the 

experimental operating conditions.  

6. To adjust the 2D CFD model by adding the PCM model to the display cabinet in 

order to predict the PCM effect on the cabinet efficiency, the temperature 

distributions and the air flow patterns inside the cabinet under specific operating 

conditions.  

7. To use the simulation models to explore and analyse the cabinet performance at 

various operating and design conditions. 

 
1.9 Structure of the thesis 

This thesis consists of seven chapters. Following the introduction of the work in this 

chapter, Chapter 2 presents an overview of previous work done on PCM integration on 

refrigeration equipment and describes the concept of energy saving and most findings 

affecting the performance of open display cabinets. The chapter also outlines and covers 

the advanced methods, recent applications and development used for the study of 

adding the PCM to such systems for food preservation in supermarkets over the past 

few years. 

Test standards, experimental facilities used, which include the two vertical display 

cabinets, test chamber and measurement tools, and the primary experimental outcomes 

are illustrated in Chapter 3. 

Modifying Bond and Norpe cabinets by incorporating with PCM-HEs and PCM 

containers respectively are treated in Chapter 4. The chapter also describes and 

analyses the new experimental results for the same conditions to highlight the 

differences comparing with the conventional systems. 

The basic CFD theory and the philosophy behind choosing different numerical 

algorithms as well as validation of Norpe cabinet model are presented in Chapter 5. 

The various issues considered for pre-processing, solving, and post-processing the data 
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are addressed. Boundary conditions together with turbulence, species, and radiation 

models used during the setup of the models are presented. 

Chapter 6 considers the validation and simulation results for Norpe cabinet with PCM 

incorporation and compares these results with the simulation results of the conventional 

model. The Chapter also presents the effect of some parameters on the PCM behaviour 

in the modified cabinet model. 

Finally, Chapter 7 highlights the areas of contribution, summarizes the main 

conclusions reached and proposes further development and investigations required to 

improve system performance and optimisation.  
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CHAPTER 2 

2 BACKGROUND AND LITERATURE REVIEW 

This chapter provides a comprehensive literature review for the most significant works 

carried out using wide international databases. In the beginning, the use of PCMs as a 

TES in refrigeration systems is addressed. Then, heat transfer enhancement approaches 

and new techniques to overcome the PCM problems are discussed. Some important 

studies about PCM-HEs with emphasis on their different configurations through 

cabinets are then presented. Finally a background and some attractive research 

regarding different aspects of display cabinets related to their design and operations are 

considered. 

2.1 TES in Refrigeration systems 

Refrigeration systems play a vital role in food conservation, as low temperatures assist 

to avoid or delay physiological, microbial and chemical changes in foodstuff (Martínez, 

2003). Preserving perishable frozen food at unchanging temperature (under -18 C) in 

the storage is important requirement such as ice cream and meat. Frozen foods have to 

be preserved at this temperature. However, during storage or transportation stages, 

frozen products may experience some fluctuations in temperature as heating loads 

executed on the system. 
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2.1.1 Freezer 

The effect of PCM on temperature storage conditions has been studied for different 

types of freezers. A study into the effect of low temperature PCM (-15.4 
ᵒ
C) sheets, 

positioned beside the internal walls of domestic freezer during daily power outage over 

two weeks period, was conducted (Gin and Farid 2010). After comparison the freezer 

with and without PCM, it was found that the air and product fluctuations temperature in 

the freezer with PCM was lower than that without PCM. Products analysis was also 

implemented in this study to find out that the crystallization size in the ice cream and 

drip loss in meat were found to be lower in the modified freezer.  

Another investigation conducted on the freezer was by the same previous researcher (B. 

Gin, 2010). The same test rig was used, but this time the effectiveness of PCM in 

maintaining temperatures in the presence of heat loads such as defrosting, door 

openings, and power failure was considered. During these conditions it was noticed that 

the PCM integrated has considerably lowered the increase rate of products temperature, 

and the energy consumption measured was slightly lower compared to without PCM. 

Moreover, E. Oró et al. (2012) inserted PCM (Climsel-18) stainless steel panels into 

different positions of a commercial freezer to augment its performance under 

interrupting conditions; door openings and power loss. During 3 hours power supply 

absence, the freezer temperature was maintained at 4-6 ºC lower and for much longer 

time in which the products temperature were within  standard limits. For the period of 

frequent door openings, it was found that the benefit of PCM is evident when the 

cabinet temperature was near the PCM melting temperature. Some frozen products 

spent long time outside the freezers, such as serving ice cream in restaurants, causing a 

decrease in quality. That what (Oró, De Gracia, and Cabeza 2013) tried to deal with 

when they designed and examined a commercial ice cream container combined with 

PCM package to enhance the storage conditions. A validated mathematical model, 

parametrical study and experimental investigation were implemented to prove the PCM 

advantage to keep the frozen foodstuff quality while it is out the freezer. 

Integration a suitable quantity and quality of PCM in a freezer could achieve a 

significant reduction in energy consumption. This was considered by (A. Raeisi, IN. 
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Suamir 2013) when they attach PCM layers between the evaporator coils on the four 

internal sides of a 300 litre chest type freezer. The results showed that the energy saving 

of the cabinet with integrated PCM was found to be 12.8% at climate class 3 conditions, 

resulting from increasing the defrost period by maintaining freezer temperature below 

the defrost termination temperature for longer time. These savings are a function of the 

ambient temperature and thermostat control settings of the cabinet, narrower product 

temperature range can be achieved compared to conventional freezer cabinet.  

2.1.2 Refrigerators 

Refrigerators with PCM integrated also were studied by some researchers as this 

appliance is considered an essential part in every house.  A domestic refrigerator with 

cold storage integration has been simulated (Cerri 2003). This model was employed to 

find suitable operating conditions in which minimum energy consumption could be 

achieved. Although a low amount of PCM was used in this research, the outcome was 

12% improvement in the coefficient of performance that was achieved by extending the 

of time period. 

Furthermore, the effect of adding PCM slab on the external side of the evaporator in a 

refrigerator was studied and a dynamic mathematical model of the refrigeration cycle 

with the attendance of PCM was presented and experimentally validated (Azzouz et al. 

2005) and (Azzouz, Leducq, and Gobin 2008). During the off cycle, the PCM extended 

the lower temperature time without power supply. It was concluded that the addition of 

thermal inertia globally enhances heat transfer from the evaporator and allows a higher 

evaporating temperature, which increases the energy efficiency of the system. 

Experimental tests for the same household refrigerator was presented later by same 

researcher (Azzouz,  2009). In this study, the PCM was positioned behind the 

evaporator to increase its efficiency and offer a storage capacity maintaining the 

temperature within accepted levels for longer time in the absence of power supply. Two 

types of PCM were used; water and eutectic aqueous solution and different operating 

conditions were experienced which were ambient temperature, PCM thickness and 

thermal load. An important improvement in thermal performance was observed in the 

results compared to the ordinary system. 
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Another different study regarding PCM incorporation into a refrigerator was conducted 

by (Cheng et al. 2011). In this work, storage condensers were constructed with kind of 

shape-stabilized (PCM) and equipped in a novel household refrigerator. A comparison 

study was done between the novel and the conventional refrigerators, charge and 

discharge processes in the PCM were noticed during the on and off times respectively. 

Therefore, unlike to ordinary setup, the heat dissipation was continuous even through 

the off times of the novel refrigerator. Hence, significant improvement in the 

condensers’ thermal efficiency was detected, that resulted in a higher evaporation 

temperature, a lower condensation temperature and a more sub-cooling degree at the 

condenser outlet. These results were agreed with a corresponding dynamic model, with 

shape-stabilized PCM for the same refrigerator, was carried out by (Cheng and Yuan 

2013). The simulation results indicated 12% energy saving and 19% increase in COP by 

a continuous heat transfer through the condenser due to energy stored in the PCM. This 

study also provides a theoretical optimization design by taking in account the influence 

of three parameters; freezer temperature, PCM transition temperature and ambient 

temperature. 

Marques et al. (2013) proposed a CFD model to describe the distribution of temperature 

and airflow in a natural convection TES refrigerator. Different types (water or eutectics) 

and patterns (vertical or horizontal) of PCMs were incorporated, investigated and 

compared in terms of temperature stability. After validation the model, the results 

showed a lower refrigerator temperature when horizontal PCM configurations were 

used compared to vertical, and a eutectic at a transition temperature under 0 ºC must be 

added to keep the refrigerator within acceptable temperature limits. A second study for 

(Marques et al. 2014) in which he suggested a new design, for a TES refrigerator, by 

analysing the compressor performance at range of operation conditions for the 

refrigerator. The results stated that the efficiency of bigger compressors is better, and 

19.5% energy reduction could be achieved when larger compressors (doubled 

displacement) were used instead of the conventional size. But using that size of 

compressor will increase the number of its stops/starts, and to overcome such drawback, 

the researchers suggested collecting the cooling capacity output of high performance 
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compressors in a PCM slab to extend the cooling effect of the refrigerator without 

power supply.    

The latest interesting study about PCM combination with refrigerators was done by 

(Yuan and Cheng 2014). He combined an optimization method called Genetic algorithm 

and refrigerator dynamic model to produce a multi-purpose optimization method in 

order to enhance the household refrigerator performance. A novel refrigerator with TES 

condenser and a conventional one are compared in terms of energy consumption and 

total cost, and daily basis optimized. The outcome revealed that total performance was 

increased for both cases, but it was better for the novel refrigerator. 

2.1.3 Refrigerated trailer trucks 

Food transport refrigeration is considered one of the important stages in food chain in 

terms of keeping the transported food temperature, energy consumption and CO2 

emissions. According to (Defra 2005), the food sectors, comprising agriculture, 

transport and retailing are responsible for 22% of the UK’s GHG emissions. One third 

of this caused by distribution and retailing, and about 1.8% of total emissions produced 

by food transport. Tassou et al. (2009) stated that air cycle refrigeration and hybrid 

systems in which ordinary refrigeration technology is combined with TES are 

encouraging technologies that can lead to a decline in CO2 emissions. However, 

additional development and research work is required for these systems to be effective 

competitor with diesel driven refrigeration systems, and to decrease their weight and 

increase their efficiency. 

The perishable food is transferred by refrigerated truck trailers which have refrigeration 

units run by vapour compression cycle. The heat transfer reduction insulation was 

developed by inserting paraffin based PCM in the ordinary trailer walls. A total 

reduction of 29.1% in highest rate of heat transfer was recorded from all compartment 

walls, and 16.3% overall daily heat reductions into the refrigerated space were 

indicated. These findings can be translated into energy savings, GHG emissions 

regression, smaller refrigeration equipment and longer equipment life. This 

investigation was proposed by (Ahmed, Meade, and Medina 2010). 
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Enough quantity of proposed selective and fully charged PCM could play the role of 

vapour compression cycle for specific durations according to (Liu, Saman, and Bruno 

2012). They suggested a new refrigeration scheme integrating PCM to preserve 

refrigerated trucks at the required temperature. In this system, it does not have to put the 

conventional refrigeration unit on-board the vehicle as this unit will be situated off the 

vehicle and used to charge the PCM system when stationary and discharge when in 

service, providing the required cooling. The benefits are maintaining low temperatures, 

lower energy consumption and much lower GHG emissions. Furthermore, a new low 

cost PCM was proposed to maintain the temperature at -18 ºC inside the refrigerated 

truck. The experimental results of a built prototype system demonstrated that the 

recommended refrigeration system is practicable for mobile transport.   

Eduard Oró et al.(2012) simulated food transportation in not refrigerated trucks by 

adding low solidus temperature PCM and then assessing their thermal characteristics 

during a refrigeration system failure. Two types of PCM (C-18 and E-21) with different 

melting temperatures were experimented. It was found that the products and air 

temperatures continued at lower values for longer time when the refrigeration was 

absent. 

2.1.4 Refrigeration cycles 

TES techniques have been established and combined into compression cycles of the 

refrigeration and air conditioning systems directly for saving energy, balancing the 

loads and for better control. A study proposed by (Ure 2001) who suggested a 

refrigeration unit including PCM-HEs in contact with the liquid and suction lines. 

Putting the PCM-HE in the liquid line was to allow the refrigeration plant to profit from 

night low temperature providing an extra load on the condenser, keeping the night cold 

energy to be released during daytime. While the advantage of the suction line PCM-HE 

is providing thermal capacitance by limiting the superheat. Results stated that 10% and 

15% enhancement in peak unit efficiency could be achieved by increasing the sub-

cooling a 15 K and by reducing the superheat a 5 K respectively. 

The most common study about the novel use of PCMs in refrigeration plant was done 

into three parts; experimental investigation (Wang et al. 2007a), theoretical 
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investigation (Wang et al. 2007b) and control and energy savings (Wang et al. 2007c) 

for the combined system. In the first part, a prototype has been established and 

experienced by integrating a PCM-HE as a pre-condensing unit in a refrigeration plant. 

The result of study proved that about 8% energy savings and 6% COP improvement can 

be reached in the UK weather by pulling down the sub-cooling temperature of the 

refrigerant. This was done by putting PCM-HE between the condenser and compressor 

such that lower condensing pressure and higher sub-cooling were achieved, where PCM 

acted as an extra condenser. The second part included a coupling of PCM-HE and the 

refrigeration system has been mathematically established. The model validation showed 

good agreement with the experimental results and the PCM-HE was considered as a one 

dimensional model. The simulation results of the mathematical dynamic model 

predicted the refrigerant states and dynamic COP in the system in respect of time.  

The last part presented a novel control purpose of employing PCM-HE in the 

refrigeration system. The novel applications of PCM at different locations through the 

refrigeration system circuit with a shell-tube structure have been explored 

comprehensively by the dynamic model described in part 2. The outcome shows that for 

PCM-HEs at different positions give higher COP that reaches to 8% by decreasing the 

sub-cooling level. PCM also improves the system COPs up to 7% and 4% for the orifice 

systems and the thermostatic expansion valve, respectively, by lowering the superheat 

as well as system stabilization. 

2.1.5 TES in display cabinets 

Display cabinets utilise convective mode of heat transfer for cooling the products, and 

they usually show non-uniform distribution and noticeable increase in products 

temperature during defrost durations. There is no studies about PCM integration within 

refrigerated display cabinets except the one proposed by (Lu et al. 2010). In this 

research, an improved novel shelf design for display cabinet was suggested. Heat pipes 

of new structure and suitable PCM was selected and filled inside the shelf. 

Experimental tests of cabinets with heat pipe only, with both heat pipe and PCM and 

conventional case have been accompanied and compared. The experimental results for 

the shelf with only heat pipe reduced the products temperature by about (3.0 - 5.5) ºC 
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comparing to basic cabinet. While the shelf with both heat pipe and PCM decreased 1.5 

ºC of products temperature rise during defrost time and enhanced the uniformity of 

products temperature distribution while the power consumption was still the similar to 

the ordinary cabinet.  

2.2 Heat transfer enhancement techniques in PCM 

With respect to the PCMs most common problem which is low thermal conductivity 

that leads to low rates of charging and discharging processes. Therefore, several 

approaches and schemes have been recommended in the literature to improve heat 

transfer, both experimentally and numerically, are necessary for most LHS applications. 

The most common techniques were mentioned as follows: 

2.2.1 Finned tubes configurations 

Some studies have been accomplished to evaluate techniques of heat transfer 

improvement in PCMs by including finned tubes of different configurations as shown in 

a study presented by (Horbaniuc, Dumitrascu, and Popescu 1999). They studied the 

solidification of the PCM within a finned heat pipe LH-TES system by means of an 

analytical method bearing in mind the angular and radial heat propagation. Two 

estimates (parabolic and an exponential) for the temperature profiles over the fin height 

were used. The location of the solid/liquid interface was plotted for different fin 

numbers. This method can predict the whole solidification time of the PCM for a given 

number of fins. Also, when the PCM must freeze in an imposed period, and conclude 

the required fins number to achieve this task.  

Another related work was conducted by (Ismail, Alves, and Modesto 2001). They 

presented the results of an experimental and numerical study realized on finned-tubes in 

order to use them in TES systems. This model was based upon the conduction mode, the 

control volume approach and the enthalpy formulation method. After validation, fins 

number and geometry, the super heat degree and the aspect ratio of the annular spacing 

were found to affect the solidification time, mass fraction and the stored energy. The 

results confirmed the significance of the fins in postponing the unwanted effect of 

natural convection during the phase change process. Moreover, this study indicated the 
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strong effect of the annular spacing, the fin radial length and the fins number on the 

mass fraction and the phase change time. 

2.2.2 Higher conductive porous structure 

One of the heat transfer enhancement techniques is embedding of a metal matrix into 

the PCM to increase its conductivity. Hoogendoorn et al. (1992) performed a study on 

organic PCMs for TES in solar system applications. The influences of LH for these 

materials were gained from calorimetric differential thermal analyser measurements. 

Over the entire range of 25 to150 °C, appropriate organic materials are available with 

heat effects from 150-230 kJ/kg. The thermal conductivity of these materials was 

enhanced by inserting a metal matrix structure in them. A transient numerical model for 

the heat transfer in a PCM heat storage vessel has been set up and built-in TRNSYS.  

Another study regarding metal structure was conducted by Trelles & Dufly (2003). 

They simulated porous LH-TES for thermal-electric cooling through a matrix-based 

enthalpy formulation. The system was consisted of two aluminium containers; the 

internal one contained the cooling objective (vaccines) in water suspension and the 

external one the PCM in a porous aluminium matrix. The discharging and charging 

processes were simulated for constant thermos-electric module cold side temperature 

under different porosities of the aluminium matrix. The mathematical approach 

simplified the analysis whereas the metal porous significantly increased the heat 

conduction without dropping significantly the storage capacity. 

2.2.3 High conductivity particles 

Using PCM dispersed with high conductivity particles is also considered as another 

enhancement technique which was proposed by Mettawee & Assassa (2007). They 

carried out experiments to examine a technique of inserting aluminium powder inside 

paraffin wax to improve its thermal conductivity. The particles size of the aluminium 

powder was 80 µm and different values of mass fractions in the PCM-aluminium 

composite material were used. These experiments were done by using a compact PCM 

solar collector in which the absorber container part achieved the absorbing function of 

the solar energy and storing the PCM. The results showed that the charging period was 

lowered by about 60% by adding aluminium powder in the paraffin. It was also 
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concluded that the beneficial heat gained was enhanced when adding aluminium powder 

as compared to the pure wax.  

2.2.4 Micro-encapsulation of the PCM  

A new procedure of employing micro-encapsulated PCM in energy storage systems has 

been established. Micro-encapsulation is the packaging of micronized material (solid or 

liquid) in the capsules form. The micro-encapsulated paraffin wax can reduce the 

reactivity of the PCM with the environment, increase the heat transfer area and allow 

the core material, due to coating, to resist frequent volume changes of the storage 

material as the phase change happens. HAWLADER et al. (2000) described results of 

investigation of using the coacervation method to encapsulate the PCM, where the 

thermal performance of the product has been evaluated. It was found that the energy 

storage and release capacity increased for the micro-encapsulated paraffin during its 

phase change depending on different ratios of paraffin to coating.  

Later, Hawlader et al. (2003) carried out micro-encapsulation of PCM by two 

approaches, namely complex coacervation and spray drying, and compared the 

characteristic properties of the products. The effect of some parameters, such as 

encapsulation efficiency, energy storage and release capacity, on the performance of a 

micro-encapsulated PCM has been considered. Results showed that micro-capsules 

have a thermal energy storage/release capacity between 145 to 240J/g. Hence, 

encapsulated paraffin showed a good potential as a solar energy storage material. 

PCMs are beneficial for both static and dynamic TES. By encapsulating them in a small 

diameter solid material, to be suspended in liquid, partially solidifying and melting 

slurries could be created with high heat transfer rates and effective energy densities 

(Griffiths and Eames 2007).  Such slurries are both energy storage medium and 

transport medium, and can be designed for a specific set temperature. Micro-

encapsulated PCM slurries with phase change temperature around 18 ºC were analysed 

in a test chamber containing a chilled ceiling. The results have proven that a 

concentration of 40% micro-capsules containing PCM could be employed as the HTF in 

the application of chilled ceiling. It needs a considerably slower rate of fluid flow and it 



22 

 

can absorb energy at a set point, thus avoiding temperature increases in panel surface as 

gains rise.  

In the current work, two techniques for heat transfer enhancement were used. The first 

one was using finned-tubes HEs with Bond cabinet and finned- containers with Norpe 

cabinet. The second was higher conductive porous structure by employing aluminium 

swarf inside the PCM medium in order to increase the thermal conductivity and 

nucleation sites. 

2.3 PCM heat exchangers  

Employing the PCMs inside heat exchangers is considered one of the most common 

configurations used to overcome the PCMs conductivity through the charge and 

discharge processes. A study figures out the characteristics of PCM employed in shell-

tube HE to overcome the frequency of the heat source of solar plant conducted by (M. 

CONTI 1996). Parallel and series connection set-ups of the storage unit were used with 

the heat engine. A comparison study for the parallel and series systems with respect to 

different design aims was implemented. It was concluded that the parallel connection 

looks to offer a better efficiency. 

It is known that the storage effect of a PCM depends on its thermal properties including 

the transition temperature that occurs at a given temperature. Commercially, 

combinations of different PCMs are available in order to produce an appropriate 

transition temperature, allowing the phase changes to happen over a temperature range, 

i.e. the specific heat (Cp) fluctuates with the temperature providing a Cp curve, as a 

function of temperature. A mathematical PCM air heat exchanger (AHE) model was 

developed and presented (Hed and Bellander 2006). Different shapes of Cp (T) curve 

were considered, and model validation with experiment on a prototype HE was 

confirmed. The study target was to explore the possibility of using modelled PCM-HE 

units to fit into indoor space and energy simulation software where the thermal material 

properties are considered. 

PCMs could be employed in applications which need to save energy due to the disparity 

between the supply and demand of thermal energy as in solar applications. Medrano et 
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al. (2009) investigated experimentally the rate of heat transfer during charge and 

discharge of five small HEs working as TES in order to measure their potential 

application in small size systems, such as home appliances or telecommunication 

devices, making them more efficient. These TES schemes comprised of diverse 

configurations of usual commercial small size HEs which have two sides; one was 

occupied with a PCM-R35 as a LHS and another was filled with water to circulate as 

heat transfer fluid (HTF). Average values of thermal energy are calculated and 

compared among the HEs used at different operating conditions. Results showed that 

the double pipe PCM-HE established in a graphite matrix has higher values. 

Furthermore, the compact PCM-HE was by large the one with the maximum thermal 

power (above 1 kW), as it has the highest heat transfer ratio of area to external volume.  

Free Cooling using PCM-TES systems is particularly motivating in environments with 

high daily temperature differences. Although the ambient temperatures only reach low 

values for a few times in such environments, the rate of heat transfer between PCM and 

air has to be enough to freeze whole the PCM. Lazaro et al. (2009a) stated that PCM-

LHS can be used for free cooling. They used a low air temperature to freeze a PCM 

during the night time and then cool down an indoor space during the day such that 

melting and freezing the PCM should happen in short times. Since the low thermal 

conductivity of PCM, the HE design is quite significant to satisfy free cooling needs. By 

conducting an experimental set-up for analysis two actual-scale prototypes of PCM–

AHEs, the results illustrated that using effectively designed PCM-HE with lower total 

stored energy and lower thermal conductivity can give higher cooling energy and be 

suitable for free cooling applications.  

Same researcher, (Lazaro, Dolado, Marín, et al. 2009), presented, built on experimental 

outcomes and an empirical model, new design conclusions for a real conditions of PCM 

-AHE. The empirical model was based on experimental results, allowing simulating the 

thermal performance in the PCM-AHE at varied circumstances. This model could be 

used to estimate the practical viability of its application. The PCM-AHE worked as a 

transient model as its thermal behaviour changes with temperature and its design has to 

be based time-dependent investigation. The results indicated that the criteria of PCM 
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selection have to take account of the power demand. Also, PCM-AHE can be used to 

select PCM for other HE applications for the same tested geometry. 

A similar structure was explored by (Dubovsky, Ziskind, and Letan 2011). This study 

offered an investigation of a cross flow tube-shaped AHE that contains PCM which 

melts while air passes through the tube banks. The SH of the PCM liquid and the tubes 

material was neglected comparing to the melting LH to simplify the deriving and 

solving a system of partial equations which describe heat transfer of the PCM and the 

air for the entire system. The results of numerical and analytical solutions were obtained 

and compared, and simple equations were established for the whole HE parameters. 

Furthermore, the models estimated the results for single tubes depending on their 

location. The assumptions influence of the model on the outcomes and pertinence of the 

analytical solutions to the real HEs were verified. 

In the review by (Dolado et al. 2011), the authors described models established to 

simulate the performance of TES system in a full-scale PCM-AHE, analysing the heat 

transfer between the air and slab micro-encapsulated PCM. The model was based on 

one-dimensional conduction analysis, utilizing FDM, and implicit formulation, using 

the actual PCM properties; thermal conductivity and enthalpy as functions of 

temperature. Two ways were followed to achieve the modelling: single plate analysis 

and the performance of the whole TES unit. Simulations and measurements were 

compared to examine the models. Average errors of lower than 12% on thermal energy 

were found for the whole cycle. After validation, some of variables and parameters were 

calculated to confirm their effect on the of the TES performance system. 

Later, Campos-Celador et al. (2013) published a review on finned-plate LH-TES system 

integrated in cogeneration schemes. For optimization purposes, the authors presented 

three approaches for the same storage system: numerical, a simplified analytical and a 

simplified numerical models, to increase the computational efficiency of calculations. 

These models were employed to simulate a prototype that has been investigated 

experimentally by test standard for storage systems. The simplified numerical and 

simplified analytical models were executed by the definition of an effective coefficient 

of heat transfer. The results stated that all suggested models give rise to a good 
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agreement with the experimental outcomes. The simplified numerical approach offered 

quite good results for every configuration and reduced the computational time required 

by the numerical model from hours to minutes. However, the simplified analytical 

system failed to assess long configurations. 

Another similar study by the same researchers (Campos-Celador et al. 2014) was 

presented to minimize the required volume of TES, a finned plate LH-TES system for 

domestic applications. This new design permits the heat transfer between the PCM 

(RT60) and water. To simulate that system, a mathematical model, based on a 

simplified numerical approach, was built and validated to be used for optimizing the 

final prototype, which was compared with a basic hot water tank commonly 

incorporated in domestic heating and hot water applications. It is found that the current 

design is one half of the water tank volume, providing a more compact structure which 

can be simply combined in the space, bringing a good chance for thermal storage 

particularly in applications that have limited spaces such as residential flats. 

2.4 Open-type refrigerated display cabinets (ORDCs) 

The absence of doors, that makes the air curtains are to be the only barrier between the 

warm surrounding air and the inner refrigerated space in ORDCs as well as  non-

uniformity of the air flow lead to entrain a considerable amount of surrounding air, 

increasing the temperature and energy consumption and difficulty of temperature 

control. As a result, ORDCs are considered the weakest link in the cold chain and better 

analysis and design are still vital targets to refrigeration industry and researchers. It is 

possible to divide the areas that were studied in ORDCs as follows; 

2.4.1 Air flow and temperature distribution 

Cortella et al. (2001) employed the finite element method (FEM) and sequential method 

for analysing air temperature and velocity distributions in ORDCs. A 2D CFD code was 

based on the stream-function velocity formulation, and integrated a LES turbulence 

model. A vertical ORDC, as an example of application, was inspected under varied 

operating conditions. The model results were compared and validated with experimental 

work conducted according to standards.  The effect of different design parameters has 
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been considered. Another review for Cortella (2002) in which he examined the use of 

CFD, as an estimation tool of air flow and products temperature patterns and energy 

consumption  inside a ORDC as CFD has actually became a very beneficial tool for a 

cheaper and better design of such appliances. Specific approaches are applied, since the 

air flow patterns and the products temperature are assessed separately and in sequence 

to reduce calculation time. The simulations were executed both on a horizontal and a 

vertical cabinet. The infiltration of ambient air on the energy balance was examined and 

the output was validated by comparing with experimental results. The applications 

stated in this work proved the model to be dependable, and of effective tool to the 

designers. 

The study by Wu et al. (2004) introduced a dynamic approach which was based on the 

conservation equations for energy and mass, describing the airflow distributions and the 

characteristics of heat and mass transfer for a horizontal ORDC. With assistance of the 

PHOENICS software, the coupling problem of the convection mode of air flow with the 

conduction mode of products was solved theoretically. The approach was successfully 

experienced for an island ORDC to be used for optimizing the design and development 

such cabinets. The effects of the discharge air grille (DAG) diameter, the cabinet 

dimensions and the heights and shapes of products with the heat transfer of the air 

curtain were considered. 

Most of ORDCs in Europe are tested in accordance with European standards in which 

the chilled cabinets are classified as M0, M1, M2 or H if the products temperatures are 

maintained between (-1 to 4 ºC), (-1 to 5 ºC), (-1 to 7 ºC) or (1 to 10 ºC), respectively. 

The classification M0 is usually used for display cases that keep meat. By lowering the 

maximum temperature by 1 K, the shelf life of fresh meat will extend to about 1.5 day. 

This what (Foster, Madge, and Evans 2005) tried to do when they used the a CFD code 

to quickly identify the required modifications to an available M2-class cabinet to reach 

a M0-class. Applying the adjustments on certain display cabinet lowered the energy 

consumption by 5% as well as minimizing the products number of high temperature 

(above 4 ºC) from twelve to one.  
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Companies of refrigeration schemes always attempt to enhance equipment performance. 

One development includes that operating an ORDC at higher suction of pressures and 

temperatures will require less power for a given refrigeration effect. Evaporator pressure 

regulating (EPR) valve has been employed to regulate the evaporator pressure at a level 

to create the preferred discharge air temperature in the cabinet. EPRs control the 

saturated pressure in the evaporator to deliver the accurate desired temperature at the 

discharge air sensor of the cabinet (Bundy, Refrigeration, and Company 2002). A 

comprehensive analysis of the applications of the electronic EPR valve, comparing its 

behaviour with the mechanical EPR valve under identical operating conditions was 

undertaken by (Tahir and Bansal 2005). Field experiments showed that the electronic 

valve has an important effect on enhancing the air temperature, lowering the evaporator 

frosting rate, stronger air curtain and most economic operation cost. 

Chen & Yuan (2005) conducted an experimental and theoretical study of the effect of 

important factors on the thermal behaviour and cooling load of an ORDC, including 

environment air flow and temperature, inside relative humidity, air flow velocity, air 

velocity from perforated rear panel and night cover. The inside temperature pattern and 

heat load were both explored. Also, the entrainment rate factor was correlated with 

Richardson number and Reynolds number, from which the effects of momentum and 

buoyant forces on the thermal entrainment are analyzed. The results showed that the 

entrainment increases if the momentum force increased but decreases when the 

gravitational force was dominant. 

Usually, air velocities are measured by devices such as anemometers or Pitot tubes, but 

these tools are intrusive and their measurements are affected by uncertainties. For these 

purposes, better instruments based on optical methods, are available such as the Laser 

Particle Image Velocimetry (PIV). This technique allows the characterization of the full 

flow field. Marinetti et al. (2012) employed the PIV to analyse the air velocity 

distribution inside two configurations of cabinet cooling duct and its influence on heat 

transfer through the evaporator. 3D flow fields at downstream and upstream the 

evaporator were addressed by PIV implemented on three planes accommodating the 

mainstream velocity vectors and positioned at various heights. It was shown the PIV 
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capability to highlight not sufficiently loaded evaporator sections and to evaluate the 

efficiency of heat transfer. 

2.4.2 Air curtain configurations 

The cold air is delivered to the cabinet interior through DAG situated at the top front 

and through holes in the perforated rear panel of the cabinet. The air then is returned 

back to the evaporator coil through a return air grille (RAG) positioned at the bottom 

front of the cabinet, creating a barrier called air curtain between the interior cold cabinet 

space and the warm ambient air. However, entraining between air curtains and 

surrounding air cannot be avoided, causing spilling a part of the cold air over the cabinet 

to be replaced by the ambient air. The infiltrated air into the cabinet through the RAG is 

responsible for most of the energy consumption. Past studies of the air curtain explained 

the significance of the inlet air velocity and eddy viscosity which is created as a result 

for turbulence as reported by (R.H. Howell 1991). This study stated that 75% of the 

power consumed is induced by the entrainment through the air curtain. 

Designing energy efficient display case has continued to be a significant job of the 

industry and an essential matter for research. A significant findings by (Cui and Wang 

2004) were studying the key factors affecting the cooling load of air curtain in a 

horizontal ORDC. In this work, a CFD model was built by employing K–ε turbulent, 

multiple species and radiation models, to predict the thermal performance of the air 

curtain for the display case and improve its design. The CFD model was validated and 

qualitative designs were then suggested making the air curtain more energy efficient. 

In related study by Navaz et al. (2005), numerical and experimental approaches were 

presented to study the air curtain effectiveness and to explore parameters that affect the 

entrained amount of warm air in ORDC. The entrainment rate was explained as a 

function of these parameters which then were quantified and identified. It was 

concluded that the DAG velocity profile, the DAG turbulence intensity and the DAG 

Reynolds number have the most contribution on the entrainment. Digital particle image 

velocimetry was utilised to map the 2D flow field in the cabinet at the air curtain and 

opening areas. Validation was performed and parametric study for the entrainment rate 

of the ambient air into the cabinet was conducted using a CFD tool. The results pointed 
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out that lower Reynolds numbers will decrease the entrainment, but this will increase 

the products temperature on shelves. However, adequately high momentum should still 

exist to support the straightness of the air curtain. 

An effective approach called two-fluids turbulence model was presented by Yu et al. 

(2007) in order to simulate the flow and heat transfer features of air curtain in a vertical 

ORDC. The model considered the fluid in the space as a combination of turbulent fluid 

which is air curtain and non-turbulent fluid which is the ambient air. Empirical relations 

were used to explain the exchanges of mass, energy and momentum between these two 

fluids. The two-fluid model results were validated with experimental data and compared 

with the simulation results obtained by applying the k–e model for the whole simulated 

space. It was found that the two-fluid model was able to calculate thermal stratification 

phenomenon more precisely and to show better agreement with the experimental data 

than the k–e model. 

The two-fluid model in above was modified by same authors later, (Yu, Ding, and Chen 

2008). The different from the existing model was by modifying the equation of mass 

transfer between the non-turbulent and the turbulent fluids, fetching the face coefficient 

of DAG with the volume fraction of air curtain in order to illustrate the DAG 

characteristics. After comparing between the simulation and experimental data, it was 

shown that the modified model can give better agreement with the measurements than 

original two-fluid and k–e models. Yu et al. (2009) presented another third different 

study related to thermal entrainment (TE) which is an essential factor to define the 

cooling performance of an ORDC. They studied a procedure of building a correlation 

model based on CFD to compute the TE quickly and precisely. This model can predict 

both the TE value and air curtain return temperature with small accepted deviations 

comparing with published experimental data.  

To figure out some of the significant design considerations including air curtain 

velocity, width, discharge angle and positioning of the air curtain outlet, a 

computational studies based on 2&3D CFD models were conducted by Hadawey et al. 

(2012). The effect of chamber cross flow and the suitability of both models to perform 

the calculations were considered. After the validation with measurements, it was found 
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that 2D model could be used efficiently to carry out all the investigations saving time 

and cost, and the optimum flow rate of air curtain should be equal to about a third of the 

total air flow rate inside the cabinet.  

Another interesting work regarding the flow distribution in the cooling duct of a 

commercial ORDC was presented by (Marinetti et al. 2014) and including an 

experimental and numerical investigations on a channel in which the air was driven by 

two fans through the evaporator. ANSYS code was employed to build a steady 

numerical model that can analyse the turbulence of the flow distribution. The results 

were compared with the three dimensions air velocity field by using the stereoscopic 

PIV technique. The model allowed a better comprehension of the flow maldistribution 

source and its influence on the air velocity field at evaporator outlet. 

2.4.3 Other different operating conditions 

Another challenge need to be overcome is frosting in the evaporator of cabinet. 

Accumulated frost affects heat transfers in the air side, energy consumption, 

temperature fluctuation and pressure drop coefficients, as well as minimizes the air flow 

through the evaporator coil and air curtain at constant fan speed. A simulation model for 

finned-tubes cabinet evaporator was built by (Chandrasekharan, Verma, and Bullard 

2006) to be used for improving the cabinet performance during frosting times and to be 

able to simulate cross-counter-flow evaporator with multiple modules having totally not 

the same geometries. Quasi steady heat and mass transfer calculations can deliver 

values of relevant variables such as; air and refrigerant side pressure drop, heat and 

mass transfer coefficient and tube and fin frost thickness. A multi-lump procedure 

makes the model able to calculate both fin and tube frost thickness and surface 

temperature. The results were able to reveal interaction between the cabinet and air 

curtain, and calculate total effects of accumulated frost, simplifying the modelling of the 

bigger cabinet.  

In the same vein, to find out the exact effect of the frost, a design of non-frosting system 

was described by Yu et al. (2009b). They established an experimental model for a 

vertical ORDC with central air supply. The refrigeration cycle of the new model, 

consisting of a compressor, a condenser, TEV and an evaporator, was independent of 
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the cabinet, and the air was cooled by the evaporator was delivered through a duct to the 

cabinet to realize refrigeration. Comparing with basic cabinet, it was found that the new 

set up offered easier control for air curtain, lower accumulated frost, longer defrost 

cycle and lower maximum food temperature. 

A review by Gray et al. (2008) brought out improvements to enhance temperature 

consistency and energy performance by presenting some results derived from extensive 

experimental tests on ORDCs. How perforation patterns of the back panel affect the 

distribution of airflow between these and the front air curtain was also investigated. It 

was found that about 70% of total circulating air should be distributed through the front 

curtain. The balance of 30% passing from the back panel should be delivered 

horizontally between the shelves.  

Stignor et al. (2009) evaluated numerically the performance potential of various designs 

of flat tube HEs with plain fins in indirectly cooled ORDC. One of HEs was with 

serpentine fins and another with continuous plate fins, both types were validated. It was 

resulted from this parametric study that considerable power savings that could be 

obtained reached up to 15% comparing with the ordinary HEs. Besides, the required 

temperature difference for this type of HEs was so small, allowing frost free operation 

that would give rise to even larger savings. 

Amin et al introduced three reviews regarding to the TE rate measurement of ORDC. 

The first, (Amin, Dabiri, and Navaz 2009), was done by releasing a tracer gas into the 

air inside the discharge and return ducts and the ambient. This method depended on the 

concentration measurements of the tracer gas that escaped into the ambient between 

DAG and RAG. By applying the mass conservation around the air curtain, a 

relationship between the concentration of tracer gas and the TE can be recognized. The 

second study, (Amin, Dabiri, and Navaz 2011), targeted to universally examine the 

effect of the most significant variables that related to the TE of ambient air into the 

cabinet, identifying the relation between each of those variables and TE. The tracer gas 

was used for the infiltration measurement. Infiltration outcomes proved a strong 

relationship with the offset angle and jet exit Reynolds number and effect of each 

variable was described in combination of the other variables. Their last study, (Amin, 
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Dabiri, and Navaz 2012), was similar to previous one but associated with different, 

secondary, variables . The results showed that the changes in temperature and relative 

humidity were not significant, while the relation of infiltration rate with the turbulence 

intensity is nearly linear and with the product level is nonlinear. 

The variation of products temperature in ORDC also was investigated by (Laguerre, 

Derens, and Flick 2011) as its direct influence on the quality and safety of products. 

This variability could be a result for different reasons such as the cabinet type (vertical 

or horizontal), the product arrangement and the instability of the ambient conditions. 

This work was implemented to study the effect of three parameters; surrounding air 

temperature, radiation and products position on the load temperature. The products 

position has the most influence comparing with the rest parameters. Experimental 

investigation of the instability phenomena by same researchers (Laguerre et al. 2012) 

were also done by analysing the heat and air flow. It was found that the convective heat 

coefficient at the DAG an RAG was higher than between these two locations due to the 

high variability of air flow close to these positions. Also, the radiative exchange at the 

top of the cabinet was more significant than at the bottom, and the temporal fluctuation 

in the air curtain temperature was a result of the on/off cycles and the introduction of 

surrounding air by transient vortices.  

Generally, ORDCs suffer variations in the performance due to changes of ambient 

conditions. Gaspar et al. (2011) carried out an experimental study to figure out the 

effects of these conditions on the heat transfer rate and TE factor at different ambient air 

conditions including temperature, relative humidity and velocity. The TE was analysed 

and compared with the total latent and sensible heat results of the experimental tests. It 

was concluded that TE cannot be used indiscriminately, although its use was 

appropriate to design more efficient cabinet at the same climate condition. Another later 

comprehensive study by Gaspar et al. (2012a) was performed by modelling the heat and 

air flow through the internal ducts, across evaporator and fan, and considering the 

products thermal response in a ORDC. Experimental tests were accomplished to 

validate the model calculations and the results revealed the predictive capability of the 

model for optimization purposes and development of such equipment. Also, the 
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numerical calculations were used to suggest low cost functional and geometrical 

parametric study that were implemented later by (Gaspar et al. 2012b) to improve the 

ORDC performance, energy efficiency and consequently products safety. The analysis 

from these parametric studies developed an optimized model for the conception of an 

ORDC with a more acceptable configuration. The numerical calculations of this model 

showed a reduction in food temperature and energy consumption. 

A new vertical ORDC was developed by (Song and Feng 2013) and based on ice slurry 

technology and central refrigeration and its thermostatic performance was 

experimentally considered and compared with a conventional cabinet which was chilled 

by using R22 directly. The results showed that the new model has good chilling effects 

and few temperature variations. It could essentially satisfy food keeping demand and it 

can operate with higher efficiency and indirectly reduce the GHG emissions. 

Another study about the effect of rear panel structure on the performance of ORDC was 

introduced by (Wu et al. 2014) who studied the characteristics of heat and fluid flow at 

the different positions of the panel perforations at the same porosity, and the various 

flow ratios between panel and air curtain at different porosities. The results showed that 

less than 3% porosities can offer a better performance, and the perforations position has 

a slight effect on the food temperature distribution. Also, the total uniformity of food 

temperature and the maximum deviation values of food temperature were improved to 

41% and 49%, respectively.  

Recently, Wu et al. (2015) investigated and optimized the influence of the deflector 

structure inside DAG on the air curtain performance of vertical ORDC. This work 

essentially was aiming to find an optimal deflector that efficiently can lower the food 

temperature inside the cabinet. It was concluded that front and back food temperature 

reduced with increasing the inlet air curtain velocity, and the latter could enhance the 

disturbance inside the cabinet. While the increase in outer air curtain velocity led to 

weaker disturbance inside the cabinet and lower performance of air curtain. This study 

provided a theoretical foundation for the display cabinets design. 
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2.5 Summary  

A background of TES in refrigeration equipment such as freezers and refrigerators, 

most common techniques to enhance PCM role and PCM-HEs was presented in this 

chapter. Furthermore, a comprehensive literature of many parameters and approaches 

affecting and improving the performance of open display cabinets and their air curtains 

were provided such as PCM-HE and micro-encapsulation. Up to the present time, there 

is no available work in the open literature has been devoted to the experimental and 

numerical investigations of the performance of ORDCs with combination of PCM. The 

following chapter presents experimental facilities used in this study as well as the 

elementary data obtained from two display cabinets. 
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CHAPTER 3  

3 EXPERIMENTAL SET-UP AND TEST RESULTS  

This chapter presents the experimental setup and a test facility which was incorporated 

control and monitoring systems and employed during this project, and is divided into 

five main parts. The first part gives a brief description of the British Standard ISO 

procedure that was followed during the assessment and testing of the cabinets under 

consideration. The second part is a summary of the test chamber where environmental 

conditions were founded for the experiments. The third one details the instrumentation 

and data logging systems used for both performance monitoring and control. The forth 

part describes two types of display cabinets which were used in this project. The 

experimental investigations results and discussion are also presented in the last part. All 

of the experiments for this research were carried out in the custom built refrigeration 

laboratory of Mechanical Engineering Department at Brunel University London. 

3.1 ISO Test Standards 

All the experimental work was carried out according to the experimentation conditions 

of the International Organization for Standardization (ISO 23953: 2005) for 

Refrigerated display cabinets, part 1; Vocabulary and part 2; Classification, 

requirements, and test conditions. Therefore, the requirements of the tested cabinets in 

the climate chamber are adjusted as follows: 



36 

 

Temperature Gradient: The difference in the temperatures measured between the floor 

and the ceiling shall not exceed 6°C, and vertical temperature gradient shall not be more 

than 2°C/m. 

Air Distribution: The air speed at all points along the line A-B should be within 0.2-

0.1 m/s, when the display cabinet switched off. The air cross flow lines must be parallel 

to the longitudinal axis and to the plane of the cabinet’s display opening, as shown in 

Figure 3.1a. 

Chamber Conditions Measurement Points: The ambient temperature and relative 

humidity should be measured on the mid distance along the cabinet length, as shown in 

Figure 3.1b.  

The Measurements Accuracy: Temperature ± 0.5°C, Relative Humidity ± 1.5% and 

power Consumption ± 0.5%. 

Radiation rate:  Temperature change caused by radiation of the test chamber walls and 

ceiling should not exceed ± 2°C of air temperature recorded at same levels. 

Tolerances:  The temperature and relative humidity tolerances are ± 1°C and ± 5% 

respectively. 

 

Figure 3.1 Chamber conditions measurement 
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3.2 Climate Test Chamber 

The performance of display cabinets must be classified and assessed based on 

consolidated test conditions that can finally be compared against a standard; therefore 

the need for controlled conditions to implement the testing work of the cabinets is 

important. The layout of this chamber is given in Figure  3.2. 

3.2.1 Air Handing Unit 

In order to maintain and control different experiment conditions as required by (BS EN 

ISO-2 2005) such as relative humidity, air temperature and air velocity, the chamber 

have to include an air handler unit (AHU). It can be seen, from the schematic diagram 

of the test chamber in Figure  3.2, that the air handler unit which includes a mixing case, 

a filter, a cooling coil, a heater, a humidifier and fan is located on a purpose built steel 

structure above the chamber roof. The chilled water of cooling coil of is supplied from a 

9.9 kW chiller by a pump positioned within the chiller housing. The evaporator is shell 

and tube configuration and the compressor is semi-hermetic. A three-port diverting 

valve regulates the water flow through the coil.  

This unit was designed to keep the ambient conditions inside the chamber in the range 

of (0- 40) °C and (35% to 100%) RH. The air handler unit controls the recirculated air 

through the chamber to maintain the conditions and reduce the temperature fluctuation 

inside the environmental chamber. The recirculating air comes from the supply air wall 

and blends with air curtain at the front of display cabinet and with the moist air at the 

back of the cabinet, then leaves the test chamber space through the return air wall to air 

handler unit, where the conditioned air undergoes processes of chilling, warming, 

moistening and blowing to reach the required values of the temperature, humidity and 

speed.   

Moreover the temperature, humidity ratio and air circulation requirements of test 

chamber for the display cabinets experiments were according to  (BS EN ISO-1 2005). 

Also, the air cross flow velocity through the chamber was kept to about 0.1-0.2 m/s and 

that was accomplished by adjusting the blade dampers at the air supply wall.   

 



38 

 

 

Figure  3.2 Layout of the environmental test chamber 

 

3.2.2 Construction of the Environmental Chamber 

A top view of the Environmental chamber containing the display cabinet under test is 

shown in Figure  3.3. The chamber size (7 m, 3.5 m and 3 m long, wide and high) is big 

enough to accommodate the cabinet in such the airflow nearby the cabinet will not be 

constrained by the chamber walls conforming to ISO Standard. The chamber walls and 

ceiling are built of cold chamber panels with 100 mm thickness.  

Figure  3.3 also illustrates that the air-paths flow across the front side of the display 

cabinet without restrictions from the right to left of the test chamber and some of those 

air-paths interfere with the left side of air curtain. Furthermore, we can see four sections 

in the cabinet front left, front right, back left and back right, where the data was 

recorded. The back of the cabinet was positioned at 1.2 m from the rear wall of the 

chamber. 
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Figure  3.3 Top view of the climate chamber 

 

The internal surfaces of those panels are made with white steel sheets, with an 

emissivity range (0.9 - 1.0), while the floor is made of concrete. The lighting in the 

chamber was provided by fluorescent lights with lighting level in the range between 500 

and 650 lux which complies with the standard 600 ± 100 of lux at a height of one metre 

above floor level.  The chamber also has a double glazed window and a slide door, 1.25 

m wide and 2.5 m high. One meter spaces from both sides of the chamber, where the 

return and supply ducts of AHU terminated, were separated with technical walls to 

shape return and supply air plenums. The first space was parted with a perforated plate 

and filter wall reinforced by a wooden structure, making a pressure drop and thus a 

uniform air velocity within the test area and across the technical walls. In the same way 

the second space was parted with blade dampers, permitting the velocity profiles across 

the dampers to be regulated whenever required. Figure  3.4 shows the supply and return 

air plenum walls, which were designed to create an even, horizontal air flow within the 

test room. 

Return 

grille 

Supply 

grille 

Blade dampers Filter wall 

Slide Door 

Front right 

Front view of the cabinet 

Air stream 

Front left 

Back right Back left 

5 m 1 m 1 m 

3 m 
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Figure  3.4 Supply and return air plenum walls 

 

3.3 Data logging system 

The main measurement system included temperature, RH, and velocity sensors, data 

logging units (Labtech software and Data scan modules), and recording/display devices 

(computer set and monitor), as shown in Figure  3.5. The display cabinets were fully 

instrumented to measure product temperatures at different positions in the cabinet, 

inside-cabinet air temperatures and on and off temperatures of the evaporator air.  

 

Figure  3.5 The main measurement system 

The environmental temperature, relative humidity, cross flow velocity in the chamber, 

air and product temperatures in the display cabinet and compression refrigeration cycle 

temperatures were recorded and monitored at regular intervals by using computer-based 
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data logging system. The system consisted of temperature, RH, and velocity sensors; 

data logging system (Labtech software and Data scan modules), and recording/display 

system (computer set and monitor). The data logging system is comprised data 

acquisition modules and a recording and display system.  The system is used to log the 

output signals from the instrumentation devices. The data acquisition systems consisted 

of the Data-scan 7000 series which include a Data-scan measurement processor 7320 

and expansion modules 7020 from Measurement System Limited. There are 16 

differential input channels, individually configurable for voltage and thermocouple 

measurements, in each Data-scan module and this system could be expanded up to 1000 

channels. One processor and two expansion modules were prepared to cover all the 

instrumentation devices used in this work as shown in Figure  3.6.  

 

Figure  3.6 Data logging system 

 

The recording/display system was a normal desktop computer. An RS-232 

communication cables were used to transfer the signals between the computer and the 

Data-scan module. The computer includes Labtech, a window based icon driven data 

acquisition programme that saves the data into ASCII file, which is well-suited with the 

Data-scan module and permits a combination of more than 200 digital and analogue 

channels. Labtech also has ability to control a compound measurement system to be an 

eye-catching display for ease of monitoring.  
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3.4 Instrumentation devices 

The instrumentation devices used on the test rig are temperature measurements, relative 

humidity sensor and power meter. A velocity meter was also used to measure air 

velocity in the test chamber and display cabinets. All measurements were recorded 

every 10s. This interval provided possibilities to check all temperature measurements at 

every 60s as specified in the standard sub-clause 5.3.1.6. The following sections provide 

a brief description of each device. 

3.4.1 Temperature measurements 

Most of temperature measurements such as products and air temperature were achieved 

by using T-type welded tip thermocouples with a temperature measurement range –50 

°C to 200 °C with specific error (specified by manufacturer) of ± 0.2 
º
C. RTDs 

(resistance temperature detector) with model SEM105P were used for the air 

temperature sensor of the test chamber. All thermocouples were calibrated and it was 

found that all thermocouples had calibration error within the tolerance specified by the 

manufacturer.  

3.4.2 Relative humidity measurements 

Relative humidity measurements within the environmental chamber were implemented 

by using ‘Rotronic’ relative humidity and temperature probe. It incorporates a humidity 

sensor (Hygrometer IN-1) with measurement range from 0% to 100% and an RTD 

temperature sensor PT100 with range -40 
º
C to 60 

º
C. The output voltage range is 0 to 1 

VDC. The measurements uncertainties are ± 1.5% and ± 0.5 
º
C for the humidity and 

temperature sensors respectively. 

3.4.3 Power meter 

The test rig power consumption was also monitored and recorded by using a power 

measurement system which is a programmable power meter (HM8115-2 from Hameg 

Instrument of uncertainty (±0.5%) connected in series with the main supply and a 

recording/display system. This meter has an LCD screen to display the measured instant 

power, current, voltage and power factor. RS-232 port was used to log the measured 
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parameters into the computer.  The photograph of the instant power meter can be seen in 

Figure  3.6. 

3.4.4  Velocity meter 

The velocity meter was used to measure the air flow velocity at the air curtain and back 

tunnel of cabinets which is necessary for determination of the air mass flow rate of the 

across the evaporator coils. The meter was also used to check the velocity contour of the 

air flow in the test chamber to ensure that the air streams were within the ISO standard. 

The velocity meter is a hot wire anemometer which is Velocicalc Plus 8386A-M-GB 

with measurement range (0 to 50) m/s and uncertainty ± 3%. The meter can also 

simultaneously measure the relative humidity and temperature of the air with 

measurements range 0% to 90% RH – and 10 
º
C to 60 

º
C respectively. 

3.5 Tested Multi-deck Display Cabinets 

Two chilled open type vertical multi-deck of refrigerated display cabinets were tested; 

Bond-Group cabinet and Euromax-Norpe cabinet. They are quiet similar and the reason 

for using two cabinets was that we have two different energy saving techniques and 

each technique needs different cabinet design. The first one used with Bond cabinet was 

finned-tubes HEs, and the second one used with Norpe cabinet was finned-PCM 

container. The construction and dimension details for Bond and Norpe cabinets are 

shown in Figure  3.7 and Figure  3.8 respectively.   
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0 

Figure  3.7 Cross section and dimensions (mm) of Bond-Group Integral Multideck cabinet 

 

 

 
Table  3.1 Specifications of Bond-Group cabinets 

 

 

 

Bond Asset No Z024087 Case length 1250 mm 

Case Manufacturer B.D.C Case Height 1985 mm 

Case Model Chicago 1250 Case Depth 910 mm 

Defrost Type Off Cycle Display area 4.33 m
2

 

Elect. Load 5.5 Amps Voltage 220v-50Hz 

Refrigerant R 1270 Op Temperature 3M2 0°C to +2°C 

Gas Charge 650 gr Shelves Base +4 

Evaporator 

Air Cooled Condenser 

Compressor 

Fan 

Perforated Plate 

Air Curtain 

Shelves 

745 110 52 

1985 

320 

370 

Discharge Air Grille (DAG) 

Return Air Grille (RAG) 
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Figure  3.8 Cross section and dimensions (mm) of Euromax-Norpe cabinet 

 

Table  3.2 Specifications of Euromax-Norpe cabinet 

 

The perforated plate has a specific perforation rate which is considered an important 

factor for the display cabinet performance because it controls the distribution of air flow 

rate in the cabinet. The perforation arrangement of the back panel is illustrated in 

Figure  3.9. 

Description Integral low fronted display case Case Height 1980 mm 

Case Model EMX-125-M Case Depth 850 mm 

Defrost Type Off-cycle Power supply 13 amp 

Capacity 810 Litres Shelves Base +5 

Refrigerant R 404A Cabinet finish White 

Temperature range 0... +4ºC / M1 Display area 3,15 m
2

 

Case length 1250 mm Gross weight  383 kg 

Evaporator 

Fan 

Air Curtain  

Air Cooled Condenser 

Compressor 

255 

1980 

145 660 45 

275 

(DAG) 

(RAG) 
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Figure  3.9 Perforation format of the back-panel for (a) Bond and (b) Norpe cabinets 

The perforation ratio represents the total holes area of the back panel to the total back 

panel area. The opening rate of the perforation back panel for the Bond and Norpe 

cabinets was 0.045 and 0.032 respectively; this rate was calculated as follow: 

   

                         
perforation	ratio = �����	�������	� ��	!�"# − ����������	� ��	�%	!�"# − �����  

( 3.1) 

3.5.1 Operation of the Display Cabinets 

Bond-Group Display Cabinet: The chilled food multideck display cabinet shown in 

Figure  3.7 has been selected as a test prototype, with plug in cooling unit. This cabinet 

was old and its specifications of the cabinet are listed in Table  3.1. The evaporator is 

located under the bottom shelf of the cabinet. Before the evaporator coils, two of 

propeller fans were also equipped and suited before the evaporator in order to push the 

air flow through the evaporator and circulate it around the cabinet. The rest of 

components in the system (condenser, capillary tube and compressor) are positioned 

underneath. The cabinet is equipped with five shelves and one air curtain in the front.  

Euromax-Norpe Display Cabinet: EMX-125-M integral low fronted multideck open 

display case was selected as a second test prototype in this study as shown in Figure  3.8. 

The cabinet was new and its specifications are listed in Table  3.2. It was equipped with 

single air curtain situated at the top, (base + 5) shelves, upright and top lighting, front 

riser for base shelf, NRC-100 control device, front bumper trim and hot gas evaporation 

tray. The evaporator is located at the bottom of the rear duct and divided into two parts 

in order to increase its performance. Above the evaporator coils, a propeller fans is also 

24 mm 
4 mm 

(a) 

20 mm 
5 mm 

(b) 
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installed in order to circulate the air flow around the cabinet. The rest of components in 

the system (two condensers, capillary tube and two compressors) are positioned 

underneath. 

In both cabinets, as part of the air distribution system, the perforated back panel would 

allow the cooled air to flow on to the shelves and across the food products. Also, this 

penetrating air creates a pressure that prevents the deflection of air curtain into the 

display space. The back panel further stands upwards and crosses the ceiling to allow 

proportion of air to exit finally through the honeycomb of discharge air grille (DAG). 

The cold air also fall down due to gravitational force as it is heavier than the 

surrounding air. This generates a virtual insulation barrier called air curtain developed 

by the circulating air from top to the bottom at the front of the shelves. The vertical flow 

of air curtain will be mixed with the air coming from the surrounding environment and 

that penetrating from the shelves and consequently drawn into the return air grille 

(RAG) at the bottom of the front opening and then to the evaporator by the fans to 

circulate again.  

To the conserve the mass flow of circulating air, a substantial amount of cold air curtain 

will spill onto the floor away by the RAG due the extra of mass flow rate caused by 

entertainment effect. Because the entertainments, a significant amount of ambient air 

moisture will condensate on the evaporator coil and, with the time, turn to frost. The 

accumulating frost needs to be regularly removed by defrosting process before blocking 

the air passages through the coil. The refrigerant is pumped by the compressor to high 

pressure side, rejecting heat to the surrounding air to allow condensation, and then 

letting the refrigerant to expand at lower temperature to absorb heat during the 

evaporation.  

3.5.2 Temperature Control of the Cabinets 

Both cabinets were using thermal sensors to control and monitor the air leaving the 

evaporator (air off), the air entering the evaporator (air on) temperature and compare 

them with a per-specified set point which was calculated by the controller. EVCO-221 

and NRC-100 controller devices were built in for Bond and Norpe cabinets respectively. 

In each controller, a user interface is provided in the form of a keypad and LCD display 



48 

 

for the setting of different parameters, such as defrost period, set point and differential 

temperature.  Another sensor was present in both cabinets toward the rear of the 

evaporator to control the defrosting termination temperature. In the Norpe display 

cabinet, additional sensors were presented to be used in the set point calculation, one 

was just before air curtain grille, and another one was on the shelf no.4. 

3.5.3 Loading the Display Cabinets  

Both cabinets were loaded according to ISO Standard with test packages used to 

simulate the thermal mass of food under real conditions. The packages of the Bond 

cabinet were 0.8 litre plastic containers filled with 50% propylene glycol in water 

solution to provide thermal capacity. The solution has a freezing temperature of -33
o
C. 

The total number of those packages was 193 and the monitored packages were 24 as 

shown in Figure  3.10a.  

 

Figure  3.10 Loading scheme in (a) Bond and (b) Norpe cabinets 

 

The Norpe cabinet was loaded with different type of test packages (M-packs). The M-

packs were made in the laboratory by mixing chemical compositions; hydroxyethyl 

methyl cellulose (Tylose), sodium chloride (salt) and 4-chloro-m-cresol (anti-bacteria), 
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with boiling water as specified by the supplier (Sigma-Aldrich company, Ltd). The 

dimension 200 x 100 x 50 mm (height x width x depth) as shown in Figure  3.10b. Its 

physical properties include density 1000 kg/m
3
 at 0°C, thermal conductivity 0.3 W/m-K 

and specific heat 3500 J/kg-k. The total number of those packages was 306.  

In both cabinets and to abide by the standard, a 3 cm distance was left between the 

packages and the side walls while a 2.5 cm distance was left between the packages 

rows. The loading height in each shelf was equal to the free height between each two 

shelves. Along the cabinet depth, the centre of the packages was located 5 cm from both 

the perforated panel and from the front edge of shelves. 

3.5.4 Sensors Arrangements 

The cabinets were fully instrumented to measure all the required parameters. The 

measurements of both display cabinets were carried out for the test packages in 24 

products and four sections; front right, front left, rear right and rear left as we can see in 

Figure  3.3. These measurements were calibrated temperature sensors inserted inside 

geometric centre of products which were distributed in three shelves; top, middle and 

bottom (8 products in each shelf), in order to record and observe the average 

temperature variations.  

The measurements also were conducted for the circulated air at three positions through 

the cabinet. The measurements involve; T, RH and V for air leaving the evaporator (air-

off), T and V for air curtain outlet and T for the temperatures of the air entering the 

evaporator (air-on) as illustrated in Figure  3.11. In addition, temperatures were also 

measured on accessible locations of the refrigeration system piping by attaching 

temperature sensors before and after every part; compressor, evaporator and condenser. 

Simultaneously the power consumption of the cabinet was also measured. The relative 

humidity and temperature inside the environmental test chamber were measured using 

sensors located on the mid distance along the length of each cabinet as indicated in 

Figure 3.1b.  
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Figure  3.11 M-packs arrangement and measurement points, (a) Bond (b) Norpe Cabinets 

 

3.6 Test Results Summary  

A series of preliminary experimental investigations were carried out at climate classes 0 

(20
o
C / 50% RH) for Bond cabinet and class 3 (25

o
C / 60% RH) for Norpe cabinet to 

check the thermal performance. This was also important in order to find out whether the 
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manufacturer operational setting was suitable enough to obtain M-packages 

temperatures of M1 classification, and to deliver test data for modelling validation and 

inputs to the CFD model. Also the default settings of the controllers of the cabinets have 

appropriately been reset to determine optimum operating settings that are compatible 

with our work. Testing process in such cabinets is time consuming as that needs to 

carefully load the cabinet with a specific shape and number of test packages and some 

of these packages need to be instrumented with thermocouples. Moreover, all the 

monitored parameters need to be recorded by the logging system during all the test time, 

and we have to wait between three to four days till the data reach to steady state 

conditions. The following subsections summarise the test results for the environmental 

chamber and the refrigerated display cabinets.  

3.6.1 Environmental Test Chamber Conditions  

The boundary conditions of the environment have direct effect on the air temperature, 

product temperature and cooling load of the display cabinets. Environment conditions in 

the test chamber were tightly controlled by PD (proportional-differential) controller 

which is connected to the measurements system and modulates the heating system, the 

humidifier and the opening of the chiller system valve. The horizontal air cross flow 

velocity of the chamber was kept in the range (0.1 - 0.2) m/s.  Figure  3.12 and 

Figure  3.13 illustrate the variation of the air supply temperature and relative humidity 

with time during stable 8 hours running period through the test chamber at climate class 

0 and 3 respectively. It can be seen that the temperature and relative humidity were 

almost steady and maintained in the allowable range during the test.  Peaks for the 

temperature and relative humidity curves can be seen in both Figures which are due to 

the defrost process of the display cabinets.   
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Figure  3.12 Temperature and relative humidity variation inside the test chamber at climate class 0 

 

 

Figure  3.13 Temperature and relative humidity variation inside the test chamber at climate class 3 

 

It was also found that the relative humidity slightly increases during defrost period of 

the display cabinet, but in general the relative humidity is well controlled.  This process 

illustrated in Figure  3.14, the reason could be that when the defrost starts; the humidity 

ratio increased at constant dry bulb temperature because of the circulated air of the 

cabinet begins to melt and evaporate the accumulated ice between the evaporator coils. 

In addition, the evaporation of water from the condensate tray could be the other reason 

for that. This action will increase the relative humidity slightly in the ambient air which 

is in contact with the air cabinet, but of course the humidity controller will adjust the 

new value of humidity to keep it at pre-set limits.   
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Figure  3.14 The changes of relative humidity variation inside the test chamber at climate class 3 

 

3.6.2 Bond-Group Display Cabinet 

As we mentioned before this cabinet was not new and it has some problems such as 

weak air curtain. However, after some checking performance tests conducted to this 

cabinet, we have found that the results are acceptable to carry out our rest study. At 

climate class 0 (20°C and 50% relative humidity), chamber conditions, product  and 

cabinet air temperatures and refrigeration compression cycle were measured and 

monitored during the test by measurement display which can be seen in Figure  3.15. 

This Figure shows the position and instantaneous product and air temperatures inside 

the cabinet. Table  3.3 shows the optimum and detailed operational settings of the 

cabinet obtained from the inspection stage in such those settings are adequate for the 

suggested modification. 
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Figure  3.15 Positions for the temperature sensors inside the Bond cabinet 

 

 
 Table  3.3 Operational setting of the Bond cabinet 

 

Figure  3.16 and Figure  3.17 show the product temperature variation with time of both 

sides; left and right for the Bond cabinet respectively. There are 12 product temperature 

measurements at each side represented under different names of three letters, each 

depending on the product simulator location in the cabinet. The first letters include T, M 

and B, signifying top, middle and bottom respectively; the second letters consist of R 

and F, indicating rear and front each; the last letters are U and L specifying upper and 

lower respectively. For example, TRL represents the temperature of the product at 

location top, rear and lower portion of the cabinet.  

Cabinet Settings: Value Cabinet Settings: Value 

Set Point 
  
(ºC) 0 Defrost Intervals  (h) 4 

Differential Temp 
 
(ºC) 2 Defrost Termination (ºC) 8 

Min Set Point 
 
(ºC) -3 Defrost Maximum Duration (min) 45 

Max Set Point  (ºC) 3   
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From these Figures, it can be seen that the product temperatures vary periodically 

during the test because the compressor on/off and defrost cycles over 8 hour period.  It 

is evident that the left side of the cabinet the product has higher temperature compared 

to the right side. The reason could be attributed to the air stream lines across the 

chamber try to strongly entrain with the cabinet air curtain particularly the left side as 

we can see in Figure  3.3. This also was confirmed by (D’Agaro, et al 2006) who 

endorsed this outcome to a vortex developed on the leading wall along the direction of 

cross flow, creating the air bounce inward toward the display opening and hit the 

packages at the far end of the cabinet. 

 

Figure  3.16 Product temperature variations for the left side Bond cabinet 

 

 

 
Figure  3.17 Product temperature variations for the right side Bond cabinet 
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The bottom shelf product has the highest average temperature (3.7 ºC), while the middle 

shelf has the lowest average temperature (2 ºC). The reason could be that the middle 

shelf has more back panel holes and thus higher air flow rate coming from the back duct 

compared with the bottom shelf. Also the bottom shelf is wider than the rest shelves so 

it accommodates three products rows instead of two as shown in Figure  3.11a. The 

products on the rear part of the shelves has lower temperature compared to those on the 

front part and that could be due to the fact that, the front products are more affected by 

the external flow and receiving more radiation, while the rear products are less affected 

and closer to the cold perforated back panel and cooling coil. The highest difference of 

product temperature recorded on the bottom, middle and top shelves were 9.7°C, 5.2 °C 

and 5.4 °C respectively. 

The temperature variation for air leaving the evaporator (air-off), air entering the 

evaporator (air-on) and air curtain outlet (air-curt) were measured with time and 

presented in Figure  3.18 and Figure  3.19 for the left and right sides respectively. It can 

be seen that fluctuations of the air temperatures are relatively wider during defrost 

period because the long-time of compressor absence. Also the right hand side 

temperatures of the display cabinet are lower than the left hand side temperature making 

the right side product temperature lower for the same reason mentioned in products 

temperature section. Also, a clear temperature rises were experienced as the air 

journeyed from the air-off position to the air curtain and then to the air-on to start again. 

This is caused by the heat gain through the side and back walls of the cabinet. The 

temperature differences between the left and right sides were about 1.5 °C for the air-off 

side, 3 °C for the air-on side and 0.5 °C for the air-curt outlet. 
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Figure  3.18 Temperature variation of air-off, air-on and air-curt outlet for the left side Bond cabinet 

 

 

Figure  3.19 Temperature variation of air-off, air-on and air-curt outlet for the right side Bond cabinet 

 

Figure  3.20 presents the variation of instant power with time. It can be seen that the 

compressor needs higher power at each restarting time and especially after defrost 

period. After finishing the defrost, the cabinet needs more time to reach the set point 

due to the temperature inside the cabinet rises by a few degrees during defrosting. Total 
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Energy Consumption (Et) was calculated according to BS EN ISO 23953-2: 2005 sub-

clause 5.3.5.2 as follows: 

 &� = ' &(. �																					(#+ℎ)(-./01

(-2
 

( 3.2) 

En = instant power consumption of the cabinet (kW) over 24 hours (En = 0 during 

stopping and defrost times), t = period of measurement (h).    

 

Figure  3.20 Instant power consumption for Bond cabinet 

 

Compression refrigeration cycle temperatures variation with time is shown in 

Figure  3.21. Monitoring the cycle is important to make sure it is working properly and 

be able to justify any errors which might be happened.  
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Figure  3.21   Compression refrigeration cycle temperatures for Bond cabinet 

 

Moreover, the relative humidity and velocity of the air off temperature and the velocity 

of air curtain outlet were not measured by permanent sensors, we measured those couple 

of times by portable sensors to take the average values and make sure they are in the 

normal ranges to use them later in the simulation. The average relative humidity, 

velocity of air-off and air curtain velocity were 75%, 1.8 m/s and 0.5 m/s respectively. 

3.6.3 Euromax-Norpe Display Cabinet  

Although this cabinet was brand new, it was subjected to checking process and 

controller reset. At climate class 3 (25°C and 60% relative humidity) chamber 

conditions, product and cabinet air temperatures and refrigeration compression cycle 

were measured and monitored during the test by measurement display which can be 

seen in Figure  3.22. This Figure shows the position and instantaneous products and air 

temperatures inside the cabinet. Table  3.4 shows detailed operational setting of the 

cabinet obtained from the checking stage. 
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Figure  3.22 Positions for the temperature sensors inside Norpe cabinet 

 

Table  3.4 Operational setting of the Norpe cabinet 

 

 

 

Figure  3.23 and Figure  3.24 show product temperature variation with time of both sides; 

left and right for the Norpe cabinet respectively. Again there are 12 product temperature 

measurements at each side represented under different names of three letters similar to 

naming system for previous cabinet.  From these Figures, it can be seen that the product 

temperatures vary periodically during the test because the compressor on/off and defrost 

cycles over 8 hours period.  On the left side of the cabinet the product slightly has 

higher temperature compared to the right side for the same reason mentioned in 

previous cabinet. The bottom shelf product has the highest average temperature 4.2C, 

while the top shelf has the lowest average temperature 3C because the top shelf has 

Cabinet Settings: Value Cabinet Settings: Value 

Set Point 
  
(ºC) -1.8 Defrost Intervals  (h) 4 

Differential Temp 
 
(ºC) 2.2 Defrost Termination (ºC) 11 

Min Set Point 
 
(ºC) -3 Defrost Maximum Duration (min) 35 

Max Set Point  (ºC) 3   
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been least affected by chamber stream lines where the air curtain is more strong and it 

has fewer products, and vice versa for the bottom shelf. This was also approved by (Al-

Sahhaf 2011), the variation in products temperature was found to gradually increase 

from top to bottom shelves. 

 

Figure  3.23 Product temperature variations for the left side 

 

 

Figure  3.24 Product temperature variations for the left side Norpe cabinet 

 

Again the product on the rear part of the shelves has lower temperature compared to the 

product on the front part of the shelves as mentioned before. The highest difference of 
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product temperature recorded on the bottom, middle and top shelves were 6.8°C, 5.8 °C 

and 3.9 °C respectively.  

The temperature variation for air-off, air-on and air-curtain outlet were measured with 

time and presented in Figure  3.25 and Figure  3.26 for the left and right sides 

respectively. Again it is clear that the right hand side temperatures of the display cabinet 

are lower than the left side and the temperature increases with moving of circulated air 

for the same reason mentioned in the previous cabinet. The temperature differences 

between the left and right sides were about 1 °C for the air-off side, 2 °C for the air-on 

side and 0.5 °C for the air-curt. 

 

Figure  3.25 Temperature variation of air-off, air-on and air-curt outlet for the left side Norpe cabinet 

 

 

Figure  3.26 Temperature variation of air-off, air-on and air-curt outlet for the right side Norpe cabinet 
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Figure  3.27 presents the variation of instant power with time. Energy consumption was 

calculated according to BS EN ISO standard sub-clause 5.3.5.2. From this Figure, it can 

be noticed that the compressor needs higher power at the starting of each running time 

and especially after defrost period. After finishing the defrost, the cabinet needs more 

time to reach the set point due to the temperature inside the cabinet rises by a few 

degrees during defrosting. It is also noticed that during the defrost time the instant 

power higher than normal off cycle because the off cycle defrost method in which the 

evaporator fan will be running using room air to defrost the evaporator block. 

 

Figure  3.27 Instant power consumption for Norpe cabinet 

 

Compression refrigeration cycles temperatures variation with time is shown in 

Figure  3.28 and Figure  3.29 . Monitoring the cycles is important to make sure they are 

working properly and be able to justify any errors which might happen. We have two 

compression cycles in this cabinet to increase the performance. We can clearly see the 

temperature differences (between the inlet and outlet) were 65 
º
C and 10 

º
C for the 

compressor and condenser respectively. 
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Figure  3.28 First compression refrigeration cycle temperatures for Norpe cabinet 

 

 

Figure  3.29 Second compression refrigeration cycle temperatures for Norpe cabinet 

 

Again, the relative humidity and velocity of the air off temperature and the velocity of 

air curtain were not measured by permanent sensors, we measured those couple of times 

by portable sensors to take the average values and make sure they are in the normal 

ranges to use them later in the simulation. The average relative humidity and velocity of 

air-off and air curtain velocity were 80%, 2.8 m/s and 1.3 m/s respectively. 
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3.7 Summary 

The test standards, environmental test chamber, data acquisition system, tested display 

cabinets and sensors arrangements of the tests have been presented in this chapter. In 

addition, the performance test results of the display cabinets were discussed.  The data 

of both cabinets showed a variation in readings from right to left sides, rear to front 

sections and top to bottom shelves.  Since 2D-CFD model is to be used to model the air 

flow and heat transfer inside the display cabinets, the related data was collected for 

validation purposes, and to utilise as actual boundary conditions for the simulations 

employed for the optimisation scheme. 

Chapter 4 will present experimental PCM integration and results comparison of both 

display cabinets. 
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CHAPTER 4 

4 EXPERIMENTAL PCM INTEGRATION AND 
RESULTS COMPARISON 

The experimental performance for two types of refrigerated open-type multi-deck 

display cabinets with and without integrated phase change materials (PCMs) was 

investigated in this chapter. To examine and optimize different types of PCMs (in terms 

of quantity and quality), the integration was implemented by using two different 

configurations; heat exchangers and containers, at different locations inside the cabinets. 

4.1 Introduction 

To satisfy the maximum transient load, supermarket refrigeration equipment, such as 

display cabinets, is normally oversized. Both the utilization of compressor capacity 

control and application of thermal energy storage (TES) within the equipment are 

considered to be the most common techniques in assuring the system's operation at part-

load conditions. Using PCMs for thermal energy storage has played a key role in 

refrigeration systems through their direct integration into the system components or 

cabinets for energy savings and control. Such integrations have been studied over many 

years in different ways and acquired substantial attention recently. 

Most of the studies cited in literature review focused on the effects of PCM application 

on the performance of closed type cabinets, such as freezers and refrigerators or a 

conventional refrigeration system, but there is only one study was applied on open type 
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display cases as was mentioned in chapter 2. It is the purpose of this chapter to 

experimentally investigate the effect of PCM integration on the performance for two 

types of open multi-deck display cabinets in terms of energy savings, food product 

temperature improvements, and comparisons with conventional units. 

4.2 PCM integration in Bond Cabinet 

This cabinet was the first option for modification study as the second cabinet was not 

arrived yet. All specifications and description for this cabinet are mentioned in chapter 

3. It was not new and its modification took about six months from whole research 

period, all modifications stages are described in the following sections. 

4.2.1 Experimental setup 

PCM integration through this cabinet was suggested to evaluate and improve the overall 

efficiency of the display cabinet, and to be the first stage that will outline and specify 

the direction of the whole project. There are several suggested positions to integrate the 

PCM through this cabinet, and choosing the most effective position depends on some 

criteria. The first factor is the volume and density of latent heat as there is wide range of 

PCMs available with different characteristics. The type of PCM is associated with 

required volume for a given application due to the density of latent heat stored. The 

required volume of PCM for this cabinet will be calculated in later section. The second 

important issue that should be taken in the account is the freezing and melting 

temperature. It is well known that the cabinet air temperatures are different from 

position to another through the cabinet so that deciding where the PCM should be 

located highly depends on all thermal-physical properties of circulating air at individual 

locations such as temperature and air velocity.  
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Figure  4.1 The Left side view of the Bond cabinet with installed PCM-HEs 

 

Furthermore, the configurations and arrangements suggested to employ the PCM is 

another significant consideration to efficiently benefit from PCM function. One of the 

common PCM configurations is PCM heat exchanger (PCM-HE) that could contribute 

to decrease the required quantity of TES as was mentioned in literature review. We have 

chosen this technique with the current cabinet due to its design (evaporator at the 

bottom) that provide an appropriate space at air flow duct in the rear side in order to 

install the finned tubes HE containing the PCM as shown in Figure  4.1. The base of this 

duct found to be the best suggested position for the PCM due to the ease of installing 

the PCM-HE on the cabinet base just after the evaporator where the air velocity at its 

maximum value.  
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Figure  4.2 Front view of the cabinet with fans and evaporator coil (Back panels were removed) 

 

 

Figure  4.3 The air flow duct dimensions 
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After many experimental investigations and analysing the primary results that 

mentioned in chapter 3 for Bond cabinet, the modification stage started by removing all 

products, shelves, back and base panels and instrumentation devices as depicted in 

Figure  4.2. The exact dimensions were taken with required allowance to specify the 

HE’s dimensions later on.  

4.2.2 Proposed PCM  

As mentioned in the previous section, characteristics of integrated PCMs such as 

transition temperature and volume and density of latent heat will depend on their 

position in the display cabinet (i.e. before or after evaporator). After series of 

experimental tests, we have found that air temperature before evaporator (Air-On) was 

in the temperature range of 6°C to 13°C. According to the cabinet design, this 

temperature value is appropriate to evaporator capacity. However, for the current 

design, there are few options to install the PCM before the evaporator as illustrated in 

Figure  4.1.  

Air cabinet temperature after evaporator (Air-Off) was found to be in the range of -4°C 

to +4°C to maintain low Air-curtain temperatures during Off-cycles. For the given data 

and design, the focus will be on PCMs applied after evaporator coils. Hence based on 

the Air-Off temperature range, the suggested PCM transition temperature must be 

within the Air-Off temperature range to guarantee appropriate temperature for phase 

changing process. Molten paraffin RT (-2) was selected and identified as potential PCM 

for this stage of research with thermodynamic properties shown in Table  4.1 for small 

differential scanning calorimetry (DSC) sample as shown in Figure  4.4, PCM 

temperatures are satisfactory. This figure clearly showed us the amount of heat flow that 

can be released and absorbed during the freezing and melting processes respectively and 

at which temperature those two processes are starting and finishing. 

 

 



71 

 

 

Figure  4.4 differential scanning calorimetry for RT (-2) 

 

RT is pure organic PCM and has good properties such as no sub-cooling effect, 

chemical stability, long term product, stable performance over the cycles of phase 

change. However, its latent heat capacity and thermal conductivity are lower compared 

to water.  

Table  4.1 Thermal properties for RT 

Characteristics Value 

Density (liquid)  (kg/m
3
)

 
 880 

Density (solid)  (kg/m
3
)

 
 770 

Volume expansion (%) 12 

Thermal conductivity(both phases)  (W/m K) 0.2 

Specific heat  (kJ/(kg K) 2  

Melting temperature  (K) 271.35 

freezing temperature  (K) 270.35 

Latent heat of fusion  (kJ/kg) 125  

Temperature difference  3 

Maximum operation temperature (K) 303.15 
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4.2.3 Nucleation 

The initial stages that occur in the crystallization process from a thermodynamic phase 

(solution, liquid or vapour) via self-assembly are called nucleation. It is also defined as 

the process that determines the required time before the new self-organized phase 

appears (Kalikmanov 2012). The kinetic of nucleation process in a solution requires 

sub-cooling which can be obtained by decreasing the temperature. The solution 

molecules then attempt to nucleate achieving thermodynamic balance.  

 

Figure  4.5 Aluminium swarf 

 

Moreover, If a solid particles of foreign material are added to the solution, the 

crystallization will be faster and easier (Mersmann 2001), especially when these 

particles have higher thermal conductivity than the PCM medium itself (Sahan and 

Paksoy 2014). Therefore, all the heat exchanger tubes were filled with about 5% of 

aluminium swarf in order to increase the thermal conductivity inside the PCM medium 

as well as create the nucleation sites. Different types of swarf were investigated such as 

thin rings of copper pipe. The Aluminium swarf which is illustrated in Figure  4.5, 

showed the best performance among all tested swarf types. 

4.2.4 PCM heat exchangers 

In this work, we did not use ready PCM-HE as our application needs special 

specifications of HE design which are not available in the market as well as making 

PCM-HE design was one of the our research goals.  
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It was suggested to reuse two different types of HEs as shown in  

Figure  4.6 and as follows;  

a) Twin 15mm copper tubes with aluminium fins, 90mm x 40mm. 

b) An evaporator coil with 23mm steel tube and aluminium fins. 

 

Figure  4.6 PCM-Heat Exchangers parts 

All HEs were not ready for direct use and needed a lot of work to be used in building 

and sizing a PCM-HEs and integrating them within the cabinet. First, the evaporator 
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coil was cut and formed into a set of finned tubes, and pipe connections and plates at the 

two ends were removed and the coil was cut into 3 pieces. After the cutting process, fins 

were cut to achieve the 10 cm width according to the 10 cm available gap at the back of 

the display cabinet as shown in Figure  4.7. Then, two fined tubes pieces were connected 

to each other using four small copper pipes as shown in Figure  4.8. 

 

 

 Figure  4.7 (a) cutting the ends and (b) adjusting the fins for evaporator coil 

 

However, this work was not ideal as there were not fins in the middle and the leakages 

inside the welded pipes were difficult to deal with. Based on the available space at the 

air flow duct of the cabinet, only two parts of the suggested HEs were then used; twin 

tubes with fins and modified four finned tubes HEs. Finally, all HE parts are ready for 

the next steps which include filling them with aluminium swarf and then pouring the 

PCM inside the HE tubes at room temperature with specific amount and leaving a space 

for expansion purposes of PCM solid phase as follows.  
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Figure  4.8 (a) one piece of the prepared finned tube (b) 2 connected fined tubes pieces  
(c) Ready four pipes HE  

 

Twin copper tubes were filled with 0.27L of RT (-2), this amount represents 210 g. The 

modified four finned tube was filled with 1.32L of RT (-2) this amount represents 1160 

g. The total amount of RT (-2) used was 1370 g. 14% volume expansion in phase 

change range was considered in calculations. The location of each finned tubes PCM-

HE inside the cabinet was just after the evaporator as shown in Figure  4.9. 
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Figure  4.9 (a) one installed HEs, (b) two Installed HEs and (c) closer view for both HEs inside the cabinet 

 

4.3 Bond cabinet results and discussion  

The test results are presented in two groups; tests for the cabinet without PCM and 

preliminary tests for the cabinet with RT (-2) as PCM.	The test results include; product 

temperatures, cabinet air temperature, Energy consumption and performance 

comparison. With M-packs and water-glycol as test packages load arrangement and at 

test conditions climate class 0: 20
o
C / 50% RH.  

4.3.1 Product temperature  

The cabinet product temperatures with and without PCM-HEs were measured during 8 

hours test period for the left and right side as shown in Figure  4.10 and Figure  4.11 
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respectively. In each side, there are 12 product temperature measurements represented 

under different names of three letters as mentioned in chapter 3.  

 

Figure  4.10 Product temperature variations for the left side Bond cabinet with and without PCM 

 

 

 

Figure  4.11 Product temperature variations for the right side Bond cabinet with and without PCM 

It can be seen from both Figures; the product temperatures stay stable with small 

fluctuations in response to the compressor On, Off and defrost cycles. For the cabinet 

without PCM, the product temperature variation ranges (∆T) were higher than those 
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with PCM. This reduction in temperature range reduces the temperature differences of 

products temperature and allows them to be more convergent. However, as predicted, 

the outcome of adding PCM was not strong in achieving an effective increase in whole 

average of product temperatures within standard limits. This small increase was caused 

by a subsequent rise in cabinet air temperatures, which are in immediate contact with 

the products. The main temperature differences between the both tests are summarized 

in Table  4.2. 

Table  4.2 Experimental products temperature for Bond cabinet  

Experimental parameters 
Left Side Right Side 

Without PCM With PCM Without PCM With PCM 

Average temperature (ºC) 4.215 4.296 1.47 1.513 

Maximum temperature (ºC) 9.459 8.28 3.78 3.137 

Minimum temperature (ºC) 1.013 1.707 -0.379 -0.305 

Temperature range (ºC) 8.446 6.569 4.159 3.042 

 

Moreover, it is clear form this table that the average temperature is slightly higher for 

modified cabinet and this was expected as the PCM-HEs were considered as an extra 

load. However, this increase was not high enough to get considerable energy saving.  

4.3.2 Cabinet air temperatures  

Figure  4.12 and Figure  4.13 obviously show the influence of PCM with time on the 

cabinet air temperatures; air off, air on and air curtain outlet at both left and right sides 

respectively. It can be seen from figures that all the maximum temperatures in the 

original cabinet are higher than those with the PCM setup. The effect of PCM on the off 

cycle periods was very small for this cabinet, and thus the off period time was nearly 

constant at around 3 minutes for both cases. However, the overall effect appeared, as 

expected, during defrost period when the temperature values significantly increased for 

longer periods. Defrost duration gave enough time for PCM to melt absorbing a heat 

and, then decrease the maximum temperature values.  This reduction affects the product 

temperatures as mentioned in the previous section. Furthermore, it is evident that the 

cabinet air temperatures are more stable and homogenous when PCM is integrated 
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Figure  4.12 Cabinet air temperature variations for the left side Bond cabinet with and without PCM 

 

 

Figure  4.13 Cabinet air temperature variations for the right side Bond cabinet with and without PCM 

 

4.3.3 Average instant power consumption 

The variations of instant power with time for the system employing PCM-HEs and the 

basic one is shown in Figure  4.14. Total energy consumption of each cabinet was 

calculated according to BS EN ISO 23953-2: 2005. For the basic system, the power 

required with time is around 0.5% higher than that obtained from the modified cabinet. 
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It should be noted that adding the PCM has slightly affected the defrost duration as the 

cooling capacity supplied by the PCM-HEs was not enough to maintain the cabinet 

temperature during the PCM discharge (melting) process. Energy consumption was 

calculated by using complete cycle method. The average instant power, running time 

and energy consumption of the cabinet at both tests are shown in Table  4.3.  

 

Figure  4.14 Average instant power consumption for Bond cabinet with and without PCM 

 

Table  4.3 Energy parameters of Bond cabinet 

parameters 
Cabinets 

without PCM with PCM 
Average instant power (KW) 1.15 1.15 

Running time (h) 19.65 19.54 

Experiment time (h) 24 24 

Energy Consumption (kWh) 22.603 22.476 

Compared to without PCM (%) - 0.5% 

 

4.3.4 Finned Tube Surface Temperatures  

Finned tube (FT) surface temperatures of PCM-HEs at four locations (BL, BR, TL and 

TR) were recorded with time as shown in Figure  4.15a and b. It is clear that the lower 

HE has slightly lower temperature due to its location is closer to the evaporator coil. 

Generally, not all of the PCM was utilized during the working time as the cabinet 

performance was not good enough.   
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Figure  4.15 (a) Sensor locations on PCM_HEs, (b) Surface temperatures variation with time for PCM-HEs  

    

4.3.5 Quantification of PCM 

We did not calculate the required amount of the PCM that can make considerable 

energy saving and substitute the evaporator role during the defrost time. The reason for 

that were the experimental limitations which provided us with small spaces to add the 

PCM so we were not sure the available PCM amount was satisfactory. However, we 

have done the experiment to get indication about the PCM effect. After the current 

encouraging results, it is necessary to find out the amount of PCM to be integrated in 

this cabinet for energy saving purposes.   

For the current work; the mass of PCM used in the experimental test = 1.37 kg and the 

latent enthalpy = 125 kJ/kg then the total latent heat will be 171.25 kJ as follows; 

   

                         
3456�(78) = 59:;(7�) × ∆ℎ9:;(78/7�) ( 4.1) 
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Minimum temperature reached by PCM = -3.9°C, and PCM freeze is -2.8 thus, ∆T of 

PCM = 1.1°C, but to utilize from the whole PCM enthalpy, the total range should equal 

3°C as shown in Table  4.1. Therefore, the actual amount of PCM enthalpy used in the 

experiment was 62.8KJ according the following equation:  

   

                         
3456�(78) = 3456�(78) × ∆��∆��  

( 4.2) 

To know the required amount of PCM for the current cabinet conditions, we should 

consider the temperature difference for the evaporator coil (∆T for air on/off) =11°C 

and measured mass flow rate through the coil = 0.1008 kg/s to be able to calculate the 

sensible cooling capacity of the evaporator as follows;   

   

                         
>? = @� × "�� × (�A( − �ABB) ( 4.3) 

From Eq. ( 4.3), the evaporator capacity is 1.11 KJ/s. The effective defrost period 

(DEFeff) was 7.5 mins which starts after 5 mins of the average whole defrost period 

which is 12.5 mins, when all the coil ice has been melted. During this period the PCM 

role comes to substitute the evaporator role. Therefore, amount of cooling energy 

required from PCM (ER) through the effective defrost time is about 500 kJ according to 

following equation: 

    

                         
&C(78) = >?(78/D) × DEFHBB(D) ( 4.4) 

That means the current effective amount of the used PCM = 12.5 % of optimum 

amount, which needs to be increased in future tests. Moreover, the temperature 

measurements on the finned tube surfaces showed that only some of the employed PCM 

was utilised. Therefore, energy saving of the cabinet with PCM was found to be very 

small and the use of water based PCM will be investigated with the new cabinet in next 

part of this project.  

4.4 PCM integration in Norpe Cabinet 

The second open type display cabinet in this project was arrived. It was EMX-125-M 

integral low-fronted multi-deck open display cabinet as seen in Figure  4.16. It was new 
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and the main cabinet in our research as all modification studies and the rest of this 

research will depend on it. All specifications and description for this cabinet were 

mentioned in chapter 3. It was better than previous one in terms of thermal performance 

and construction design, all modifications stages are described in the following sections. 

 

Figure  4.16 Tested Norpe display cabinet 

 

4.4.1 Experimental setup 

The display cabinet, with or without PCM integration, was then mounted in the same 

air-conditioned chamber and tested at the same operating conditions to measure and 

compare the performances of the system and components.  

 Table  4.4 Experimental measurements data 

Experimental parameters Value 

Fan pressure Jump ( Pascal) 25  

Ambient Temperature (K) 298.15  

Food products properties �= 1000 kg/m3 , CP= 3500 (J/Kg-K), K=1W/m-k 

Instant power consumption(kW) 1.6 

Time step (s) 10 

Experiment duration (h) 24 
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Various thermal parameters and experimental measurements such as fan pressure jump 

were detailed in Table  4.4. PCM integration through this cabinet was suggested to be in 

different place comparing to the first cabinet. As it was mentioned before the cabinet 

construction plays a main role in specifying the possible suggested positions to install 

the PCM through the cabinet. For the current cabinet the evaporator position was at the 

back duct and this forced the designer to make the back duct a little wider to 

accommodate the evaporator size. For instance, the back duct is the first option and 

most appropriate place to integrate the PCM as seen in Figure  4.17.		

 

Figure  4.17 Left side view of the Norpe cabinet with PCM containers 
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After many experimental investigations and analysing the primary results that were 

mentioned in chapter 3 for Norpe cabinet, the PCM integration stage started by 

removing all products, shelves, back and base panels and instrumentation devices and 

all the necessary dimensions were taken to specify the PCM containers later on as 

depicted in Figure  4.18. It is obvious from this figure that the air flow duct at the back 

of the cabinet, above the evaporator provides an appropriate space in order to install the 

containers holding the PCM. 

 

 

Figure  4.18 Front view of the cabinet with fan and evaporator coil (Back and base panels were removed) with 
dimensions  
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4.4.2 PCM selection  

The key principle to choose a PCM for a specific application is its melting 

/solidification temperature. However, other essential parameters must be also 

considered for an accurate decision. These parameters include: thermal conductivity, 

stability to cycling and latent heat. 

Water based PCMs with a nucleate agent was used in this stage of work. It is known 

that water starts to freeze at a temperature less than 0°C causing a sub-cooling (about -5 

°C) and melt at 0°C, with a large latent heat of 334 kJ/kg. This sub-cooling of water can 

be reduced by adding silver iodide (AgI). Figure  4.19 demonstrates that the freezing 

onset temperature of tap water increases significantly with an increase in the amount of 

silver iodide (Lu, 2013). Therefore, water with a high latent heat has a good potential 

for usage as a PCM. Water gel PCM was purposely selected and made by mixing 

different compositions at specific mass ratios to obtain the appropriate melting and 

freezing temperatures for this particular application. It was composed of deionised 

water, silver iodide, guar and sodium tetraborate as shown in Figure  4.20. The freezing 

onset of PCM depends on the location installed inside the cabinet. Currently, the focus 

is on PCMs applied just after evaporator coils. Therefore based on the air-off 

temperature range, a water gel PCM was prepared with a freeze onset of around -2.0°C. 

It was then charged into two single panel containers, installed immediately after the 

cabinet evaporator in the main back flow channel enabling the cooled air to flow 

through external containers surfaces. 
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Figure  4.19 Freezing onset temperature of tap water (10 mg) with different percentages of (AgI) in DSC (Lu, 2013) 

 

 

Figure  4.20 The component of PCM 
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4.4.3  PCM containers  

As illustrated in Figure  4.21, two similar single panel containers were used in this test as 

PCM-HEs. The manufacturer specifications of these two containers are listed in 

Table  4.5. Choosing radiators to work as a PCM-HE was because the their suitability 

for that purpose in terms of high heat transfer supported by surface area of fins, good 

internal space to accommodate the amount of PCM as well as fast and cheap option., 

Using central heating radiators was not ideal for our application, however they can at 

least do the HE function with acceptable level. The supplied air duct at the back of the 

cabinet, above the evaporator, will accommodate these two containers charged with the 

proposed PCM as seen in Figure  4.22. Four long bases (3 cm) were attached behind 

each container in order to maintain a gap at the back such that the cooled air flow from 

the evaporator exit can thus pass through both container sides externally as shown in 

Figure  4.23.    

The containers were installed such that their fins were facing the front side due to the air 

mass flow rate will be more at that side into the rear duct. The purpose of using the 

PCM container is to enable it to function as an 'auxiliary evaporator' or cooling coil 

during the defrost period when the compressor is switched off. Accordingly, the PCM 

charge in the containers should be enough to maintain cabinet temperatures within an 

acceptable range as if the evaporator is still working during defrost period.  
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Figure  4.21 single panel radiators with dimensions 
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Figure  4.22 The containers and their position inside the cabinet 

 

 

 

Figure  4.23 Attaching long bases at the back of each container  
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Table  4.5 Specifications of the containers. 

Parameters Value 

Type  11-single Panel 

Height (mm) 600 

Length (mm) 500 

BTU 1356 

Projection (mm) 76 

Weight (kg) 8.4 

Finish  Epoxy polyester powder coat 

Certification  Manufactured to ISO 90001 

Colour White 

 

4.4.4 Quantification of PCM 

According to the experience acquired from the first cabinet, quantification the required 

PCM is quite important step that should be done at the beginning of modification stage. 

The evaporator cooling capacity can be calculated from Eq. ( 4.3). From the 

measurements, the evaporator capacity was calculated to be 2.2475 kW. It was found 

from test results that the defrost period was on average 7 minutes and after this time the 

cabinet temperature would reach the defrost termination temperature.  

Moreover, during defrost time the high cabinet temperature gradually increased before 

reaching its peak value. In the first two and half minutes of defrost period, the cabinet 

air temperature was within normal range as there was still some ice that need to melt on 

the evaporator surface. Therefore, this part of the defrost time was considered as a 

normal off cycle. Accordingly, the effective time (DEFeff) for the evaporator to be out of 

the duty was around 4.5 minutes (270 s) at each defrost period, and the calculated and 

designed PCM amount should be sufficient to cover this time span.  

That means the cabinet temperature will be within the normal range during the whole 

seven minutes of each defrost time period. After that, the whole PCM will be melted 

and the temperature starts to increase, causing an extra defrost time which will be about 

five minutes. To achieve that, the energy required (ER), to charge the PCM containers 

during the (DEFeff), needs to be calculated from Eq. ( 4.4) to be 621.2 KJ. 

The amount of PCM charge in the containers is therefore determined as 1.86 kg based 

the following calculation: 
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                           59:; = &C 3456�⁄  ( 4.5) 

In Eq. ( 4.5), the PCM latent heat (PCML) was measured by the differential scanning 

calorimeter (DSC). The average temperature that will be reached by the water gel is 4ºC 

where the PCM fluid density is around 1000.0 kg/m
3
. If a 15% volume expansion in the 

phase change range was considered in the designs, each radiator should be charged with 

0.93 L of water gel PCM at room temperature.  

4.5 Norpe cabinet results and description 

The test results include temperatures of products, evaporator air on and off, air curtain 

outlet, and power consumption and performance comparison. They are presented in two 

categories: tests for the cabinet without and with PCM with M-packs as test packages 

load arrangement and at test conditions climate class 3: 25
o
C / 60% RH. The display of 

the monitoring system for the cabinet with PCM containers installed is shown in 

Figure  4.24. 

 

Figure  4.24 Monitoring system for the modified Norpe cabinet  
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4.5.1 Product Temperature Measurements 

The cabinet product temperatures without and with PCM containers were measured 

during a 8 hours test period for the left and right sides as shown in Figure  4.25 and 

Figure  4.26 respectively. In each cabinet side, there are 12 product temperature 

measurements represented under different names of three letters, each depending on the 

product simulator location in the cabinet as mentioned in chapter 3. It can be seen from 

those figures, for both circumstances, the product temperatures remain steady with very 

small fluctuations in response to the compressor On, Off and defrost cycles over test 

period.  

For the cabinet without PCM, the product temperature variation ranges (∆T) were 

behaving similar to the first cabinet as indicated in section 4.3.1. . The main temperature 

differences between the both tests are summarized in Table  4.6.  

 

Figure  4.25  Product temperature variation for the left side Norpe cabinet with and without PCM 
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Figure  4.26 Product temperature variations for the right side Norpe cabinet with and without PCM 

 

Table  4.6 Experimental products temperature for Norpe cabinet 

Experimental parameters 

Left Side Right Side 

Without 

PCM 

With 

PCM 

Without 

PCM 

With 

PCM 
Average temperature (ºC) 3.91 4.26 3.35 3.6 

Maximum temperature (ºC) 7.97 6.85 6.49 6.01 

Minimum temperature (ºC) 0.87 1.53 0.93 1.21 

Temperature range (ºC) 7.1 5.32 5.56 4.80 

 

4.5.2 The cabinet air temperatures 

Figure  4.27 and Figure  4.28 obviously show the influence of PCM on the cabinet air 

temperatures; air off, air on and air curtain outlet at both left and right sides 

respectively. It can be seen from figures that all the maximum temperatures in the 

original cabinet are higher than those with the PCM setup. The effect of PCM on the off 

and on cycle periods was very similar for the first cabinet, and thus the off period times 

were nearly similar at both cases. Again, the whole PCM effect appeared during defrost 

durations when the cabinet air temperature values considerably increased for longer 

periods as the compressor is off. Defrost periods gave enough time and wide 

temperature range for PCM to melt and solidify, absorbing and releasing a heat from the 

cabinet, and then affect the air temperatures by decreasing and increasing their 

maximum and minimum values respectively. This reduction in temperature range 
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affects the product temperatures as mentioned before. Moreover, it is evident that the 

cabinet air temperatures are more stable and homogenous when PCM is integrated. 

 

Figure  4.27 Cabinet air temperature variations for the left side Norpe cabinet with and without PCM 

 

 

Figure  4.28 Cabinet air temperature variations for the right side Norpe cabinet with and without PCM 

 

4.5.3 The defrost period 

As seen in Figure  4.29, the defrost period for the cabinet without PCM was about 7 

minutes, and for the cabinet with PCM it was about 12 minutes. The increase ratio 
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(70%) during this period was a result of the heat transfer that took place between the 

PCM and cabinet air. The energy extracted from the PCM provided the cooling capacity 

needed when the compressor was stopped. This leads to a reduction in energy 

consumption which, with optimization, will be even higher than the basic one without 

PCM. In another hand the on cycles also increased with adding PCM as it is considered 

as an extra load. However the increase ration was less than that for off cycles.  It is also 

noticeable from the same figure that the maximum air off temperature in case with PCM 

was lower by around 2ºC and the reason for that is the position of radiator was before 

the air off sensor so that the effect of PCM was clear on that temperature. 

 

Figure  4.29 The defrost duration at air-off left temperature 

 

4.5.4 Average instant power consumption  

The variation of instant power with time for the system employing PCM containers and 

the basic one is shown in Figure  4.30. Total energy consumption of each cabinet was 

calculated according to BS EN ISO 23953-2: 2005. For the basic system, the power 

required with time is around 5% higher than that obtained from the modified cabinet. 

When the cooling capacity supplied by the PCM containers was able to maintain the 

cabinet temperature during the PCM discharge (melting) process. In this period, the 

compressor was off, and the PCM containers acted as an extra evaporator by keeping 

the air off temperature below the admissible higher temperature limit for a longer time. 
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When the PCM completely was melted, the cabinet air temperature rises gradually and 

the compressor restarts. With the compressor on, the PCM progressively refroze. 

Energy consumption was calculated by using complete cycle method. The average 

instant power, running time and energy consumption of the cabinet at both tests are 

shown in Table  4.7.  

 

Figure  4.30 Average instant power consumption for Norpe cabinet with and without PCM 

 

Table  4.7 Energy parameters of Norpe cabinet 

parameters 
Cabinets 

without PCM with PCM 

Average instant power (KW) 1.6176 1.6066 

Running time (h) 20.17 19.09 

Experiment time (h) 24 24 

Energy Consumption (kWh) 33.01 31.35 

Compared to cabinet without PCM (%) - 5% 

 

4.5.5 PCM radiator surface temperatures 

The variation of PCM radiator surface temperatures with time is shown in Figure  4.31a. 

Four sensors were situated at the bottom and top of both containers, as illustrated in 

Figure  4.31b. It can be seen that the PCM temperatures decrease gradually after each 

defrost period, and after one hour they reach the desired temperatures of -2ºC (freeze 

onset). At this point, the actual function of the PCM begins to maintain the energy 

during the on cycles and release it during the off and defrost cycles. It is clear that the 
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top surface temperatures are higher than the bottom ones during the defrost time since 

the top parts are filled just as the whole PCM becomes solid. When the melting stage 

finished, this part will be empty quickly because the PCM levels go down. Also, the top 

temperature is further from the air off temperature. It is clear that whole the PCM was 

utilized. 

 

Figure  4.31 (a) Surface temperatures variation with time, (b) Sensor locations on PCM-radiator 
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4.6 Summary  

The experimental study for two types of chilled food multi-deck display cabinets 

equipped with PCM in a form of heat exchangers installed on the available spaces of the 

main rear ducts was described and detailed. An enhancement of system performance 

and reduction in the cabinet air temperatures were achieved. Tests were carried out for 

those cabinets without PCM integration first, then with PCM-HEs. Modification stages, 

used tools, assumptions and boundary conditions and other related issues have been 

discussed and illustrated. Simulation model and the simulation outcomes with validation 

against experimental measurements are the next steps, which is the topic of the 

following chapter.  
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CHAPTER 5 

5 2D CFD MODEL SETUP AND VALIDATION 

In this chapter, 2D model have been developed by employing a finite volume method 

using ANSYS 16.2 software for a prototype refrigerated open-type multi-deck display 

cabinet (Norpe). The model can predict the cabinet performance, the temperature 

distributions and the air flow patterns inside the cabinet for a range of operating 

conditions. This chapter provides a vision into the theory and mechanism behind the 

computational approach and relate this to how the model is developed inside ANSYS. 

Also, some of the sub-models used will be clarified and their influence on calculating an 

accurate solution evaluated. Another objective for this chapter is to present a 

preliminary 2D CFD model and then to validate it against experimentally derived 

results. 

5.1 Introduction 

The expression of Computational Fluid Dynamics (CFD) has been around for decades 

and now is common in different fields of industry, academia and many research centres. 

According to Versteeg, H. and Malalasekera 2007, CFD is the study of a system 

involving heat transfer, fluid flow and other related phenomena by means of computer-

based simulations. Appropriate employment of CFD can efficiently analyse complex 

flow patterns including turbulence, transient, three-dimensions, and buoyancy with 

complicated geometries of actual applications (A. Al-Sahhaf 2011). 
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CFD approach has become one of the main primary investigation tools of many new 

suggested designs due to its capability to deliver reasonably qualitative, quantitative and 

inexpensive results for different flow configurations. Moreover, unlike many 

experimental and theoretical approaches, all parameters of results can be obtained 

instantly at any time and point through the study field. This will provide a full 

understanding of the flow regimes simultaneously occurring in the entire domain. 

Consequently, this leads to vital advantage during the study of display cabinets, since 

their performance depends on airflow patterns and their thermal properties. Thus, by 

using CFD techniques, better design and more efficient cabinet could be achieved when 

the airflow mechanism around and within the whole domain was well realised (Xia and 

Sun 2002).  

The ability of CFD application to predict the air thermodynamics situations in wide 

applications of refrigeration including display cabinets was proved by many reviews 

such as (Smale, et al, 2006) and (Norton and Sun 2006). However, there are still some 

limitations in such software as simulation cannot represent 100% of reality. Hence, in 

order to confirm the accuracy of the simulation, the CFD results need to pass the 

validation stage against experimental outcomes. Moreover, a sufficient experience and 

comprehensive understanding of this technique is necessary to create dependent results. 

5.2 Air and heat flow modes of display cabinets 

The circulating air through open display cabinets is the key to evaluating their 

performance and efficiency. As a working fluid, this air transfers the sensible and latent 

heat from the products and the ambient air to the evaporator coils. A full CFD 

description of all physical processes that take place in the cabinet needs appropriate 

modelling to interpret various heat phenomena, including conduction, convection, and 

radiation. The display opening causes enormous interaction between the cabinet and the 

surrounding space and is by means of free and forced convection heat transfer between 

the cabinet constricted air and the environment air.  

Heat conduction modes usually occur across the cabinet walls as a result of relatively 

high gradient in temperature. While heat radiation modes take place due to the big 
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temperature difference between the products and the nearby environment. Air flow 

modes include both laminar and turbulent, driven by either buoyancy force or 

momentum. All simulation techniques employed together with such air and heat flow 

regimes and their solution will result in a demanding and complex solution process. The 

following sections will briefly explain the CFD approach and provide the stages 

occupied in the modelling setup. 

5.3 The CFD approach 

The modelling process starts by dividing our domain into a large number of control 

volumes (elements) to build the mesh covering the whole domain geometry. The 

information is stored in the central node of each element within the domain. Even 

though modelling software differs depending on the producer, all approaches are based 

on the governing equations of fluid flow. The mathematical equations of fluid 

dynamics, describing the moving fluid for each element through the field, are called the 

governing equations, namely the continuity, momentum, energy equations, along with 

an equation of state. These equations take the non-linear partial differential form (no 

analytical solution) and are iteratively solved in a computer to calculate estimated 

solutions.  

Each equation defines the conservation of one variable inside the field and this means 

that a balance among the various factors affecting this variable must be achieved. In 

CFD approach, all partial equations must convert into discrete algebraic equations in a 

process called as discretisation. This process is performed by finite volume method 

which usually employed in CFD since flow visualisation is easier with this method as 

well as it requires fewer computer resources.  The main function of finite volume 

method is the integration of all the equations in differential form to equations in 

discretised form over a control volume at the nodal point. Then, all discretised equations 

are organised into form algebraic equations system that can be resolved by means of 

matrix procedures until the specified convergence criteria are met at each nodal point. 
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5.4 The CFD code 

Any CFD model should involve three steps; the pre-processing, processing and post-

processing. Figure  5.1 illustrates the sequence of those steps inside the CFD code. All 

these stages were accomplished using ANSYS v.16.2 platform which is capable of 

creating, managing and solving the whole project in one display place. 

 

Figure  5.1 Basic programme structure 

 

The geometry drawing stage is performed using ANSYS DesignModeler application 

which is used as a geometry editor of existing CAD. Then, ANSYS Meshing 

application is employed to generate the mesh and the physics preference will be set 

based on the type of system being edited. Next, ANSYS Fluent provides complete 

ability to solve the flow problems using specific meshes that were generated in 

geometries. It also enables to coarsen or refine the mesh based on the flow solution. All 

other processing tasks are implemented during the Fluent solution mode, including 

setting fluid properties, executing the solution, defining boundary conditions, refining 

the mesh, executing the solution, and post-processing the preliminary results. ANSYS 

post-processor is a flexible tool that designed to enable simple results visualization and 

quantitative analysis.  

5.5 Pre-processing 

5.5.1 ANSYS Workbench 

ANSYS Workbench is a platform that combines the strength of essential simulation 

tools with the tools required for managing the whole project on the main project 

workspace. The project is driven by a schematic workflow that is represented visually 

• Draw Geometry 

• Generate Mesh 

• Assign boundaries 

Pre-processing 

• Mesh import  

• Physical models 

• Boundary 

conditions 

Processing 

• Adaptation 

• Repeat the 

calculations 

• Display contours 

Pre-processing 
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on the Project Schematic. Any analysis should be built by adding blocks 

called systems to the Project Schematic; each system is a block of one or more 

components called Cells, which represent the sequential steps necessary for the specific 

type of analysis. After adding systems, we can link them together to share and transfer 

data between systems see Figure  5.2. From the cells, you can work with various 

ANSYS applications and analysis tasks. ANSYS applications allow you to specify 

parameters such as geometry parameters, material properties and boundary conditions. 

Parameters can be defined within the application and managed at the project level in the 

Workbench environment. Also, it is easy to investigate design alternatives by modifying 

any part of an analysis, and then automatically update the project to see the effect of the 

change on the simulation result. 

 

Figure  5.2 Workbench platform 

5.5.2 Geometry 

Definition and creation the geometry is the first step of any CFD model. The model 

geometry of the display cabinet is built using dimensions taken from the actual Norpe 

cabinet in the laboratory as illustrated in Figure  5.3. To simplify the model, no need to 

represent the exact geometry. For instance, only significant geometry features which are 

of interest have been modelled to avoid a large number of grids. This leads to a stable, 

faster and more accurate solutions (Stribling 1997). It is also important to specify 

whether the model will be analysed in 2D or 3D domain since this should be addressed 

at the starting due to its main effect on the computer resources required and the results 

accuracy. Through this work, the model used and analysed is only 2D since our 
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parameters of interest are not highly dependent on the third dimension as well as our 

study is mainly a comparison between two cases in terms of PCM effect so that 

eliminating a common factor could be a reliable simplifying method.  

For the current project, the designs of the evaporator, fan, DAG, RAG and rear panel 

will stay unchanged since the purpose of this study is to focus on accumulated PCM 

effect on the air circulating in closed cycle inside the cabinet. Most of the previous 

studies carried out on the display cabinets performance, such as (Stribling, 1997), (Ge, 

2010), (Foster, 2005) and (Howell 1993), were based on the 2D model. However, in 

stores, display cabinets are influenced by indoor air motion, and to simulate this, test 

chamber requires air flow across the face cabinet with a velocity between 0.1 and 0.2 

m/s. (A. Hadawey 2006) showed that the influence of the side draught covers up to 33%  

of the length of the front cabinet side. Furthermore, a comparison between 2D and 3D 

model results, in terms of cooling power, was done by (D’Agaro, 2006) who determined 

that the third dimension is important only at the side walls of short cabinets that 

subjected to cross-flow. 
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Figure  5.3 Whole computational domains for the cabinet loaded with products inside the test chamber 

 

5.5.3 Mesh  

The second task during the pre-processing stage is a generation of mesh which is 

considered prolonged and important. The size, shape and amount of elements employed 

in the mesh are responsible for the solution accuracy, the convergence, stability and 

calculation time. In spite of the fact that providing more accuracy and flow details are 

revealed by a big number of cells, the simulations are restricted by the cost and time of 

calculation. The grid type of any region through the domain is usually dependent on the 

flow behaviour and the complexity of geometry. Due to the structured type of mesh 

typically enhances the solution conversion, triangles structured mesh is employed in this 

work to define the geometry of the calculation domain, exempting products assigned as 

squares elements, as depicted in Figure  5.4. The total nodes numbers reached 67426 and 

121367 elements and grid adaption has been considered and the number of grid points is 

progressively increased from one simulation to another. During mesh generation, 
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smaller grid have been purposely employed in regions where important air flow and 

high temperature gradient were likely such as internal space, cabinet edges, rear back 

panel, air curtain outlet, DAG, RAG and the front of the opening area of the cabinet as 

illustrated in Figure  5.4. All the dimensions and details of the mesh are illustrated in 

Table  5.1.  

 

Figure  5.4 Computational grids for the 2D CFD model 

 

Table  5.1 Mesh details 

Use Advanced Size Function On: Curvature Max Face Size 9.5e
-002

 m 
Relevance Centre Medium Use Automatic Inflation  None  
Initial Size Seed Active Assembly Inflation Option  Smooth Transition 
Smoothing Medium Transition Ratio  0.272 
Span Angle Centre Fine Maximum Layers  2 
Curvature Normal Angle Default (18.0 °) Growth Rate  1.2 
Min Size Default(1.136e

-003
 m) Inflation Algorithm  Pre 

Nodes  64802 Elements  114339 
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5.6 Processing 

The set-up and solution processes are done within the Fluent application window by 

initialising, controlling, monitoring, calculating and checking the solutions. At the 

beginning and to save time, all the flow properties values should be initialised with 

actual values. The calculations were executed using a single-precision option that uses 

seven decimal digits only. At each iteration run, an imbalance exists in the simulation 

process called residual that monitors the numerical behaviour of convergence. In the 

current work, the solution process is completed when the residual value touched 1x10
-8

.  

To make sure that convergence has been reached, all important variables were observed 

for the duration of the calculations which will be finished when no considerable change 

in results is detected. Besides, to confirm property conservation, the overall imbalances 

in all domain variables were regularly tested to be as small as possible. The solver 

properties used in this model were the pressure based type, absolute velocity 

formulation and planar 2D space. The following conservation equations were applied in 

the 2D CFD model. 

Pressure-based assumes the fluid is incompressible, � = "��D����, independent of 

space and time, so that 	J� J�⁄ = 0. The continuity equation will be: 

 
JLJM + JOJP = 0   ( 5.1) 

Momentum equations: 

 � JQJ� = −J�JM + R SJTQJMT + JTQJPTU ( 5.2) 

 � JVJ� = −J�JP + R SJTVJMT + JTVJPTU ( 5.3) 

Energy equation: 

 
J�J� + L J�JM + O J�JP = W�4� + 
 SJT�JMT + JT�JPTU ( 5.4) 

State equation 
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 � = 3X� ( 5.5) 

5.6.1 Turbulence modelling 

The air flow of open display cabinets is categorised as a transitional mode in which the 

turbulent kinetic energy is shaped and damaged, driving to rotational flow structures, 

usually named as eddies. Those eddies endorse the transported quantities of energy, 

momentum, and species concentration to fluctuate and mix. Buoyancy and the shear 

forces of the main flow are responsible for this phenomenon. The beginning of 

turbulence depends on the value of Reynolds number which is the ratio of the inertia 

force to viscous force. The general transport equation for the conservation of mass, 

momentum, energy, and turbulent quantities can be presented by the following form: 

J∅J� + J(Q∅)JM + J(V∅)JP + J(Z∅)J[ = JJM \] J∅JM^ + JJP \] J∅JP^ + JJ[ \] J∅J[^+_∅ ( 5.6) 

Where ∅ is a general variable that could be mass, momentum, energy, turbulent kinetic 

energy, or turbulent dissipation rate, by choosing suitable values for the diffusion 

coefficients (Γ) and source terms _∅, the partial differential equations for the 

conservation of mass, momentum, energy, turbulent kinetic energy and turbulent 

dissipation rate can be found. Turbulence models are commonly categorised depending 

on the number of their partial differential equations. The Prandtl model, for example, 

has no equations and, therefore, called a zero-equation model. The k-ε model is called a 

two-equation model and the Reynolds Stress Model (RSM) is a three to five-equation 

model. Turbulence presentation is divided into three sets: Large Eddy Simulations 

(LES), Direct Numerical Simulation (DNS) and Reynolds Averaged Navier-Stokes 

(RANS).  

Most CFD applications use the RANS turbulent models due to offering the most 

economic approach for calculating complex turbulent flows. Also, this model is 

appropriate for various engineering applications and typically provides the required 

level of accuracy (Ansys 2011). The user should decide which model is the most 

suitable for a given applications as no one of those models is universal. A turbulent 

model is further classified, depending on how the heat and diffusion fluxes and 

Reynolds stresses are modelled, into Reynolds stress and eddy viscosity models. 
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A simple Reynolds Stress Model was described by (Launder 1989) and common eddy 

viscosity model is called k-ε model summarised by (Launder and Spalding 1974). The 

Reynolds-stress model is superior to the eddy-viscosity one but, there is a drawback in 

terms of less stable numerical algorithm and more computational time required. Thus, 

the standard k–ɛ two-equation model is employed as shown in Eqs.( 5.7) and ( 5.8).  

 
J(�#)J� + J(�Q#)JM + J(�V#)JP = JJM `�]a J#JMb + JJP `�]a J#JPb + _a ( 5.7) 

 
J(�	)J� + J(�Q	)JM + J(�V	)JP = JJM `�]c J	JMb + JJP `�]c J	JPb + _c  ( 5.8) 

5.6.2 Assumptions and boundary conditions  

Although the geometry and an appropriate grid design are of significance in the 

modelling, the boundary conditions have the highest impact on the result nature. The 

solutions accuracy of the governing equations is commenced from initial values of 

boundary conditions and dependent on those specified values. Then, most of the 

boundary conditions and assumptions in this study are those come from experiments in 

order to improve the reality of physical representation of the fluid flow in the cabinet. 

5.6.2.1 Wall boundary conditions 

During the CFD set-up, the boundary conditions assigned as a wall are two types. First 

are the test chamber’s walls (ceiling and floor) and external cabinet walls which were 

defined as one-sided and adiabatic walls. Second are the rest of cabinet edges and 

products’ covers (two-sided) which are modelled as conducting walls (coupled thermal 

conditions). Wall boundaries are solid surfaces used to bound and separate solid and 

fluid regions to frame the real computational domain. At those boundaries, the 

tangential velocity component is considered to be zero (no-slip boundary).  

5.6.2.2 Inlet/ Outlet boundary conditions 

Introducing the air to the computational domain requires defining all its thermal and 

physical properties such as; temperature, velocity, evaporator fan and turbulence 

magnitudes which either calculated or identified from preceding experimental work. 

The left and right walls of the test chamber were modelled as pressure inlet and pressure 

outlet respectively. Those variables are frequently assumed to be distributed in a 
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uniform pattern crossing the inlet edge. It is also required a fan model to simulate the 

fan with its real pressure jump. The inlet type for circulating air is a fan with constant 

pressure jump profile.  

5.6.2.3 Radiation modelling  

The phenomenon of interaction the electromagnetic waves with the surrounding is 

called radiation that includes absorption and scattering within the fluid medium, and 

absorption and reflection at walls. This effect is usually ignored in the simulation of 

display cabinets unless there is big difference in temperature between the products and 

the ambient. Orphelin, (1997) stated that the radiation share in the energy balance in the 

display cabinet is equivalent to that of conduction and convection, and could donate to 

7% of the sensible load through heating the visible part of the products along with the 

internal cabinet body. While ANSYS offers different radiation models, only the 

Discrete Ordinates (DO) model by Oliva, (2004) and the Discrete Transfer Radiation 

(DTR) model by Shah, (1979)  are appropriate for the our study. The suitability of each 

model is dependent on the problem physics and solution needs. Although the DTR 

model could provide good results, it is not used in this study as its procedure is rather 

time consuming. For that reason, The DO model is applied through radiation modelling 

to simulate the coupling of radiation and convection. In addition, the boundary 

temperature is used to identify internal emissivity, and the external black body 

temperature is assumed to be constant 

5.6.2.4 Evaporator modelling  

The evaporator section of the display cabinet is modelled as a heat sink to the cabinet 

with a porous media to pretend the evaporator coils. Accumulating frost on the 

evaporator will affect both the air off temperature and air flow rate of the rear panel. 

However, this would be a dispensable complexity and it is adequate to assume a clear 

evaporator coil and thus, constant air velocity (Xiang 2003). As we know the capacity 

of evaporator consists of sensible and latent heat parts, however only the sensible part 

will be taken in the calculations as the moisture content of air is ignored in this model 

for the reason mentioned in section  5.6.2.6 . For instance, the heat source that will play 
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the evaporator role should be integrated inside the model by using user defined function 

(UDF) macro and calculated from the following equations; 

  >? = −@"�(�A( − �ABB) ( 5.9) 

 >?AdC:H = 	>?/OHe�9 ( 5.10) 

After finding the sensible capacity from Eq. ( 5.9), the latter will be divided by the 

evaporator volume to find the heat sink value per unit volume as shown in Eq. ( 5.10).  

5.6.2.5 Products modelling  

The products in the cabinet must be involved into the dynamical model of the display 

cabinet. In a real-world store, different types and shapes of products are displayed in 

such cabinets. However, to study the display cabinet performance, M-packs (similar to 

meat) with one rectangular shape are chosen as products. The products arrangements 

can be stacked in different and random patterns due to the costumers’ use, however all 

products were modelled as conducting solids with real thermal properties and  specific 

stack pattern according to the EN-411 standards as shown in Figure  5.3 Whole 

computational domains for the cabinet loaded with products inside the test chamber  

5.6.2.6 The other boundary conditions 

The cross section of the entire air conditional chamber contained the cabinet is 

considered as a computational domain. The examination conditions of the cabinet 

defined in Chapter 3 will be used as boundary conditions in the CFD models. Various 

thermal parameters such as fan pressure jump were obtained from the experimental 

measurements and the turbulence data from assumptions.  

The cabinet air should be assigned as negative buoyant by taking the gravitational 

acceleration, as an additional physical quantity due to the temperature difference 

between the ambient air and the cabinet air. Throughout the calculation in this work, 

and according to (Ansys 2013) the use of species model is not possible as it cannot be 

used together with solidification/melting model which is essential to study the PCM 

behaviour later. So that, the effect of moisture on the air content of the test chamber is 

not considered. Besides, including moisture model is insignificant in terms of 

simulating the air temperature pattern (D’Agaro, 2006b), as well as, for comparison 
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purposes, the humidity will be the common factor between the two cases with and 

without PCM. The lost weight of the product is not considered too as the load is only 

packaged as chilled products. The temperature and velocity contours were assumed as 

uniform with reasonable approximation because of the effect of the honeycomb curtain.  

5.6.3 Modelling the back panel  

Modelling of the perforated panel (also known as rear grille) plays an essential role in 

the calculation of air amount passed to the DAG, the cabinet flow distribution, and also 

products temperature. The perforated back panel was modelled by many researchers in 

different methods depending on the nature of the parameters of interest. Some 

investigators have tried to consider the entire back panel either as small separated 

divisions along to represent the holes (Yu, 2007) or as an inlet-velocity (Foster, 2005). 

Both of those strategies could give the real amount of penetrating air. However, they 

could cause a high dropping in the pressure and flow rate through the back duct. 

Another common assumption was accomplished by using porous jump model (A. Al-

Sahhaf 2011). But this is mostly appropriate for the case in which the flow is exactly 

vertical to the porous jump surface. Instead, in this work, the real geometry of the back 

panel is modelled by drawing the actual holes along the panel since drawing holes in 2D 

model is relatively easy. This is adopted since it is simple and effective way to simulate 

the flow patterns of air infiltrating from the rear panel as shown in Figure  5.3. 

5.6.4 Modelling the DAG 

The honeycomb shape of the discharge air grille (DAG) has an important effect on the 

initial shape of the air curtain, which responsible for the entrainment ratio of ambient 

air. Through this Modelling, the actual geometry of the side view (series of narrow 

slots) for DAG is also considered during the geometry building stage as this will 

enhance the reality of the simulation. However, this requires high number and smaller 

size of cells to accommodate this zone and the transition zone from DAG to the domain 

see Figure  5.3. 

5.6.5 Mesh adaption 

The mesh size has a big influence on the convergence, accuracy and stability of the 

numerical calculations and results. Consequently, it is important to make sure that the 
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final results are not affected by grid resolution. ANSYS Fluent has the solution-adaptive 

mesh refinement feature which allows us to refine and/or coarsen our mesh based on 

geometric and numerical solution data (Canonsburg 2013). By using this feature 

properly, extra cells can be added where necessary, thus enabling the features of the 

flow field to be better resolved. In the meantime, computational resources are not 

wasted by the inclusion of unnecessary cells, as occurs in the conventional grid 

independence approach (Chila and Kaminski 2008). Furthermore, this technique will 

save time as we do not need to go back to mesh generation stage for additional grid 

improvement. For this purpose, three different grids number were studied by using 

increasingly fine grids till the maximum product temperature difference is about 0.3 ºC. 

Two adaptions were adopted through calculations and the final grid number is 121367 

which were used for further computation. The product temperatures of each adaption 

are depicted in Figure  5.5. The areas affected by the second adaption were shown in 

Figure  5.6. 

 

Figure  5.5 Mesh adaption based on product temperatures 
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Figure  5.6 Modified mesh after the second adaption 

 

5.6.6 Steady and transient simulations 

At the beginning, the model has been implemented in the steady state condition and 

therefore all the boundary conditions will remain constant through the calculation. This 

stage of simulation is important to gain primary validation with the experimental results 

and also to use it as initial conditions for the transient simulation later on. In this stage, 

we only need to use the DEFINE_SOURCE macro. 

In reality, the display cabinet is not a steady state application therefore and after 

reaching the steady state results, a time-dependent model is then developed to study the 

trend of cabinet air temperatures and of energy consumption with time (Mastrullo et al. 

2014), taking also into account defrost effect (Bansal et al. 2010). This stage of the 

modelling is started by integrating all UDF codes to the main boundary conditions. All 

other boundaries are still the same. The calculations will continue for three days to give 

enough time for the transient data to stabilise. All product temperatures, air curtain, 

return grill, air on temperatures, air curtain velocity were monitored and recorded to 

separate files during the transient calculations to be ready for analysis later on.  
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5.7 Post-processing 

Presenting the simulation results successfully supports to enhance, visualise and analyse 

the thermal and physical features of the air flow. In this study, the ANSYS CFD post-

processor application is occupied for the graphic illustration of the computational 

results. This built-in software provides high quality graphs through analysing data and 

visualising processes. 

5.8 User-defined functions 

User-defined functions (UDFs) are C functions that can be dynamically loaded with the 

ANSYS solvers to improve their standard features. UDFs are capable for customizing 

boundary conditions, material properties and source terms, and enhancing existing 

ANSYS models (Ansys Inc 2013). The need for UDFs in this simulation is necessary 

because the calculations will be time dependent with temperature controller. This model 

is quite similar to the real cabinet as we have added thermostatic controller to control 

the Off and On periods of the compressor and also to govern defrost processes at 

specific times. To achieve that, we need three types of predefined DEFINE macros that 

we will use to define our UDF. 

The first one is DEFINE_SOURCE macro that will specify a heat source in the 

evaporator region to play the evaporator role inside the cabinet by removing the heat 

from the circulating air. The value of this source is calculated according to the sensible 

capacity of the real cabinet evaporator as shown in Eq. ( 5.10). The second type is 

EXECUTE_AT_END macro which will check the cabinet temperature after each time 

step and work as a thermostatic controller. This macro will be responsible for the 

On/Off and defrost periods of the cabinet. The last macro is DEFINE_INIT that is used 

to set initial values of flow quantities.  

5.9 Model validation with the Experimental Results 

To validate the cabinet models, the prototype cabinet was mounted in an air-conditioned 

chamber and extensive experiments were conducted at constant space air temperature 

and relative humidity. The cabinet models have therefore been validated through 

comparison with experiment results for cabinet air and products temperatures at 
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different locations of the airflow path and specific food products. The products were 

numbered as shown in Figure  5.7. As mentioned before, the simulation process is 

divided into two parts; the first one is steady state analysis to prepare appropriate initial 

conditions for the second part which is transient analysis so that the validation process 

is also divided into two stages; steady and transient. 

 

Figure  5.7 Left side view of the cabinet with products 

 

5.9.1 Steady state validation  

Of course this stage of simulation is for the cabinet without PCM since it is not 

beneficial to add PCM to the steady calculation. The contours of air and product 

temperature at steady state are depicted in Figure  5.8. It can clearly identify the heat 

exchange around the air curtain, where the air curtain efficiently stands as an obvious 

heat transfer barrier between the internal display cabinet space and the indoor space air. 

The food packages in vicinity close to the air curtain have relatively higher temperatures 
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than those nearer to the perforated back panel because of the interaction between the 

cold back panel flow and the air curtain 

 

Figure  5.8  Air and product temperature contours for steady model 
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Figure  5.9 Air velocity contours for steady model 

 

Figure  5.9 showed the air velocity contours for the steady state simulation. It is clear 

that the maximum air velocities are in the bottom duct as a result for the suction side of 

the fan. Another high air velocity area is noticed after the fan and close to the back 

panel as a result for the inclined fan position. It is obvious that the velocity inside the 

evaporator decreased because the porous media which represent the evaporator coils. It 

can also be observed from the same Figure that an air curtain is formed between 

discharge air grille and return air grille, as well as the air flow paths coming from the 

holes of the perforated panel are clear. 

Similarly, the graph in Figure  5.10 shows the steady state simulation and experiment 

results without PCM for temperatures of products numbered in Figure  5.7. It should be 

noted that the simulation temperatures of those numbers of 1 to 4 products are 

maintained at around 274.5 K, which are quite close to the experimental results. 

However, for the rest of products, the numerical results are slightly higher than those of 

the experimental measurements because the limitations of steady state assumption. 

Then, the numerical results show good agreement with the experiments, indicating that 
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the present computational method can efficiently simulate the heat transfer performance 

of the display cabinet.  

 

Figure  5.10 Validation of products temperature for Steady model without PCM 

 

5.9.2 Transient validation  

As the temperature difference of every two close mounted products is quite small, they 

are thus integrated into six instead of twelve product temperatures in Figure  5.11 by 

taking the average temperature of those two close products.  As shown in this Figure for 

the variations of six product temperatures without PCM for stable measurement and 

calculation, we can see the validation of our transient simulation by comparing 

experimental product temperatures with simulation results. By matching the colours, we 

can see good agreement between both data in which the maximum temperature 

difference between the simulation and experiment results is about 0.8 ⁰C. Also, it is 

noticed that the temperature of product numbers 1-4 are much lower than others since 

they are closer to the highest flow rate of cold air coming through the back panel holes.  
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Figure  5.11 Validation of products temperature for transient model without PCM 

 

 

5.10 Summary  

An outline for the assessment and construction of the CFD model for the display cabinet 

was presented by this chapter. Model processing stages, used software, assumptions and 

boundary conditions and other related issues have been discussed and illustrated. The 

validation task also was included in this chapter for the cabinet before and after 

modification. 

The simulation outcomes against experimental measurements for the cabinet with and 

without PCM will be the topic of the following chapter.  
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CHAPTER 6 

6 THEORETICAL PCM INTEGRATION AND 
RESULTS COMPARISON 

In this chapter, the second part of simulation study for the Norpe display cabinet 

performance is performed by integrating PCM container inside the cabinet in order to 

investigate its effect on the cabinet in terms of products and cabinet air temperatures, 

power consumptions and thermal performance. To inspect and optimize the PCM effect, 

different conditions for this modification are studied. The incorporation was applied by 

using water based PCM, at different conditions inside the cabinet. 

6.1 Introduction 

After the experimental modification that has been done in previous chapters, it is 

important to study the possibility of simulating the PCM integration through display 

cabinets. One of the most important benefits of simulation studies is that they can 

deliver users with practical feedback when designing actual world structures. This 

permits the designer to decide the efficiency and perfection of a design before 

constructing the system. However, our system already was constructed so that the 

simulation function will be dedicated to establish a unique display cabinet model, 

simulating of PCM integration similar to the experimental one and exploring the 

qualities of alternative designs without building actual and physical systems. 

Accordingly, theoretical investigation of specific scheme choices during the simulation 
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stage rather than the manufacture stage will considerably diminish the total cost of 

constructing the system. Another advantage of simulation study is that it permits 

designers to investigate a problem at some varied levels of abstraction. For example it is 

possible in simulation to study an effect of one parameter on the system by forcing the 

other parameters to be constant. However, some complex simulations are considered 

costly as they could need to use expensive computer resources with a super processor. 

In this chapter, 2D CFD models have been developed for a prototype refrigerated open-

type multi-deck display cabinet with and without integrated PCM. The models predicted 

the effect of adding a PCM container on the cabinet efficiencies, the temperature 

distributions and the air flow patterns inside the cabinet for a range of operating 

conditions (PCM thickness, ambient temperature, air velocity). The cabinet models have 

therefore been validated through comparison with experiment results for temperatures at 

different locations of the airflow path and of food products.  

6.2 Simulation set-up 

The display cabinet model, with and without PCM integration, is then built in the same 

conditions for the real environmental chamber and tested at the same operating 

conditions in order to measure and compare the performances of the two systems and 

components with and without PCM. Various thermal parameters and measurements 

assumption are used in the simulation to enhance the calculations as shown in Table  6.1. 

Simulation of PCM integration through this cabinet was suggested to be in the same 

place like the experimental one to be validated with experiment results later on. All the 

simulation assumptions with and without PCM are the same. The only difference was 

adding a new model which is solidification/melting model to execute the charge and 

discharge processes that happen inside the PCM container and benefit from its stored 

latent heat.  
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Table  6.1 Simulation assumption data 

Assumption parameters value 

Initialization method Standard  

Reference frame Relative to Cell Zone 

Time step size (S) 0.25  

Number of time steps 2880 

Time stepping method Fixed  

Maximum iteration/time step 20 

 

6.3 Proposed PCM 

It is important to select the optimal quality and quantity of PCM in any particular 

thermal application to fulfil terms of operation and cost. PCM based water is one of the 

most comprehensively studied PCMs in low temperature applications considering its 

availability, stability and the best thermal properties (E. Oró, de Gracia, et al. 2012). 

Long term performance and stable thermal characteristics of PCMs are the prerequisite 

for longer equipment life (Behzadi and Farid 2014). In addition, the latent heat should 

be as high as possible to decrease the size of the PCM container.  

Many numerical studies regarding maximize the PCM storage performance have been 

carried out (Sciacovelli  et  al. 2015). In this model, water is used as a PCM and the heat 

transfer to and from the PCM involves convective mode. Then, the PCM properties 

were quite similar to those of water as shown in Table  6.2. The PCM storage is 

modelled as a rectangle container unit with fins on the back panel flow duct after the 

evaporator and indirect contact with the circulating air through the cabinet. The phase 

transition temperature is constant (0⁰ C) and matches to the air cabinet temperature 

(Borderon et al. 2015). The energy will then be released from or stored in the PCM 

during solidification and melting processes depending on the temperature. 

Table  6.2 Thermal properties of the PCM based water. 

Characteristics Value 

Density  (kg/m3)  998.2 

Thermal conductivity  (W/m k) 0.6  

Specific heat  (kJ/(kg K) 4.182  

Melting and freezing temperature  (K) 273.15 

heat of fusion  (kJ/kg) 334  
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6.4 PCM model 

The method used for modelling the solidification/melting process in ANSYS Fluent is 

the enthalpy-porosity technique (Voller et al. 1989). In this approach, a quantity called 

the liquid fraction, which represents the fraction of the cell volume that is in liquid 

form, is associated with each cell in the domain. The liquid fraction is computed at each 

iteration, based on an enthalpy balance. The enthalpy of the material is also calculated 

as the sum of the sensible enthalpy, h, and the latent heat, ∆H: 

 g = ℎ + ∆g ( 6.1) 

Where 

 ℎ = ℎCHB +h 4�i�j
jklm

    ( 6.2) 

The liquid fraction, β, is defined as 

 n =
op
q 0																																							if			T < 			�?1																																									if			T > 	�v� − �?�v − �? 																					if		�? 	< 	T	 < 	�v ( 6.3) 

The latent heat content can now be written in terms of the latent heat of the material, L: 

 ∆g = n6 ( 6.4) 

The latent heat content can vary between zero (for a solid) and L (for a liquid). For 

solidification/melting problems, the energy equation is written as: 

 
JJ� (�g) + ∇. (�Vg) = ∇. (7∇	�) + _ ( 6.5) 

The solution for temperature is essentially iterated between Eq. ( 6.3) and Eq. ( 6.5). The 

simulation process of PCM integration is divided into two parts; the first one is steady 

state analysis which was necessary to prepare appropriate initial conditions for the 

second part which is transient analysis.   
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6.5 Steady model with PCM 

As mentioned before for simulation without PCM, at the commencement, the model 

with PCM has been executed in the steady state condition and therefore all the boundary 

conditions will be constant through the calculation. This stage of simulation is important 

to gain primary validation with the experimental results and also to use it as initial 

conditions for the transit simulation with PCM later on. In this stage, we only need to 

use the DEFINE_SOURCE macro. Although the solidification/melting model was 

active in this stage, it is impossible to see the PCM effect on the operating conditions 

due to the charge and discharge processes will not occur as the temperature is constant. 

However, there is a few differences between the temperature contours comparing the 

without PCM steady state model. 

6.6 Transient model with PCM 

After steady state simulation with PCM was converged, a transient model with PCM 

was built and developed to study the PCM effect on the interested parameters such as 

cabinet air temperatures, phase change temperature and energy consumption with time, 

taking also into account defrost effect which supposed to be the most affected 

parameters as the discharge/charge PCM processes should happen at that time. This 

stage of the modelling was started by integrating all UDF codes to the main boundary 

conditions. All other boundaries are still the same. The calculations will jump from the 

steady state results and continue for longer time than the transient model without PCM. 

The reasons for that are adding another model to the simulation (solidification/melting) 

and PCM liquid fraction needs extra time to become stable. All-important parameters 

were monitored and recorded into separate files during the transient calculations to be 

ready for analysing later on.  

6.7 Model validation with PCM 

The validation process for the simulation model with PCM is also based on the 

experimental results for the cabinet with PCM integration. This stage includes 

validation of both models; steady and transient.  
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6.7.1 Steady validation  

The steady stage of simulation with PCM will not show us the PCM effect since the 

evaporator will be considered to work continuously during steady calculations. 

However, the validation for this stage still necessary in terms of air flow pattern which 

is influenced by adding such size of PCM in the way of circulating air.  The contours of 

static temperatures for the cabinet air and products at steady state results with PCM are 

seen in Figure  6.1. It can clearly identify the same observations as in Figure  5.8.  

 

Figure  6.1 Air and product temperature contours for steady model with PCM 

 

Figure  6.2 shows the air velocity contours for the steady state simulation with PCM. It 

can be observed from that velocity contours are quite similar to the steady model 

without PCM.  It is clear that the maximum air velocities are in the bottom duct as a 

result for the suction side of the fan as was mentioned in description of Figure  5.9. It 
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could also be observed from this Figure that the air flow at the back panel around the 

PCM container was achieved to make sure that the heat transfer rate at the highest level.  

 

Figure  6.2 Air velocity contours for steady model with PCM 

 

The air velocity is another important factor for this study due to its impact of convection 

heat transfer on charging and discharging of PCM. For instance, Figure  6.3 validates the 

values of air velocities for the simulation and measurements results during steady state 

model with PCM. Also, this validation is important as it illustrates that the air flow 

pattern at the main points, in the circulating air path, is slightly influenced by the PCM 

container size.  
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Figure  6.3 Validation of air velocity for Steady model with PCM 

 

6.7.2 Transient validation 

Another important validation of the transient simulation results for the cabinet with 

PCM is cabinet air temperature as shown in Figure  6.4. It shows validation of the air-

curtain outlet temperature with time. It is noticed that there is a good agreement with the 

measurement results. However, some inconsistencies are observed between simulation 

and measurements results particularly for the cycle numbers. This could be argued that 

not all PCM was effective during the experiment such that the defrost period for the test 

was shorter than that of simulation.  
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Figure  6.4 Validation of curtain-outlet temperature for Transient model with PCM 

 

Liquid fraction contours for the melting process of big (defrost) cycle for the PCM are 

demonstrated in Figure  6.5 in which the average liquid fraction contours are taken at 

0%, 25%, 50%, 75% and 100% and the discharge and charge processes take place every 

big and short cycle. Although not all PCM is transformed into liquid in small cycles, we 

could still notice some good effects of the PCM integration on the cabinet air 

temperatures as depicted in the results. In addition, it is clear that liquid fraction ratio is 

higher at the PCM container or cabinet top due to air temperature. It can be readily 

acknowledged that the simulation and experiment results of the cabinets with and 

without PCM match fairly well. 
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Figure  6.5 Liquid fraction Contours for PCM container 

 

6.8 Result and discussion 

Due to the complexity of the developed CFD model, it would take a few days for the 

simulation to approach stabilisation and until then the simulation results could be 

collected. The simulation results include mostly the performance comparisons for the 

cabinet with and without PCM integration. 
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6.8.1 Cabinet air temperatures 

Figure  6.6 distinctly shows the influence of PCM on the cabinet air temperatures at 

evaporator air-off, curtain outlet and air-grille. It can be observed from this Figure that 

the maximum temperatures of cabinet air in the original cabinet are higher than those 

with PCM setup because the PCM absorbs some heat from the circulated air during the 

system off periods. Also, the minimum temperatures of original cabinet are lower than 

those corresponding ones with PCM due to the PCM is considered as an extra load in 

the on periods while the cooling capacity maintains constant. Another PCM effect 

demonstrates that the number of small on /off cycles decreases considerably from 11 to 

8 due to the duration increase of each cycle. In addition, the defrost time period also 

shows increase for the modified cabinet with PCM. All these positive effects of the 

improved cabinet will contribute the reduction of cabinet power consumption as 

described below. 

 

Figure  6.6 Variations of cabinet air temperatures with time during period of 8 hrs with and without PCM 

 

6.8.2 Defrost and normal operation cycles 

There are two operational cycles for the cabinet compressor on and off, defrost (big) 

and normal (small). Every four hours, the unit is switched off for defrost until the 

monitored (thermostat) temperature is higher than the limitation or the defrost period is 



133 

 

complete. Apart from the defrost period, the unit compressor enters into the normal 

(small) cycles and is controlled on and off based on the thermostat temperature 

redaction and settings. The temperature variations at the thermostat point for the cabinet 

with and without PCM in the period of defrost and normal are predicted and shown in 

Figure  6.7. It is noted that the temperature variation is more convergent for the cabinet 

with PCM which will be helpful for the temperature uniformity of food products stored. 

In addition, the addition of PCM has a significant impact on the total working time of 

the cabinet compressor in which the big and small cycle durations for the cabinet with 

PCM increase about 55% and 26% respectively. These are the reasons of the continuous 

heat transfer processes between the cabinet air flow and the integrated PCM. For any 

defrost or normal cycles, both on and off periods are increased for the modified cabinet. 

However, the increase rate for off period is more significant than that of on period due 

to the heat sink and source roles of PCM in these periods respectively. This leads to 

longer off period for the unit compressor and thus saving energy. 

The energy extracted from the PCM provides the cooling needed when the compressor 

was stopped, which, with optimization, may achieve more energy reduction than the 

basic cabinet without PCM. 

 

Figure  6.7 Defrost, Off and On durations with and without PCM 
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6.8.3 Product temperatures 

The food product temperatures for the cabinet without and with PCM storage container 

were recorded during 8 hours of stable calculation period as shown in Figure  6.8 a and b 

respectively. In each figure, there are 12 product temperatures represented under 

different product numbers. Generally, it can be noticed from these figures, for both 

circumstances, the range of each product temperature remains stable with very slight 

variation in response to the compressor on, off and defrost. For the modified cabinet, the 

whole variation range of product temperatures is more moderate than that without PCM 

signifying more uniformity in product temperatures. However, as predicted, the 

outcome of adding PCM shows an increase in the whole average of product 

temperatures because the extra load from PCM, but still within standard limitation as 

shown in Table  6.4. These simulation results of product temperatures correspond to the 

predicted air temperatures shown in Figure  6.6 since the air flows are in immediate 

contact with the products. 

 

 
(a) 
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Figure  6.8 Variations of products temperature with time during 8 hrs (a) without and (b) with PCM 

 

Table  6.3 Theoretical products temperature for Norpe cabinet  

Simulation parameters Without PCM With PCM 
Average temperature (K) 276.7 277.2 

Maximum temperature (K) 279.6 279.3 

Minimum temperature (K) 274.5 275.4 

Temperature range (K) 5.1 3.9 

 

6.8.4 Compressor working time 

Starting from defrost, the compressor on (1) and off (0) states for the cabinet with and 

without PCM are predicted and shown in Figure  6.9. When the PCM is integrated, the 

cabinet has fewer frequencies for both on and off states but has longer total off period. 

This is because that when the compressor is off, the PCM acts as an air cooler by 

carrying on absorb the heat from the air flow and consequently postpones the increase 

speed of cabinet air temperatures until the PCM is mostly melted. When the compressor 

is on, the PCM starts to solidify progressively and acts as an additional load such that 

the on period of each cycle for the cabinet with PCM is also longer. Nevertheless, the 

total on period is still less for the cabinet with PCM considering of its fewer on states. 

The reduced on times for the compressor can also lead to longer compressor operation 

life. It can also bring further energy savings since the compressor needs higher power at 

starting point from our measurement as illustrated in Figure  6.10. We can find the 

(b) 
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percentage of energy saving after adding the PCM container to the cabinet during about 

one day running fluent time from Table  6.4. It is found about 6.4% energy saving plus 

the saving percentage resulted from reducing the number of compressor starts. 

 

Figure  6.9 Working state variations with time for cabinet with and without PCM 

 

 

Figure  6.10 Instant power consumption of experiment with time 
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Table  6.4 Energy consumption of the cabinet in one fluent day 

Energy parameters Without PCM With PCM 
Average instant power ( kW) 1.6 1.6 

Whole running time (h) 0.6 0.6 

Total On time (h) 0.4875 0.45 

Total Off time (h) 0.1125  0.15 

Energy consumption ( kW h) 0.78 0.72 

No of compressor starts 72 54 

Energy saving (%) 6.4 

 

6.8.5 PCM solidification rate 

The variations of PCM container average temperature, thermostat temperature and the 

PCM average liquid fraction with time are shown in Figure  6.11 for 8 hours stable 

calculation. For PCM to be beneficial during defrost and normal compressor off times, 

the PCM temperature needs to stay close to its transition temperature (273.15 K) for 

longer periods. This is achievable as it lies within the cabinet air temperature range. It 

can be seen that all and part of PCM latent heat are used respectively during the defrost 

off and normal off time periods. It is clear that the liquid fraction increases 

(discharging) gradually during the defrost period until its highest value of one when the 

whole PCM turns to liquid. Whereas only small part of PCM turns to liquid during a 

normal off period as there is no enough time to change whole PCM phase. After the off 

point, the liquid fraction starts to decrease (charging) and then increase (discharging) 

during the on and off working cycles, respectively. 
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Figure  6.11 Variation of Melting/Solidification and transition temperature with time 

 

6.8.6 Variation of ambient air temperature and air velocity 

The variations of PCM liquid fraction and predicted thermostat temperature with time at 

different values of evaporator fan pressure jumps (or air flow rates) are illustrated in 

Figure  6.12. It is obvious that at 20 Pascal fan pressure jump, the PCM takes longer 

time to solidify after defrost as the low air velocity will decrease the transfer rate 

between the PCM and the circulated air flow compared to the effect of higher fan 

pressure jump. In this case, it will take shorter time for the thermostat sensor to reach its 

setting point and then switch off the compressor and thus more small cycles appeared. 

While the higher air velocity at 30 Pascal pressure jump will solidify the PCM quickly 

such that more cooling capacity is needed for the PCM solidification and thus leading 

more time for the thermostat sensor to reach the setting point. 
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Figure  6.12 Melting/Solidification and thermostat temperature at different fan pressure jumps 

 

Figure  6.13 indicates how the solidification process and thermostat temperature are 

affected by indoor space air temperature. The higher space air temperature (30ºC) 

means higher thermal load and that will make the evaporator cooling capacity not 

sufficient for the thermostat sensor to reach its setting point (no small cycles) and 

maintain product temperature at the same time. Thus, the compressor will be switched 

on all the time till next automatic defrost. Conversely, the lower space temperature (20 

ºC) will decrease the cabinet cooling load and allow the thermostat to reach the setting 

point easily but have reduced compressor off periods and more small cycles. 
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Figure  6.13 Melting/Solidification and thermostat temperature at different indoor space air 

 

6.8.7 PCM Thickness optimization  

From simulation results it appears that the cabinet performance is sensitive to the PCM 

thickness as presented in Figure  6.14. The Off time saving is the percentage ratio of the 

extra off time resulted from using PCM and the off time without PCM. The best 

thickness (used in this study) was 16 mm which gave us 29.6% off time saving. 

However, the thickness parameter has negative impact on the off time when exceed 16 

mm, due to the fact that the big thickness of PCM container will highly affect the air 

flow configurations in the back duct as well as the high latent heat will increase the 

thermal load on the cabinet. 
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Figure  6.14 Off time increase at different thicknesses of PCM 

 

6.9 Summary 

The theoretical study of a display cabinet with a PCM-HE fitted on the existing space of 

the main back duct was illustrated in this chapter. This PCM incorporation 

demonstrated an enhancement of thermal system performance and reduction in the 

cabinet air temperatures when the cabinet is off. Calculations are carried out for this 

cabinet first without PCM integration, then with a container filled with pure water as a 

PCM. The next chapter will summarize the conclusions and recommendations of this 

study.  
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CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

The preceding chapters examined experimentally and theoretically the proof of concept 

of LH-TES to minimize the increase of the environmental impacts of supermarkets and 

presented approaches to quantify them. The concept benefits from the advantages latent 

heat stored in the PCM in reducing the energy required by cabinets in supermarkets. 

This work is done into experimental and theoretical parts. 

The experimental study of two chilled food multi-deck display cabinets equipped with 

PCM HEs installed on the available space of the main rear duct shows an enhancement 

in terms of system performance and cabinet temperature. Analytical investigations to 

determine the quality and quantity of the required PCM in each cabinet used in the 

experimental part were carried out while the performance of each cabinet and its 

integration with the TES system were evaluated. 

Tests were carried out for this cabinet without PCM integration first, then with two 

single plate containers holding water gel PCM. The experimental results achieved from 

this work were used to compare and validate a CFD simulation model that was 

developed later. The model was then used to predict and optimise cabinet performance 

with PCM by changing various parameters such as climate class and the type, quantity 

and location of the PCM and PCM heat exchangers throughout the cabinet. 
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The outcomes arising from the whole thesis and recommendations for future work 

aiming at reducing the energy consumption of such cabinets are summarised by this 

chapter. The following are the main conclusions of this work: 

7.1 Conclusions  

1. The simulation and test results indicated that the response of the cabinet with PCM 

was positive in minimizing the power consumption, product and cabinet air 

temperatures when the cabinet was off and improving thermal performance.  

2. It was found that with PCM the energy saving potentials of the Norpe cabinet 

significantly improved experimentally and theoretically, to around 5% and 6.4 % 

respectively at climate class 3 conditions (25ºC and 60% RH).  

3. In terms of cabinet air temperatures, both test and model results showed 

considerable benefit from reductions of maximum temperatures and temperature 

range.   

4. The whole variation range of product temperatures has become more moderate after 

modification signifying more uniformity in product temperatures. Also, adding 

PCM showed an increase in the whole average of product temperatures. 

5. The defrost intervals were the most affected factors for the modified cabinet. They 

were increased experimentally and theoretically by approximately 70% and 98% 

respectively compared to those with the basic cabinet.  

6.  A significant decrease (27%) in the number of starts/stops of the compressor was 

observed for the theoretically modified cabinet, and this will directly affect the 

compressor life. 

7. PCM effectiveness was highly sensitive to the indoor space air temperature and fan 

pressure jump and the optimum values of those parameters should be chosen 

accurately for a given operating conditions and certain PCM. 
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7.2 Recommendations for future work 

It is worth noting that energy savings are a function of the ambient temperature, relative 

humidity, operational settings of the cabinet and PCM freezing point, all of which 

should be considered for future models. 

This thesis has covered many alternative parameters related to the design of the PCM-

TES system, and their effect on the thermal performance and energy savings of display 

cabinets. However, other design aspects may be as beneficial to the energy consumption 

in such cabinets, and may further enhance their performance. Research must be 

conducted to assess the feasibility of using different types of more efficient and purpose 

built HEs which could be used to accommodate the PCM in the back panel duct of the 

cabinet instead of the containers employed in this study. In addition, the energy saving 

could be more as the material and the capacity of such HEs will be much better. 

After experimentally and theoretically demonstrate the PCM effectiveness in 

refrigerated display cabinets for saving energy in the current study, a simulation and 

experimental work for integrating the PCM in different locations through the cabinet 

walls such as top air duct, bottom duct and through the shelves could be alternative 

options to be explored and compared with the current results.  

Also, optimization study could be applied to find out the more efficient option of the 

suggested locations to integrate the PCM such that this model could be appropriate for 

manufacturing purposes to be commercially applicable. Further benefits include high 

energy saving when all proposed locations of integrated walls have been used at the 

same time for the modified display cabinet.  

All the numerical work in this thesis has been conducted using 2D simulations. 

However, 3D simulation for the cabinet with the PCM container must be conducted to 

faithfully represent more realistic situation and find out the effect of the third dimension 

on the current results. Achieving that allows for studying the 3D liquid fraction 

tendency through PCM container rather than 2D. 
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Appendix A: Technical data of Euromax Cabinet 

A complete Low Front Multideck range, the Euromax for multiplexing 

• Temperature range M1 classification tested at ISO 3 standard 

• Body lengths 1200, 1875 and 2400mm (lengths exclude end walls 25mm each) 

Construction 

• Supporting construction and exterior made from galvanised steel sheet. 

• High quality stoved paint finish. 

• Standard colour white with grey plinths. 

• Large glass end panels ensure good product visibility from the side. 

• High quality injected expanded polyurethane foam insulation is ozone layer 

friendly. 

• Durable and hygienic ABS plastic basin. 

• Adjustable legs. 

• Height adjustable shelves can be straight or inclined. 

Lighting 

• Fluorescent tubes as standard in the front edge of the canopy. 

• Lighting tubes are contained in protective plastic sleeves as standard. Long life 

(LL) fluorescent tubes in every model have treble the life expectancy of standard tubes. 

Standard equipment 

• Glazed end panels 25mm 

• 450mm shelves with consoles 
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• Ticket strip 

• Shelves with brackets 

• Evaporator with fan 

• Lighting in the front edge of the canopy 

• Solar thermometer 

Plug-in models 

• 245 model - integral scroll compressor complete with control devices 

• Refrigerant R404A 125/195 - 2 std Danfoss compressors 

• Electrical defrost water disposal 

• NRC-100 controller 

Remote models 

• Expansion valve for R404A 

• wiring box 

• defrost water outlet pipe 

Optional accessories 

• Mirrored end panel 25mm 

• Acrylic divider panel - full height 

• Price trims for shelves 

• 80mm front grid on shelves 

• Acrylic front riser on shelves 
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• Divider on shelf 

• Base shelf divider 

• Display rod for hanging products by hooks 

• Straight mirror 

• 3 stepped mirror 

• Raised base shelf for fruit and veg, straight 

• Raised base shelf for fruit and veg, 3 stepped 

• Front risers for base shelf, 80mm and 120mm 

• Under shelf lighting 

• Condenser pressure control with signal light 

• Control devices 

• Multiplexing kit 

• End bumper trim 

Options for energy saving 

The standard Plug-in models are equipped with automatic defrost water disposal. In 

order to minimise energy costs, instead of this the defrost water can be led direct to an 

external drain, if drains are located higher than the cabinet, a pump can be fitted. 

Technical specifications at ambient temperature of +25°C and relative humidity of 60 

%. Electrical supply 230V, single-phase, 50Hz. 
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Appendix B: NRC-100 CONTROL DEVICE 

1.1 User interface 

The user can control the status and programming of the controller using the display and 

four keys.  

If Err6 is displayed, see 1.7 Display signals. 

If the display is locked, see 1.13 Locking and unlocking the display. 

1.2 Keys and menus 

UP key – Scrolls through the menu items, increases the values and activates the manual 

defrost function  

DOWN key – Scrolls through the menu items, decreases the values 

FNC key – Exit function, accesses the menu 

OK key – Accesses the menu, confirms the commands 

1.3 Accessing and using menus 

Resources are arranged in a menu that can be accessed by pressing a key: 

1.4 Measuring menu (FNC key), 

1.5 User menu (FNC key held down 5 seconds) and 

1.6 Service menu (OK key held down 5 seconds). The service menu is password-

protected. After pressing and holding the OK key for 5 seconds, four zeros (0000) 

appear. The password is 1953. Set the first number using the UP or DOWN keys. To 

move to the next number (left to right), press OK. 

1.4 Measuring menu 

To browse the menu parameters, press the UP or DOWN keys. To see the value of a 

parameter, press OK. 

SEtt – Set point value 

Nd – Next defrost time (hh.mm) 
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Pb 1.5 – Temperature: 1=Thermostat probe; 2=Evaporator probe; 3=Cabinet probe; 

4.5=Condenser alarm probes 

C on – The compressor that is on (0, 1, 2 or 12) 

C1 t – Compressor 1 working hours * 10 

C2 t – Compressor 2 working hours * 10 

1.5 User menu ≡St1 (≡St2 if in use) 

To access the contents of a folder, press the OK key. To browse other folders in the 

menu, press the UP or DOWN key. 

Set point value group1 – folder (≡St1): 

St1 – Set point value1 

dIF1 – Differential. The compressor stops upon reaching the set point value and restarts 

at the temperature value equal to the set point plus the value of this difference. Must be 

a positive value. 

dlt1 – Interval between defrost 

dEt1 – Maximum duration of defrost 

dSt1 – Defrost stop temperature 

dt1 – Drying time starts when defrost stops. 

This time allows the evaporator to eliminate water drops that might have formed due to 

defrost. 
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Appendix C: Instrumentation and Data Logging systems 

This appendix provides the positions of the measurement points in the test rig, a display 

of the monitoring system and identification of the measurement points. Identification of 

the measurement points on the Data scan logger is presented in below. 

Box NO1: Main data Logger 

Channel 

NO 

Sensor Symbol Description 

1 TLRL Top Left Rear Lower 

2 TLRU Top Left Rear Upper 

3 TLFL Top Left Front Lower 

4 TLFU Top Left Front Upper 

5 TRRL Top Right Rear Lower 

6 TRRU Top Right Rear Upper 

7 TRFL Top Right Front Lower 

8 TRFU Top Right Front Upper 

9 MLRL Middle Left Rear Lower 

10 MLRU Middle Left Rear Upper 

11 MLFL Middle Left Front Lower 

12 MLFU Middle Left Front Upper 

13 MRRL Middle Right Rear Lower 

14 MRRU Middle Right Rear Upper 

15 MRFL Middle Right Front Lower 

16 MRFU Middle Right Front Upper 
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Box NO2: data Logger 

Channel 

NO 

Sensor Symbol Description 

1 BLRL Bottom Left Rear Lower 

2 BLRU Bottom Left Rear Upper 

3 BLFL Bottom Left Front Lower 

4 BLFU Bottom Left Front Upper 

5 BRRL Bottom Right Rear Lower 

6 BRRU Bottom Right Rear Upper 

7 BRFL Bottom Right Front Lower 

8 BRFU Bottom Right Front Upper 
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Box NO3: data Logger 

Channel 

NO 

Sensor Symbol Description 

1 CL Ai Curtain Left temp. 

2 CR Ai Curtain Right temp. 

3 OFF-L Air evaporator outlet left temp.  

4 OFF-R Air evaporator outlet Right temp. 

5 ON-L Air evaporator inlet left temp. 

6 ON-R Air evaporator inlet Right temp. 

7 T1 Refrigerant temp. after Evaporator 

8 T1
* 

Refrigerant temp. before Compressor 

9 T2 Refrigerant temp. after Compressor 

10 T3 Refrigerant temp. before Capillary 

11 T4 Refrigerant temp. after Capillary 

12 T5 Refrigerant temp. after condenser  

13 - - 

14 - - 

15 TCH Test chamber temp 

16 RH Test chamber relative humidity  

 

 

 

 


