-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Brunel University Research Archive

Home Search Collections Journals About Contactus My IOPscience

The reconstruction software for the MICE scintillating fibre trackers

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 JINST 11 T12001
(http://iopscience.iop.org/1748-0221/11/12/T12001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.83.1.241
This content was downloaded on 06/03/2017 at 09:15

Please note that terms and conditions apply.

You may also be interested in:

The MICE scintillating-fibre tracker
T Matsushita

The design and construction of the MICE Electron-Muon Ranger
R. Asfandiyarov, P. Bene, A. Blondel et al.

MICE Step 1: First measurements of emittance using particle physics detectors
David Adey and the MICE collaboration

The Reconstruction Software for the Muon lonization Cooling Experiment Trackers
A Dobbs, K Long, E Santos et al.

Muon colliders are back in the running
Martin Griffiths

Local reconstruction software for the CMS silicon strip tracker
R J Bainbridge, J Cole, J Fulcher et al.

RF induced backgrounds in MICE
J Norem, D Li, A Bross et al.



https://core.ac.uk/display/362648721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/11/12
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/110/12/122016
http://iopscience.iop.org/article/10.1088/1748-0221/11/10/T10007
http://iopscience.iop.org/article/10.1088/1742-6596/408/1/012063
http://iopscience.iop.org/article/10.1088/1742-6596/513/2/022008
http://iopscience.iop.org/article/10.1088/2058-7058/19/3/22
http://iopscience.iop.org/article/10.1088/1742-6596/119/2/022009
http://iopscience.iop.org/article/10.1088/0954-3899/29/8/333

’ inst PuBLISHED BY IOP PUBLISHING FOR SissA MEDIALAB

REecEIvED: October 27, 2016
AccepTED: November 15, 2016
PuBLISHED: December 6, 2016

TECHNICAL REPORT

The reconstruction software for the MICE scintillating
fibre trackers

A. Dobbs,*! C. Hunt,” K. Long,* E. Santos,*> M.A. Uchida,” P. Kyberd,” C. Heidt,* S. Blot%>
and E. Overton®
4 Imperial College London,

Exhibition Road, London, SW7 2AZ, U.K.

b Brunel University London,
Kingston Lane, Uxbridge, Middlesex, UBS 3PH, U.K.
¢ University of California Riverside,
900 University Ave, Riverside, CA 92521, U.S.A.
4 University of Chicago,
Edward H. Levi Hall, 5801 South Ellis Avenue, Chicago, Illinois, U.S.A.
¢ University of Sheffield,
Western Bank, Sheffield, S10 2TN, U.K.

E-mail: adobbs@imperial.ac.uk

ABsTRACT: The Muon Ionization Cooling Experiment (MICE) will demonstrate the principle of
muon beam phase-space reduction via ionization cooling. Muon beam cooling will be required for
the proposed Neutrino Factory or Muon Collider. The phase-space before and after the cooling
cell must be measured precisely. This is achieved using two scintillating-fibre trackers, each
placed in a solenoidal magnetic field. This paper describes the software reconstruction for the
fibre trackers: the GEANT4 based simulation; the implementation of the geometry; digitisation;
space-point reconstruction; pattern recognition; and the final track fit based on a Kalman filter. The
performance of the software is evaluated by means of Monte Carlo studies and the precision of the
final track reconstruction is evaluated.

Keyworbps: Pattern recognition, cluster finding, calibration and fitting methods; Particle tracking
detectors; Muon spectrometers; Performance of High Energy Physics Detectors

ARrRX1v EPrRINT: 1610.05161

!Corresponding author.
2Now at Winton Capital Management.
3Now at Deutsches Elektronen-Synchrotron.

Published under the terms of the Creative Commons Attribution 3.0 License by IOP
oy Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must doi:10.1088/1748-0221/11/12/T12001

maintain attribution to the author(s) and the published article’s title, journal citation and DOI.


mailto:adobbs@imperial.ac.uk
https://arxiv.org/abs/1610.05161
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1088/1748-0221/11/12/T12001

Contents

The MICE experiment
1.1  Overview

1.2 The scintillating fibre trackers

Coordinate systems and reference surfaces
2.1 Channels and digits

2.2 Planes and clusters

2.3 Stations and spacepoints

2.4 Trackers and tracks

The MAUS framework

Data structure
4.1 General MAUS, Monte Carlo and DAQ data structures
4.2 Tracker reconstruction data structure

Geometry
Simulation

Reconstruction

7.1 Digitization

7.2 Cluster reconstruction

7.3 Spacepoint reconstruction

7.4 Pattern recognition
7.4.1 Helical pattern recognition
7.4.2  Straight line pattern recognition

7.5 Track fit

Performance
8.1 Kuno’s conjecture
8.2 Track finding efficiency

8.3 Position and momentum resolution

Conclusion

(VST \S)

nw L A AW

10
10
10
10
11
11

12
12
12
13

13




1 The MICE experiment

1.1 Overview

The Muon Ionization Cooling Experiment (MICE) will perform a practical demonstration of muon
ionization cooling. Cooling refers to a reduction in the emittance of a beam, that is, the reduction
of the phase-space volume occupied by the beam. Beam cooling is required for any future facility
based on high intensity muon beams, such as a Neutrino Factory [1], the ultimate tool to study
leptonic CP-invariance violation, or a Muon Collider [2], a potential route to multi-TeV lepton
— anti-lepton collisions. Muon beams are generated via pion decay, and therefore have a large
emittance, which must be reduced so that a reasonable fraction of the beam will fall within the
acceptance of the downstream acceleration system.

The short muon lifetime requires fast beam cooling that traditional techniques are unable to
provide. Ionization cooling was proposed in the early 1970s [3, 4], but has not yet been demonstrated
at the energies of interest for the Neutrino Factory or Muon Collider. Ionization cooling reduces
emittance by passing a beam through some suitable material of low atomic-number such as liquid
hydrogen. This leads to the reduction of all components of momentum due to ionization energy
loss. Low atomic number absorbers are preferred because they minimise multiple scattering which
“heats” the beam.

MICE is sited at the Science and Technology Facilities Council Rutherford Appleton Laboratory
in the U.K. and exploits the ISIS proton synchrotron to generate the muon beam [5]. The MICE
beam line is described in detail in [6]. A schematic of the full MICE experiment is shown in figure 1.
The beam line is instrumented with two threshold Cherenkov detectors, three time-of-flight (TOF)
stations and a downstream calorimeter. The cooling cell consists of three absorber modules and two
radio frequency (RF) cavities. Two high-precision trackers in a solenoidal field are used to measure
the emittance change (see section 1.2).

MICE is a staged experiment, built and run in distinct steps. The first step of the programme,
consisting of the muon beam line with particle identification, is now complete and results are
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Figure 1. The beam diagnostics and cooling cell (indicated in green). M refers to matching coils, £ to end
coils and C to the centre coils. Particle identification is provided by three time-of-flight stations, two threshold
Cherenkov detectors and a downstream calorimeter composed of a pre-shower detector and an electron-muon
ranger. Emittance is measured upstream and downstream of the cooling cell using spectrometers. A diffuser
is used to increase the beam emittance prior to the upstream spectrometer. Ionization energy loss occurs as
the beam passes through the absorbers, while acceleration is providing by radio frequency cavities.



Station 1 .
Station 2
Station 3

Station 5

Figure 2. Left: a schematic of the tracker carbon-fibre frame. The fibre planes are glued on to the
upstream edge of the carbon-fibre station frames (shown in green). The longitudinal coordinate of the tracker
coordinate system (z;) increases as one moves from the fibre plane towards the station frame to which it is
attached. Right: a photograph of a tracker. The colour is due to the filtered lighting needed to protect the
scintillating-fibres. The intersecting lines visible on the station faces indicate the direction of the fibres in
each plane.

available in [6-9]. The present step of the program, which introduced the trackers and the first
absorber module, began taking data in 2015.

1.2 The scintillating fibre trackers

MICE is equipped with two identical, high precision scintillating-fibre (“scifi”’) trackers, described
in [10]. Each tracker is placed in a superconducting solenoid that provides a uniform field over the
tracking volume. One tracker, TKU, is upstream of the cooling cell, the other, TKD, downstream.
Each tracker consists of 5 detector stations, labelled 1 to 5, as illustrated in figure 2. TKU is
orientated such that Station 5 sees the beam first, TKD is rotated by 180° such that Station 1 sees
the beam first, thus, in both trackers, Station 1 is always nearest to the cooling cell (see figure 1).

Each station is formed of three planes of 350 um scintillating-fibres, orientated at 120 degrees
to one another. The fibres in each plane are arranged in two layers offset with respect to each other
(a “doublet layer™), in order to give 100% coverage of the plane area as illustrated in figure 3. The
doublet layer is glued on to a sheet of mylar. The fibres are collected into groups of seven for readout,
each group forming a single channel, as illustrated in figure 3b. The planes, also known as views,
are labelled U, V and W. Plane U is attached to the station frame directly, plane W on to plane U,
and plane V on to plane W. The fibre-plane orientations are illustrated in figure 4. Each station is
oriented such that the fibres in the U plane are vertical. The fibres produce scintillation light when
ionizing radiation passes through them. Clear-fibre light guides transport the scintillation light to
visible light photon counters (VLPCs) that are operated at 9 K in a cryostat [10]. The signal from
the VLPC:s is digitised using front-end electronics developed by the DO experiment [11].

2 Coordinate systems and reference surfaces

The planes, stations and trackers themselves each have a coordinate system defined as described
below. Coordinates with subscript p will refer to the plane coordinate system, s to the station
coordinate system and ¢ to the tracker coordinate system.
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Figure 3. (a) Arrangement of the doublet layers in the scintillating-fibre stations. The outer circle shows the
solenoid bore while the inner circle shows the limit of the active area of the tracker. The arrows indicate the
direction that the individual 350 um fibres run. (b) Detail of the arrangement of the scintillating-fibres in a
doublet layer. The fibre spacing and the fibre pitch are indicated on the right-hand end of the figure in um.
The pattern of seven fibres shown in red form a single channel, which is read out via a clear-fibre light-guide.
The sheet of mylar glued to the doublet layer is indicated.

TKU Station 5 TKD Station 1

Figure 4. The orientation of the fibres in each plane, as seen by the incoming beam, for both trackers. The
green object is the station frame.

2.1 Channels and digits

The V and W planes each consist of 214 channels, labelled 0 to 213, while the U plane has 212
channels, labelled O to 211. The channel number increases from left to right if a plane is placed
mylar side up, with the fibre readout pointing downwards, as illustrated in figure 5.

2.2 Planes and clusters

Each plane is assigned an integer known as the plane number: plane V is assigned 0; plane W is
assigned 1; and plane U is assigned 2. The plane reference surface is defined to be the flat plane
that is formed by the outer surface of the mylar sheet. The measured position perpendicular to the
direction of the fibres in each plane is labelled @ € (v,u, w), defined to increase in the opposite
direction to the channel number with zero as the mid-point of the central channel. « is then given
by @ = (Ncc — Ncn) X d, where N¢c is the central channel number, N¢j, is the channel number
and d is the channel width.

The z axis of the plane coordinate system is defined to be perpendicular to the plane reference
surface and points in the direction from the mylar sheet towards the fibres. The direction in which
the fibres run defines the final plane coordinate, 8, completing a right-handed coordinate system.
The origin of the (@, 8) coordinate system is taken to be at the centre of the circular active area of
the plane.
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Figure 5. (a) The channel numbering within a plane, and the (a, B, z,) plane coordinate system (a right-
handed system). (b) The fibre plane ordering with respect to the station body and the (xj, ys, z5) station
coordinate frame (a right-handed system). In TKU the beam approaches from the right, in TKD from the
left. Note that z is by definition equivalent to z,, of the V plane.

2.3 Stations and spacepoints

The station reference surface is defined to coincide with the reference surface of the V doublet-layer.
The station coordinate system is defined such that the x axis is coincident with the u coordinate
(that is, a for the U layer), the z; axis is coincident with the z,, axis of the V layer and the y, axis
completes a right-handed coordinate system.

2.4 Trackers and tracks

Each tracker is assigned an integer known as the tracker number: TKU is assigned 0 and TKD
is assigned 1. The tracker reference surface is defined to coincide with the reference surface of
Station 1. The tracker coordinate system is defined such that the z; axis coincides with the axis of
cylindrical symmetry of the tracker as shown in figure 2. The tracker z; coordinate increases from
Station 1 to Station 5. The tracker x; axis is defined to coincide with the x axis of Station 1 and
the tracker y, axis completes a right-handed coordinate system.

3 The MAUS framework

The tracker software is part of the MICE software framework, known as MAUS (MICE Analysis
User Software) [12]. MAUS is used to perform Monte Carlo simulation and both online and offline
data reconstruction. It is built using a combination of C++ and Python, with C++ being used
for more processor-intensive tasks and Python being used more in the code presented to the user.
Simulation is based on GEANT4 [13], with analysis based on ROOT [14]. ROOT files are used as
the primary output data format.

MAUS programmes are defined in a Python script together with a configuration file. This script
allows the user to create programmes by combining different MAUS modules depending on the
task at hand, following the Map-Reduce programming model [15]. The object passed between the
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Figure 6. The tracker software data structure and relevant MAUS data structure. The spill is the top level
object below which branches hold real-data, MC data and reconstructed data objects. When an object owns
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modules is known as a “spill”, representing the data associated with one spill of particles passing
through the MICE beam line (see [6]). The modules come in four types: Input; Output; Map; and
Reduce. Input modules provide the initial data to MAUS, from a data file, or from the MICE data
acquisition system (DAQ). Maps perform most of the simulation and analysis work and may be
processed in parallel across multiple nodes. Reducers are used to display output, such as for online
reconstruction plots, and are capable of accumulating data sent from maps over multiple spills, but
must be run in a single thread. Output modules provide data persistency.

The tracker software consists of 7 maps and a reducer. The maps cover: digitisation of
Monte Carlo data; digitisation of real DAQ data; the addition of noise to Monte Carlo data; cluster
reconstruction; spacepoint reconstruction; pattern recognition; and the final track fit. The reducer
provides real time information on the tracker performance.

4 Data structure

4.1 General MAUS, Monte Carlo and DAQ data structures

A simplified schematic of the tracker data structure, with the relevant entries from the more general
MAUS data structure, is shown in figure 6. All the objects listed represent container classes for
different parts of the simulation, raw data and reconstruction. The top-level object is the spill (see
section 3). Within the spill the data is split into three branches: real-data from the DAQ; Monte
Carlo data generated by simulation; and reconstructed data, which is formed from data in either the
real or Monte Carlo branches.



The reconstruction code makes no direct reference to the Monte Carlo information and has no
way to distinguish real from simulated data, thus ensuring that they are treated equally. The DAQ
data is held in an object known as TrackerDAQ, within which the data is sub-divided according to
the DAQ system it originated from.

The Monte Carlo event holds data on “scifi hits” produced by tracks passing through the fibre
planes and any noise hits originating in those planes. The scifi hit is implemented as a class based
on the generic hit-class template from which all the different MICE detector-hit classes are derived.
Other relevant data held in the Monte Carlo event, though not part of the tracker data structure,
include the simulated tracks and “virtual hits” which contain information of the track state at their
location. Such data is used to evaluate the reconstruction performance against the original simulated
data (see section 8).

4.2 Tracker reconstruction data structure

The reconstructed data for the tracker is held in the “scifi event” class. This contains vectors of the
following container classes that represent the higher-level reconstructed tracker-data:

» “Digits” contain the analogue-to-digital converter (ADC) counts (real or simulated) from the
readout of a single channel in response to an incident track;

e “Clusters” are groups of neighbouring digits arising from a particle crossing one or two
channels;

» “Spacepoints” group clusters from adjacent detector planes to give a point in tracker
coordinates;

» “Straight pattern recognition tracks” group together spacepoints from different tracker stations
when the track that produced the hits was straight (i.e. when the magnetic field is off);

» “Helical pattern recognition tracks” group together spacepoints from different tracker stations
when the track that produced the hits was helical (i.e. when the magnetic field is on);

* “Scifi tracks” hold the final Kalman fit parameters of the particle track; and

» “Trackpoints” hold the fit parameters at each detector plane, including the momentum and
position of the track.

Each of these objects is stored directly in the scifi event object, with the exception of trackpoints
which are stored in the associated scifi tracks. Each higher-level object also contains cross links
in the form of pointers back to the objects within the scifi event which were used to create it. In
this manner all higher-level objects can be traced back to the original digits. In the case of a Monte
Carlo run the digits themselves are linked via an ID number and lookup table back to the scifi hits
used to produce them. The ID is defined as zspc, where t is the tracker number, s is the station
number, p is the plane number and c is the channel number (given with three numerals e.g. 010 for
channel 10). This structure means the reconstruction branch has no direct reference to the Monte
Carlo data.



5 Geometry

The position of each tracker station was determined with respect to the tracker reference surface
using a coordinate measuring machine (see table 1). The station positions are stored in the MICE
configuration database (CDB). The CDB is a bi-temporal database, alterations being tracked by
date and run number [16]. Information is stored in the CDB as a collection of XML files which
are translated into the native MAUS format “MiceModules”, at run-time. The MiceModules are
text documents and contain all the information needed to simulate the various MICE systems and
detectors. MAUS uses the same geometry descriptions for both simulation and reconstruction.

In the description of the geometry MAUS adopts a passive rotation convention to be consistent
with GEANT4. The active volume of each tracker is given by a cylinder of 150 mm radius, which
is used to define the fiducial volume for the reconstruction. Alignment of the individual tracking
stations and the trackers themselves to the solenoid axis has been completed using real-data.

Table 1. The position of the tracker stations with respect to the tracker reference surface as measured by the
coordinate measuring machine.

Tracker 1 offsets in mm

Station 1 Station 2 | Station 3 | Station 4 | Station 5
X 0.0 -0.5709 -1.2021 -0.5694 0.0
Y 0.0 -0.7375 -0.1657 -0.6040 0.0
Z | -1099.7578 | -899.7932 | -649.9302 | -349.9298 0.0
Tracker 2 offsets in mm

Station 1 Station 2 | Station 3 | Station4 | Station 5
X 0.0 -0.4698 -0.6717 0.1722 0.0
Y 0.0 0.0052 -0.1759 -0.2912 0.0
Z | -1099.9026 | -899.009 | -650.0036 | -350.0742 0.0

6 Simulation

The simulation of the trackers makes use of the GEANT4 standard physics libraries to describe
particle motion through the fields and material of the beam line. The trackers are simulated on a
per-fibre basis and arranged into doublet-layer planes (as described in section 1.2). As particles
pass through the fibres scifi hits are generated, containing the energy deposited in the fibre.

The scifi hits are converted by the MAUS module used to digitise simulated tracker data
(MapCppTrackerMCDigitisation) into a number of photo-electrons (NPE) produced in the tracker
VLPCs by means of a simple conversion factor. At this point the NPE values are non-integer, and
are quantised by rounding down. These NPE values are then “smeared” to simulate the detector
response (the electron avalanche effect in the VLPCs). The smearing process involves modeling
this response as a Gaussian, the mean being given by the quantised NPE value and the width being
determined from data. Once the smearing is complete the signal is split into 28 bins to represent the



Raw Data (bin)

InputCppDAQOfflineData

MapCppTrackerPatternRecognition

n Patte
Spacepoint a E.".‘ PR Track

MapCppTrackerSpacePointRecon

MapCppTrackerDigits Spacepoint Recon

Real Digitisation

MapCppTrackerClusterRecon

A
,‘ Track Fitting Scifi Track

Cluster

Cluster Recon

MapCppTrackerTrackFit

MapCppTrackerMCDigitisation

MC Digitisation
Scifi Noise Hit

MapCppSimulation

= Real Data

Monte Carlo

MapCppTrackerMCNoise
e Reconstruction

MapPyBeamMaker

MC Particle

Figure 7. The reconstruction data flow. Data originates either from simulated or real-data, the two branches
merge after digitisation, after which the reconstruction proceeds identically. The relevant MAUS modules
for each step are indicated.

sampling of the 8 bit ADCs. The simulated ADC counts are then used together with the measured
calibration of each channel to give a final NPE value.

It is also possible to add noise to the digitisation process through the addition of an extra MAUS
module. Noise arises from thermally excited electrons in the VLPCs. The process is stochastic and
the rate is controlled by altering the bias voltage on the VLPCs to give 1 NPE in 1.5% of fibres
per particle trigger. The noise is generated as a Poisson distribution. The effect is modelled in
the software and used to introduce additional photo-electrons to the simulated signal prior to the
quantisation and smearing stage.

Once the final NPE value has been calculated it is combined with the channel number to form
a digit object. The digits are then added to the scifi event and sent on to the reconstruction modules.

7 Reconstruction

The reconstruction process begins with either real or simulated data and proceeds to reconstruct
progressively higher-level objects step-by-step, culminating in scifi tracks and trackpoints. The
digits, real or simulated, are passed to the same set of MAUS modules and the reconstruction
proceeds identically for either case. The reconstruction process is illustrated in figure 7 and is
described in the sections that follow.

7.1 Digitization

For real data the signals from the tracker ADCs are recorded by the DAQ system. Channel-by-
channel calibration constants are used to convert the ADC value to a signal in NPE and the DAQ
channel number to tracker channel number. This information is then used to form a digit. The
analogous process for Monte Carlo data is described in section 6.



7.2 Cluster reconstruction

The clustering algorithm loops over every combination of pairs of digits in a scifi event and combines
any that occur in neighbouring channels. In the case of a multi-digit cluster, the unweighted average
channel value is used to define the plane coordinate, @, and the NPE is summed.

7.3 Spacepoint reconstruction

For each station the constituent planes are searched for clusters that can be used to form a spacepoint.
Spacepoints are constructed from clusters from all three planes (a triplet spacepoint) or from any
two out of the three planes (a doublet spacepoint).

To determine which clusters from each plane originate from the same track, “Kuno’s conjecture”
is used: for a given triplet spacepoint the sum of the channel numbers of each cluster will be a
constant. So if n, n" and n" are the fibre numbers of the clusters in u, v and d and ng, n; and ny
are the corresponding central channel numbers. Three clusters form a space point if:

|(n" +n” +n") = (ny +ny +ny)| <K; (7.1)

where K is a constant, taken by default to be 3.0. The clusters are sorted according to NPE, with
higher NPE clusters being matched using Kuno’s conjecture first.

Once all triplet spacepoints have been found, doublet spacepoints are created from pairs of
the clusters that remain, the only selection criterion applied being that the crossing point of the
two channels is within the tracker radius. Spacepoint position is determined from the cluster
measurements, «, and the known plane orientations for those measurements.

7.4 Pattern recognition

Pattern recognition is based on looping over combinations of spacepoints from different stations
and performing a fit using a linear-least-squares technique. There are separate algorithms for the
straight-track (no field) case and the helical-track case.

7.4.1 Helical pattern recognition

The helical pattern recognition is performed in cylindrical co-ordinates (r, ¢, z), where r is the
helix radius, ¢ the turning angle in the transverse plane, and z is the longitudinal coordinate. An
additional coordinate, s, the distance the particle travels in the transverse plane, is also defined. The
helix is then parameterised by: the circle centre x., y. and the radius, r, in the transverse plane; sg
the value of s where the helix crosses the tracker reference plane; and ¢y = ds/dz, which describes
the tightness of the coiling.

To find a track, one spacepoint is selected from each station and a circle is fitted in the (r, ¢)
projection. If the y? of this fit is sufficiently small (by default less than 15.0 multiplied by the
number of degrees of freedom, NDF) then the value of ¢ is used to generate s. A straight-line fit
is then performed in the (z, s) plane and, if the y? in this projection is also small (by default less
than 4.0 multiplied by the NDF), the track is accepted as a track candidate. Once all the different
possible combinations of spacepoints have been tried the track candidate with the lowest combined
x? is selected. Once every possible track with a spacepoint in all 5 stations has been found, the
procedure is repeated looking for tracks with spacepoints in only 4 of the 5 stations.

~-10-



7.4.2 Straight line pattern recognition

The straight-track finding is performed in Cartesian coordinates. The track parameters are chosen
to be (xo, yo. tx, ty), where: (xo, yo) is the position at which the track crosses the tracker reference
surface; t, = dx/dz; and t, = dy/dz. Two spacepoints are chosen in the outer stations and a road
is created between them. Any spacepoints in the road are fitted in the (x, z) and (y, z) planes. If the
x? of the fits is small (by default less than 4.0 multiplied by the NDF) a candidate track is formed.
Once all possible spacepoint combinations have been tried the track candidate with the lowest y?
is selected. As in the helical case, following the completion of the full 5 point track search, tracks
with spacepoints in 4 out of the 5 stations are searched for. For the straight case only a final search
is also made for tracks with spacepoints in only 3 out of the 5 stations.

7.5 Track fit

The final track fit was implemented using a track-orientated Kalman filter [17, 18], which can be
shown to be an optimal linear fitter, that takes into account all correlations and measurements, for a
linear system. The Kalman filter is an iterative algorithm that incrementally propagates an estimate
of the current track state between measurement planes, using measurement information to “filter”
the state, improving the estimate of the track state.

For the helical-track fit, the system is only approximately linear, hence an extended Kalman
filter [19] was implemented which analytically propagates the track states between measurements,
while the covariance matrices are propagated using a first-order linear approximation to the non-
linear system. In contrast to pattern recognition, the Kalman Filter uses a different state-space
model, (x, px, ¥, py, q/p) rather than (x., y¢, r, 5o, ts). This permits energy loss and multiple
Coulomb scattering to be modelled linearly and implmentated using a simple set of algorithms.

A MAUS-specific implementation of the Kalman filter has been developed. In order to make
the implementation flexible and re-usable the core algorithm has no dependencies on phase-space
dimensions or physical effects. The principal components of the implementation are: propagation
routines for both helical and straight-tracks; a measurement routine that transforms the track state-
space into the measurement state-space; and approximations for the process and measurement noise.

Pattern recognition provides a set of clusters that are associated with a track, together with the
fitted parameters of the track. These parameters are used to provide the seed for the Kalman fit and
the cluster information is used as the measurement data. The flexibility of the Kalman algorithm
permits the effects of individual planes (multiple Coulomb scattering and energy loss) and the effect
of the helium gas within the tracker to be accounted for between each measurement point.

As the measurements correspond to individual clusters, the cluster parameter « (see section 2.2)
forms the one-dimensional measurement state. The measurement noise corresponds to the statistical
spread of measurements within a single channel of width d in the tracker readout. If the channel is
modelled as a top-hat function, the variance of the function is d?/12. Therefore the measurement
noise was taken to be d/ V12 for all clusters.

The process noise was implemented as a combination of multiple Coulomb scattering and
energy straggling. The energy loss is calculated using the Bethe formula [20], for the most probable
energy loss, and applied during the propagation stage. The noise term itself is calculated per
increment as an RMS scattering angle using an implementation of the Highland formula [21], in a
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fashion almost identical to the GEANT4 implementation:

13.6 MeV/c _ a a
OrMS = By ZXO (1 +0.0381n (Xo)) ; (7.2)
where Orys is the RMS scattering angle through a finite length of material, 8¢, p and Z are the
velocity, momentum and charge of the particle in question, a is the distance travelled and X the
radiation length of the material. Although the RMS scattering angle does not form a Gaussian

distribution, the first order approximation is believed to be sufficient.

8 Performance

A Monte Carlo simulation was used to determine the efficiency and resolution of the reconstruction
algorithms. Kuno’s conjecture was also checked to hold for clusters used to construct spacepoints.
The analysis was necessarily Monte Carlo based in order to compare the reconstructed events to the
simulated “truth”, thereby highlighting any inefficiencies and inaccuracies.

The fitted transverse positions, (x, y), and momenta, (px, py, p;), were compared to the Monte
Carlo truth on an event-by-event basis. The reconstruction of the Monte Carlo data followed the
same requirements that are used for the real-data reconstruction. The Monte Carlo truth data was
stored at every tracker plane (via virtual hits) to permit a direct comparison with the reconstructed
data. All comparisons were made at the tracker reference surface.

An artificial beam was generated with uniform distributions for both the longitudinal and
transverse momenta. This ensured that the results were not biased by the incoming beam distribution
and that the full phase-space acceptance was probed with equal statistics. In order to remove
unwanted “non-physical” particles, a cut was placed on the Monte Carlo truth data during the
resolution and efficiency analysis phase to eliminate tracks with a large p;/p, ratio. Tracks with a
ratio greater than 0.5 (that is, a 45° angle with respect to the z axis) were rejected from the analysis.

8.1 Kuno’s conjecture

All clusters selected to form triplet spacepoints should follow Kuno’s conjecture (section 7.3). A
plot showing the sum of the channel numbers for the clusters in each spacepoint is shown in figure 8.
As expected the sum of the channel numbers for all the clusters in a spacepoint is constant to very
good approximation. A distortion is visible in the downstream tracker, which arises from an offset
introduced in the construction stage of one channel in one plane in one station.

8.2 Track finding efficiency

For every simulated event, the number of tracks expected was calculated from the Monte Carlo truth.
If a simulated track crossed enough tracker planes to create a sufficient number of spacepoints (3
for straight tracks and 4 for helical tracks), a reconstructed track was expected. The parameters of
the reconstructed tracks were compared to the expected track parameters. The efficiency of track
finding as a function of the true longitudinal and transverse momentum is shown in figure 9. High
efficiency is observed across the momentum range, with the exception of a dip at low transverse
momentum (p; < 5MeV/c) and a smaller dip in the high transverse momentum, low longitudinal
momentum region. The former effect is an artifact of the track model at small track radii. Both
effects are under investigation in order to improve the track finding efficiency in these regions.
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8.3 Position and momentum resolution

The y? per degree of freedom for the track fits, used to provide the position and momentum
determinations, are shown in figure 10. The position residuals, shown in figures 11 and 12,
are consistent with the expected measurement resolutions for a combined fit. The transverse
momentum resolution, shown in figure 13, is consistent across the range of the sensitive phase-space
at ~0.9 MeV/c in both trackers. The longitudinal momentum shown in figure 14, an intrinsically
more difficult measurement for the tracker, retains an acceptable spread of ~4 MeV/c in both trackers.
There is however a small systematic effect visible in the momentum distributions. This will be
removed by matching the tracks to the detectors upstream and downstream of the trackers.

The variation of transverse momentum resolution with true transvere momentum is shown
in figure 15, and observed to be very close to flat. The longitudinal momentum resolution as a
function of true transverse momentum is shown in figure 16, showing an increase at low transverse
momentum, in accordance with expectation.

In order to produce these plots, a requirement that there was a cluster within the reference
plane was applied. Due to the effects of multiple Coulomb scattering, on rare occasions a single
hard scatter can cause pattern recognition to miss a single spacepoint at the reference plane, hence
creating a tail that will adversely affect the distributions. As we are concerned with the resolution
following a successful pattern recognition stage, these events were removed.

9 Conclusion

The tracker software has been presented together with the performance of the reconstruction al-
gorithms, including: spacepoint reconstruction; pattern recognition; and the final track fit. The
performance of the final track fit was evaluated by comparing Monte Carlo truth with reconstructed
data, for the key tracker measurements of x, y, p, and p,. The observed performance in the
transverse position measurements is excellent, for both the upstream and downstream trackers. The
reconstruction resolution in p; and p, meet specification and will provide a sufficient degree of
precision for the MICE physics program.

The track model uses a simplification of the energy loss in the tracker planes which leads to
the systematic shift discussed in section 8.3. Since the two trackers were constructed to be identical
this shift will cancel in the calculation of energy loss. Monte Carlo studies will allow us to calculate
a linear correction to the measured momentum and account for the small remaining shift. We will
use measurements by other detectors in MICE to validate this correction.

The tracker software is now used routinely in MICE data reconstruction, providing data for
analysis and publication.
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Figure 8. A plot showing the sum of the channel numbers for the clusters in each spacepoint for the upstream
(left) and downstream (right) trackers. Kuno’s conjecture that the sum is a constant is observed with a small
variation in the downstream tracker arising from a slight fibre misalignment during construction.
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Figure 9. The efficiency of reconstructing tracks in the upstream (left) and downstream (right) trackers as a
function of the simulated longitudinal and transverse momentum. The white area in the top left of the plot
indicates events which fall outside of the p,/p, ratio cut.
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Figure 10. The y? per degree of freedom of the final track fit in the upstream (left) and downstream (right)
trackers.
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Figure 11. The x residuals of the upstream (left) and downstream (right) trackers.
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Figure 12. The y residuals of the upstream (left) and downstream (right) trackers.
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Figure 13. The p, residuals of the upstream (left) and downstream (right) trackers.
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Figure 15. The p, resolution as a function of the p, of the upstream (left) and downstream (right) trackers.
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Figure 16. The p, resolution as a function of the p, of the upstream (left) and downstream (right) trackers.
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