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Abstract: With greater availability of data and increasing interaction activities taking 

place on social media, to detect overlapping and hierarchical communities has become 

an important issue and one that is essential to social media analysis. In this paper, we 

propose a coalition formation game theory-based approach to identify overlapping 

and hierarchical communities. We model community detection as a coalition 

formation game in which individuals in a social network are modelled as rational 

players aiming to improve the group’s utilities by cooperating with other players to 

form coalitions. Each player is allowed to join multiple coalitions, and those 

coalitions with fewer players can merge into a larger coalition as long as the merge 

operation is beneficial to the utilities of the merged coalitions, thus overlapping and 

hierarchical communities can be revealed simultaneously. The utility function of each 

coalition is defined as the combination of a gain function and a cost function. The 

gain function measures the degree of interactions amongst the players inside a 

coalition, while the cost function instead represents the degree of the interactions 

between the players of the coalition and the rest of the network. As game theory 

provides a formal analytical framework with a set of mathematical tools to study the 

complex interactions among rational players, to apply game theory for detecting 

communities helps to identify communities more rationally. Some desirable properties 

of the utility function, such as the non-resolution limit and the non-scaling behaviour, 

have been examined theoretically. To solve the issue of pre-setting the number and 

size for communities and to improve the efficiency of the detection process, we have 

developed a greedy agglomerative manner to identify communities. Extensive 

experiments have been conducted on synthetic and real networks to evaluate the 

effectiveness and efficiency of the proposed approach.  
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1 Introduction 

With social networks gaining in popularity, social network analysis has become an 



important research issue, with a significant impact on society (Fortunato 2010; Li et al. 

2014). One major and fundamental topic in social network analysis is community 

detection, i.e. to identify groups of vertices in a network such that the vertices within a 

group are much more connected to each other than to the rest of the network 

(Newman and Girvan 2004; Fortunato 2010). Because individuals belonging to the 

same community are more likely to have common features, such as social functions, 

interests on some topics, viewpoints, etc. (Zhao et al. 2012), the identified 

communities can be used in the improvement of services (Krishnamurthy and Wang 

2000), knowledge sharing (Liu et al. 2010), collaborative recommendation (Yuan et al. 

2010), information spreading (Wu et al. 2004), structure visualizing (Wu and Li 

2011), and other applications. In recent years, community detection has received a 

great deal of attention as it has significance relating to online influence analysis, 

online marketing and ebusiness (Bagrow 2012; Papadopoulous et al. 2012; Li et al. 

2014b; Francesco and Clara 2014; Zhou and Lü 2014). 

However, community detection is not a straightforward task, because in real 

networks communities can be overlapped or hierarchical, and these features often 

occur simultaneously. The overlap of communities implies that vertices 

simultaneously belong to more than one group, for instance, people belong to 

different social groups, depending on their activities, interests,  etc. (Palla et al. 

2005). This breaks the assumption that a community should have more internal than 

external connections (because highly overlapping communities can have many more 

external than internal connections), and demands a method that is able to detect either 

overlapping or non-overlapping communities (Lancichinetti et al. 2009). The 

hierarchical form of communities implies that the communities are recursively 

grouped into a hierarchical structure, i.e. small communities can form larger ones, 

which in turn can group more communities together to form even larger ones, etc. In 

the presence of hierarchies, the concept of community structure becomes richer, and 

demands a method that is able to detect communities at different levels, not just 

within a single level (Lancichinetti et al. 2009). Another two essential challenges in 

community detection are the efficiency of algorithms and the prior knowledge on the 



number and size of communities, because the presence of many vertices and links in a 

large network results in heavy computation, and the number and size of communities 

are usually unknown beforehand. At present, these issues have not been solved 

satisfactorily. In existing community detection algorithms, some require a priori 

knowledge on the number and size of communities before performing the task of 

detecting communities, some are not able to detect overlapping and hierarchical 

communities, and some are not applicable to large-scale networks due to the low 

efficiency. 

Motivated by the need for developing an algorithm that can detect both 

overlapping and hierarchical communities without prior knowledge on the number 

and size of communities in large-scale networks, we develop an approach by applying 

cooperative game theory (Zlotkin and Rosenschein 1994) to detect communities in 

this study. Cooperative game theory (Zlotkin and Rosenschein 1994) studies the 

cooperative behaviours of groups of rational players, where players cooperate with 

each other for improving the group’s utility, such a group of players is called a 

coalition. One class of cooperative games is coalition formation games (Saad et al. 

2009), whose main objective is to analyse the formation of coalitional structures 

through players’ interaction. Coalition formation games are generally not 

superadditive due to the presence of costs that reduce the gains from forming the 

coalition. In social network environments, the behaviours of individuals are not 

independent (Zacharias et al. 2008), and joining a community provides one with 

tremendous benefits, such as members feeling rewarded in some ways for their 

participation in the community, and gaining honour and status for being members 

(Sarason 1974). In which case, every individual has an incentive to join communities; 

however, in real-world cases not only does each individual receive benefit(s) from the 

communities it belongs to, but the individual must also pay a certain price to maintain 

its membership within these communities (Chen et al. 2010). These characteristics 

make coalition formation game theory applicable to community detection. 

In this study, we first model the process of community detection as a coalition 

formation game, in which individuals in a social network are modelled as rational 



players aiming to achieve the maximal group’s utility by cooperating with other 

players to form coalitions. A coalition is a subset of players. Each player is allowed to 

join multiple coalitions, which reflects the concept of “overlapping communities”. 

Meanwhile, coalitions with fewer players can merge into a larger coalition as long as 

such merge operations could improve the utilities of the coalitions. This process 

reveals, in fact, the hierarchical structure of communities. A coalition is regarded as a 

stable community if it cannot further improve its utility by merging with other 

coalitions. If no coalition can further improve its utility by merging with other 

coalitions, the game achieves an equilibrium state of coalitions, and the configuration 

of communities at this state is called the stable community structure. 

Next, we introduce the utility function for each coalition, which is the 

combination of a gain function and a cost function. The gain function measures the 

degree of the interaction amongst the players inside a coalition, while the cost 

function represents the degree of the interaction between the players of that coalition 

and the rest of the network. Based on the defined utility function, two coalitions 

without any link between them cannot improve their utilities by merging into a larger 

coalition, thus whether a coalition is merged with others can be decided by looking 

only at its neighbours (coalitions that have at least one link between them), rather than 

necessitating the performance of an exhaustive search over the entire network. This 

can speed up the computation considerably. 

Then, we develop a greedy agglomerative manner to identify communities, 

which starts from the vertices as separate coalitions (singletons); coalitions are 

iteratively merged to improve the group’s utilities until no further merging of 

coalitions is needed. This greedy agglomerative manner does not require a priori 

knowledge on the number and size of the communities, and it matches the real-world 

scenario, in which communities are formed gradually from bottom to top.  

Finally, we conduct extensive experiments on different networks to assess the 

performance of our approach. Meanwhile, we also compare our results with other 

related studies. The experimental results show that our algorithm is effective and 

efficient in identifying overlapping and hierarchical communities.  



The main contributions of this study can be summarized as follows: 

 The coalition formation game theory is applied to address the community 

detection problem. This approach considers community formation as the result 

of the group behaviours of rational players who cooperate with each other to 

form coalitions for achieving and improving a group’s utilities. 

 A utility function for modelling the benefit and cost of each coalition is 

introduced, and the properties of the utility function, such as the non-resolution 

limit and the non-scaling behaviour, have been examined theoretically. 

 An algorithm based on the greedy agglomerative manner is proposed to identify 

communities. The proposed algorithm does not require a priori knowledge on 

the number and size of communities, and it can detect the overlapping and 

hierarchical communities simultaneously. 

 Extensive experiments on synthetic and real networks have been conducted to 

evaluate the effectiveness and efficiency of the proposed approach. 

The rest of this paper is organized as follows: Section 2 introduces related work; 

Section 3 presents a coalition formation game theory-based framework for community 

detection; Section 4 provides a community detection algorithm that uses the greedy 

agglomerative manner to identify communities. The experimental results on the 

synthetic and real networks are presented in Section 5, and Section 6 concludes this 

paper. 

2 Related work 

A well-known method for detecting non-overlapping and non-hierarchical 

communities is the use of modularity-based methods (Newman and Girvan 2004), 

which is based on the idea that a random graph is not expected to have a cluster 

structure, so the possible existence of clusters is revealed by the comparison between 

the actual density of edges in a subgraph and the density one would expect to have in 

the subgraph, if the vertices of the graph were attached regardless of community 

structure (Fortunato 2010). However, modularity-based methods implicitly assume 

that communities do not intersect with one another, which is usually not the case for 



real-world communities (Chen et al. 2010). Fortunato and Barthélemy (2006) found 

that modularity optimization may fail to identify communities smaller than a scale 

which depends on the total number of links of the network and on the degree of 

interconnectedness of the communities, even in cases where communities are 

unambiguously defined. Brandes et al. (2008) also identified counterintuitive 

properties of modularity, such as non-locality and sensitivity to satellites.  

To detect overlapping communities, Palla et al. (2005) defined a 

k-clique-community as the union of all k-cliques that can be reached from each other 

through a series of adjacent k-cliques. But their algorithm requires the size of clique 

as an input, which is usually unknown in practical applications. Ahn et al. (2010) 

considered a community to be a set of closely interrelated links instead of a set of 

vertices with many links between them. Comparing with vertex communities, link 

communities incorporate overlap while revealing hierarchical organizations. In 

general, the number of links is greater than the number of vertices, so link-based 

approaches may suffer from greater computation cost than a vertex-based approach in 

the process of detecting communities. Ball et al. (2011) proposed a probabilistic 

model of link communities to detect communities, either overlapping or not, and used 

a fast, closed-form expectation- maximization algorithm to analyse networks of 

millions of vertices in reasonable running times. However, the approach of Ball et al. 

offers no criterion for determining the number of communities in a network. Galbrun 

et al. (2014) adapted efficient approximation algorithms to find k communities of 

labelled graphs so that the total edge density over all k communities is maximized and 

each community is succinctly described by a set of labels. To detect overlapping 

communities in semantic social networks, Xin et al. (2015a; 2015b) proposed 

methods, in which it is not necessary to pre-set the number of communities; Wu et al. 

(2015) provided an algorithm to solve the query biased densest connected subgraph 

(QDC) problem, where overlapping local communities and multiple disjointed local 

communities can also be found.  

Hierarchical clustering algorithms are usually used to reveal hierarchical 

communities of graphs. Sales-Pardo et al. (2007) proposed a top-down approach to 



identify the hierarchical communities of a graph from the similarity matrix of vertices, 

but the algorithm is not fast enough (Fortunato 2010). Clauset et al. (2008) used a 

dendrogram and a set of probabilities associated to the internal vertices of the 

dendrogram to describe the hierarchical organization of a graph. This method is 

capable of describing closely the graph properties, but it is impossible to rank 

community structures according to their relevance. Shen et al. (2009) handled the set 

of maximal cliques and adopted an agglomerative framework to detect both the 

overlapping and hierarchical properties of a complex community structure, but the 

efficiency of their algorithm requires improvement. Blondel et al. (2008) proposed a 

rapid method to unfold hierarchical community structures of large networks based on 

modularity optimization, but this method cannot detect overlapping communities. 

Game theories have been used to solve community detection problems. For 

example, Chen et al. (2010) addressed the community detection problem by a 

non-cooperative game theory-based framework (Nash 1951) that considers 

community formation as the result of individual agents’ rational behaviours and a 

community structure as an equilibrium of a game. This framework can identify 

overlapping communities because each agent is allowed to select multiple 

communities, but hierarchies between communities cannot be revealed. Alvari et al. 

(2011) considered the formation of communities in social networks as an iterative 

game in a multiagent environment, in which each vertex is regarded as an agent 

aiming to be in the communities with members such that they are structurally 

equivalent. Lung et al. (2012) formulated the community detection problem from a 

game theory point of view and solved this problem by using a crowding based 

differential evolution algorithm adapted for detecting Nash equilibria of 

non-cooperative games. Hajibagheri et al. (2012) used a framework based on an 

information diffusion model and Shapley Value concept to address the community 

detection problem. In Hajibagheri et al.’s framework, each vertex of the underlying 

graph is attributed to a rational agent aiming to maximize its Shapley value in the 

form of information it receives, and the Nash equilibrium of the game corresponds to 

the community structure of the graph. 



In our previous studies (Zhou et al. 2013a; 2013b), we proposed two coalitional 

game models for community detection. But the coalitional game theories used in 

(Zhou et al. 2013a, ; 2013b) are canonical coalitional games due to the characteristic 

functions defined in the models satisfying superadditive (Saad et al. 2009).  

 

In our previous studies (Zhou et al. 2013a; 2013b), we proposed two coalitional 

game models for community detection. But both characteristic functions defined in 

these models satisfy superadditive, thus players are willing to form grand coalitions 

(the coalition of all players). In (Zhou et al. 2015a), 

 

 

 

Based on those characteristic functions, players are willing to form grand 

coalitions (the coalition of all players). In Zhou et al. (2015a), we combine 

cooperative and non-cooperative game theory to detect communities, while we 

propose a coalition formation game theory-based approach to detecting communities 

in multi-relational social networks, where multi-relational communities are defined as 

the shared communities over multiple single-relational graphs (Zhou et al. 2015b). 

Although the cooperative game is used in (Zhou et al. (2015a; 2015b), the forms of 

the utility function are different from the one designed in this paper. 

3 A coalition formation game theory-based framework for community detection 

One of the main characteristics that make a game a coalition formation game is the 

presence of a cost for forming coalitions. It makes coalition formation games 

generally not superadditive, which implies that forming a coalition brings gains to its 

members, but those gains are limited by a cost for forming the coalition, hence the 

grand coalition is seldom the optimal structure (Saad et al. 2009). In a coalition 

formation game, network structure and cost for cooperation play major roles. 

In this paper, we propose a coalition formation game theory-based framework to 

identify overlapping and hierarchical communities, thus individuals of a network 



choose to form community structures after a social network is formed. Individuals in a 

social network are modelled as rational players aiming to achieve and improve 

utilities of groups by cooperating with other players to form coalitions. Coalitions 

with fewer players can merge into a larger coalition as long as the merge operation 

can contribute to improve the utilities of the merged coalitions. The process of 

merging coalitions actually illustrates the process of forming the hierarchy 

communities. Meanwhile, each player is allowed to join multiple coalitions, which 

could capture and reflect the concept of “overlapping communities”. A community 

structure of a network is a collection of coalitions, and the number of coalitions in a 

collection of coalitions is the number of communities with respect to the community 

structure. Due to the hierarchical form amongst communities, there are different 

community structures at different levels. Amongst them, a stable community structure 

is an equilibrium state of coalitions, in which no group of players has an interest in 

performing a merge operation any further. 

The utility function for each coalition is defined as a combination (summation) 

of a gain function and a cost function. The gain function is based on a ratio of links 

inside a coalition over the total degree of vertices inside the same coalition, while the 

cost function is based on a ratio of the total degree of vertices inside a coalition over 

the total links in the network. The gain function measures the degree of the interaction 

amongst the players inside a coalition, while the cost function represents the degree of 

the interaction between the players of the coalition and the rest of the network. A 

coalition is regarded as a stable community if it cannot further improve its utility by 

merging with other coalitions. 

For a given social network, the objective of detecting communities is to detect 

and identify the overlapping and hierarchical communities of the network. For this 

objective, we first present the notations, definitions and properties of the utility 

function. 

3.1 Notations 

Let ),( EVG   be an undirected unweighted graph representing a social network 



with ||V  vertices (individuals) and || E  links (interactions). Let A  be an 

adjacency matrix of G  with 1xyA  if Eyx ),(  for any pair of vertices 

Vyx , and 0 otherwise, and let )(xd  be the degree of vertex x . 

Let S  denote a subset of V , which is called a coalition, meanwhile let )(Se , 

)(Sd  and )(Sv  be the number of links amongst vertices inside S , the total degree 

of vertices in S  and the utility function of S , respectively. For any coalition 

VSS 21, , let ),( 21 SSe  be the number of links connecting vertices of the coalition 

1S  to the vertices of the coalition 2S . Let ijS  be a super-coalition of iS  in a merge 

operation of iS . Furthermore, let Γ  be a community structure (a collection of 

coalitions), i.e. },...,,{ 21 kSSSΓ  , and let )(Γv  be the total utility achieved in Γ . 

Depending on the context, an element in V  may either be called a player or a 

vertex, and a subset of V  may either be called a group or a coalition or a community. 

Also, a collection of coalitions, a coalition structure and a community structure can be 

used interchangeably.  

 

Definition 1. Stable community. A coalition S  is regarded as a stable 

community if S  cannot further improve its utility by merging with other coalitions, 

i.e. SS  ' , )()'( SvSSv   and )'()(,' SvSvSS  . Specially, S  is called the 

grand coalition (Saad et al. 2009) if VS  , i.e., the coalition of all the players, while 

S  is called a trivial coalition if S  solely consists of a single vertex, i.e. 

VxxS  },{ . 

Definition 2. Utility increment of a coalition. The utility increment of coalition 

iS  with respect to ijS  is defined by )()(),( iijiji SvSvSSv  . 

Definition 3. Stable community structure. A collection of coalitions 

},...,,{ 21 kSSSΓ   is a stable community structure if 



0)0),,(maxmax(,  iji
S

i SSvΓS
ij

 holds. 

A stable community structure is a form of equilibrium state of coalitions, in 

which no group of players has an interest in performing a merge operation any further. 

When a game enters the equilibrium state, the number of coalitions in 

},...,,{ 21 kSSSΓ   is the number of communities, and the number of the vertices in 

kS  is the size of the community kS . 

Definition 4. Total Utility. Let },...,,{ 21 kSSSΓ  , then the total utility )(Γv  

with respect to Γ  is defined by the following equation (Equation 1): 





ΓS

i

i

SvΓv )()(                        (1). 

Theorem 1. The collection of coalitions },...,,{ 21 kSSSΓ   is a stable 

community structure if all kSSS ,...,, 21  are stable communities. 

Proof. From kSSS ,...,, 21  are stable communities, we have, for any ΓSi  , 

0),(,  ijiij SSvS , then 0)0),,(maxmax(,  iji
S

i SSvΓS
ij

 holds.  

Theorem 2. A stable community structure },...,,{ 21 kSSSΓ   maximizes the 

total utility )(Γv . 

Proof. },...,,{ 21 kSSSΓ   is a stable community structure  kSSS ,...,, 21  are 

stable communities  0)0),,(maxmax(,  iji
S

i SSvΓS
ij

  )(Γv  is maximal. 

3.2 Utility function  

Definition 5. Utility function. Let S  be a coalition of ),( EVG  , then the 

utility function )(Sv  of S  is defined by the following equation (Equation 2): 

2

||2

)(

)(

)(2
)( 










E

Sd

Sd

Se
Sv


      (2) 

The first term and the second term in Equation (2) are called the gain function 

and the cost function of S , respectively. The gain function is the ratio of links inside 

S  over the total degree of the vertices in S ; the cost function instead represents the 



ratio of the total degree in that coalition over the total degree in the network. The 

larger gain function value means that there are more interactions amongst the players 

inside S , and the larger cost function value means that there is greater interaction 

between the players of the coalition S  and the rest of the network. Equation (1) 

means that forming a coalition brings gains to its members, but the gains are limited 

by a cost for forming the coalition.  

  is a scale factor used to adjust the cost of coalition S , ]1,0[ . 0  

means no cost for forming coalitions, i.e. forming a coalition is always beneficial. In 

this case, the utility function )(Sv  is superadditive due to it being defined only by 

the gain function. Thus, 1)( Vv , Vxxv  ,0})({ . That means that the utility 

function of the grand coalition has maximal value, while the utility function of a 

singleton coalition has a value of 0. When 1 , the costs for forming coalitions are 

maximal, Thus, 0)( Vv  and Vx
E

xd
xv 
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||2

)(
-})({

2


. So, the grand coalition 

and the collection of trivial coalitions are seldom the optimal structures. Moreover, 

the smaller )(xd  is, the greater })({xv  will be. Which means that vertices with 

small degrees are apt to be far more interested in collaborating with other vertices to 

improve their utilities. 

  is another parameter used to adjust the context of the coalition S , ]1,0( . 

1  means that the context of coalitions is the whole network; 1  means that 

the context of coalitions is a local of the network. Complex networks normally 

include many vertices and links, so the cost of a coalition with fewer degrees may be 

neglected with respect to the whole network. By using  , the costs are localized. 

Example 1. Figure 1 shows two simple social networks. Figure 1(a) is a network 

with a 4-clique and Figure 1(b) is a network with two 3-cliques. In Figure 1(a), if 

1 , 1 , 
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，，v , 0)4}32{1( ，，，v . The 4-clique cannot be assessed 

correctly. 
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1
-1)4}32{1( ，，，v . So, the 4-clique can be 

assessed correctly. 

In Figure 1(b), if 0 , 1 , 1)4,5,6}32{1( ，，，v . The grand coalition has 

maximal utility, and two 3-cliques cannot be assessed correctly. 
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3-cliques can be assessed correctly. The inequality )2,3}{1(})4,3,2,1({})4({ ，vvv   

means that players 1, 2 and 3 do not collaborate with player 4 although player 4 

intends to join the group 2,3}{1， . 
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Figure 1. Two simple social networks. (a). A 4-clique network; (b). A network with 

two 3-cliques 

 

3.3 Properties of the utility function 

The utility function )(Sv  of coalition S  defined in Equation (1) has the 

following properties. 

Property 1. Isolated vertices have no impact on )(Sv . 



This directly follows from the fact that )(Sv  depends on links and degrees, thus, 

an isolated vertex does not contribute, regardless of its association to a group. 

Therefore, all vertices are assumed to be of a degree greater than zero in this study, 

i.e., isolated vertices are excluded from further consideration. 

Property 2. The lower and upper bounds of )(Sv  satisfy: 

VxSv
E
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 . 

Proof: When 0 , )(Sv  is superadditive, 1)()( max  VvSv ; when S  is a 

singleton coalition, 0)( Se , hence Vx
E

xd
Sv 
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 . 

Property 3. If S  is a clique, }){()( xSvSv  , Sx ; )(}){( SvySv   if 

3)( yd ; )(}){( SvySv   if 3)( yd . 

This property means that the utility of a clique is greater than the utility of each 

subset of the clique itself; the utility of a coalition composed of a clique and a vertex 

(that is not a member of the clique but is connected to a vertex of the clique) with 

degree 1 or 2 is greater than the utility of the clique, but the utility of the clique is 

greater than the utility of a coalition composed of the clique and a vertex (that is not a 

member of the clique but is connected to a vertex of the clique) with degree of at least 

3. 

Proof: Let S  be a p-clique ( 3p , because a 3-clique is a trivial clique), vertex 

Sx , pxd )( , Sy . The relationships between x  and y  are shown in Figure 

2. For simplicity, let 0 , then,  
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Figure 2. A network with a p-clique S 

Property 4. )(Sv  is not limited by the resolution limit of Newman and 

Girvan’s  modularity (it is defined by 
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(Newman and Girvan 2004). 

The resolution limit of Newman and Girvan’s modularity means that modularity 

optimization may fail to identify communities smaller than a scale which depends on 

the total number of links of the network and on the degree of interconnectedness of 

the communities, even in cases where communities are unambiguously defined. For 

example, Figure 3 shows a network with four pairwise identical cliques (S3, S4 are two 

m-cliques and S1, S2 are two p-cliques, p < m); if m is large enough with respect to p 

(e.g. m = 20, p = 5), modularity optimization merges the two smallest groups into one 

(shown with a dotted line) (Fortunato and Barthélemy 2006). 

Proof: (1) Because 3)( yd , )(}){( 11 SvySv  (Property 3), )(Sv  can 

evaluate 1S  at lower level. 

(2) Because the utility function defined in Equation (1) is the combination of a 

gain function and a cost function, 1S  does not merge with 2S  at higher level if   

and   are suitable.  

Therefore, )(Sv  is not limited by the resolution limit of Newman and Girvan’s  



modularity.  
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Figure 3. A network with four pairwise identical cliques (S3, S4 are two m-cliques, S1, 

S2 are two p-cliques, p < m). 

Property 5. )(Sv  is not limited by the non-locality of Newman and Girvan’s  

modularity if S  is a clique. 

The non-locality of Newman and Girvan’s modularity means that the 

memberships of some vertices may be changed by adding an additional vertex, 

although locally their neighbourhood structure has not changed. For example, based 

on Newman and Girvan’s modularity, the vertices of the network shown in Figure 4 

(a) are clustered into two groups ({1,2,3,4}, {5,6}, represented by different shading), 

but the vertices are clustered into three groups ({1,2}, {3,7}, {4,5,6} in which the 

membership of vertex 4 is shifted after additional vertex 7 is connected to vertex 3 

(shown in Figure 4 (b)) (Brandes et al. 2008). 

Proof: Because S  is a clique and 1)( yd , thus )(}){( SvySv   (Property 

3), therefore, y  is just joined to S  rather than changing the membership of the 

vertex of S .  

For example, ({1,2,3,4}, {5,6}) is a stable community structure with respect to 

the vertices in Figure 4 (a), and ({1,2,3,4,7}, {5,6}) is a stable community structure 

after vertex 7 is connected to vertex 3 (shown in Figure 4 (c)). This shows that )(Sv  

does not suffer from the non-locality. 
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Figure 4. Non-locality behaviour. (a) The original community structure (based on 

Newman and Girvan’s modularity); (b) The community structure after vertex 7 is 

added (based on Newman and Girvan’s modularity); (c) The community structure 

after vertex 7 is added (based on v(S)) 

Property 6. )(Sv  is not sensitive to satellites. 

The sensitivity to satellites means that for a clique with leaves, a network of 2p 

vertices that consists of a p-clique and p-leaf vertices of 1 degree, such that each 

vertex of the clique is connected to exactly one leaf vertex, the optimal community 

structure based on Newman and Girvan’s modularity is composed of p groups, in 

which each group consists of a connected pair of a leaf and a clique vertex. Figure 5(a) 

shows an example (Brandes et al. 2008). 

Proof: According to Property 3, p-leaf vertices form the same coalition with 

vertices of the p-clique, i.e. the community formed by all vertices in the graph is a 

stable community.  

Thus, the stable community structure corresponding to the network of Figure 5(a) 

is {1, 2, 3, 4, 5, 6} (shown in Figure 5(b)). 
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Figure 5. No sensitivity to satellites: (a) The community structure (based on Newman 

and Girvan’s modularity); (b) The community structure (based on v(S)) 

Property 7. )(Sv  does not have the scaling behaviour of Newman and Girvan’s 

modularity. 

The scaling behaviour of Newman and Girvan’s modularity means that by 

simply duplicating a network of 2p vertices that consists of a p-clique and p-leaf 

vertices of 1 degree such that each vertex of the clique is connected to exactly one leaf 

vertex, the optimal clustering is altered completely. For example, duplicating the 

network presented in Figure 5(a), three clusters in Figure 5(a) have been changed into 

two clusters, each of them being a network equivalent to the one in Figure 5(a) 



(shown in Figure 6) (Brandes et al. 2008).  

Proof: According to Property 6, the community formed by all vertices in a 

network, of 2p vertices that consists of a p-clique and p-leaf vertices of 1 degree such 

that each vertex of the clique is connected to exactly one leaf vertex, is a stable 

community formed by all vertices; in the same way, the community formed by all 

vertices in the duplicated graph is also a stable community. Therefore, )(Sv  does not 

have the scaling behaviour of Newman and Girvan’s modularity.  

For example, {1,2,3,4,5,6} is a stable community structure with respect to the 

vertices in Figure 5(a), and {{1,2,3,4,5,6}, {1’,2’,3’,4’,5’,6’}} is a stable community 

structure after the network presented in Figure 5(a) is duplicated based on )(Sv  

(shown in Figure 6). From Figure 6, we can see that the interactions amongst vertices 

in each coalition form a connected subgraph.  
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Figure 6. Without scaling behaviour 

4 A community detection algorithm 

In this study, we develop a greedy agglomerative manner to identify 

communities, the main idea of the greedy agglomerative manner is to start from the 

vertices as separate coalitions (singletons); coalitions that can result the highest utility 

increment are iteratively merged into a larger coalition to improve the group’s utilities 

until no such merge operation can be performed. In this section, we first present the 

conditions of merging two coalitions, and then we give our greedy agglomerative 

algorithm, referred to as the COFOGA (coalition formation game-based greedy 

agglomerative) algorithm. 

4.1 The conditions of merging two coalitions 

Let 1S  and 2S  be two small coalitions with few players. 1S  and 2S  can 

merge into a larger coalition if and only if the following conditions are held. 



Condition 1: )()(&)()( 221121 SvSSvSvSSv  . This condition means 

that the utilities of 1S  and 2S  have been improved through the merge operation. 

The unilateral meet of two inequalities shows that two coalitions fail to reach an 

agreement to cooperate, for example, the case of “ )()( 121 SvSSv   but 

)()( 221 SvSSv  ” suggests that 2S  intends to cooperate with 1S  but 1S  may not 

agree. 

Note that there can be several pairs i  and j  such that )( ji SSv   is the 

maximum, meanwhile )()( iji SvSSv   and )()( jji SvSSv  . In these cases the 

algorithm selects an arbitrary pair to merge. 

Condition 1 ensures that a coalition formed by the merge operation has greater 

utility than that of its subsets.  

Condition 2: 0),( 21 SSe , i.e. 1S  does not cooperate with 2S  if 

0),( 21 SSe . 

Proof: 
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 , 

)()( 121 SvSSv   and )()( 221 SvSSv   cannot be greater than zero at the same 

time, because if 0)()( 121  SvSSv , then )()()()( 2112 SdSeSdSe   is inevitable, but 

under this condition, 0)()( 221  SvSSv . Therefore, if 0),( 21 SSe , 1S  does not 



cooperate with 2S . This implies that two coalitions without a link between them 

cannot merge into a larger coalition. Based on this conclusion, whether a coalition is 

merged with others can be decided by looking only at its neighbours (coalitions that 

have links between them), without an exhaustive search over the entire network. 

Condition 3: ||2)( 21 ESSe  . The study of Fortunato and Barthélemy 

(2006) shows that a coalition S  (with )(Se  internal links) found by modularity 

optimization may be a combination of two or more smaller communities if 

||2)( ESe  . Here, we use ||2)( 21 ESSe   as one of the conditions for 

merging two coalitions. 

4.2 Description of the coalition formation game-based greedy agglomerative algorithm 

The pseudo-code for the greedy agglomerative algorithm is given in the COFOGA 

algorithm. 

COFOGA algorithm: 

Input: A network G(V, E)  

Output: The communities of the network 

Variables: 

k : The index of level in the hierarchical communities of the graph 

kCoaSet : The set of coalitions at k-th level 

CooSetMap : The map of kCoaSet , i.e. the copy of kCoaSet  

CooSps : A cooperative sponsor, i.e. a coalition with maximal utility in kCoaSet   

CooCaSet : The set of cooperative candidates, i.e. a cooperative candidate is a 

coalition in which there is at least one link between the coalition and CooSps   

*CooCas : A best cooperative candidate, i.e. such a coalition in CooCaSet that the 

cooperation of the coalition with CooSps  can bring about the maximal increment of 

utility. 

Steps: 



1. 0k  

2. }}{},...,2{},1{{ VCoaSet k    

3. Do 

4.    kCoaSetCoaSetMap   

5.    1 kk  

6.    kCoaSet  

7.    while CoaSetMap  

8.        )(maxarg SvCooSps
CoaSetMapS

   

9.        }{CooSpsCoaSetMapCoaSetMap   

10.        },,,0),(|{)( 1 kCoaSetSSyCooSpsxyxASCooSpsCooCaSet  

11.       while )(CooSpsCooCaSet  

12.           )(maxarg
)(

* CooCasCooSpsvCooCas
CooSpsCooCaSetCooCas




  

13.           if ||2)( * ECooCasCooSpse   & 

)()( * CooSpsvCooCasCooSpsv   & )()( ** CooCasvCooCasCooSpsv     

14.               *CooCasCooSpsCooSps    

15.                }{ *CooCasCoaSetMapCoaSetMap    

16.               
}){)((

}{)()(
*

*

CooSpsCooCasCooCaSet

CooCasCooSpsCoaCaSetCooSpsCoaCaSet



  

17.           else }{)()( *CooCasCooSpsCoaCaSetCooSpsCoaCaSet   

18.           end if 

19.       end while 

20.   }{CooSpsCoaSetCoaSet kk   

21.   end while 

22. while 1 kk CoaSetCoaSet  

23. for 0i  to k  



24.    Output kCoaSet   

25. end for 

 

Step 1~Step 2 are the initializations: each vertex forms a singleton coalition, and 

all singleton coalitions form 0CoaSet ; the loop of Step 11~Step 19 creates a coalition 

for 1kCoaSet , while the loop of Step 7~Step 21 creates all coalitions for 1kCoaSet ; 

the loop of Step 3~Step 22 reveals the hierarchical communities of the graph, and the 

loop of Step 23~Step 25 outputs community structures at different levels. For creating 

coalitions for 1kCoaSet , Step 8 selects CooSps  from kCoaSetMap , Step 9 deletes 

CooSps  from kCoaSetMap , Step 10 selects cooperative candidates for CooSps  from 

1kCoaSet , and Step 12 finds the best cooperative candidate *CooCas ; if CooSps  and 

*CooCas  meet conditions for merging, then merge operation can be carried out and 

CooSps  is replaced by the coalition formed by merging CooSps  and *CooCas  in 

Step 14; Step 15 deletes *CooCas  from kCoaSetMap ; Step 16 amends 

)(CooSpsCooCaSet  by deleting *CooCas  and adding cooperative candidates of 

*CooCas  ( CooSps  excepted). This process is repeated until no further merge 

operations can be performed.  

CooSps  can only be selected from kCoaSetMap , while cooperative candidates of 

CooSps  are selected from 1kCoaSet . This strategy enables that  CooSps  is not 

selected for multiple times and each vertex can join multiple coalitions. 

0CoaSet ， 1CoaSet ，…, kCoaSet  reveal the hierarchical communities of the graph. 

The value of k  represents the number of levels, kCoaSet  implies the community 

structure at k-th level, and the number of coalitions in kCoaSet  means the number of 

communities at k-th level. Because the agglomerative process is carried out 

automatically, the number and size of the communities are obtained automatically 

rather than specified in advance.   



The time complexity of the COFOGA algorithm is |)|log|(| VVO  at worst case. 

Note that, 1|| V  iterations are an upper bound and the algorithm will terminate as 

soon as a pair of coalitions would not be merged. It is possible that the algorithm ends 

before the grand coalition forms.  

5 Experiments and results 

In this section, extensive experiments have been undertaken for assessment: 

(1) the effectiveness of the COFOGA algorithm in real networks. Two 

well-known real networks are used to examine if the COFOGA algorithm can 

correctly identify the overlapping communities and the hierarchical structure of 

communities;   

(2) the effectiveness of the COFOGA algorithm in benchmark networks. These 

benchmark networks are produced under different assumptions containing different 

community information, such as different vertices, different connections, or different 

overlapping vertices. Because the real community information is known, we use the 

normalized mutual information (NMI) as the quantitative evaluation metric. These 

benchmark networks are also used to assess the efficiency of the COFOGA algorithm 

under different conditions. 

(3) whether the COFOGA algorithm is limited by the resolution limit. To this 

end, we create two synthetic networks made of cliques (complete graphs). We want to 

find out whether the COFOGA algorithm can integrate the smaller cliques into the 

larger group.  

(4) comparisons have been made with other algorithms in which non-cooperative 

game theory has been applied.   

5.1 Assessing the effectiveness of the COFOGA algorithm in real networks 

We first apply the COFOGA algorithm in the Zachary’s Karate Network 

(Zachary 1977) and the Lusseau's Dolphin Network (Lusseau 2003), two well-known 

real networks used to test community detection algorithms. The Zachary’s Karate 

Network consists of 34 vertices and 79 links, and the Lusseau's Dolphin Network 

consists of 62 vertices and 159 links. Figure 7 (a) and (b) presents the communities 



detected by LocalEquilibrium (an algorithm that applies non-cooperative game theory) 

(Chen et al. 2010) and coalitions detected by the COFOGA at the first level (i.e. 1k ) 

in the Zachary’s Karate Network, and Figure 8 (a) and (b) presents the communities 

detected by LocalEquilibrium (Chen et al. 2010) and coalitions detected by the 

COFOGA at the first level (i.e. 1k ) in the Lusseau's Dolphin Network. Similar to the 

community structures detected by LocalEquilibrium, the community structures 

detected by COFOGA are refinements of the community structures discovered in 

Newman and Girvan’s work (2004), in which two networks are divided into two 

components (the two components in the Zachary’s Karate Network correspond to the 

upper overlapping communities and the two lower communities in Figure 7(b), and 

the two components in the Lusseau's Dolphin Network correspond to the three upper 

overlapping communities and the three lower communities in Figure 8(b)). However, 

the number of communities and the overlapping vertices discovered by the COFOGA 

are different from those discovered by LocalEquilibrium, for example, in the 

Zachary’s Karate Network, LocalEquilibrium discovered five communities and three 

overlapping vertices (vertices 1, 33 and 34), while the COFOGA discovers three 

communities and only one overlapping vertex (vertex 10, which has two links 

connecting to vertices in different communities). In addition, there may be more than 

one overlapping vertex between two communities in the structure detected by the 

COFOGA, (e.g. vertices 22, 3, 21 and 51 in the Lusseau's Dolphin Network).  

Figure 9 shows the stable community structures of the Zachary’s Karate 

Network and the Lusseau's Dolphin Network detected by the COFOGA. These stable 

community structures are similar to the community structures discovered in Newman 

and Girvan’s work (2004). 

This experiment indicates that the COFOGA algorithm is able to discover 

overlapping and hierarchical communities, which by visual inspection provide 

meaningful information about the community structures and can be used in further 

investigation of community interconnections. 



 

 
 

 
Figure 7. The community structures for the Zachary’s karate Network. (a) The 

structure detected by LocalEquilibrium (Chen et al. 2010); (b) The structure detected 

by the COFOGA at the first level (CoaSet1, 79/1 , 1 ). 

 

 
 

  

Figure 8. The community structures of the Lusseau's Dolphin Network. (a). The 

structure detected by LocalEquilibrium (Chen et al. 2010); (b). The structure 

detected by the COFOGA at the first level (CoaSet1, 159/1 , 1 ). 

 

  

 

Figure 9. The stable community structures of the Zachary’s Karate Network and the 



Lusseau's Dolphin Network detected by COFOGA. (a). The stable community 

structure of the Zachary’s Karate Network (CoaSet2, 25.0 , 1 ); (b). The 

stable community structure of the Lusseau's Dolphin Network (CoaSet2, 25.0 , 

1 ) 

5.2 Assessing the effectiveness and efficiency of the COFOGA algorithm in 

benchmark networks 

We first produce a benchmark network with overlapping vertices by using 

Lancichinetti and Fortunato’s method (2009) under following parameters: the number 

of vertices N =128, the average degree k=10, the maximum degree maxk=30, the 

mixing parameter, i.e. the portion of crossing edges mu=0.1, the minus exponent for 

the degree sequence t1=2, the minus exponent for the community size distribution 

t2=1, the minimum for the community sizes minc=10, the maximum for the 

community sizes maxc=30, the number of overlapping vertices on=10, the number of 

memberships of the overlapping vertices om=2. The benchmark structure and 

community structures detected by LocalEquilibrium and COFOGA are shown in 

Figure 10 and Table 1. In Table 1, the shaded vertices are overlapping vertices.  

 

    

Figure 10. The community structures of the benchmark network with 128 vertices. (a) 

The benchmark network; (b) The community structure detected by LocalEquilibrium; 

(c) The stable community structure detected by the COFOGA ( 1366/1  at the first 

level, 25.0  at the higher level, 1.0 ). 



 

No. Benchmark  stra-game coop-game 

1 1 11 14 21 22 25 26 47 63 66 69 

73 74 84 88 99 104 109 111 

1 11 14 21 22 25 26 47 63 66 69 

73 74 84 88 99 104 109 111 

1 11 14 21 22 25 26 47 63 66 69 

73 74 84 88 99 104 109 111  

2 2 3 17 23 31 39 41 50 52 82 86 

90 100 107 128 

2 3 17 23 31 39 41 50 52 82 86 

90 100 105 107 128 

2 3 17 23 31 39 41 50 52 82 86 

90 100 105 107 128  

3 4 33 35 40 43 44 48 56 59 61 75 

80 91 95 96 98 110 115 116 118  

4 33 35 40 43 44 48 56 59 61 75 

80 91 95 96 98 110 115 116 118 

4 33 35 40 43 44 48 56 59 61 75 

80 91 95 96 98 110 115 116 118  

4 6 9 19 24 32 38 42 45 46 59 64 

83 89 102  

6 9 19 24 32 38 42 45 46 59 64 

83 89 102 

6 9 19 24 32 38 42 45 46 59 64 

83 89 102  

5 5 15 16 37 41 51 54 57 58 70 79 

87 92 94 101 106 114 

5 15 16 37 41 51 54 57 58 70 79 

87 92 94 101 106 114 

5 15 16 37 41 51 54 57 58 70 79 

87 92 94 101 106 114  

6 8 10 12 18 29 34 51 53 55 56 62 

65 71 72 78 81 87 90 103 105 

114 119 121 122 125 126 127 

128  

8 10 12 18 29 34 51 53 55 56 62 

65 71 72 78 81 87 103 105 114 

119 121 122 125 126 127 128 

8 10 12 18 29 34 51 53 55 56 62 

65 71 72 78 81 87 90 103 105 

114 119 121 122 125 126 127 

128 

7 7 13 20 27 28 30 36 49 60 67 68 

76 77 85 93 97 108 111 112 113 

117 120 122 123 124  

7 13 20 27 28 30 36 49 60 67 68 

76 77 85 93 97 108 111 112 113 

117 120 122 123 124 

7 13 20 27 28 30 36 49 60 67 68 

76 77 85 93 97 108 111 112 113 

117 120 122 123 124  

 

Table 1 The structures of benchmark network and the communities detected by LocalEquilibrium and 
COFOGA (The vertices with shade are overlapping vertices) 

 

From Table 1, we can see that both LocalEquilibrium and COFOGA identify the 

number of communities and the memberships of vertices (except for vertex 150 and 

90) correctly. Vertex 150 is not an overlapping vertex in the benchmark structure, but 

both LocalEquilibrium and the COFOGA judge that vertex 105 is an overlapping 

vertex. From Figure 10, we can see that vertex 105 has many links connected to 

different groups, so the judgment of LocalEquilibrium and the COFOGA is 

reasonable. Vertex 90 is an overlapping vertex in the benchmark structure and the 

COFOGA identifies it correctly, but LocalEquilibrium does not identify it as an 

overlapping vertex. From Figure 10, we can see that vertex 90 has also many links 

connected to different groups, so it is an overlapping vertex. 

Next we produce a series of benchmark networks with overlapping vertices 

under different parameters and use the normalized mutual information (NMI) (Danon 

et al. 2005; Lancichinetti et al. 2009) between the detected community structure and 

the underlying ground truth as the evaluation metric (Lancichinetti et al. 2009). Figure 

11 presents the NMI values between the community structures detected by 

LocalEquilibrium/COFOGA and the benchmark community structures under different 

fractions of overlapping vertices. Figure 12 compares the running times of 

LocalEquilibrium and COFOGA for detecting community structures on the produced 



benchmark networks. The x-axis represents the portion of vertices that belong to 

multiple communities. Figure 13 presents the NMI values between the community 

structures detected by the COFOGA and the benchmark community structures under 

different  . The x-axis represents the value of  . The networks used to produce 

Figures 11, 12 and 13 (a)~(d) consist of 1,000 vertices, whereas those of Figure 11, 12 

and 13 (e)~(h) consist of 5,000 vertices. The community sizes in Figure 11, 12 and 13 

(a), (b), (e) and (f) range between minc=10 and maxc=50, and the community sizes in 

Figure 11, 12 and 13 (c), (d), (g) and (h) range between minc=20 and maxc=100. The 

mixing parameter mu=0.1 for Figures 11, 12 and 13 (a), (c), (e) and (g), and mu=0.3 

for Figures 11, 12 and 13 (b), (d), (f) and (h). The other parameters are t1=2, t2=1, 

k=20, maxk=50 and om=2.  

From Figure 11, we can see that both the COFOGA and LocalEquilibrium 

perform very well when the portion of crossing edges mu=0.1, with NMI being above 

85 per cent, and the COFOGA outperforms LocalEquilibrium when the portion of 

overlapping vertices is small. For mu=0.3, the COFOGA outperforms 

LocalEquilibrium no matter the number of vertices N=1,000 or N=5,000. 

From Figure 12, we can see that the COFOGA is much faster than 

LocalEquilibrium over all instances: the longest running time of the COFOGA is 11 

and 67 seconds for N=1,000 and N=5,000 respectively, while the shortest running 

time of LocalEquilibrium is 185 and 203 seconds for N=1,000 and N=5,000 

respectively. Moreover, the running time of LocalEquilibrium increases greatly with 

the number of vertices N, the portion of crossing edges mu, and the fraction of 

overlapping vertices, for example, the running time of LocalEquilibrium is 4,495 

seconds for N=5,000, mu=0.3 and where half the vertices belong to multiple 

communities. However, the running time of the COFOGA is more stable than 

LocalEquilibrium. 

From Figure 13, we can see that different   result in different NMI for each 

network. The values of   corresponding to the maximal NMI in different networks 



are often different. How to select a suitable   for a network is a future direction we 

will pursue. 
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Figure 11. The NMI values between the community structures detected by 

LocalEquilibrium/COFOGA and the real community structures under different 

fractions of overlapping vertices, (a)~(d) consist of 1,000 vertices, (e)~(h) consist of 

5,000 vertices. The minimum degree and maximum degree of the network are 20 and 

50 respectively. ||/1 E  at the first lever and 25.0  at the other levels. 
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Figure 12. The running times of LocalEquilibrium and COFOGA for detecting 

community structures on the benchmark networks under different fractions of 

overlapping vertices, (a)~(d) consist of 1,000 vertices, (e)~(h) consist of 5,000 

vertices. The minimum degree and maximum degree of the network are 20 and 50 

respectively. ||/1 E  at the first lever and 25.0  at the other levels. 
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 Figure 13. The NMI values between the community structures detected by the 

COFOGA and the real community structures under different  , (a)~(d) consist of 

1,000 vertices, (e)~(h) consist of 5,000 vertices. The minimum degree and maximum 

degree of the network are 20 and 50 respectively. The fraction of overlapping vertices 

is 0.5. ||/1 E  at the first lever and 25.0  at the other levels. 

The experimental results on the benchmark networks indicate that the COFOGA 

algorithm achieves results of high quality in terms of the NMI measures, and is much 

faster than the LocalEquilibrium algorithm.  

 

5.3 Assessing the resolution limit 

The first synthetic network (SNC1) is made of 30 identical cliques, which are 

complete graphs with five vertices connected by single links. The community 

structure of SNC1 detected by LocalEquilibrium is shown in Figure 14 (a). Figure 14 

(b) shows the community structures of SNC1 detected by COFOGA at the first level, 

in which different colours represent different communities, and vertices with the same 

colour belong to the same community.  

The second synthetic network (SNC2) is made of four cliques. Two of which are 

complete graphs with 30 vertices, and the other two are complete graphs with 5 

vertices. The community structure of SNC2 detected by LocalEquilibrium is shown in 

Figure 15 (a), Figure 15 (b) shows the community structure of SNC2 detected by 

COFOGA at the first level, in which different grey levels represent different 

communities, and vertices with the same grey level belong to the same community. 



 

  
 

Figure 14. The community structures of SNC1. (a). The community structure of 

SNC1 detected by LocalEquilibrium; (b). The community structure of SNC1 detected 

by the COFOGA at the first level (CoaSet1, 330/1  , 1.0 ). 

 

 

Figure 15. The community structures of SNC2 .(a). The community structure of 

SNC2 detected by LocalEquilibrium, The community structure of SNC2 detected by 

the COFOGA at the first level (CoaSet1, 1784/1  , 3.0 ). 

Figures 14 and 15 indicate that both LocalEquilibrium and the COFOGA identify 

community structures correctly, i.e. both of them are not limited by the resolution 

limit of Newman and Girvan’s modularity.  

6 Conclusions 

In this paper, community detection in a social network is modelled as a coalition 

formation game in which individuals cooperate with each other to improve a group’s 

utilities. This matches well with the fact that a community in fact is an interactive 

phenomenon amongst multiple individuals, thus the proposed approach in this paper 

is able to detect communities more rationally, where overlapping and hierarchical 

communities can be identified. Because the number of coalitions is fewer than the 

number of individuals, the game amongst coalitions would require less computation 



than the game amongst all individuals, thus our approach, which is based on the 

coalition formation game, is more efficient than the approaches that are based on 

non-cooperative game theory. Meanwhile, our approach avoids the pre-requests for 

the number and the size of communities. In addition to discovering groups of related 

individuals in social networks, our approach can also be applied to other purposes, 

such as to detect sets of web pages dealing with the same topic, or biochemical 

pathways in metabolic networks. 

In this study, we detect the community structure that maximizes the total utility 

by the coalition formation process in this paper, but we do not consider the evolution 

of this structure, i.e. the change of the community structure when one or more players 

joins or leaves the game. 

In our utility function,   and   are two important parameters. In this study, 

we let ||/1 E  at the first level, and let 25.0  at the other levels. So our 

experimental results are only influenced by  . The experiment results show that 

community structures detected by the COFOGA are sensitive to  . As part of our 

future work, we consider the design of a method to find appropriate   and   

automatically, or to design a more appropriate utility function. 

In the future, we will further explore the properties of the coalition formation 

game, especially of the utility function, for tracing the evolution of the community 

structure and reducing the centralized complexity, and we will make efforts to reduce 

the computational complexity and investigate the distributed approach for forming 

coalitions, which has a distinct advantage for dealing with large scale networks.  
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