
13

Spatial-Temporal Modelling and Analysis of Bacterial Colonies
with Phase Variable Genes
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13:2 O. Pârvu et al.

1. MOTIVATION

Computational models are employed in systems biology [Ideker et al. 2001; Kitano
2002] to explain the mechanisms underlying physiological processes and to predict
how the system behaviour changes when the system is perturbed.

The modelling requirements may depend on the considered level of organisation. At
intracellular or more fine-grained levels, it is often assumed that species (e.g. proteins/
molecules) are uniformly distributed, and therefore computational models only capture
how their average concentration changes over time; explicitly considering individual
species and their evolution over both time and space at fine-grained resolutions usually
leads to an explosion in the model simulation time. Conversely, at cellular and more
coarse-grained levels, it is assumed that the heterogeneity of species (e.g. cells) is
important because it can lead to the development of different patterns/structures in
space. Therefore, at such higher levels of organisation, computational models record
how the number/density of species evolves both over time and space.

To support the development of spatial computational models, corresponding mod-
elling formalisms have been developed; they represent the spatial domain in either a
continuous or discrete fashion.

Continuous spatial models are usually encoded as partial differential equations
(PDEs) [Schaff et al. 1997] and represent variations of reaction-diffusion [Kondo and
Miura 2010] or predator-prey [Arditi et al. 2001] systems, respectively chemotactic
movement of cells [Hillen and Painter 2009]. The main reason for modelling processes
such as diffusion (reaction-diffusion) or population variation (predator-prey, chemo-
taxis) using continuous approaches is that only the average density of the species is of
interest for each time point and position in space.

Conversely, in case the interactions between individual species are of interest, dis-
crete spatial models could be employed instead. Representative discrete spatial mod-
elling formalisms that employ a lattice-based representation of space and local rules to
specify how the system changes from one state to the next are Cellular Automata (CA)
[Deutsch and Dormann 2007, Chapters 5–11] and Glazier-Graner-Hogeweg (GGH)
[Balter et al. 2007; Graner and Glazier 1992] models (also known as Cellular Potts). In
contrast to standard CA and GGH models, individual-based models (IBMs) [An et al.
2009; Thorne et al. 2007] can employ either an on-lattice or off-lattice spatial repre-
sentation, and their evolution over time is determined by rules specific to individuals
(or agents) instead of lattice positions. Modelling formalisms that are not inherently
spatial but have been extended with spatial attributes recording the species’ posi-
tion in space (e.g. coordinates in Euclidean space) include process algebras [Feng and
Hillston 2014; John et al. 2010], rule-based modelling languages [Blinov et al. 2004;
Danos et al. 2007; John et al. 2011; Maus et al. 2011; Nikolić et al. 2012] and P (or
membrane) systems [Barbuti et al. 2011; Besozzi et al. 2008].

Similarly, Heiner and Gilbert [2011] and Gilbert et al. [2013] describe how hierarchi-
cal and coloured extensions of Petri nets can be employed to construct discrete spatial
computational models. One of the main advantages of coloured Petri nets (CPNs) as
a modelling formalism, and the reason for employing them here, is that they enable
constructing complex stochastic and/or deterministic models using the same frame-
work without the need to integrate multiple approaches in a hybrid model. Moreover,
CPNs are well-balanced in their modelling and analysis power; CPNs (with finite dis-
crete colour sets) can be automatically unfolded, and thus all analysis/simulation tech-
niques available for the uncoloured Petri nets can be reused for the analysis/simulation
of CPNs.

An initial example of a spatial computational model constructed using hierarchical
CPNs is presented in Gao et al. [2013], where the spatial domain is represented at
the top level as a hexagonal lattice and a clustering based approach is employed to
detect discretised spatial compartments with similar biologically relevant features.
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Similarly, it was shown in Liu et al. [2014] that CPNs could be employed for modelling
2D reaction-diffusion systems considering a rectangular lattice.

The preliminary paper [Pârvu et al. 2013] illustrates how the same framework can be
employed to construct 2.5D spatial computational models considering both rectangular
and circular geometries, and introduces an algorithm for automatically computing
the geometric properties (e.g. area) of sector-like patterns in the final state of model
simulations.

The main contributions of our article with respect to Pârvu et al. [2013] are as follows:

—A detailed explanation of the motivation for modelling phase variation in bacterial
colony growth and its potential practical applications

—An implementation of a spatio-temporal analysis algorithm that enables analysing
how the geometric properties of spatial patterns change over time

—An initial attempt to generalise the CPN spatial modelling approach by establishing
a connection between CPNs and discretised approximations of PDEs.

We illustrate our approach based on a systems biology case study, namely phase varia-
tion patterning in bacterial colony growth. The spatial-temporal modelling and analysis
methodology described in this article is a precursor to the development of more complex
multiscale models.

The article is organised as follows. The computational motivation, biological back-
ground, and basic model are described in Section 2. The representation of space con-
sidering circular and rectangular geometries using Cartesian and polar coordinates
is described in Section 3, and the analysis is presented in Section 4. The connection
between Petri net models and (systems of) PDEs is given in Section 5. We conclude
with a summary in Section 6.

Additional information is provided in the Online Appendix, in which models and
analysis tools are made available.

2. PHASE VARIATION IN BACTERIAL COLONY GROWTH

2.1. Background

A large proportion of bacterial species use a stochastic gene switching process called
phase variation, controlled by reversible genetic mutations, inversions, or epigenetic
modification [Salaün et al. 2003]. The key features of phase variation are a reversible
expression of a gene that occurs without the loss of coded information so that the
on state is fully and identically recoverable, in a bistable process—distinguishing it
from antigenic variation through recombination, and the predictability of the subset of
phase varied genes—due to the presence of specific features that confer switchability
on the phase variable gene set. When in the on configuration, the expression of the
gene remains integrated and under the control of traditional transcriptional regulatory
processes, but when in the off configuration, it cannot be expressed regardless of other
influences on expression.

Understanding of the adaptive and evolutionary role of phase variation has tra-
ditionally been within the context of “contingency gene theory” [Moxon et al. 1994].
Under this conceptual model, the genes that have evolved to be phase variable mediate
adaptations to historically repeated, and therefore future predictable, environmental
transitions. This can include functions for adhesion to environmental surfaces versus
release into the environment for dissemination, the ability to utilize different sources
essential factors for growth such as iron, or supposedly parasitic genes such as restric-
tion enzymes or transposon expression. However, the primary focus of this work to date
has been with regard to genes that adapt pathogenic organisms to different hosts, host
niches, and the evasion of host defences and immune responses, the latter of which
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13:4 O. Pârvu et al.

Fig. 1. An illustrative bacterial colony with phase variable genes is depicted in the lower left part of the
image. Sector-like patterns (highlighted in black) represent high proportions of “mutant” cells; respectively,
areas of the colony highlighted in gray represent high proportions of wild-type cells. (Reproduced with
permission from de Vries et al. [2002]. Copyright c© 2002, American Society for Microbiology.)

represents a predictable and dynamic environmentally selective pressure within each
infected host [Salaün et al. 2005].

In this context, one of the commonly used switching determinants (simple se-
quence repeats that are subject to changes in length during chromosomal replication)
have been used to identify genes likely to be important in host interactions and im-
mune evasion in several species, including Haemophilus influenzae [Hood et al. 1996],
Helicobacter pylori [Salaün et al. 2004; Saunders et al. 1998], and Neisseria [Saunders
et al. 2000; Snyder et al. 2001]. These and other studies have shown that some species
have several tens of such genes, which can control huge numbers of potential gene
expression combinations because the genes are switched independently. In the context
of this evolutionary and group selection conceptual framework models were developed
for the roles of switching rate and selective pressure/relative fitness on population
composition [Saunders et al. 2003].

However, there are other potential roles for phase variation. It has been shown that
global cellular behaviours are influenced by which iron source is used by Neisseria
meningitidis [Jordan and Saunders 2009], which depends upon which phase variable
receptors are expressed, and that other behaviours depend upon the phase varied ex-
pression of restriction enzyme methylases [Srikhanta et al. 2005]. In addition, given
the complexity of bacterial structures in vivo, such as biofilms, and the theoretical ad-
vantages of cooperativity within bacterial populations from specialization of metabolic
functions, we hypothesize an additional role for phase variation: specifically, popula-
tion functional differentiation and structuring. In this context, the existing models are
inadequate for understanding the role of phase variation and the presence of diverse
switched phenotypes within populations because they do not include spatial compo-
nents, which are essential for future considerations of interaction and interdependen-
cies. Progress in this area requires the design of new models, moving from existing
models of population proportions in freely competing populations to ones that include
and address spatial and structural composition and interfaces. This is the translational
focus of the work presented here.

The most readily observable compositional effect of phase variation in cultures grown
in vitro is colonial sectoring; Figure 1 provides an example. The relation between the
geometric properties (e.g. angle, area, shape) of the sector-like patterns (macroscale)
and the mutation and/or fitness rates of the bacteria (microscale) is unknown and could
be investigated using a computational model.
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Fig. 2. Phase variation, basic scheme. α/β – forward/backward mutation rates. During cell division, the rate
at which type A offspring cells mutate to type B equals α; respectively, the rate at which they preserve their
parent’s type equals 1 − α. Similarly, the rate at which type B offspring cells mutate to type A equals β;
respectively, the rate at which they preserve their parent’s type equals 1 − β.

The problem of modelling the development of bacterial colonies in space has been ad-
dressed previously in the literature using two different types of approaches, continuous
and discrete, and one or multiple levels of organisation (e.g. intracellular and cellular
[Kugler et al. 2010]).

In the continuous case, the spatial domain is usually constrained by a set of bound-
ary conditions and is represented as a system of PDEs (e.g. reaction-diffusion system
[Mimura et al. 2000]), which describes how the average number of bacteria changes
over time at each position in space.

Conversely, in the discrete case, the continuous spatial domain is approximated
by a set of discretised spatial positions. Modelling formalisms employing a discrete
representation of space that have been used to model bacterial colony growth include
(lattice-gas–based) CA [Ermentrout and Edelstein-Keshet 1993], GGH models [Alber
et al. 2003; Poplawski et al. 2008], and IBMs [Ferrer et al. 2008]. Both GGH and CA
models represent space as a regular lattice and define local rules that specify how the
state (e.g. presence/absence of bacteria) of each lattice position changes from one time
point to the other. From a spatial point of view, the main difference between GGH and
CA is that in CA models, bacteria are assumed to be of the same shape and size and
occupy only one lattice position, whereas in GGH models, bacteria can be of different
shape and size and can occupy multiple lattice positions. In contrast to GGH and
CA models, in IBMs bacteria can move considering either an on-lattice (e.g. regular
rectangular grid) or an off-lattice (e.g. finite subdomain of the Euclidean space) spatial
representation [Macal and North 2010].

In this article, we introduce a new discrete lattice-based spatial modelling approach
for bacterial colony growth based on CPNs. We describe preliminary stochastic models
that address colonial patterning, including bidirectional reversible switching between
two phenotypes, biologically relevant rates, and differences in the fitness of the two
alternate phenotypes. We consider a colony of bacteria with two phenotypes A (on state)
and B (off state), which develop over time by cell division. Cell division may involve
cell mutation, and back mutation alternates phenotypes (Figure 2).

During replication, the offspring of type A cells mutate to type B with probability
α and preserve their type with probability 1 − α. Conversely, the offspring of type B
cells mutate to type A with probability β and preserve their type with probability 1−β.
Therefore, the rate at which type A/B offspring cells are produced from parent cells of
the same type equals the overall birth rate (1) minus the mutation rate (α/β) of type
A/B cells.

We are interested in the proportion of phenotypes in the cell generations and how
their spatial distribution evolves over time.

2.2. Basic Model of Phase Variation

We start with the equations taken from the previous deterministic model of phase
variation [Saunders et al. 2003], which describe synchronous growth in cell colonies
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Fig. 3. SPN corresponding to Figure 2. Petri net places A and B record the number of type A, respectively
type B, cells. Transitions A2A and A2B represent the division of a type A cell such that an offspring of type
A, respectively type B, is produced. Similarly transitions B2A and B2B represent the division of a type B cell
such that an offspring of type B, respectively type A, is produced. Arcs without explicit weight values have the
default weight value 1 associated. Expressions of the form v(x) (e.g. v(A2A)) encode the marking-dependent
stochastic rates of the transition x (e.g. A2A).

with two phenotypes A and B, but no spatial aspects. These equations include the
assumption that “if phase variation occurs, the progeny consists of one A and one B.”
Previously [Saunders et al. 2003], behaviour was explored by iterating the equations
on a spreadsheet. We develop a stochastic Petri net (SPN ) that is directly executable
by playing the token game that facilitates its comprehension and permits the explo-
ration of the behaviour by standard analysis and simulation techniques. Our initial
SPN model (Figure 3) adopts an asynchronous modelling approach so that cells divide
individually. The model parameters were taken from Saunders et al. [2003]; α and β
represent the forward and backward mutation rates, and dA, dB represent the fitness
of phenotype A and B (i.e. the proportions that survive division).

2.3. Derived Measures of Interest

The n-th generation in a synchronous model yields 2n bacteria. Vice versa, if we know
the total number, total, of bacteria generated by asynchronous cell division, then we
can obtain the corresponding synchronous generation counter n by

n = log2 total. (1)

For example, 26 synchronous generations (which may develop in about 24 hours) end
up with a total population size of approximately 67 · 106. We obtain the proportion of
phenotypes A and B modelled by the variables A and B by

propA = A
A+ B

; propB = B
A+ B

. (2)

Simulating the stochastic model allows us to observe asynchronous population
growth such that cells divide individually. Each event (firing of a transition) corre-
sponds to the division of one cell. Consequently, the size of the population will grow in
steps by 1, in contrast to the previous synchronous model.

3. ADDING SPACE

The main limitation of the model depicted in Figure 3 is that it does not represent the
evolution of the colony in space. To address this issue, we extend the nonspatial model
such that the colony is represented in 2.5 dimensions by an explicit discretised 2D grid
with an implicit constant maximal height over all grid positions.

3.1. Alternative Geometries

Previous attempts to model bacterial colony growth have represented space employing
a rectangular geometry with Cartesian coordinates. However, starting from a small ini-
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Fig. 4. Discretising space considering Cartesian (left) and polar (right) coordinates. Each annulus in the
polar case can be mapped to a row in the grid and each sector to a column such that a position in the grid
(left) has one and only one corresponding annular sector (right) and vice versa.

tial population, the colony spreads out as the number of bacteria increases, maintaining
a circular shape throughout its development. Therefore, representing space consider-
ing a circular geometry with polar coordinates seems to be more appropriate for this
particular modelling task.

In addition, the area and shape of the positions in the discretised space varies be-
tween geometries as shown in Figure 4. Therefore, depending on the employed spatial
representation, the sector-like patterns and/or their geometric properties could poten-
tially differ.

Independently of the chosen spatial representation, each compartment of the discre-
tised space is referenced by a unique tuple (x, y), corresponding to a colour tuple in the
model, where x and y are the indices corresponding to the first, respectively second,
spatial dimension. Differences between modelling in these two coordinate systems will
be highlighted next.

3.1.1. Cartesian Coordinate System. In the Cartesian coordinate system [Weisstein 2013]
approach, the 2D space is discretised by splitting it into equally sized rows and columns
obtaining a 2D grid as shown in Figure 4 (left). Each grid position is uniquely identified
by its corresponding row x and column y, where the rows/columns indices are numbered
in increasing top-down/left-right order starting from 0. The area of all positions in the
grid is equal. The volume of all grid positions is also equal because their maximal
height is the same.

When division occurs, the parent remains in situ and the offspring can either stay
with the parent or be displaced to a neighbouring position. The neighbourhood relation
between different positions of the grid is represented as a function in the model. The
maximum number of neighbours for each position is eight, depending on whether the
considered position is in the interior (8) of the grid, at the edge (5), or in the corner (3).

3.1.2. Polar Coordinate System. On the other hand, when considering a polar coordinate
system [Weisstein 2013], the 2D space is discretised in a different manner. First of
all, the spatial domain is divided into evenly spaced concentric circles. Each one of the
concentric circles and its immediate enclosing circle will form an annulus [Weisstein
2013]. All annuli are then split into sectors, obtaining annular sectors as shown in
Figure 4 (right).

Each annular sector is uniquely identified by its corresponding annulus x and sector
y, where annuli and sectors indices are numbered starting from 0 in increasing inner-
outer, respectively anticlockwise, order. The origin of the discretised space is treated
as a special annular sector identified by the (x, y) tuple (0, 0). The neighbours of the
origin are all of the immediate surrounding annular sectors identified by the set of (x,
y) tuples (1, y), y = 0, number of sectors − 1.
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13:8 O. Pârvu et al.

Similar to the neighbourhood relation in a Cartesian coordinate system, all annular
sectors except the origin have a maximum of eight neighbours, depending if their
position is next to the origin (6), in the interior (8), or at the edge (5).

3.1.3. Comparing the Geometries. One of the differences between the two geometries is
that when using the rectangular geometry, the area and volume of all positions in the
grid are constant, whereas in the circular geometry, the area and volume are variable.
In case of the circular geometry, the variability of the volume of each position in the
grid has an effect on the rate functions of the transitions. Conversely, in case of the
rectangular geometry, the transition rate function is not influenced by the volume of
the positions, as it is constant.

Another important aspect that sets the two geometries apart is the shape of the
compartments due to the discretisation process. Let us compare one row from the grid
obtained by discretising the space considering a Cartesian coordinate system and the
sector obtained similarly by considering a polar coordinate system. The angle described
by a row in the grid equals 0 degrees. Conversely, the sides of the sector determine a
sharp angle greater than 0 degrees (except when the number of sectors → ∞).

For this particular case study, we are interested in the angle formed by the patterns of
high intensity in the colony. Any sector in the circular geometry will automatically have
a nonzero degree angle associated. However, in the rectangular geometry, a nonzero
degree angle is formed only if the colony spreads out on multiple rows and columns.
To obtain comparable results, we have removed the diagonal movement in the polar
coordinates model such that the horizontal spreading of the colony is reduced.

3.1.4. Representing the Geometries Using Colour Sets. The spatial bacterial colony growth
models considering both circular and rectangular geometries are represented as CPNs.
Despite the multiple differences between the considered geometries, the definition of
the colour set for representing space is the same. We denote this colour set as Grid
and define it as the Cartesian product of the Grid2D and Phenotype colour sets, where
Grid2D represents the 2D discretised space and Phenotype the type of the bacteria,
which in our case is either A or B; see Online Appendix A for more details.

After unfolding the coloured version of the model, each obtained Petri net place
represents a position in the discretised space. The maximum number of bacteria in each
place is inversely proportional to the resolution of the grid. Increasing the resolution
reduces the maximum capacity of the place, whereas decreasing it makes room for
more bacteria.

Cellular division/mutation and displacement to neighbouring positions of the dis-
cretised space are encoded in the model by the division transition (see Figures 13
and 14, Online Appendix D). The neighbourhood relation between two positions of the
discretised space, represented as different Petri net places, depends on the employed
geometry. This characteristic is captured by the neighbourhood functions neighbour-
hood2D_rectangular (rectangular geometry) and neighbourhood2D_circular (circular
geometry) described in Online Appendix B. They define all possible token movements
in the net. The neighbourhood function for polar coordinates may appear to be more
complicated. However, its length is due to the need for separately considering the
neighbours of the origin and not because of an increased complexity.

The rate function for cellular division/mutation depends on the number of parent
cells occupying a position of the discretised space. Therefore, the probability of an
offspring to be produced is directly proportional to the number of available parent cells.
Moreover, in this case study, we are concerned with mutation rates and their influence
on the system behaviour. Thus, their total values for each position have to be kept
constant irrespective of the number of neighbours. Introducing space means technically
multiplying the number of transitions (one for each direction). To counterbalance this
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Fig. 5. Interior-edge model used for the circular geometry to represent the probability of a bacterium being
displaced to a neighbouring position. Bacteria lying on the edge are highlighted in yellow, bacteria lying in
the interior in white, and the annular sector boundary in blue.

effect, we scale the transition rates by dividing them by N, where N is the number of
neighbours.

3.2. Controlling the Spatial Dynamic Development of the Clony

3.2.1. Controlling Colony Spreading. The probability of staying with the parent or being
displaced to a neighbouring position is modelled differently depending on the spatial
representation.

In the circular case, the probability of a bacterium being displaced to a neighbouring
position has to take into account the size of the current position, because the area of the
annular sectors is variable. We employ the interior-edge model described in Figure 5 to
capture this aspect. Considering a particular annular sector, the only bacteria that are
able to be displaced from this sector to a neighbouring sector are the ones lying on the
edge. Assuming that each bacteria can be displaced in eight directions (N, NW, W, SW,
S, SE, E, NE) or remain in situ, only three out of the nine movements of the bacteria
on the edge will be to a neighbouring position. The bacteria that lie in the corner are
not treated separately in our approach. Thus, the probability of being displaced to a
neighbouring position is

P = 3
9

∗ Areaedge

Areagrid position
(3)

and the probability of staying with the parent is 1−P. Areaedge is given by the maximum
area that can be occupied by bacteria of size 1 × 1 μm located around the edge. The
difference between the edges and interior of an annular sector is depicted in Figure 5.
Areagrid position is computed as the total area of the annular sector. Both areas depend
on the index i of the annulus to which the sector belongs. The value of i is set to 1
for the origin and is incremented with each enclosing annulus. Thus, the values of the
areas are

Areaedgei
= 2rN + 2πr(2i + 1)

MN
, Areagrid positioni

= πr2(2i + 1)
M2N

. (4)

where M is the total number of annuli and N is the total number of sectors. A step-by-
step description of how the values of Areaedge and Areagrid position are computed is given
in Online Appendix C.

As the area of annular sectors increases, the ratio between the area on the edge
and the total area becomes smaller, which means that the probability of bacteria to be
displaced to a neighbouring position decreases.

The reason for considering the area of the overall annular sector edge instead of
the (partial) edges shared with individual neighbours is twofold. First of all, explicitly
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considering edges shared between neighbours requires extending the structure of the
model, which would lead to an increased complexity and unfolding/simulation time.
Secondly, if the employed spatial resolution is sufficiently high (in our case 101 × 101)
the differences between the areas of the (partial) edges to individual neighbours are
small and could be potentially ignored.

In the rectangular case, the area of the grid positions is constant, which means that
the model from the circular case would impose a constant probability for all positions
in the grid.

To add more flexibility to the model, the probability of staying with the parent or
being displaced to one specific neighbouring position is modelled using two preference
factors, γ and ω, without changing the total transition rate.

Increasing γ increases the preference to stay with the parent, whereas decreasing
γ increases the preference to be displaced. Conversely, increasing ω increases the
preference to be displaced to one of the neighbouring positions, whereas decreasing
ω increases the preference to stay with the parent. Since the number of neighbours
#neighbours varies depending on the considered position of the discretised space (e.g.
corner), the total preference for a cell to be displaced equals #neighbours · ω. In the
rectangular case, #neighbours is equal to 3 if the grid position is in the corner, 5 on the
edge, and 8 in the interior. Conversely, in the circular case, #neighbours is equal to 5
on the edge, 8 in the interior, 6 in the annulus immediately enclosing the origin, and
the total number of sectors N for the origin.

The probabilities of staying with the parent or being displaced to a neighbouring
position are computed by normalising the corresponding preference factors values as
follows:

Pstay with parent = γ

γ + (#neighbours ∗ ω)

Pdisplace to neighbour = #neighbours ∗ ω

γ + (#neighbours ∗ ω)
.

(5)

All probabilities are encoded in the rate function of the transition division, irrespec-
tive of the employed geometry.

3.2.2. Controlling Colony Thickness. The bacteria generated by cell division can pile up
on top of each other and thus increase the colony thickness at that grid position.
This thickness is limited because of the cells’ requirements for access to oxygen and
nutrients. To control the thickness, we introduce a constant ρ, denoted as POOLSIZE
in the SPNC model, which limits the maximum number of cells at a certain grid
position. This parameter acts as a Boolean condition that enables/prevents cells from
replicating without being explicitly considered in rate functions.

For a fixed resolution of the discretised space, the value of ρ is set such that the
bacterial colony can develop for 26 generations (i.e. cell count reaches 67 · 106

� 226)
without reaching the edge of the discretised space. The bacterial colony growth next to
the discretised space edge(s) could potentially impact the sector-like patterns develop-
ment and implicitly alter their geometric properties (e.g. area); this could lead to invalid
correlations between the geometric properties and the bacteria’ mutation/fitness rates.

The entire set of colour-related definitions common to both circular and rectangular
spatial representations and the final version of the models are given in Online Appen-
dices A and D. Rate functions are not described here due to space limitations, but they
are defined in the computational models made available as supplementary materials.

The only structural difference between the models is that polar coordinates require
additionally one Petri net place and two transitions, which are highlighted in a green
colour in the model (see Online Appendix D, Figure 14). The pretransition of the
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Fig. 6. 2D representation of the final state of four stochastic simulations, two for rectangular (left) and
two for circular (right), illustrating the development of sector-like patterns. Due to the stochastic nature of
the simulations, the output is different in every run. The value of propB (see Equation (2)) is encoded by
colour. Yellow indicates patches with high density of phenotype B, dark purple patches of high density of
phenotype A, and red patches of approximately equal proportions. The black background shows the grid area
not covered by phenotype B.

place pool accounts for the variable pool size (volume) depending on the annulus to
which each sector belongs. The extra place src index and its pretransition record to
which annulus a given sector belongs—information that is used to adapt the rate of
the transition division. A future version of our modelling tool will allow specifying a
variable initial marking for a coloured place and accessing the index of a position in the
grid without the need for additional places and transitions. Henceforth, this overhead
should not be taken into consideration when comparing the spatial representations.

4. ANALYSING PHASE VARIATION

4.1. Computational Experiments

The Petri nets were constructed using Snoopy [Rohr et al. 2010], which recently
has been extended to support CPNs [Heiner et al. 2012]. Simulations were run with
Snoopy’s built-in stochastic simulator and MARCIE [Heiner et al. 2013]. Simulation
traces have been further processed by customized C++ programs and finally visualised
as images or mp4 movies.

All computational experiments were performed on automatically unfolded Petri nets.
Unfolding the CPN for a 101×101 grid using a rectangular geometry yields an un-
coloured Petri net with 30,605 places and 362,405 transitions with an unfolding time
of 780 seconds on a regular desktop computer (Intel

R©
CoreTM i5-2500 CPU with a 3.30

GHz processor and 2 GB DDR3 RAM). Similarly, unfolding a CPN of the same dimen-
sions using a circular geometry yields an uncoloured Petri net with 40,406 places and
382,191 transitions with an unfolding time of 2,000 seconds. The number of places and
transitions is higher in the circular case due to the overhead required by the current
Snoopy version for recording to which annulus each sector belongs.

The unfolded Petri net is simulated using the Gillespie algorithm [Gillespie 1977].
The output of the simulation comprises two traces for each grid position, corresponding
to the two phenotypes A and B.

The analysis follows the development over time of the proportion of the given pheno-
type in the total population and the formation of the associated patterns. This requires
converting the traces from the stochastic simulations into 2D representations (Figure 6)
and analysing the development of the 2D sector-like patterns over time.

We expect that the model will finally allow the prediction of mutation and fitness
rates by counting and extracting information from the pattern segments, which in the
future could give new insights into the population dynamics of mutation. The rates
could be predicted by fitting the model parameters such that the in silico sector-like
patterns match the ones observed in vitro/vivo. Similar sector-like patterns supposedly
develop due to similar mutation/fitness rates. Therefore, after successfully completing
the fitting procedure, the mutation/fitness rates in the model should be representative
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Fig. 7. Different values of the parameter ρ, and implicitly maximum height (h), for the Cartesian coordinate
system (a, b) and the polar coordinate system (c, d). Different values of the parameter ω for the Cartesian
coordinate system (e, f) and the polar coordinate system (g, h).

for the in vitro/vivo colonies. Currently, the model predicts behaviour that has not been
measured so far in the wet lab in the sense that it generates a time series description of
the evolution of bacterial colony patterns, whereas wet lab data just provide snapshots
of final states; it is expected that recording the entire bacterial colony growth in vivo
would increase the costs of the experiments without providing additional biologically
significant information.

4.2. Parameter Scanning

When the mutation rates are fixed, different combinations of values for parameters ρ
and ω will lead to different simulation outcomes. One batch of simulations was run
for each parameter ρ and ω by choosing values from the parameter space in order to
observe how the behaviour is affected.

4.2.1. Changing ρ. In the first batch of simulations, all parameters were kept constant,
except ρ, which had a different value for each run. The values for ρ were selected using
a binary search technique considering a geometry-dependent lower bound L and upper
bound U . Assuming that avg represents the average value of L and U , if ρ = avg was
not providing sufficient room for the development of the colony, then U was set equal
to avg and the process was repeated. Conversely, if ρ = avg was providing too much
space (i.e. too many cells could pile up on top of each other), then L was set equal to avg
and the process was repeated. Otherwise, ρ was set equal to avg and the parameter
scanning procedure stopped.

In the rectangular case, the volume or capacity is constant throughout the grid,
whereas in the circular case it is not. Therefore, ρ has a different interpretation de-
pending on the chosen spatial representation. For comparison purposes, it is better to
consider the maximum height of the colony, which is constant throughout the entire
grid for both geometries. Experiments with the same heights and corresponding ρ’s
were carried out for both geometries, and two characteristic results for each one of the
geometries are depicted in Figure 7(a) through (d).

Increasing the value of the parameter ρ increases the maximum height of each grid
position, which implies that more bacteria can pile up onto each other. Since the number
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of generations is fixed and the maximum height limit of the colony was increased, it
is to be expected that the final width of the colony is reduced; this can be observed in
Figure 7(a) through (d). The value of ρ was chosen for both geometries in such a way
that the most outward bacteria with respect to the centre do not reach the edge of the
grid. The reason for this is that we expected some back propagation of bacteria from
the edge of the grid to affect the final outcome of the simulation.

4.2.2. Changing ω. The second batch of simulations changed only the value of ω for
each run. In contrast to the selection of values for ρ, the values for ω have been chosen
according to the function f (x) = x2, where the initial value of x was 1 (ω = 12) and
then it was gradually increased, xnew = xold + 1 (ωnew = (

√
ωold + 1)2), until no sectors

emerged in the bacterial colony.
Images representing the final states of two simulations for each geometry are given

in Figure 7(e) through (h).
The probability of the offspring to stay with the parent or be displaced to a neigh-

bouring position depends on the dimensions of the grid position. All grid positions
are equally sized in the model using Cartesian coordinates, which means that the
probabilities of staying/being displaced are constant.

However, the area of the grid positions in the model using polar coordinates is differ-
ent, which means that the probabilities are different as well. The value of ω specified
as caption for the polar coordinates model in Figure 7(e) through (h) corresponds to the
most outward annular sectors (i.e. annular sectors with the biggest area).

Considering that the value of γ is fixed, the preference of the offspring to be displaced
to a neighbouring position is directly proportional to the value of ω. Increasing ω
increases the chance of the offspring being displaced, which means that the clear cut
between high- and low-density areas in the images fades away. Thus, in Figure 7(e)
through 7(h), the images corresponding to a higher value of ω have a more uniform
distribution of concentrations than the ones in which ω was smaller.

4.3. Sector Analysis

In the beginning, the analysis of the sectors was done manually by comparing the
images of the colony at different time points and deciding if the sector-like patterns are
similar to the ones observed in the wet lab.

For the purpose of improving the assessment of results, there was a need to formalise
the analysis of sectors. The following set of measures was defined to describe the sector-
like patterns: area, angle described by the sides, distance from the centre of the grid,
and the total number of sectors.

Using specific image processing techniques from the open source computer vision
library OpenCV [Bradski and Kaehler 2008], a sector detection and analysis module
was implemented. This module takes an image of the colony as input, detects the sector-
like patterns in it, and computes the values of the measures of interest. The main steps
of the algorithm are given in Algorithm 1. A step-by-step example illustration of the
operations performed on each input image is given in Figure 8.

The sector detection and analysis module was implemented in C++. Most image
processing functions described in Algorithm 1 are parameterized and can easily be
adapted to detect other patterns as well. To avoid recompilation, the parameters’ values
are loaded at runtime from an XML configuration file. The contents of this XML file
can either be changed by hand or via the graphical user interface of the module, which
displays in real time how the detected regions change when altering the values of the
parameters. The OpenCV function names, descriptions, and default values of the input
parameters used for detecting and analysing sectors are given in Online Appendix E.1;
see Itseez [2013] for a detailed description of the functions.
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ALGORITHM 1: Algorithm for sector analysis
Require: imageFile is valid
Ensure: Results written to outputFile

1: Read imageFile and create an instance of type Mat from it called image
2:
3: Convert image to grayscale
4: Change the contrast and brightness of image for highlighting regions of interest
5: Apply morphological close operation on image to connect close regions that

form a sector
6: Remove noise from image using blur filters
7: Threshold image and store the result in binaryImage
8: Detect the contours of sectors in binaryImage, approximate their polygons and

convexHulls
9:
10: for all hull ∈ convexHulls do
11: Compute distance from the centre, area and angle using hull
12: if area < T HRESHOLD then
13: Consider the sector identified by hull as noise
14: end if
15: end for
16:
17: Output the measures computed for each sector to outputFile

A Linux version of the module (x64) and simple usage examples are made available
both as supplementary materials and via the Brunel Web site (http://www.brunel.ac.uk/
research/centres/cssb/software-systems-and-databases/multiscale). For the non-Linux
users, a virtual machine image containing the preconfigured module was created. It can
be opened using the freely available, cross-platform virtualization software VirtualBox
[Watson 2008].

The advantage of the algorithm working directly with images and not with the raw
output of the simulation is that the images can originate from either a dry or wet
lab. Thus, our analysis approach is generic. Since wet lab experimental data was not
available, the image processing procedure was validated only on in silico–generated
images, but our expectation is that the approach should work similarly well on images
from the wet lab.

The module can be employed for a single image or repeatedly for a collection of
images. Assuming the latter case, if each image corresponds to a different simulation,
and within each simulation to the same time point, the extracted measures can be used
to compare and contrast two or more simulations. Conversely, in case the collection of
images corresponds to the same simulation, it can be used to analyse how the measures
change over time. In brief, the potential basic applications of this module are as follows:

—Analyse measures at a particular time point across multiple simulations
—Analyse how measures change over time within one simulation.

By combining these two basic applications, it is possible to analyse how the measures
change over time across multiple simulations.

4.4. Results

For both the rectangular and circular model, 1,000 stochastic simulations were run
with an average simulation time of 50 minutes.
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Fig. 8. Main steps for detecting sectors in input images. Each subfigure (SF) corresponds to a specific line
(L) from Algorithm 1. Firstly, the input image is converted to grayscale (SF a, L 3). The brightness and
contrast of the image are then changed such that the regions of interest are emphasized (SF b, L 4). Next,
morphological close operations (SF c, L 5) and Gaussian blur (SF d, L 6) are used to remove the noise. Finally,
the image is converted to binary (SF e, L 7) and only the sectors with an area greater than THRESHOLD
(see Algorithm 1) are considered (SF f, L 12).

Fig. 9. Images illustrating the detection of sector-like patterns in final state images using rectangular (left)
and circular (right) geometries. The border of the detected sectors is highlighted in blue. The area of the
sector has to be larger than a threshold value for the sector to be considered.

4.4.1. Final State Analysis. Images were generated from the final states of the simula-
tions, which were then provided as input to the sector analysis module. An example of
the result of the sector detection procedure for each geometry is depicted in Figure 9.

The output of the analysis procedure are CSV files containing information about the
area, angle, distance from the centre, and number of detected sectors. The averaged
results from all simulations for both the rectangular and circular case are described
in Table I. We employed a two-sample statistical test for comparing the results. The
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Table I. Rectangular (�) and Circular (©) Sector Analysis with μ – Mean,
σ – Standard Deviation, cv – Coefficient of Variation

Area Distance Angle Sectors
Measures � © � © � © � ©
μ 3% 5% 41% 39% 56◦ 78◦ 1.47 1.78
σ 2% 2% 17% 16% 18◦ 25◦ 1.14 1.03
cv 0.93 0.62 0.40 0.41 0.32 0.32 0.77 0.58
Note: Area and distance (from the centre) are given with respect to total
grid area and maximum distance from the centre.

Table II. The p-Value Obtained from the Statistical Tests in Rectangular (�) and Circular
(©) Case for All Measures (Area, Distance from the Centre, Angle, Number of Sectors)

Shapiro-Wilk
Measures � © Mann-Whitney
Area <2.2e-16 <2.2e-16 <2.2e-16
Distance 1.334e-07 5.398e-12 5.92e-05
Angle 1.272e-14 <2.2e-16 <2.2e-16
Sectors <2.2e-16 <2.2e-16 6.68e-13
Note: The Shapiro-Wilk test was used to check the hypothesis that the sample data was
drawn from a normal distribution. The Mann-Whitney test was used to check the hy-
pothesis that the sample data for both geometries was drawn from the same distribution.

data corresponding to all measures and both geometries was tested for normality using
the Shapiro-Wilk [Shapiro and Wilk 1965] and the Q-Q plot [Wilk and Gnanadesikan
1968] methods. In all cases, the null hypothesis (i.e. that the sample data is drawn
from a normal distribution) was rejected. Thus, we tested if the sample data for both
geometries is drawn from the same distribution using the Mann-Whitney [Mann and
Whitney 1947; Wilcoxon 1945] nonparametric test. Similarly, the null hypothesis (i.e.
that the sample data are drawn from the same distribution) was rejected. The p-values
obtained for all tests are given in Table II.

Both area and angle have higher values in the circular case than in the rectangular
case, which is to be expected due to the different 2D space discretisation. Sectors in
the circular geometry inherently have a nonzero degree angle associated, whereas
rows in a rectangular geometry do not. Moreover, the area of the annular sectors is
increasing as they are farther away from the centre of the grid. Conversely, the area
of all positions in the rectangular geometry is constant. The number of sectors is
slightly bigger in the circular case because the bacteria from the starting position can
be displaced in maximum “number of sectors” directions, whereas in the rectangular
case only in maximum eight.

Finally, the distance of the sectors from the grid centre is approximately equal for
both geometries. Thus, according to these results, the distance from the centre is the
only reliable measure that has similar values for both geometries. Running batches
of more simulations will increase the accuracy of the results, and more fine-grained
conclusions can be drawn. Histograms and corresponding normal distribution curves
for all measures have been plotted and added to Online Appendix E.2 to complement
the analytical comparison of the results described earlier.

4.4.2. Time Series Analysis. The number of considered time points per model simulation
#timepoints was chosen such that

(1) no significant changes occur between any two consecutive time points (relative to
the geometric properties of the sector-like patterns) and

(2) the value of #timepoints is minimal.

After running multiple model simulations, the value of #timepoints was set to 101.
For comparability purposes, the same #timepoints value was employed across all forth-
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coming simulations. If either the start, end, or number of considered time points would
differ, the simulation output would no longer be directly comparable since each time
point could potentially correspond to a different stage of the bacterial colony develop-
ment.

Out of the 1,000 simulations for each geometry, only 500 had the same simulation
start time, end time, and number of time points, and were considered for the time
series analysis. The remaining simulations were comparable with respect to final state
images only.

The configuration for each considered simulation was as follows:

—Simulation start time: 0
—Simulation end time: 100
—Number of considered simulation time points (#timepoints): 101.

Each simulation is described by 101 time points, and each time point contains zero
or more sectors. A time point is described by the number of sectors and the measures
specific to these sectors (angle, area, distance from the centre). Since the number of
sectors might differ at the same time point from one simulation to another, the output
is not directly comparable. Therefore, instead of considering the measures of all sectors
independently, only the average measures’ values are taken into account. In this new
setting, each time point is characterized by the number of sectors and the average
values of the area, angle, and distance from the centre.

A set of 500 time series was analysed for both the rectangular and circular geometry
with an average analysis time of 5 seconds/time series. The variability of the measures
between different simulations over time is depicted in Figure 10.

The first conclusion drawn from Figure 10 is that the values of neither measure
changes after time point 50. To test this conclusion, the standard deviation of the
measures was computed for each simulation. The first time point after which the
standard deviation of a measure is equal to zero for both rectangular and circular
geometries is given in Table III. The standard deviation of all measures irrespective of
the employed geometry is equal to zero starting from time point 47 onwards. Therefore,
the simulation end time could be reduced to more than half in the future from 100
to 47. Moreover, a steady state termination criteria could be designed for stopping
model simulations early whenever the sectors’ geometric properties remain constant
for a sufficiently long period of time. This could be achieved by integrating the sector
detection and analysis module with existing model simulation workflows.

Secondly, all measures increase exponentially on average over time. The area is
expected to increase since sectors continue developing outward after they are initially
formed. Both the angle and distance from the centre maintain approximately constant
values for each sector after the sector is formed. However, they increase on average
since the number of sectors increases over time, which means that new sectors are
formed. This also means that sectors are formed at varying distances from the centre
of the grid. Unfortunately, for our case, this implies that simulations have to be run
until the simulation end time is reached to be certain that all possible sectors were
captured.

Conversely, if all sectors would emerge early and none of them would disappear,
the simulation time could be reduced even further. The analysis could be executed on
the fly and the simulation could be stopped after all sectors have started forming. In
this scenario, the number of sectors and the values of the angle and distance from the
centre would be constant throughout the entire simulation. The only potential issue
is the area of the sectors. To compute it, the angle of the sectors and the width of the
colony should be known. Assuming that there is prior knowledge regarding the final
width of the colony, the computation of the area is trivial. Alternatively, the width of

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 2, Article 13, Publication date: May 2015.



13:18 O. Pârvu et al.

Fig. 10. Variability of measures over simulation time considering all simulations. The solid line represents
the mean of the measure. The shaded area is bounded below by (mean – standard error) and above by (mean
+ standard error). Measures values were recorded for each simulation time point t, t = 0, 100.

Table III. The First Time Point After Which the Standard Deviation of the Measures
Is Equal to Zero for Both Rectangular (�) and Circular (©) Geometries

Area Angle Distance from Centre Number of Sectors
© 47 47 46 46
� 39 39 38 37

the colony can be calculated from a training set of simulations and used afterwards for
the simulations that follow. Although it is not applicable to the phase variation case
study, this property might be useful when simulating and/or analysing other models.

5. ON THE CONNECTION TO PARTIAL DIFFERENTIAL EQUATIONS

The CPN spatial modelling methodology, as it was presented here, is currently limited
to specific spatial representations (2.5D Cartesian and polar) considering flat surfaces.

In contrast, the PDE literature contains more generic techniques and algorithms
that could be potentially employed to represent space considering different numbers
of dimensions, systems of coordinates, and (non)flat surfaces. To benefit from such
approaches in the CPN spatial modelling methodology we will begin a study that has a
long-term aim to establish a connection between Petri nets and discrete approximations
to PDEs. The aim for the moment is deliberately modest in that we will only consider
how a simplified phase variation model can be translated between its continuous (PDE)
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Fig. 11. The underlying (ξ, η) Cartesian coordinate system (left) and the (i, j) finite difference grid offset
from the (x, y) “place” grid (right).

and discrete representation. This is done to not to cloud the argument at this stage
with cumbersome and unnecessary mathematical notation and detail.

5.1. Notations

Our starting point is the left schematic in Figure 4, where the species is constrained to
be displaced in 2D space only according to a predefined indexed rectangular geometry.
However, to match with the PDE literature, it is convenient to index grid lines rather
than the places between the lines. Thus, for each place defined by the diagonal joining
(x, y) to (x + 1, y + 1), we will identify the midpoint of that place as the point (i, j). This
defines an offset grid according to Figure 11 (right) and permits us to identify places
with grid intersections. Further, since (x, y) has already been used to denote discrete
positions, we use (ξ, η) to refer to the underlying continuous Cartesian coordinate
system of 2D space.

5.2. Modelling Lateral Displacement

Now consider the very simplest case where a species, originally at a position (i, j) in
this regular Cartesian lattice, can at the next timestep diffuse one spatial step either
left, right, up, or down. The concentration of the species at each grid location is denoted
by ci, j , and in the limit of continuous time, with the assumption that the diffusion rates
follow mass action kinetics with the common rate parameter k, we get the following
system of ordinary differential equations (ODEs):

1
k

dci, j

dt
= ci+1, j + ci−1, j + ci, j+1 + ci, j−1 − 4ci, j . (6)

Denoting the grid spacing as h = (x + 1) − x (constant, and the same in each direction)
and equipped with a standard reference to finite difference approximations of PDEs
such as Smith [1965, Chapter 5], we can then recognise this system of ODEs as a
method of lines algorithm. Indeed, identifying k = σ/h2, where σ is a physical rate
parameter independent of the grid, these equations are a second-order finite difference
approximation to the canonical parabolic PDE problem:

∂c
∂t

= σ∇2c, (7)

with the Laplacian defined in the standard Cartesian way as ∇2c = ∂2c/∂ξ2 + ∂2c/∂η2.
This PDE is to be solved for times t > 0, within the domain covered by the grid, subject
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to known boundary conditions on the grid boundary, and a specified initial distribution
of c at t = 0.

To verify this connection between (6) and (7), let us adopt the notation cij = c(ξi, η j)
and then use a Taylor series expansion in the coordinate directions about (ξi, η j) to get

ci±1, j =
3∑

n=0

(±h)n

n!
∂ncij

∂ξn + O(h4) and ci, j±1 =
3∑

n=0

(±h)n

n!
∂ncij

∂ηn + O(h4),

where, as usual for the “big Oh” notation, O(A) ≤ CA for some constant C. Adding
these four equations together and noting the cancellations results in

∇2c = ci+1, j + ci−1, j + ci, j+1 + ci, j−1 − 4ci, j

h2 + O(h2),

and dropping the O(h2) error terms then reveals (6) to be a second-order approximation
of (7). The “second order” terminology arises because the approximation has a leading
order error term of size O(h2) (i.e. the “second” power).

5.3. Modelling Diagonal Displacement

Such a model is restrictive in that it allows species migration only along the coordinate
directions. We can easily imagine a model that allows for only diagonal migration, and
then we arrive at

1
k

dci, j

dt
= ci+1, j−1 + ci−1, j−1 + ci+1, j+1 + ci−1, j+1 − 4ci, j . (8)

Both (6) and (8) can be conveniently represented using the inverted square brackets of
finite difference stencil notation. In this shorthand notation, they become

1
k

dci, j

dt
=

] 1
1 −4 1

1

[
ci, j and

1
k

dci, j

dt
=

] 1 1
−4

1 1

[
ci, j . (9)

The stencil notation is designed to be intuitive. For example, the one on the right of
(9) tells us that we are to operate on c, centered at (i, j) using diagonally adjacent
neighbours and the coefficients placed in the stencil at those grid points. The aim, of
course, is to recover (8). In the same way, the left of (9) corresponds to a compact way
of writing (6).

Now, a Taylor series expansion along the diagonals that cross at (ξi, η j) will reveal
that (8) is also a second-order approximation. In other words, we need to neglect an
error term of magnitude O(h2) to arrive at (8) from (7).

5.4. Modelling Diagonal and Lateral Displacement

The model can be further improved by allowing diffusion in all eight directions. In fact,
although there is not space here to give the details, it is a routine calculation to show
that by adding four of (6) to one of (8), the O(h2) error terms present in each cancel out,
leaving an error term of order O(h4). This combination results in the nine-point stencil

5
k

dci, j

dt
=

] 1 4 1
4 −20 4
1 4 1

[
ci, j, (10)

and, for dense grids where h � 1, it is clear that h4 � h2, so this nine-point stencil can
be considered a much more accurate approximation of the diffusion process.
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The details of this argument can be found in the classic text by Smith [1965], and from
there, for example, we can see that the generalisation to three spatial dimensions, as
well as polar and spherical polar coordinate systems, is straightforward. Furthermore,
analogous formulations on nonflat surfaces may also be possible, but as that is an
evolving area in PDE research, we mention it here only as an interesting possibility
for future work.

In contrast to the deterministic PDE model described here, the CPN phase variation
model is stochastic. To add stochasticity to a deterministic PDE model, established
methods (e.g. Gunzburger et al. [2014]) for dealing with stochastic partial differential
equations (SPDEs) can be employed where the stochasticity is introduced through
uncertainty in the coefficients, or through the addition of a random driving noise.

5.4. Modelling Cell Division and Mutation

Finally, we speculate on how we might incorporate spatial variation into the phase
switching and cell division ideas described earlier around Figure 3. For this, we consider
the coupled PDE system,

∂ A
∂t

= (1 − α)dA∇2 A+ dBβ∇2 B+ fA(A, B), (11)

∂ B
∂t

= (1 − β)dB∇2 B+ dAα∇2 A+ fB(A, B), (12)

where fA and fB are (possibly nonlinear) source terms that can be designed, through
parameter identification and calibration for example, to allow for production via cell
division. The approximation of the Laplacian operator ∇2 can now be carried out in
exactly the same way as described earlier. For example, if we choose to use the four-
point stencil in (6), we will obtain

dAi, j

dt
=

] 1
1 −4 1

1

[ (
(1 − α)dA

h2 Ai, j + dBβ

h2 Bi, j

)
+ fA(Ai, j, Bi, j), (13)

dBi, j

dt
=

] 1
1 −4 1

1

[ (
dAα

h2 Ai, j + (1 − β)dB

h2 Bi, j

)
+ fB(Ai, j, Bi, j). (14)

We could also use the four-point stencil in (8) in the obvious way and even the nine-point
stencil as earlier. Indeed, because the mutation and fitness rates (αA, αB and dA, dB)
are constants, the error terms are unaffected and the nine-point stencil remains a
higher-order approximation.

Although these observations have been kept at the level of overview, they suggest
a potentially fruitful line of research that can connect discretised approximations of
PDEs to CPNs and systems biology. The plethora of computational algorithms from
PDE research may then be profitably applied to the study of, for example, bacterial
colony growth.

6. SUMMARY

In this article, we have described a methodology of modelling bacterial colonies that
evolve in time and space using rectangular and circular geometries, as well as a proce-
dure for sector-like patterns detection and analysis.

Currently, it is not possible to state which geometry is more appropriate for the phase
variation case study, because there are not sufficient images from the wet lab against
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which to validate our results. The emphasis of this work is on the generic methodologies
that we developed and that can be employed for different case studies modelled using
CPNs. When images of actual bacterial colonies are available, they could be used as
targets for model fitting to generate more accurate computational models for describing
bacterial colony growth under different conditions.

In the future, we plan to extend our spatial modelling framework from 2.5D (i.e.
2D and implicitly modelling height) to full 3D representation, which would allow the
simulation and observation of more detailed aspects of bacterial colonies. Moreover, we
would like to further investigate the connection between Petri net models and PDEs to
develop a unifying framework for efficient simulation of multidimensional (potentially
multiscale) models. To improve the scalability of the approach, CPN models will be
simulated directly at the coloured level using improved parallelisation support. We
also want to extend our sector detection and analysis procedure from working with 2D
sector-like patterns to linear and nonlinear 3D surfaces.

All supplementary materials are made available online and via the Brunel Web
site (http://www.brunel.ac.uk/research/centres/cssb/software-systems-and-databases/
multiscale).
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