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A Hamiltonian operator Ĥ is constructed with the property that if the eigenfunctions obey a
suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of
the Riemann zeta function. The classical limit of Ĥ is 2xp, which is consistent with the Berry-
Keating conjecture. While Ĥ is not Hermitian in the conventional sense, iĤ is PT symmetric
with a broken PT symmetry, thus allowing for the possibility that all eigenvalues of Ĥ are real. A
heuristic analysis is presented for the construction of the metric operator to define an inner-product
space, on which the Hamiltonian is Hermitian. If the analysis presented here can be made rigorous
to show that Ĥ is manifestly self-adjoint, then this implies that the Riemann hypothesis holds true.

The Riemann zeta function ζ(z) is conventionally rep-
resented as the sum or the integral

ζ(z) =
∞∑
k=1

1
kz

=
1

Γ(z)

∫ ∞
0

dt
tz−1

et − 1
.

(The integral reduces to the sum if the denominator of
the integrand is expanded in a geometric series.) Both
representations converge and define ζ(z) as an analytic
function when <(z) > 1. These representations diverge
when z = 1 because the zeta function has a simple pole
at z = 1. Substituting z = −2n (n = 1, 2, 3, . . .) in the
reflection formula

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z)

shows that the zeta function vanishes when z is a
negative-even integer. These zeros of ζ(z) are called the
trivial zeros.

The Riemann hypothesis [1] states that the nontrivial
zeros of ζ(z) lie on the line <(z) = 1

2 . This hypothesis
has attracted much attention for over a century because
there is a deep connection with number theory and other
branches of mathematics. However, the hypothesis has
not been proved or disproved. Any advance in under-
standing the zeta function would be of great interest in
mathematical science, whether or not one succeeds in fi-
nally proving or falsifying the hypothesis.

In this Letter we examine the Riemann hypothesis by
constructing and studying an operator Ĥ that plays the
role of a Hamiltonian. The conjectured property of Ĥ
is that its eigenvalues are exactly the imaginary parts
of the nontrivial zeros of the zeta function. The idea
that the imaginary parts of the zeros of ζ(z) might cor-
respond to the eigenvalues of a Hermitian, self-adjoint
operator (assuming the validity of the Riemann hypoth-
esis) is known as the Hilbert-Pólya conjecture. Research

into this connection has intensified following the observa-
tion that the spacings of the zeros of the zeta function on
the line <(z) = 1

2 and the spacings of the eigenvalues of
a Gaussian unitary ensemble of Hermitian random ma-
trices have the same distribution [2–4]. Berry and Keat-
ing conjectured that the classical counterpart of such a
Hamiltonian would have the form H = xp [5, 6]. How-
ever, a Hamiltonian possessing this property has hith-
erto not been found (see [7] for a detailed account of the
Berry-Keating programme and its extensions).

We propose and consider the Hamiltonian

Ĥ =
1

1− e−ip̂
(x̂p̂+ p̂x̂) (1− e−ip̂). (1)

Our main findings are as follows: (i) The non-Hermitian
Hamiltonian Ĥ in (1) formally satisfies the conditions of
the Hilbert-Pólya conjecture. That is, if the eigenfunc-
tions of Ĥ are required to satisfy the boundary condition
ψn(0) = 0 for all n, then the eigenvalues {En} have the
property that { 1

2 (1− iEn)} are the nontrivial zeros of the
Riemann zeta function. (ii) The Hamiltonian Ĥ reduces
to the classical Hamiltonian H = 2xp when x̂ and p̂ com-
mute, in agreement with the Berry-Keating conjecture.
We derive the corresponding boundary condition that
leads to the quantization of the Berry-Keating Hamil-
tonian ĥBK = x̂ p̂ + p̂ x̂. (iii) Although Ĥ is not Hermi-
tian, iĤ is PT symmetric; that is, iĤ is invariant under
parity-time reflection (in the sense to be defined), which
means that the eigenvalues of iĤ are either real or else
occur in complex-conjugate pairs. If iĤ has maximally
broken PT symmetry; that is, if all of its eigenvalues are
pure-imaginary complex-conjugate pairs, then the eigen-
values of Ĥ are real and the Riemann hypothesis follows.
(iv) While Ĥ is not Hermitian (symmetric) with respect
to the conventional L2 inner product, we introduce an
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alternative inner product such that 〈Ĥϕ, ψ〉 = 〈ϕ, Ĥψ〉
for all ϕ(x) and ψ(x) belonging to the linear span of the
eigenstates of Ĥ. (v) If the Riemann hypothesis is cor-
rect, then the eigenvalues of Ĥ are nondegenerate, and
conversely if there are nontrivial roots of ζ(z) for which
<(z) 6= 1

2 then the corresponding eigenvalues and eigen-
states are both degenerate.
Preliminaries. The Hamiltonian Ĥ in (1) is a similarity
transformation of the formally Hermitian local Hamilto-
nian x̂p̂ + p̂x̂ via the nonlocal operator ∆̂ := 1 − e−ip̂.
We must therefore identify properties of the operators
∆̂ and ∆̂−1. We work in units for which ~ = 1, so the
momentum operator is p̂ = −i∂x. Thus, e−ip̂ is a shift
operator if it acts on functions f(x) that have a Taylor
series about x with radius of convergence greater than
one. In this case ∆̂ is a difference operator:

∆̂f(x) = f(x)− f(x− 1). (2)

Because ∆̂ annihilates unit-periodic functions, it does not
have an inverse in the space of all smooth functions. How-
ever, we shall be interested in functions that vanish as
x→∞. With this in mind, by taking a series expansion
of (1− e−ip̂)−1 we may define ∆̂−1 as (cf. [8])

∆̂−1f(x) =
1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
f(x), (3)

where {Bk} are the Bernoulli numbers [9], with the con-
vention that B1 = − 1

2 . For some functions f(x) this
formal series diverges but it is Borel summable. The op-
erator (ip̂)−1 is interpreted as an integral operator with
boundary at infinity:

1

ip̂
g(x) =

∫ x

∞
dt g(t).

Then ∆̂−1 defined in (3) has the property that if f(x)
vanishes at infinity, then we have ∆̂−1∆̂f(x) = f(x).
Eigenfunctions and eigenvalues. The solutions to the
eigenvalue differential equation Ĥψ = Eψ are given in
terms of the Hurwitz zeta function ψz(x) = −ζ(z, x+ 1)
on the positive half line R+ (the negative sign is our
convention), with eigenvalues i(2z − 1). To see this, we
multiply the eigenvalue equation Ĥψ = Eψ on the left
by ∆̂. This gives a first-order linear differential equation
(x̂p̂+p̂x̂)∆̂ψ = E∆̂ψ for the function ∆̂ψ, whose solution
is unique and is given by ∆̂ψ = x−z for some z ∈ C, up
to a multiplicative constant. To proceed, let us calculate

∆̂−1x−z =
1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
(ip̂)

x1−z

1− z

=
1

1− z

∞∑
n=0

Bn
(−ip̂)n

n!
x1−z.

Since ip̂ = ∂x and ∂nx x
µ = [Γ(µ+ 1)/Γ(µ− n+ 1)]xµ−n,

we set µ = 1− z to obtain the asymptotic series

∆̂−1x−z ∼ Γ(2− z)
1− z

∞∑
n=0

Bn
(−1)n

n!
x1−z−n

Γ(2− z − n)
, (4)

which is valid in the limit as x→∞. To obtain the Borel
sum [10] of the series, we use the integral representation

1
Γ(2− z − n)

=
1

2πi

∫
C

du eu un+z−2,

where C denotes a Hankel contour that encircles the
negative-u axis in the positive orientation [9]. Hence,

∆̂−1x−z =
Γ(1− z)

2πi
x1−z

∫
C

du eu uz−2
∞∑
n=0

Bn
(−u/x)n

n!

=
Γ(1− z)

2πi
x−z

∫
C

du
euuz−1

1− e−u/x
.

Finally, we let u/x = t and get

∆̂−1x−z =
Γ(1− z)

2πi

∫
C

dt
exttz−1

1− e−t
,

which we recognise as the negative of the integral repre-
sentation for the Hurwitz zeta function [9]. (An analo-
gous result was obtained in a different context in [11].)
It follows that ψz(x) = −ζ(z, x + 1) up to an additive
unit-periodic function, but Ĥψ = Eψ implies that the
periodic function must be identically zero. We thus de-
duce that ψz(x) = −ζ(z, x + 1) is the solution to the
eigenvalue differential equation with eigenvalue i(2z−1):

Ĥψz(x) = ∆̂−1 (x̂p̂+ p̂x̂)x−z = i(2z − 1)ψz(x).

Next, we impose the boundary condition that ψz(0) =
0 on the class of functions ψz(x) that satisfy the eigen-
value differential equation. This yields a countable set of
eigenfunctions of Ĥ. (Since Ĥ is similar to a first-order
differential operator, we impose just one boundary con-
dition.) The choice of the boundary condition ψz(0) = 0,
as discussed below, is motivated by our requirement that
p̂ should be symmetric. Because −ψz(0) = ζ(z) is the
Riemann zeta function, the boundary condition that we
have used implies that z must belong to the discrete set
of zeros of ζ(z).

The zeros of the Riemann zeta function may be ei-
ther trivial or nontrivial. It follows from (4) that for
the trivial zeros z = −2n (n = 1, 2, 3, . . .) we have
ψz(x) = −B2n+1(x + 1)/(2n + 1), where Bn(x) is a
Bernoulli polynomial [9]. In this case |ψz(x)| grows like
x2n+1 as x→∞. For the nontrivial zeros ψz(x) oscillates
and |ψz(x)| grows sublinearly. In particular, it follows
from (4) that for large x we have ψz(x) ≈ x1−z/(1− z).
Thus, for the trivial zeros ∆̂ψz(x) blows up, but for
the nontrivial zeros ∆̂ψz(x) goes to zero as x → ∞.
The eigenstates associated with the trivial zeros violate
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the orthogonality relation discussed below and the eigen-
states associated with the nontrivial zeros do not. These
indicate that the eigenstates associated with the trivial
zeros do not belong to the domain of Ĥ. Therefore, under
the boundary condition ψ(0) = 0, the nth eigenstate of
the Hamiltonian (1) is ψn(x) = −ζ(zn, x+ 1); the eigen-
values En = i(2zn − 1) are discrete and zn = 1

2 (1− iEn)
are the nontrivial zeros of the Riemann zeta function.
The Riemann hypothesis is valid if and only if these
eigenvalues are real.

The analysis above establishes a complex extended ver-
sion of the Berry-Keating conjecture [12]. We are not
able to prove that the eigenvalues of Ĥ are real; neverthe-
less, in what follows we present a heuristic analysis that
suggests that the eigenvalues are real. Specifically, we
first investigate symmetry properties of Ĥ, which shows
that iĤ is PT -symmetric and Ĥ is pseudo-Hermitian.
This allows us to obtain a quantization of the Berry-
Keating Hamiltonian ĥBK = x̂ p̂+ p̂ x̂ that is isospectral
to Ĥ. We then make use of the biorthogonality proper-
ties of the eigenstates of Ĥ to introduce an inner product
which makes Ĥ Hermitian.
Relation to pseudo-Hermiticity. To gain some intuition
about the reality of the eigenvalues of the Hamiltonian,
we remark first that iĤ is PT symmetric [13, 14] in the
following sense. Under conventional parity-time reflec-
tion, if p̂ is a momentum and x̂ is a coordinate, we have
PT : (x̂, p̂) −→ (−x̂, p̂). However, we consider instead
the variables where the roles of position x̂ and momen-
tum p̂ are interchanged [15]. We then define parity-time
reflection as PT : (x̂, p̂) −→ (x̂,−p̂). Therefore, since
PT : i −→ −i, we deduce that iĤ is invariant under this
modified PT reflection. It follows that the eigenvalues of
iĤ are either real (if the PT symmetry is unbroken in the
sense that the associated eigenstates are also eigenstates
of PT ), or else they form complex-conjugate pairs (if the
PT symmetry is broken in the sense that the associated
eigenstates are not eigenstates of PT ). If the PT sym-
metry is maximally broken for iĤ, then the eigenvalues
of Ĥ would be real, and the Riemann hypothesis would
hold. In our case, since PT ψn(x) = ψ−n(x), the PT
symmetry is indeed broken for all complex values of zn.
(For the trivial zeros the PT symmetry is unbroken.)

Let us now assume that the momentum operator p̂ is
Hermitian (symmetric); that is, the action of p̂† agrees
with that of p̂ on the domain of Ĥ. Here † denotes the
adjoint with respect to the standard inner product on
L2(R+). Then the Hermitian adjoint of Ĥ is

Ĥ† = (1− eip̂) (x̂p̂+ p̂x̂)
1

1− eip̂
. (5)

Therefore, if we define the operator η̂ according to

η̂ = sin2 1
2 p̂,

which is nonnegative, bounded, and Hermitian under the
assumption, we get Ĥ† = η̂Ĥη̂−1, i.e. Ĥ is pseudo-

Hermitian in the sense of [16]. Assuming that p̂ is Her-
mitian, there exists an associated Hermitian Hamiltonian
ĥ obtained by conjugating Ĥ with an operator ρ̂ satis-
fying ρ̂†ρ̂ = η̂, that is, ρ̂Ĥρ̂−1 = ĥ. Letting ρ̂ = sin 1

2 p̂,
we obtain ĥ = x̂ p̂ + p̂ x̂ + ~p̂. We include Planck’s con-
stant ~ explicitly here because it indicates that the linear
momentum term is a quantum anomaly; this term van-
ishes in the classical limit ~ → 0 [15]. Alternatively, by
letting ρ̂ = ∆̂ we obtain the Berry-Keating Hamiltonian
ĥBK = x̂ p̂+ p̂ x̂, whose eigenstates are φBK

z (x) = x−z.
The associated Hamiltonian ĥ is unique up to unitary

transformations, so there are infinitely many formally
Hermitian Hamiltonians that are similar to Ĥ [12]. If
both η̂ and η̂−1 are positive, bounded, and Hermitian,
then the Hamiltonians Ĥ and ĥ are isospectral [17]. As-
suming that p̂ is Hermitian, these operators are indeed
Hermitian and nonnegative, but η̂−1 is not bounded.
Nevertheless, we can show by a direct calculation that
Ĥ and ĥ are in fact isospectral. Furthermore, since the
map from the eigenstates {ψn(x)} of Ĥ to the eigen-
states {φn(x)} of ĥ is governed by ρ̂, we can identify
the quantisation condition for the eigenstates of the as-
sociated Hamiltonians explicitly by using the relation
2i sin 1

2 p̂ ψz(x) = ψz(x + 1
2 ) − ψz(x − 1

2 ). For the Berry-
Keating Hamiltonian, the condition ψz(0) = 0 leads to

lim
x→0

[
φBK
z (x)− ζ(z, x− 1)

]
= 0,

or equivalently, limx→1 φ
BK
z (x) = − limx→1 ζ(z, x+ 1).

Biorthogonal states. Let us proceed under the assump-
tion that p̂ is Hermitian. Because Ĥ is not Hermitian,
its eigenstates {ψn(x)} are not orthogonal. Nevertheless,
by considering the eigenstates {ψ̃n(x)} of Ĥ† we obtain
a biorthogonal set of eigenstates [17], provided that Ĥ†

is the Hermitian adjoint of Ĥ. Bearing in mind that ∆̂†

is the forward difference operator, a calculation shows
that ψ̃n(x) = x−zn − (x + 1)−zn and that Ĥ†ψ̃n(x) =
i(2zn − 1)ψ̃n(x). Using {ψ̃n(x)}, we introduce an inner
product on the space of functions spanned by {ψn(x)} as
follows. For any ψ(x) =

∑
n cnψn(x) we define its associ-

ated state by ψ̃(x) =
∑
n cnψ̃n(x). The inner product of

a pair of such functions ψ(x) and ϕ(x) is then defined by
〈ϕ,ψ〉 = 〈ϕ̃|ψ〉 :=

∫∞
0
ϕ̃(x)ψ(x)dx. Alternatively stated,

since ϕ̃(x) = η̂ϕ(x), we have 〈ϕ,ψ〉 = 〈ϕ|η̂|ψ〉; that is,
the positive Hermitian operator η̂ plays the role of the
metric (or equivalently the CP operator [18]).

For Ĥ in (1) the inner-product space constructed above
is not a Hilbert space because, as we will see, the elements
of the vector space have infinite norm. However, the ele-
ments of {ψn(x)} and those of {ψ̃n(x)} are biorthogonal
provided that {zn} belongs to the nontrivial zeros of the
Riemann zeta function. To see this, let us consider the
inner product 〈ψ̃m|ψn〉. Observing that

ψ̃m(x) = ∆̂†∆̂ψn(x) = ∆̂†∆̂∆̂−1x−zm = ∆̂†x−zm ,
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and recalling that ψn(x) = ∆̂−1x−z, we find that

〈ψ̃m|ψn〉 =
∫ ∞

0

dxx−z̄m∆̂∆̂−1x−zn

=
∫ ∞

0

dxx−1+i(En−Ēm)/2. (6)

Thus, if Ēm = Em (that is, if the Riemann hypothesis is
correct), then (6) is a Dirac delta function 4πδ(En−Em).
It follows that for m 6= n we have

〈ψ̃m|ψn〉 = 0 (7)

in the distributional sense, as required by the biorthog-
onality condition. In contrast, for the trivial zeros, the
integral (6) diverges too rapidly to be interpreted as a
tempered distribution.

In terms of the inner product introduced above, and
assuming that p̂ is Hermitian (symmetric), we find, using
∆̂†∆̂ = η̂, that

〈Ĥϕ, ψ〉 =
∫ ∞

0

dx ϕ̄(x)∆̂†(x̂ p̂+ p̂ x̂)(∆̂†)−1∆̂†∆̂ψ(x)

=
∫ ∞

0

dx ϕ̄(x)∆̂†∆̂∆̂−1(x̂ p̂+ p̂ x̂)∆̂ψ(x)

= 〈ϕ, Ĥψ〉.

This shows that, from the assumption that p̂ is Hermi-
tian, we may conclude that Ĥ is Hermitian (symmetric)
with respect to the new inner product.

As a further consequence of (6) and (7), if the Rie-
mann hypothesis is true, then the eigenvalues of Ĥ are
nondegenerate. Conversely, if the Riemann hypothesis is
false, then the eigenstates of Ĥ that correspond to non-
trivial zeros for which <(z) 6= 1

2 coalesce to give rise to
Jordan block structures in the Hamiltonian. This follows
from the fact that at such complex degeneracies (often
referred to as exceptional points), the eigenstates satisfy
the so-called self-orthogonality condition 〈ψ̃n|ψn〉 = 0.
These findings may have an implication on whether the
zeros of ζ(z) are simple: It is known that if the Riemann
hypothesis holds true, then at least 19/27 of the non-
trivial zeros are simple [19]. However, if there exists a
one-to-one correspondence between the boundary condi-
tion on the eigenstates of Ĥ and the secular equation for
the eigenvalues of Ĥ, then it follows that the validity of
the Riemann hypothesis implies that all roots are sim-
ple, and conversely any nontrivial zero of ζ(z) for which
<(z) 6= 1

2 cannot be simple.
Boundary condition revisited. For finite-dimensional non-
degenerate matrices, the biorthogonality relation (7) im-
plies that Ĥ† defined in (5) is the Hermitian adjoint of
Ĥ. However, in infinite-dimensional vector spaces the
completeness of the states {ψn(x)} is required to arrive
at this conclusion. Nevertheless, the relation (7) suggests
that our Hermiticity assumption of p̂ is valid, making ĥ
manifestly Hermitian.

Encouraged by this observation, we ask whether the
momentum operator p̂ is Hermitian (symmetric) on the
inner-product space defined above. Because [p̂, η̂] = 0,
the Hermiticity of p̂ on 〈·, ·〉 follows if the boundary terms
vanish under an integration by parts when the elements
of {ψn(x)} and those of {ψ̃n(x)} are paired. Note that
ψ̃n(x) diverges at x = 0, so ψn(x) must vanish sufficiently
fast at x = 0 to ensure the vanishing of the boundary
terms. [The divergence of {ψn(x)} at x =∞ is compen-
sated by the vanishing of {ψ̃n(x)} as x → ∞.] One can
verify that imposing ψn(0) = 0 is sufficient to guarantee
the vanishing of the boundary term at the origin. Thus,
the Hermiticity of p̂ on 〈·, ·〉 follows from the boundary
condition ψn(0) = 0.

Relation to quantum mechanics. Since the operator Ĥ is
a function of the canonical variables (x̂, p̂), we have re-
ferred to it as a Hamiltonian. However, the connection of
this Hamiltonian to physical systems is at best tenuous
because the eigenstates of Ĥ in our inner-product space
are not normalizable. This is not a concern for our analy-
sis but in quantum mechanics normalizability is required
for a probabilistic interpretation.

A possible way of making a connection to quantum
theory is to introduce a regularization scheme, for ex-
ample, by letting x ∈ [Λ−1,Λ], renormalizing the states
according to ψn(x) → (ln Λ)−1/2ψn(x), and then taking
the limit Λ→∞. Interestingly, the expectation value of
the position operator ρ̂−1x̂ρ̂ in the state ψn(x) for any n
in the renormalized theory is Λ/ ln Λ, which for large Λ
gives the leading term in the counting of prime numbers
smaller than Λ.

Discussion. We have presented a formal argument show-
ing that the eigenvalues of the Hamiltonian Ĥ in (1),
whose classical limit is 2xp, correspond to the nontrivial
zeros of the Riemann zeta function. Identifying the do-
main of Ĥ remains a difficult and open problem. We hope
that further analysis of the properties of Ĥ, such as iden-
tifying its domain and establishing its self-adjointness,
will prove the reality of the eigenvalues, and thus the
veracity of the Riemann hypothesis. The possibility of
extending the Hilbert-Pólya program to non-Hermitian
PT -symmetric operators has been noted [20]. We hope
that our findings will significantly boost research in this
direction. The fact that iĤ is PT symmetric, with a bro-
ken PT symmetry, offers a fresh and optimistic outlook.
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