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ABSTRACT 
In this paper, the effects of some geometrical parameters on 

dynamic behavior of cylindrical shells with constant and variable 

thickness are studied. The equation of motion for the shell with 

constant thickness is extracted based on classical shell theory 

using Hamilton’s principle. These equations which are a system 

of coupled partial differential equations are solved analytically 

and the natural frequency is determined for cylindrical shells 

with constant thickness. The natural frequency for cylindrical 

shells with variable thickness is determined using finite element 

method by employing ANSYS. The results are compared and the 

effect of different geometric parameters such as length, 

thickness, and radius on natural frequency is discussed. The 

specific ranges for geometric parameters have been determined 

in which there is no significant difference between shells with 

constant or variable thickness. Cylindrical shells with variable 

thickness have better stress and strain distribution and optimum 

weight, in compare with the shells with constant thickness and it 

is important to know in which ranges of dimensions and 

geometrical parameters, there are some significant differences 

between their mechanical properties such as natural frequency. 

The results are compared with some other references. 

Keywords: Dynamic modification, Cylindrical shells, 

Variable thickness, Finite element method, Natural frequency. 

1. INTRODUCTION
Shell structures have very extended applications in different

industries, such as pressure vessels, aerospace, marine, liquid 

storage tanks, and etc. In particular, the optimization of shells is 

interesting with regards to conserving weight. Shells with 

variable thickness in comparison with shells with constant 

thickness have better characteristics in terms of stress and strain 

distribution, stability, and weight distribution. In previous years, 

1 Contact author: farid.mn83@gmail.com, nasrekani_f@usp.ac.fj 

numerous researches have been done, considering the buckling 

vibration of shells with variable thickness using Kirchhoff-

Love’s first approximation theory [1-5]. They investigated the 

effect of the variation of thickness on the critical parameters such 

as natural frequency and buckling load, using numerical methods 

such as Frobenius series method. Sofiyev and Erden [6] studied 

the stability of non-homogeneous cylindrical shells with variable 

thickness under a uniform external pressure which is a power 

function of time. The governing equations which were derived 

using Donnell stability equations, have been solved by 

employing the Galerkin’s method. Aksogan and Sofiyev [7] 

investigated the dynamic buckling of an elastic cylindrical shell 

with varying thickness under a uniform external pressure. The 

governing equations have been extracted using Donnell stability 

equations and they have been solved by applying the Galerkin’s 

method. Abbas et al. [8] presented a theoretical method to 

investigate the feasibility of using the transfer matrix method for 

open-variable thickness circular cylindrical shells under a high-

temperature field. The governing equations were extracted in 

matrix form and they have been solved by employing fourth-

order Runge-Kutta method. Grigorenko et al. [9] investigated the 

dynamic behavior of open cylindrical shells with variable 

thickness using the spline-collocation method and the method of 

discrete orthogonalization. Bahrami Ataabadi et al. [10] studied 

the vibrational behavior of orthotropic cylindrical shells with 

variable thickness. The governing equations have been 

determined using linear shell theory and the natural frequencies 

and mode shapes were obtained numerically. Fan et al. [11] 

presented an analytical method to investigate dynamic buckling 

load for a shell with variable thickness subjected to uniform 

external pressure based on the Donnell equations. Mahboubi 

Nasrekani and Eipakchi [12-15] investigated the effect of 
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thickness variation and geometrical parameters on stability and 

buckling analysis of cylindrical shells with variable thickness.  

In this study, the effects of geometrical parameters such as 

radius, thickness, and length, on dynamic behavior of cylindrical 

shells with constant and variable thickness are discussed. The 

equations of motion for the shell with constant thickness are 

extracted based on classical shell theory and using the 

Hamilton’s principle. According to the classical shell theory, the 

radial displacements of each layer of shell are the same or it is 

independent to thickness. These equations which are a system of 

coupled partial differential equations are solved analytically and 

the natural frequencies are determined for cylindrical shells with 

constant thickness. The natural frequency for cylindrical shells 

with variable thickness is determined using finite element 

method by employing ANSYS. For the shells with constant and 

variable thickness, it is important to know in which ranges of 

dimensions, there are some significant differences between the 

mechanical properties such as natural frequency. Four different 

cases of thickness are considered in this paper. The results are 

compared with some other references. 

 
2. EQUATION OF MOTION 

The position of an element on the cross section of a shell in 

cylindrical coordinate system can be defined by three parameters 

r, x and θ as FIGURE 1. The origin of the coordinate system is 

on the mid-surface which is shown by dashed line. We have 

r=Rm+z; where Rm is the mid-surface radius and z is measured 

from the mid-surface of the shell. The cross-sectional areas of 

the shell for different cases are shown in FIGURE 1. For 

different cases, R0out and R0in are outer and inner radius at x=0 

and R1out and R1in are outer and inner radius at x=L, respectively. 

L is the length of shell in x direction. 

 

 
FIGURE 1: Cross-sectional area of different shells 

According to the classical shell theory, the displacement 

filed for axisymmetric conditions is defined as following [16]: 
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where u, v, and w, are displacements in x, θ, and z directions 

respectively. u0 and w0 are the mid-surface displacements and 

they are unknown functions of x and t. The nonzero strains 

components are [15]: 
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(2) 

The stress-strain relations according to Hooke’s law are 

[16]: 
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E and ν are the Young’s modulus and Poisson’s ratio, 

respectively. The Strain energy U, and kinetic energy T are as 

the following: 

1
( )

2

2 2

( )

; 0 2 ; 0
2 2

1

2

x x

m

U dV

u w
T dV

t t

dV R z dz d dx

h h
z x L

    





 

 

     
      
     

 

    

      
 

(4) 

where ρ is density. The stress resultants are obtained as: 
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(5) 

According to Hamilton’s principle which states δ∫(T-U)dt=0 

and by substituting equations (4) and (5), the equations of motion 

as a function of stress resultants are extracted as following: 
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(7) 

By substituting equations (1) - (3) into equation (5), and by 

using these terms, the equation of motion are obtained as a 

function of displacement. These equations are not reported here. 
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3. ANALYTICAL PROCEDURE 
The response of equations of motion for shell with constant 

thickness is considered as {u0, w0}={V(x)}2*1 exp(iωt), where ω 

is the axisymmetric natural frequency and by substituting into 

equation of motion it results in: 
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Where [Bj], j=0,1,…,8 are the coefficient matrices. 

Equations (8), are a system of ordinary differential equations 

(ODE) and the response can be obtained as {V(x)}={A}exp(αx), 

which {A}2*1 is the eigenvectors and α is the eigenvalues. By 

substituting {V(x)} into equations (8), a system of algebraic 

equation as [eq]2*2{A}2*1={0} will be obtained. For nonzero 

solution, the determinant of [eq] should be equated to zero which 

it results in a relation between α and ω. It is an algebraic equation 

from order six with respect to α. It has six roots or eigenvalues, 

and for each eigenvalue, there is an eigenvector {A} which all of 

them are functions of ω. So, the general solution of equations (8) 

is as the following: 

   
6

1

j

j

x

j jV C A e





 

(9) 

Where Cj, are constant coefficients and will be obtained 

from boundary conditions. By applying the boundary conditions 

at x=0 and L, six new algebraic equations are extracted as 

functions of Cj, j=1..6. For non-trivial response, we consider that, 

determinant of the coefficient matrix is equal to zero. It is a 

complicated algebraic equation and they are solved by 

employing the bisection method and the natural frequencies are 

determined. 

 

4. NUMERICAL METHOD 
To solve the equations of motion for the cylindrical shell 

with variable thickness, ANSYS FE software has been employed. 

To obtain the axisymmetric frequencies and mode shapes, 

PLANE82, in axisymmetric mode is used. This is an element 

with eight nodes and two translational degrees of freedom at each 

node. The cross section of the shell is modeled in ANSYS and 

the analysis is done in two dimension to determine the results 

[12].  

FIGURE 2 shows mesh pattern for a specific model for case 

2 with variable thickness and selected element. After modelling, 

creating the meshed structure, and applying the boundary 

conditions, the modal analysis for the shell has been performed 

to obtain the natural frequency and mode shapes.   

 
FIGURE 2: Mesh pattern and PLANE 82 element 

 
5. RESULTS AND DISCUSSION 

According to the presented method, a mathematical code 

has been prepared on Maple 15 mathematical environment to 

investigate the effects of different geometrical parameters on the 

natural frequencies. The boundary conditions are considered 

simply supported at both edges. In this section, the basic material 

properties of the shells are assumed as follows: E = 200 GPa, ρ 

= 7800 kg/m3, ν=0.3. 

FIGURE 3 shows the axisymmetric natural frequency for 

elastic cylindrical shells with constant thickness for various 

length to mid-radius ratio (L/Rm), which is obtained from the 

presented analytical method, FE and presented method by 

Amabili [17]. Amabili obtained the equation of motion by 

employing the Donnell’s theory. It is observed that, by increasing 

L/Rm, the natural frequency decreases. 

 
FIGURE 3: Comparison of the results of presented analytical, FE, and 

Amabili formula for different L/Rm ratio (Rm/h=16, Rm=0.16 m) 
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As given in TABLE 1, the results for shells with constant 

thickness, are in a good agreement with the analytical results of 

Rao [18] based on the classical shell theory. It is seen that, by 

increasing the L/Rm ratio, the natural frequency decreases. 

 

TABLE 1: Comparison of natural frequency (Hz) of shells with 

constant thickness for different L/Rm ratio (Rm/h=10, Rm=0.16 m). 

L/Rm 5 10 15 20 

Present 3132.81 1584.03 1056.82 792.62 

Rao [17] 3132.95 1584.24 1056.95 792.74 

 

FIGURE 4 shows the difference between the first 

axisymmetric natural frequencies of different cases versus length 

to mid-radius ratio (L/Rm). It is seen that, for L/Rm >6, there is no 

significant difference between the cases. In the other words, in 

terms of natural frequency, by increasing the length, there is no 

different between the different cases.  

For instance, if we want to design an optimum pressure 

vessel of a certain capacity with minimum material and 

maximum natural frequency for presented data in TABLE 2, the 

correct L/Rm ratio is determined 7.5 and according to FIGURE 4, 

shells with variable thickness will be the best option [19]. In this 

range of L/Rm ratio, the natural frequency of shells with variable 

thickness is almost equal to the natural frequency of shells with 

constant thickness while due to the special geometrical form, 

shells with variable thickness have better weight, stress and 

strain distribution in comparison with shells with constant 

thickness. It should be mentioned that, the volume of different 

cases in FIGURE 4, is the same in each column. 

 

TABLE 2: Design data. 

P (Design 

pressure, 

psi) 

C 

(Corrosion 

allowance, 

in) 

S (Stress 

value of 

material, 

psi) 

E (Joint 

efficiency) 

V 

(Vessel 

volume, 

cu.ft) 

100 0.0625 16000 0.80 1000 

 

 FIGURE 5 shows the effect of mid-radius to thickness ratio 

on the first axisymmetric natural frequency of different cases. As 

a result, for Rm/h>24, the difference between the natural 

frequencies of different cases is negligible. Moreover, by 

increasing both Rm/h and L/Rm ratios, the natural frequency 

decreases. In these figures, the Rm/h and L/Rm ratios are 

calculated at x=L/2 and all the cases have the same volume. 

Since, for the shells with large size of length and radius, their 

natural frequencies for different cases are in the same range and 

the shells with variable thickness have better characteristics in 

terms of stress and strain distribution, and stability, it can be 

concluded that, the shells with variable thickness have better 

applications in these ranges of dimensions. 

 
FIGURE 4: Effect of length to mid-radius ratio on differences 

between the first axisymmetric natural frequency for different cases (h 

(at x=L/2)=0.015 m) 

 

 
FIGURE 5: Effect of mid-radius to thickness ratio on differences 

between the first axisymmetric natural frequency for different cases (L 

=1 m) 

 

For the cases 2 and 3 in FIGURE 1, we define the gradient 

of thickness as following: 
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FIGURE 6, shows the effect of the parameter α on natural 

frequency. It is seen, by increasing the gradient of thickness, the 

natural frequency decreases significantly. In this figure, all of the 

shells have the same volume. 
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FIGURE 6: Effect of the parameter α on the first axisymmetric natural 

frequency (L =1 m, Rm (at x=L/2) =0.1575 m, h (at x=L/2) =0.015 m) 

 

6. CONCLUSION 
In order to study the differences between dynamic behavior 

of four different cases of cylindrical shells with constant and 

variable thickness, an investigation is conducted. 

 By increasing L/Rm ratio, the natural frequency for 

all cases decreases and for L/Rm>6 there is no 

significant difference between different cases in 

terms of natural frequency. 

  By increasing Rm/h ratio, the natural frequency for 

all cases decreases and for Rm/h>24 there is no 

significant difference between different cases in 

terms of natural frequency. 

 For the ranges L/Rm>6 and Rm/h>24, the shells 

with variable thickness are preferable to the shells 

with constant thickness. Because they have better 

weight, stress and strain distribution. 

 For cases 2 and 3, by defining the gradient of 

thickness parameter, it has been concluded that by 

increasing this parameter, the natural frequency 

decreases. 

In this paper the results for the shells with finite length is 

presented which these results can be extended for shells with 

infinite length or pipes. In addition, these results can be useful 

for pressure vessels as an application. The extracted results 

determine some ranges of dimensions which in them, there are 

some significant differences between the natural frequencies. As 

a designer, it is important to know, which type of shell for which 

range of dimension is more suitable. Designers can use extracted 

results in addition to the data reported from pressure vessel 

handbooks. For example when Rm/h ratio is more than 24, it is 

better to use shells with variable thickness. Moreover, it should 

be mentioned that the presented results are for the studied range 

of material properties. 
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