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Abstract—Within scientific infrastructure scientists execute millions of computational jobs daily, resulting in the movement of petabytes
of data over the heterogeneous infrastructure. Monitoring the computing and user activities over such a complex infrastructure is
incredibly demanding. Whereas present solutions are traditionally based on a Relational Database Management System (RDBMS) for
data storage and processing, recent developments evaluate the Lambda Architecture (LA). In particular these studies have evaluated
data storage and batch processing for processing large-scale monitoring datasets using Hadoop and its MapReduce framework.
Although LA performed better than the RDBMS following evaluation, it was fairly complex to implement and maintain. This paper
presents an Optimised Lambda Architecture (OLA) using the Apache Spark ecosystem, which involves modelling an efficient way of
joining batch computation and real-time computation transparently without the need to add complexity. A few models were explored:
pure streaming, pure batch computation, and the combination of both batch and streaming. An evaluation of the OLA on the Worldwide
LHC Computing Grid (WLCG) Hadoop cluster and the public Amazon cloud infrastructure for the monitoring WLCG Data acTivities
(WDT) use case are both presented, demonstrating how the new architecture can offer benefits by combining both batch and real-time
processing to compensate for batch-processing latency.

Index Terms—Big Data, Distributed Systems, Lambda Architecture, Low-latency Computation, Parallel Computing
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1 INTRODUCTION

MONITORING a scientific experiment requires the gath-
ering of a large volume of data that is produced at a

rapid rate. This is illustrated in Figure 1 that shows events
produced over various days.

Fig. 1: WDT events size [1].

Scientific infrastructures are highly distributed and
heterogeneous platforms with various middleware
characteristics, job submission and execution tools, and
diverse methods of transferring and accessing datasets.
The high computation activity and distributed nature of
the infrastructure make the system extremely complex.
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Monitoring is necessary as it provides a clear status of a
task including job distribution by sites and over time, the
basis of failure, and advanced plots providing a useful and
engaging interface to the users [2]. Efficient monitoring
is necessary in order to present a comprehensive strategy
to recognise and resolve any potential issues within the
infrastructure that may cause failures or inefficiencies.
Such failures or inefficiencies may be brought about by
cyberattacks, as well as work overloads in the infrastructure.
To identify the root cause of a problem with a specific task,
the support group requires a monitoring system capable
of presenting comprehensive information detailing the
task itself [2]. This is an important factor in the overall
effective utilisation of resources. Knowledge obtained from
the monitoring system can be utilised for automating
or streamlining the infrastructure, which would include
improved job allocation and increased efficiency in resource
deployment.

The main objective of the scientific use case is the
need to process an arbitrary set of historical data, and
handle recomputation or an old backlog of data injected by
producers. In the scientific realm it is normal to have jobs
running for a long period of time. Old backlog injection
is therefore very common when a long running job is
completed. It is necessary to have both a batch layer as
well as a streaming layer (real-time) as presented in [3].
However, this requires better mechanisms in place to
simplify the system. In this paper an Optimised Lambda
Architecture (OLA) has been presented, and evaluated.

The rest of the article is organised as follows. Section
2 of this article examines other Big Data architectures, and
introduces the WLCG monitoring use case as well as chal-
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lenges with handling low-latency computations. Section 3
introduces three variations of Big Data architectures: pure
stateless batch computation, pure stateful streaming com-
putation, and a combination of batch and streaming compu-
tation. This section also details how the architectures may
be joined together using algorithms. Section 4 introduces
evaluation results of the proposed architecture. Section 5
highlights the main contributions, and how the proposed
architecture has improved the overall performance of the
WDT use case.

2 BACKGROUND

Monitoring events, metadata of the jobs, and data transfers
are collected and analysed to produce summary plots used
by operators and experts to evaluate computing activities
[4]. Due to the high volume and velocity of the events
that are produced, the traditional methods are not optimal.
The WLCG Data acTivities (WDT) dashboards are a set
of monitoring tools utilised to monitor data access, and
transfer data across WLCG sites through various protocols
and service [3]. The monitored services using WDT include
the HTTP federations, XRootD, ATLAS Distributed Data
Management (DDM) system, and the File Transfer Service
(FTS). The WDT use case is one of the most data intensive
applications, and the WDT dashboards struggle from the
restriction of the original processing infrastructure [3].
The original architecture relies on an Oracle database to
store, process, and serve the monitoring data [3]. Raw
monitoring events are archived in tables for several years,
while periodic PL/SQL jobs run at regular intervals (10
minutes) to transform raw data into summarised time-series
statistics. These are then fed into dedicated tables where
they are eventually exposed to the web-framework for
user visualisation [3]. For data intensive use cases, such as
WDT, this approach has several limitations [3]. Scalability
is difficult to achieve; PL/SQL execution time fluctuates
from seconds to minutes due to input rate spikes, affecting
overall user interface latency [3]. Advanced processing
algorithms are too complex to implement in PL/SQL within
the dashboard 10 minutes time constraint, and reprocessing
of the full raw data can take days [3].

While examining the performance of various traditional
and modern architectures, authors in [5][6] talk about
the Lambda Architecture (LA). According to [5][6] the
LA’s primary objective is to fulfil requirements for any
infrastructure that is fault-tolerant, robust, or prone to
human as well as hardware faults. This is due to its ability
to function in a variety of ways, in situations where it is
critical to ensure that the system has low-latency while
providing regular updates to users. Therefore, the final
system developed using the LA is linearly mountable and it
scales outwards. The LA has several critical layers, or stages
for servicing a system. The first stage involves the entrance
of raw data into the system. At this stage, the data is
dispatched to two different layers, the speed and the batch
layers, where it is processed. In the batch layer, the data
is managed within the master data set and pre-computed
into batch views. Then, it is forwarded to the serving layer
where the batch views are indexed to allow for the data to

be queried in low-latency. In the speed layer, only recent
data is processed, and the LA is able to compensate for
high-latency of updates for the data in the system. Queries
entering the system are answered when the results of the
batch views in the serving layer and the speed layer are
merged [5][6].

In agreement with the views of [5][6], this article [7]
explains that another approach to a real-time system and
analytics platform is the Kappa Architecture (KA). The KA
uses a software architecture approach and it avoids the
implementation of relational databases. Instead, it has an
immutable log for append only. According to report [8], it
is from this log that data is streamed and fed into stores
for serving via a computational system. Supplementing
the assertions in [8], the report [9] reveals that KA is a
simpler architecture in comparison to the LA. In fact, it is
a simpler and easier version of LA. This is due to the fact
that, excluding the batch processing part of the LA, the
parts and functionality of the Kappa architecture are very
similar to those of the LA.

By detailing some of the benefits associated with the use
of KA, the report [9] explains that it was initially invented
to avoid the issue of maintaining two different codes
frameworks for the speed and batch layer respectively, as
is the case with the LA. This implies that the main idea
behind the KA is to ensure that real-time data processing
systems, and the continuous data reprocessing systems, are
integrated into one effective and efficient system. This is
important as both parts are absolutely critical to analytics
platforms [7].

Though the KA only has two layers, the streaming
layer and the serving layer, it also has a data section
that supports other basic functionalities of a real-time
system including storing results and historical data. In
this approach, the stream processing jobs are tackled first,
then the data reprocessing jobs are carried out when some
stream processing jobs require modification, alteration, or
reprocessing.

The serving layer in the KA, similar to the LA, is
used to forward the queries based on the results of the
processing carried out. With regard to its application and
use, [10] argues that where algorithms for real-time data
and historical data processing systems are different from
each other, the LA should be used. According to [11] the
main benefit associated with KA is that it allows developers
of real-time systems to operate, test, and debug on a single
framework for processing.

The KA is mainly stream processing, reliable when
coupled with tools offering certain guarantees such
as Kafka (though Kafka is a temporary buffer, where
the retention policy can be hours, days at maximum).
Processing an arbitrary set of historical data, a feature
which is relevant in the scientific infrastructure to handle
recomputation is limited with this architecture.

Authors in [12][13] proposed solutions for tackling the
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limitation with Big Data architectures that only supports
general purpose applications. A computational model
called distributed stream processing is presented in [12]
to characterise it as a real-time infrastructure, which
would work well for a pure streaming use case. This
architecture is similar to the KA, due to its inability to
process historical data that is necessary for monitoring the
scientific infrastructure. The WDT use case also requires a
time-critical analytics, an architecture has been proposed
in [13], which adopts the idea of the LA using various
technologies. This architecture forces code duplication for
batch and real-time computations.

The LA was employed to support the WDT use
case in [3]. However, by combining and synchronising
many technologies, the issue of high complexity became
a significant concern. The LA that is presented in [3]
demonstrated that it has the ability to work well for
monitoring. Most notably, the WDT use case has shown
that it outperforms the traditional architecture. However,
with the complexity of a three-layer structure that includes
various technologies, comes a price when integrating all
three layers together to serve several main goals (monitoring
infrastructure in real-time, supporting scalability, ease of
implementation, maintenance and migration). Having
different technologies for each layer would be difficult to
integrate, implement, and maintain. There is a pressing
need to identify a single solution that can accommodate and
integrate the batch layer as well as the streaming layer for
monitoring events seamlessly. Apache Spark [14] is a new
parallel processing paradigm similar to MapReduce [15],
but with improved analytical performance. By exercising
in-memory computation, it has the ability to support
iterative computation [16][17]. It can also support data
streaming, which is useful in optimising the LA to limit
code differences between the batch and streaming layers. It
can also support SQL-like commands, interactive command
line, machine learning, and Graphx [18]. Having Spark
batch and streaming under a stack is useful in optimising
the LA. The Spark streaming and batch computations
adapt the Resilient Distributed Dataset (RDD), an abstract
data collection that is distributed across nodes for parallel
processing [18][19]. Transformation and computation logics
can therefore be reused between batch and streaming layers.

Spark processes are ‘lazy’ [18], and no action is carried
out until it is required. An example would be the RDD,
which does not physically hold data. It contains instructions
on what to do when an action is called. The RDDs support
two types of operations: transformations, which create
a new dataset from an existing one, and actions, which
return values to the driver program after running a
computation on the dataset. For example; the mapPartition
is a transformation that passes each dataset element to a
partition level through a function and returns a new RDD
representing the results. Counter to this, reduceByKey is an
action that aggregates all the items of the RDD using a
function and returns the final result to the driver program.

By default, each transformed RDD may be recomputed
every time it is put into action. It is also possible to persist

an RDD in memory using the persist (or cache) method,
in which case Spark would keep the computed data in
memory for expedited access the next time it is queried.
There is also support for persisting RDDs on disk, or
replicated across multiple nodes [19]. When monitoring a
scientific infrastructure it is typical that various statistics
are derived from the same monitoring events. In-memory
storage and computations are profitable as multiple yet
distinct computations can be carried out by a job on the
cached data. This will make it easier to maintain the job
as well. The LA evaluated in [3] employs MapReduce
framework which does not support in-memory persistence
[15], so data cannot be shared. In order to implement a
complex algorithm in MapReduce framework it requires
the creation of chained MapReduce jobs. Essentially, the
output of a job will need to be directly connected to the
input of the next job. Spark does not require this due to
in-memory processing. Spark can also support global data
sharing using Tachyon (licensed under Apache), which is a
memory-centric distributed storage system that can be used
for data sharing.

Spark Streaming supports three notable functions:

1. Cumulative Computations, which supports cumu-
lative statistics computation while streaming in new
data (incremental calculations). Spark Streaming
supports maintenance of the state (which is stored
information at a given instant in time) for those
statistics. The Spark Streaming library has a function
called updateStateByKey for maintaining and manip-
ulating the state [18].

2. Windowed Computations, which is useful when the
data received in the last n amount of time is non-
trivial. Spark Streaming readily splits the input data
into the desired time windows for easy processing,
using the window function of the streaming library
[18]. A function such as forEachRDD allows access to
the RDDs created at each time interval.

3. Transformation, which returns a new DStream
(stream of events) by applying an RDD to RDD
function for every RDD of the source DStream [18].
This is where the code can be reused between batch
and streaming layers using the transform() function
as both frameworks support RDD as the core compo-
nent. This feature also supports merging (i.e. joining)
the batch RDDs with the streaming RDDs, which
optimises the LA.

3 ARCHITECTURE AND DESIGN

The core part of the OLA inherits the technologies and
approaches from [3][20] such as a message broker, data
pipeline (Flume), storage (HDFS), and serving layer (Elas-
ticsearch). This is outlined in Figures 2 and 3.

The main requirement of any monitoring architecture is
that it be able to provide information about the infrastruc-
ture in near-real-time so appropriate action can be taken.
Therefore, the following approaches were designed and
implemented:
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Fig. 2: Pure stateless batch computation. Monitoring events
were sent to the Hadoop Distributed File System (HDFS) for
batch computation, which can be scheduled to run at any
preferred time interval.

1. Pure stateless batch computation as seen in Figure
2, which can be scheduled to run at a preferred
interval. The system will not have any knowledge
of the previous jobs. This does not support real-
time computation, but Spark framework provides in-
memory computations. Therefore, the execution time
can be compared with the MapReduce framework
that was used in [3]. The batch computation can also
be used for historical computation (i.e. high-latency).

2. Pure stateful streaming computation as seen in Fig-
ure 3, will carry out incremental computation on con-
tinuously streaming data 24 hours/7 days a week.
From this, it can maintain the state of the computed
statistics. It also has a checkpoint mechanism to
dump the state to the disk; in case of job failure
it can pick up from where it stopped. This method
on it is own is enough for real-time computation.
This allows the complexities of merging multiple
technologies, as in the LA, to be eliminated.

3. A combination of batch and streaming computation
is also shown in Figure 3. Pure streaming is enough,
but the potential of getting duplicate events from the
message brokers due to failure is prevalent. Having
pure streaming computation cannot address this is-
sue, as the raw events are dropped once they are pro-
cessed. The state of the streaming job cannot keep the
unique ID of the events once they are aggregated by a
key (e.g. sites). Incorporating batch computation can
correct the inaccurate statistics as it will recompute
whole datasets from the storage layer, eliminating
duplicate events. Having a streaming layer do con-
tinuous calculation, while scheduling the batch layer
to run at specified intervals in order to override the
results ultimately validating the statistics seems most
appropriate. As pointed out previously, historical
computation is necessary in scientific domains, so it
is important to incorporate a batch layer in the ar-
chitecture. To support this approach, the monitoring
events were duplicated with one being sent to the

HDFS for batch computation, while the other was
streamed straight into the streaming receiver. How-
ever, there are a variety of complexities that need to
be addressed in synchronising these approaches to-
gether including: informing the streaming job about
newly available data (computed by batch job) so that
it may utilise it to override the streaming state as
well as the serving layer that is used for storing com-
puted statistics for serving the UI, and a mechanism
to eliminate the network communication bottleneck
at the serving layer to make sure only the newly
streamed data are updated/inserted into the serving
layer. This is discussed further in Section 3.1.

Fig. 3: Pure stateful streaming and combination of both batch
and streaming computations. Monitoring events were dupli-
cated with one sent to the HDFS for batch computation, while
the other streamed straight into the streaming receiver for
incremental computation.

3.1 Merging and synchronising Optimised Lambda Ar-
chitecture layers

This section explores how the batch, serving, and streaming
layers are merged and synchronised.

Batch Layer The batch layer is a high-latency mecha-
nism, so computing an enormous volume of data would
result in a delay which would be reflected in monitoring
statistics. It is important that the batch should discard some
statistics, a certain amount of data which is linked to how
often the batch process is executed and how big the dataset
is. These ‘missing statistics’ can be accommodated by the
streaming layer.

Dfiltered = Fdiscard (Draw∃ (Btime 	Binterval)) (1)

In Equation 1, how the monitoring events should be
discarded from the computation is represented by a formula
expression. In this equation Fdiscard() is the function for
discarding events, Draw is the number of raw events prior
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to event selection (filter), Btime is the batch execution time,
Binterval is the time interval for discarding events from the
batch and (Btime 	 Binterval) calculates the time frame
for selecting events and for emitting all existing, ∃, events
that match the condition. Assuming a batch job runs at
Btime, specified Binterval 1 hour, a batch should discard
all the events in a time > (Btime 	 Binterval). This will
prevent having partially computed results, which will be
compensated by the streaming layer.

Dbatch = Dfiltered
Fmap(K,V )→ Freduce(K,V )→ → Sdata

batch (2)

Equation 2 describes how the selected (filtered) events,
Dfiltered, will go through a mapping process, Fmap(), to
generate (K)ey (a unique ID for the statistics)/(V)alues
(matrices values associated with the key) pairs.
Subsequently, it will go through the reduce process,
Freduce(), to aggregate the values by the key from all
distributed nodes, which are then stored in a designated
storage, Sdata

batch, folder. The batch process will write the
result (i.e. a new file) into a known folder on HDFS (this
can be replaced by any storage layer, e.g. Tachyon).

Streaming Layer In the consolidated streaming and
batch layers, previously computed statistics (if they exist)
need to be loaded from the serving layer, which can be
represented by Equation 3.

Serving Layer process

Dstorage
stats = F storage

load (Tcurrent, Tfrom)

=
{
Dstorage

filtered =
(
Dstorage

input > (Tcurrent 	 Tfrom)
)

(3)

where Dstorage
stats are the loaded pre-computed monitoring

statistics from the serving layer, Tcurrent is the current
timestamp, Tfrom is the timestamp that statistics will be
loaded from and F storage

load () is the loading function for
loading data from the serving layer. If input data, Dstorage

input ,
which are all statistics from the serving layer to the DB load
function, are greater than (Tcurrent 	 Tfrom) then select,
and return the statistics Dstorage

filtered.

Dstorage
processed = Dstorage

stats

Fmap(K,V )→ →Mstorage
stats (4)

Equation 4 is an expression for Dstorage
processed, the mapped

and stored statistics selected from the serving layer Dstorage
stats

into the memory, which goes through a mapping process,
Fmap(), generates (K)ey/(V)alues pairs, which are then
stored into memory and/or disk, Mstorage

stats for later usage
(i.e. for merging with other layers).

Streaming Layer process
In the streaming layer, the computation is defined as:

Dstream
processed = F data

transformation(Dstream)
Fmap(K,V )→ Freduce(K,V )→

(5)

where Dstream
processed is the mapped, aggregated, and

computed statistics from streaming monitoring events,
Dstream is the number of streaming monitoring events,
F data
transformation() is the function filtering and transforming

events, wich then go through the mapping process, Fmap(),
which generates (K)ey/(V)alues pairs. Finally, it goes
through the reduce process, Freduce(), to aggregate the
values by the key.

Batch Layer process
The batch reading implementation is defined as:

Dbatch
loaded = F load

batch (Dbatch)
Fmap(K,V )→ (6)

where Dbatch
loaded are the statistics read from storage

and mapped, Dbatch is the pre-computed statistics from
Equations 1 and 2, F load

batch() is a function to load only
the “new” pre-computed batch statistics and flag the file
as “old” once it is loaded successfully which then goes
through mapping process, Fmap(). The mapping process
does not require any reduction in the statistics as it has
already been done by the batch process.

Synchronise and update
The implementation of joining, merging and synchronis-

ing statistics from all three layers is defined as:

Djoined =
(
Dstorage

processed

⋃
Dbatch

loaded

⋃
Dstream

processed

)
(7)

where Dstorage
processed are the statistics loaded from the

serving layer, Dbatch
loaded are the data loaded from batch

computations, Dstream
processed are the data computed from

streaming data, which are unioned (joined) and returned as
a new dataset Djoined.

The implementation of the statistics state is defined as:

Dmemory
state = Fupdate

state (Djoined) =
insert, if storage = 1 ∧ state′

overwrite, if batch = 1

update ∨ insert, if storage′ ∨ batch′
(8)

where Dmemory
state is where the state of new and old

statistics are kept in the memory for incremental calculation,
Djoined are the joined Dstorage

processed, Dbatch
loaded, and Dstream

processed

statistics. The Fupdate
state () is the state update function for
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updating the statistics and keeping them in the memory.
If the statistics are from the serving layer, storage, and if it
is not already in the state, state′, then it should insert the
statistics into state memory. If the data are from the batch
layer, batch, then it should over-write the state memory
with the batch statistics. If the statistics are not from serving
layer, storage′, or batch layer, batch′, then they are from the
streaming layer (relatively new statistics) so they should
be aggregated with the statistics in the state memory,
and updated if they already exists (or it should insert the
statistics into state memory if they do not exist (totally fresh
statistics)).

Update serving layer
Only the new and altered statistics are inserted/updated
into the serving layer which is defined as:

(
Dstream

processed

⋃
Dbatch

loaded

)
Dmemory

state ∀ Fupsert
serving layer

(9)

The expression in Equation 9 says union (join) the
Dstream

processed and Dbatch
loaded and then leftjoin, , with the

Dmemory
state , to insert/update only the new and updated

statistics from the batch (if Dbatch exists in the spooling
location) and streamed statistics into the serving layer.
Statistics from Dstorage

processed are not required because they are
already in the serving layer. For each, ∀, statistics partition,
establish a connection to the serving layer and bulk upsert,
update the records if it already exists in the serving layer,
otherwise insert new records. Finally, set up a checkpoint at
a specified interval for recovery in case of any failure.

- Summary
In short, the functions explained above are:

1. The batch layer will write the result in a known
folder on HDFS (this can be replaced by any storage
layer e.g. Tachyon). The streaming layer will initially
load specified data from the serving layer to start
incremental calculations from old statistics. Then, at
each micro-batch loop, and at the end of the statistics
computation, it will check if there are any data in
the “batch” folder. If yes, load the computed data,
join with its last computed results from history, and
insert the newly computed results into the serving
layer while updating the history.

2. The batch layer should discard some statistics, cer-
tain data which are linked to how often the batch pro-
cess is executed and the expected delay in processing
the ever growing dataset. Assuming a batch run at
time t, discard the last hour of data, the batch should
discard all the statistics referring to time interval
> t −1 hour, this will prevent having a partially
computed result.

3. The streaming layer will run forever, and the batch
process can be executed regularly, or on-demand.
Broker queues can be used for ingesting messages
from the data pipeline so that if the streaming fails,
the data will be retained on the broker indefinitely.

4. The serving layer insertion time will be reasonably
short due to micro-batch computation. When the
streaming iteration reads the full batch, and inserts
it into the serving layer, it will stop processing new
data. This has the potential of being noticeable on
the UI. This would only be a short-lived temporary
glitch. Data would still be present and it would
quickly (scaling nodes and paralleling the tasks
would improve performance) recover when insertion
is over.

4 PERFORMANCE EVALUATION OF THE OPTIMISED
LAMBDA ARCHITECTURE

4.1 Experiment setup

For the evaluation of the OLA, the same WLCG Hadoop
cluster that was used in [3] for evaluating LA was used.
The cluster consisted of 15 nodes of Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60 GHz (8 nodes: 32 cores/64 GB, 7 nodes:
4 cores/8 GB). Hadoop-2.6 and Spark-1.6.0 were configured
on all machines. The OLA was also evaluated on the
Amazon cloud infrastructure [21], as described in section
4.5.

The OLA was evaluated from the aspects of scalability,
low-latency processing time, jobs workflow such as parallel
processing versus sequential with various data caching
mechanism, and execution time over various data size, data
format, and data compression.

Three different computing and data intensive algorithms
from the WDT use case were used for evaluating the OLA:

1. Access Pattern - This algorithm works out what
are the hot (popular) and cold (unpopular) data.
Hot data is very popular among physicists, so they
need to be replicated and distributed across many
nodes for load balancing, and better accessibility. An
example of the access pattern algorithm:

1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map

Events according to the time bins the initial event
belongs.

3) Inject each of the Log Map Events into a single
Log Statistic Event and compute the following:

a) If (client domain == server domain) then
remote access = 1 else 0

b) If (read bytes + write bytes == file size) then
is transfer = 1 else 0

4) Aggregate all the single log statistics:

a) If user domain == null then replace it with
server username. In case that server user-
name is also null replace it with “n/a”

b) If file name == null then replace it with “n/a”
c) AVG(file size)
d) If (read bytes > 0) then number of read = 1

else is 0
e) SUM(read bytes)
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f) If (read bytes > 0) then sum(end time - start
time) else read time = 0

g) If (write bytes > 0) then number of write =
1 else is 0

h) SUM(write bytes)
i) If (write bytes > 0) then sum(end time - start

time) else write time = 0.

5) Aggregate and Reduce all the log statistics:

a) If there is not already a time bin for the
injected log statistic events then create it and
insert (establish connection to Elasticsearch
and Bulk insert).

b) Else update the existing bin (update the Elas-
ticsearch document version).

2. Transfer Statistics - This algorithm has already been
used in LA evaluation and works out the average
data transfer rate from site A to B. A completed
file transfer lasting several hours from site A to site
B, also contributes to several time bins in the past.
Information about the average traffic from site A to
site B has to be updated. An example of the transfer
statistics algorithm:

1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map

Events according to the time bins the initial event
belongs.

3) Inject each of the Log Map Events into a Single
Log Statistic Event and compute the following:

a) If writes bytes at close > 0 then we have a
client domain else we have a server domain.

b) If read bytes at close > 0 then we have a
server domain else we have a client domain.

c) If client domain = server domain set remote
access 0 else set is as 1.

d) If writes bytes at close + read bytes at close =
file size set is transfer = 1 else is transfer = 0.

e) If read bytes at close > 0 then setactivity =
‘r’.

f) if write bytes at close > 0 then set activity =
‘w’.

g) if write bytes at close <= 0 and read bytes at
close =< 0 then set activity = ‘u’.

4) Aggregate all the single log statistics:

a) If there is not already a time bin for the
injected Single log statistic event then create
it and insert.

b) Else update the existing bin.

i) active = active + new.active
ii) bytes = bytes + new.bytes

iii) activeTime = activeTime +
new.activeTime

3. User Activities - This algorithm works out the num-
ber of active users, and how much data they have
downloaded within a specified time interval. An
example of the user activities algorithm:

1) Inject Log Message event into Map statement.
2) Split the Log Message into several Log Map

Events according to the time bins the initial event
belongs.

3) Inject each of the Log Map Events into a Single
Log Statistic Event and compute the following:

a) If (client domain == server domain) then
remote access = 1 else 0

b) If (read bytes + write bytes == file size) then
is transfer = 1 else 0

c) If if user domain == null then replace it with
server username

4) Aggregate all the single log statistics:

a) SUM(read single bytes)
b) SUM(read vector bytes)
c) SUM(file size)

5) Aggregate and Reduce all the log statistics:

a) If there is not already a time bin for the
injected log statistic events then create it and
insert (establish connection to Elasticsearch
and Bulk insert).

b) Else update the existing bin (update the Elas-
ticsearch document version).

4.2 Evaluation of the workflow
An evaluation of the workflow in the OLA is presented
in this section using those algorithms described in Section
4.1. Job 1, Job 2, and Job 3 in Figure 4 and Figure 5 denote
Transform Statistics, Access Pattern, and User Activities
algorithm respectively.

The timeline in Figure 4 shows sequential job execution,
where jobs were performed one at a time. The next job will
only be initiated once the previous job has been completed.
This workflow is useful when the later job is dependent
on the previous job, e.g. when the second job relies on the
results computed by the previous (similar to the MapReduce
framework).

Fig. 4: Sequential jobs execution time. Jobs were executed one
at a time.

Figure 5 shows parallel job execution, where multiple
concurrent jobs (i.e. Transfer Statistics, Access Pattern, and
User Activities) are executed at the same time. This is not
achievable with the MapReduce framework presented in
[3]. This is the workflow that is beneficial for carrying out
in-memory computation, meaning data can be loaded into
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Fig. 5: Parallel jobs execution time. Multiple jobs were executed
at a time.

memory, and used by concurrent jobs rather than having
each job load data from the storage layer.

After all executors required for a job have been
registered, the job commences execution. The executors
were removed when the job was complete, in order to make
resources available for other jobs.

In Spark, a job is joined with a chain of RDD dependen-
cies arranged in a direct acyclic graph (DAG) as can be seen
in Figure 6. From the DAG, it can be seen that the evaluated
WDT use case (i.e. Transfer Statistics) first executed a textFile
operation to read data from the HDFS, then called the
mapPartitions operation to transform the data into Java
Objects, calling another mapPartitions operation to extract
the required data and to carry out an initial transformation.
Subsequently, it then called a reduceByKey function (in the
second stage, which is dependent on the first stage) to
aggregate the final results, and finally the saveAsTextFile
operation was used to save the data into HDFS. It can be
seen that each executor immediately applied the subsequent
mapPartitions action to the dataset partition after reading it
from HDFS in the same task, minimising the data shuffles
between nodes. The black dots in the boxes represent RDDs
created by the corresponding actions [22].

Fig. 6: Overview of job stages.

Spark supports caching stages into memory so that data
may be reused, rather than recomputed. Figure 7 illustrates
that Stage 3 reads data from HDFS and carries out initial

transformation, caching into memory (shown greyed out).
The subsequent jobs can easily recover the stage from mem-
ory, therefore, reducing re-computation time.

Fig. 7: Cached stages were reused by parallel jobs. The green
circle denotes that an RDD is cached from the previous stage.
The greyed stage (cached) was skipped by the following con-
current jobs.

Figure 8 shows an insight into Stage 3 of the event
timeline from Figure 6. It shows that tasks are distributed
to two worker nodes. Most of the execution time was spent
on computing the statistics rather than scheduler delay,
network or I/O overheads. This is not unexpected since
the job involves shuffling very little data. Each executor is
performing three tasks concurrently, due to the CPU cores
which are explicitly configured with the job submission. The
parallelism can be increased or decreased in direct relation
to the number of cores, which would have an effect on
performance.

Fig. 8: Concurrent tasks execution. A job was split into multiple
tasks and executed in each executor CPU core concurrently.

4.3 Performance evaluation on WLCG environment and
WDT use case
In this section the batch computation, as well as the real-
time computation of the OLA, were evaluated.

Evaluation of Spark’s batch computation
An evaluation of Spark batch computation over increas-
ing dataset size was carried out that was similar to the
evaluation detailed in [3]. This evaluation was carried out
on the same dataset so that it could be compared with
the MapReduce framework computation. Although Spark
supports in-memory computation, it was not used in this
evaluation as the job consisted of a single algorithm (transfer
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statistics). It was unnecessary to persist the dataset into
memory as there were no follow-up jobs that could benefit
from it. The evaluation results are shown in Figure 9. It can
be seen that computing 30 days of the dataset overall was
completed in ∼2 minutes by the Avro, CSV and JSON jobs.
It can also be seen that execution time linearly increases as
the dataset size is increased. Nevertheless, the performance
was better when compared with the current approach used
by the WLCG. Again the performance pattern of the data
types are similar to the MapReduce job, as Avro performed
better overall compared to the other jobs. On the other hand,
JSON performed poorly when compared with the other jobs.
In total, the JSON and CSV jobs took an average of 64% and
14% more execution time compared with Avro, respectively.

Fig. 9: Computation of Avro, CSV and JSON files over aug-
mented dataset (day 1 to 30 days). The primary axis (a)
shows the execution time that is being represented by lines,
whereas the secondary axis (b) represents the input data size in
Megabytes (MB) which is represented by bars.

A comparison of the job execution time using MapRe-
duce framework from [3] and using Spark is presented in
Figure 10. It can be observed that Spark jobs performed
much better when compared with the MapReduce jobs,
although data persistence was not used in both frameworks.
The first day dataset (smallest) took a lot less time for com-
puting using Spark, whereas computing using MapReduce
took significantly more. From this observation it can be con-
cluded that Spark took less overhead time in allocating re-
sources when compared with the MapReduce. Nevertheless,
MapReduce job execution time stablised as the dataset size
was were increased further as only minor oscillations were
seen. Comparatively the Spark execution time increased
linearly when the dataset size was increased. The Spark-
Avro job total execution time on average was 43% less
than the MR-Avro job, whereas the Spark-CSV performance
improved by 38% when compared to the counterpart, and
the Spark-JSON improved 23% compared to its counterpart.
All Spark jobs appeared to have performed better than their
counterpart, but the most improvement can be seen with the
Spark-Avro computation.

Figure 11 shows the execution time over various data
partition sizes (i.e. parallelisation, which is the process of
splitting the dataset into a number of partitions, and allo-

Fig. 10: Comparison of the MapReduce versus the Spark frame-
work against various data types.

cating tasks to process each of those split portions). It can
be seen that the execution time improved as the number of
partitions was increased (execution time decreased). It can
also be observed that after the job met a certain number
of partitions, the execution time stabilised. This can be
explained by the fact that more partitions would require an
equal share of tasks, requiring finding resources, allocating,
and garbage collections. This would also require shuffling
data over the network. It can be observed that the Avro job
performed better compared to the other two jobs.

Fig. 11: Execution time versus the number of partitions of
various data types.

In the previous evaluation, only a single job (algorithm)
was evaluated, so persisting the dataset into memory was
not trivial. In order to benefit from the in-memory compu-
tation, it was necessary to evaluate multiple jobs (multiple
statistics algorithms) on the same dataset (i.e. derive various
statistics from the same dataset). The single job assessed pre-
viously only parallelises the tasks, but as multiple jobs may
be deployed to profit from in-memory computation, it was
essential to evaluate parallel job execution versus sequential
job execution. Figure 12 illustrates parallel jobs performed
better than the sequential jobs; in particular, the cached job
performed exceptionally well. However, when comparing
the uncached parallel job with the cached sequential job,
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it is evident that the parallel job performed better, which
could only be explained by the simultaneous job execution.
The sequential job requires submitting one job at a time so
that the next one in the queue can only be submitted when
the previous job has been completed. This is not the case
for the parallel job as it would submit all jobs at one time.
This should not be a problem in the OLA, as it can scale
dynamically when there are more demands for resources.

Fig. 12: Comparison of parallel and sequential jobs with cached
and uncached datasets. Execution time versus parallel, sequen-
tial cached and uncached jobs.

Figure 13 shows the evaluation of execution time over
various types of data persistence used in parallel jobs sub-
mission. The persistence options are:

• Memory only (MEMORY ONLY), which only uses
the memory for caching the dataset. In the case of a
dataset being larger than the memory capacity, it will
use the disk for dumping the remaining dataset.

• Memory only with two replications (MEM-
ORY ONLY 2), which is similar to MEMORY ONLY
but it replicates the dataset two times for improved
data availability.

• Memory only with serialisation (MEM-
ORY ONLY SER), which is similar to MEM-
ORY ONLY, but it uses serialisation to compact
the data so that more information can be stored
into memory as memory spaces are very limited.
However, serialising and deserialisation will add
computation overhead to the job.

• Memory only with two serialised replications (MEM-
ORY ONLY SER 2), which is similar to MEM-
ORY ONLY SER but replicates the dataset two
times.

• Disk only (DISK ONLY), which spills the dataset
onto the disk.

• Disk only with two replications (DISK ONLY 2),
which is similar to DISK ONLY but it replicate the
dataset two times.

• Memory and disk (MEMORY AND DISK), which
uses both memory and disk for storage, but some
data that need to be persisted into memory are
configurable at execution time.

• Memory and disk with two replications (MEM-
ORY AND DISK 2), which is similar to the MEM-
ORY AND DISK but with two replications of the
dataset.

• Memory and disk with serialisation (MEM-
ORY AND DISK SER), which is analogous to the
MEMORY AND DISK but it uses serialisation to
compact the data so that more data can be stored
in memory.

• Memory and disk with two serialised replications
(MEMORY AND DISK SER 2), which is similar to
MEMORY AND DISK SER but with two replica-
tions of the dataset.

Fig. 13: Comparison of various cache types. Execution time
versus computation of data cached in memory, disk, and mem-
ory and disk (also a combination of replicated and serialised
dataset).

As shown in Figure 13, it is evident that in-memory
persistence outperformed the other methods. Having
two replications of the dataset into memory did not
improve the performance compared to the single dataset.
In general, serialisation did not perform well, which is
understandable as extra overhead is required for serialising
and deserialising the dataset. Using memory and disk
performed better than the pure disk option. It was better
to recompute from the source rather than reading the
cached data from disk. When clustered and compared the
execution time of all memory only, disk only, and disk and
memory, the disk only options took 104% more execution
time than the memory only options, whereas the memory
and disk options took 83% more execution time than the
memory only options.

The scalability was evaluated by incrementing the num-
ber of executor nodes one at a time. The memory size
was fixed to 1024 MB. The evaluated dataset size was 7.5
GB, which was used for the following evaluations unless
otherwise stated. The total amount of memory allocated for
the jobs can be calculated by multiplying the number of
executors by amount of allocated memory for each executor
(i.e. 1024 MB). The previous evaluations showed that the
Avro job performed better compared with the CSV and
JSON jobs. Therefore, it was used for the node scalability
analysis. Figure 14 shows that execution time improved as
the number of executors was increased. However, there was
a dramatic improvement in performance in increasing up
to three executors. With more than three executors, there
was not a significant further improvement. The execution



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2772241, IEEE
Transactions on Parallel and Distributed Systems

time decreased by 64% when three executors were used
compared to the initial single executor execution time.
However, when nine more executors were used, compared
with the single executor, the performance improved by 84%.
This shows an only 20% improvement using nine executors
over three executors. Over allocating resources (in this case
executors) can be wasteful, displacing resources that could
have been used for other jobs.

Fig. 14: Execution time versus the number of executors.

For the evaluation of memory usage, the number of
executors was fixed at four (for comparison to the former
analysis), the number of CPU cores was fixed at one, and
memory was increased by 1024 MB at each evaluation.
The total amount of memory allocated for the jobs can be
calculated by multiplying the amount of allocated memory
for each executor by the number of executors (i.e. 4). The
allocated memory for each core would be the same as the
executors as the core was fixed at 1. Therefore, it does not
need to share the memory. The dataset size was the same as
in the previous evaluation, which was 7.5 GB. The perfor-
mance improved rapidly as the memory was increased, as
seen in Figure 15. What was indisputable from the results,
was that memory plays a significant role in performance.
With four executors a better result was achieved by just
increasing the memory, rather than using ten executors as
can be seen from the previous analysis.

Fig. 15: Execution time versus the amount of memory size.

In order to evaluate the CPU core utilisation in optimis-
ing the performance, the number of executors was fixed at
four, and the memory was fixed at 2048 MB. The number
of cores was increased by one at each execution. Each
executor was allocated 2048 MB memory, but there were
four executors so the total amount of memory allocated to
these jobs was 8192 MB. The amount of memory allocated to
each core was calculated by dividing the memory allocated
to each executor (i.e. 2048 MB), by the total number of
cores allocated to each executor. Again, the performance was
improved as the number of cores was increased as seen in
Figure 16. Initially, the performance improved steadily as
the number of cores increased. However, there was a sharp
improvement when 4 cores were allocated. The observed
improvement in the performance was caused by the paral-
lelisation of the tasks.

Fig. 16: Execution time versus the number of CPU cores.

Evaluation of Spark’s Streaming computation
In [3], Esper was used for carrying out real-time compu-
tation, which did not support scalability. However, Spark
Streaming supports scalability just as it supports batch
computation. The performance observed with Esper was
reasonable for the WDT as it computed the events as soon
as they were received. Nevertheless, to support the foreseen
explosion of volume and speed of the data, scalability is
required, so Spark Streaming was investigated. Despite this,
it needs to be evaluated to see how it performs on a real life
scientific application, which was the same algorithm that
was used for evaluating batch computation (i.e. transfer
statistics). A few metrics are important in evaluating the
streaming layer. One such is the event input rate at which
data is being received, while the other is the processing
time of each micro-batch. The streaming layer was deployed
with three executors, each with 2048 MB memory and three
cores. The streaming layer was evaluated on the last 1000
batches of streamed data. The streaming layer was run for
∼15 hours at a two seconds batch interval prior to the
evaluation. At the time of the evaluation, the streaming
layer had completed ∼27 thousand batches and computed
∼5 million records.

Figure 17 shows that the streaming layer was receiving
data at a rate of about 116 events/second on average across
all its sources. The streaming layer is capable of handling
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Fig. 17: Streaming data input rate. Streaming job receiving data
at a rate of 116 events/second on average.

much larger events than the one shown in Figure 17. How-
ever, the source was sending a relatively low load of events
at the time of evaluation.

Fig. 18: Streaming data processing time. Processing time shows
that these batches have been processed within 88 ms on aver-
age.

Figure 18 presents processing time which shows that
these micro-batches were processed within 88 ms of being
received on average. Displaying a reduced processing time
compared to the batch interval means that the scheduling
delay (which is the time a batch waits for previous batches
to complete [22]) was almost zero as seen in Figure 19.
It can also be noted that there were a few spikes on the
schedule delay, including when there was a sudden peak in
data input rate which increased the schedule delay by 16
ms. The scheduling delay is the key indicator of whether
the streaming layer is stable or not [22]. In this particular
evaluation it indicated the streaming layer was very steady.

Fig. 19: Schedule delay in processing next batch.

Figure 20 shows that the total delay in scheduling and
processing the batches was 105 ms on average. This means
the transfer statistics can be presented to the end user within
a second.

Fig. 20: Total delay in scheduling and processing streaming
data.

4.4 Evaluation of monitoring events computation accu-
racy

To evaluate how accurately the architecture was able to
compute the WLCG site throughput in time-series, all three
OLA approaches were tested. As shown in Figure 21, the
stateless batch job was scheduled to run every five minutes
and carry out batch computations on the data stored in
HDFS. However, the plot highlighted in Figure 21 shows
that some data is missing. This is due to the latency of the
batch computation and the unavailability of the data when
the job started.

Fig. 21: The Spark batch computations for WLCG monitoring
(some statistics are missing as highlighted).

Figure 22 represents both the pure streaming, and the
combination of batch and streaming approaches. Both ap-
proaches show the computation in real-time as highlighted
in the plot. This shows that both of these approaches are
capable of providing up-to-date statistics that are beneficial
to the users in comparison with the pure batch computation
approach. The Spark batch computation performed better
than the MapReduce job presented in [3] due to the use of in-
memory processing. The intermediate results were cached
into memory in comparison with the former approach,
which utilises the disk for reading and writing.

Fig. 22: The Spark batch and streaming computations for
WLCG monitoring (statistical data are in near real-time as
highlighted).

4.5 Evaluation of scalability, on the Amazon EC2 cloud
cluster

In the previous section, the OLA was evaluated on the
WLCG infrastructure (shared). The architecture was also
evaluated on a public cloud infrastructure to understand
how portable the architecture is. The purpose of the
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evaluation was not to compare the performance of
the WLCG and the cloud infrastructure, but solely to
understand the flexibility of the OLA model. The metadata
from the ATLAS experiment were used for the evaluation
of the WLCG infrastructure, whereas metadata from the
CMS experiment were used for the evaluation of cloud
infrastructure. In this section, various scalability properties
were evaluated on the Amazon cloud cluster such as
the number of cores, memory size, and the number of
executors. All three algorithms discussed in the previous
section of this paper were used to evaluate the parallelism.
Taking this into account, the performance on the cloud may
vary in comparison with the WLCG.

A virtual cluster was created in the Amazon Elastic
Cloud [21] using a general purpose instance “m4.2xlarge”
that has eight virtual CPUs, 32 GB of memory, and 20 GB of
storage per instance. The cluster was configured with four
nodes, one name node, and three data nodes. The nodes
were distributed with 24 GB of data (seven days log data).
For conducting the tests, the job was submitted with various
scalability properties. At each execution, a parameter was
changed, and the rest remained fixed.

Executor memory

Although there were 32 GB of memory available in each
node, it is possible to limit how much memory should
be allocated to a job. For this evaluation, the number of
executors was fixed at four. Then, the jobs were submitted
with varying memory sizes, such as 2 GB, 4 GB, 6 GB, 8 GB,
and 20 GB for each executor. Since there were four executors
running, the total memory used for each test was 8 GB, 16
GB, 24 GB, 32 GB and 80 GB. In general, the performance
was improved as the memory was increased. In particular,
the performance from 2 GB to 8 GB in the execution time
was improved by 48%. What is evident from the Figure 23
was that the difference in execution time is not substantial
when increasing from 8 GB to 20 GB; in fact, it varies by
just 10 seconds. This difference can be explained by the fact
that when 8 GB per node is used, the total available memory
for the jobs is 32 GB; more than enough to accommodate 24
GB of data that is required to be processed. Any additional
memory would not have a huge impact on job performance,
as it would mostly remain unused.

Executor instances

The evaluation of the executors was created in order to
to measure how performance would be impacted when
changing the number of executors. For this test, the amount
of memory used for each executor was fixed at 4 GB. The
number of cores per executors was fixed at two. As seen in
Figure 24, the execution time was improved by 76% using
four executors, when compared with just one. The execution
time was seven seconds slower when five executors were
used in comparison to four. This was in part due to there
only being four virtual nodes available in the cluster. When
there were five executors, one of the nodes would run more
than one executor, contributing to an uneven distribution of
the job. Ultimately, this would cause an overloaded node.

Fig. 23: Execution time versus the memory size on the cloud
infrastructure.

Fig. 24: Execution time versus the number of executors on the
cloud infrastructure.

Executor cores
The executor cores parameter defines the number of tasks
that each executor can run concurrently. In this test, the
number of cores per executor was analysed as shown in
Figure 25. The amount of memory used for each executor
was fixed at 4 GB, and the number of executors was fixed
at four, so all nodes would be utilised. The performance
improvement of using eight cores over 2 cores was 69%. No
difference was observed between using eight or ten cores.
This is due to the fact that the maximum number of virtual
CPU cores available in each node is eight.

5 CONCLUSION

The three data monitoring approaches presented in this pa-
per outperform the RDBMS based system and the Lambda
Architecture that is used by the WLCG in terms of execution
time, low-latency, maintenance, and scalability. In particular,
the streaming approach provides the up-to-date state of the
infrastructure. The evaluation also shows that Optimised
Lambda Architecture can be ported into other computing
infrastructures with ease, as it was demonstrated in the
WLCG and a cloud infrastructure. On completion of the
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Fig. 25: time versus the number of cores on the cloud infras-
tructure.

work described in this paper the WLCG group has adopted
the Optimised Lambda Architecture, a combined batch and
streaming approach, and has been using this approach
for monitoring the WLCG Data acTivities Dashboard since
October 2015 [23]. Since the deployment of the Optimised
Lambda Architecture, the WLCG has been able to monitor
infrastructures (e.g. EOS data storage) that it was once
assumed would have been impractical. It has also saved
operational time as well as computation time in comparison
to the traditional architecture formerly used by the WLCG.
With the traditional workflow consisting of local filesys-
tems (dirq) and local collectors, PL/SQL computations had
several hours of operational time per week dedicated to
cleaning up the partition of the machines and maintaining
services. With the Optimised Lambda Architecture now
implemented the corresponding operational time has re-
duced to almost zero. An estimated 0.5 days/week is saved
through use of the Optimised Lambda Architecture. In
terms of computation time, the Optimised Lambda Architec-
ture utilises real-time computation, whereas the traditional
architecture required recomputation at a regular intervals.
The Optimised Lambda Architecture batch layer reduced
computation time by a factor of five when compared with
the traditional PL/SQL system, and by a factor of two when
compared with the original Lambda architecture.
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