
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 12-17-2020 

Quantifying DeepFake Detection Accuracy for a Variety of Natural Quantifying DeepFake Detection Accuracy for a Variety of Natural 

Settings Settings 

Pratikkumar Prajapati 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Prajapati, Pratikkumar, "Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings" 
(2020). Master's Projects. 962. 
DOI: https://doi.org/10.31979/etd.92r7-ddvu 
https://scholarworks.sjsu.edu/etd_projects/962 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/962?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 1 

 

 

Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 

 

 

A Project Presented to 

The Faculty of the Department of Computer Science 

San José State University 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science 

 

By 

Pratikkumar Prajapati 

Dec 2020 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 

Pratikkumar Prajapati 

ALL RIGHTS RESERVED 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 3 

 

 

The Designated Project Committee Approves the Master’s Project Titled 

 

Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 

 

by 

Pratikkumar Prajapati 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

SAN JOSÉ STATE UNIVERSITY (SJSU) 

 

 

Dec 2020 

 

 

Dr. Chris Pollett, Department of Computer Science, SJSU 

Dr. Mark Stamp, Department of Computer Science, SJSU 

Dr. Teng Moh, Department of Computer Science, SJSU 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 4 

 

ABSTRACT 

Deep fakes are videos generated from a starting video of a person where that person's face has 

been swapped for someone else's. In this report, we describe our work to develop general, deep 

learning-based models to classify Deep Fake content. Our first experiments involved simple 

Convolution Neural Network (CNN)-based models where we varied how individual frames from 

the source video were passed to the CNN. These simple models tended to give low accuracy 

scores for discriminating fake versus non-fake videos of less than 60%. We then developed three 

more sophisticated models: one based on choosing test frames, one based on video Optical Flow, 

and one that uses Generative Adversarial Networks (GANs) to determine structural differences 

in images. This last technique we call MRI-GAN and is new to the literature.  We tested our 

models using the Deep Fake Detection Challenge dataset and found our plain frames-based 

model achieves 90% test accuracy, our MRI model achieves 79% test accuracy, and Optical 

Flow-based model achieves 69% test accuracy. 

Index terms: Deep learning, GAN, MRI-GAN, DeepFakes, Convolution Neural Networks 

(CNNs), Machine learning, Artificial Intelligence. 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 5 

 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my special appreciation and thanks to my advisor Dr. 

Chris Pollett for his continuous support of my project, for his enthusiasm, motivation, and deep 

knowledge. He has been very supportive since day one. He has guided me to make this complex 

project a great learning experience as well as enabled me to contribute to the research of the 

Artificial Intelligence field. 

Besides my advisor, I would like to thank the rest of my project committee: Dr. Mark Stamp and 

Dr. Teng Moh, for their encouragement, guidance, and valuable feedback. 

Finally, I would like to thank my wonderful family for their countless hours of support and 

encouragement along the way.  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 6 

 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... 4 

ACKNOWLEDGEMENTS ............................................................................................................ 5 

Table of Contents ............................................................................................................................ 6 

List of Figures ................................................................................................................................. 8 

List of Tables .................................................................................................................................. 9 

1.  Introduction ........................................................................................................................... 10 

2.  Background ............................................................................................................................ 12 

2.1.  Artificial Neural Networks ......................................................................................... 12 

2.2.  Common Face Synthesis Methods. ............................................................................ 16 

2.3.  Prior work ................................................................................................................... 18 

3.  Hardware, Frameworks, and Tools........................................................................................ 19 

4.  Design .................................................................................................................................... 21 

4.1.  Overall design and pipeline of the data flow. ............................................................. 21 

4.2.  Variants of different features. ..................................................................................... 23 

4.2.1.  Plain images as features .......................................................................................... 24 

4.2.2.  Optical Flow as features .......................................................................................... 24 

4.2.3.  Learning to generate MRIs using proposed MRI-GAN ......................................... 26 

4.2.3.1.  Structural Similarity Index Measurement (SSIM) .............................................. 26 

4.2.3.2.  MRI-GAN ........................................................................................................... 29 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 7 

 

4.3.  Model architecture ...................................................................................................... 32 

5.  Implementation ...................................................................................................................... 34 

5.1.  Source code................................................................................................................. 34 

5.2.  Dataset ........................................................................................................................ 34 

5.3.  Data preprocessing ..................................................................................................... 35 

5.4.  Model implementation ................................................................................................ 41 

5.5.  Aggregation algorithm ................................................................................................ 41 

5.6.  Replication steps ......................................................................................................... 42 

5.6.1.  Data preprocessing .................................................................................................. 43 

5.6.2.  Features extraction .................................................................................................. 44 

5.6.2.1.  Optical Flow features extraction ......................................................................... 44 

5.6.2.2.  MRI features extraction ....................................................................................... 44 

5.6.3.  Model execution ...................................................................................................... 45 

6.  Experiments and Results ....................................................................................................... 46 

7.  Limitations and Future work ................................................................................................. 52 

8.  Conclusion ............................................................................................................................. 54 

List of References ......................................................................................................................... 56 

 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 8 

 

LIST OF FIGURES 

Figure 2.1 Comparison of various CNN-based models ................................................................ 14 

Figure 2.2  Samples of common face synthesis methods ............................................................. 17 

Figure 4.1 Overall flow of the design using plain frames............................................................. 23 

Figure 4.2 Optical Flow for original (left) and DeepFake (right) ................................................. 24 

Figure 4.3 Samples of Optical Flow for consecutive frame ......................................................... 25 

Figure 4.4 Architecture of the Optical Flow-based model ........................................................... 26 

Figure 4.5 Example MRI images of the fake samples .................................................................. 30 

Figure 4.6 Samples generated by MRI-GAN ............................................................................... 31 

Figure 4.7 Architecture of the MRI-based model ......................................................................... 32 

Figure 4.8 Model architecture ....................................................................................................... 33 

Figure 5.1 Data preprocessing methods ........................................................................................ 36 

Figure 5.2 Examples of augmentations and distractions .............................................................. 40 

Figure 5.3 The Aggregation algorithm ......................................................................................... 42 

Figure 6.1 Plot of train and validation accuracies for all models ................................................. 46 

Figure 6.2 Plot of train and validation losses for all models ........................................................ 47 

Figure 6.3 Plot of accuracies with different aggregation parameters for all models .................... 49 

Figure 6.4 Plot of ROC curves for the test of all models .............................................................. 49 

Figure 6.5 Confusion matrixes, left: for plain frames, middle: for Optical Flow, right: for MRI 50 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 9 

 

LIST OF TABLES 

Table 3.1 Hardware configuration of the workstation .................................................................. 19 

Table 5.1 Distribution of various data augmentation and distractions methods applied. ............. 38 

Table 6.1 Thresholds matrix for aggregating frame-level results. ................................................ 48 

Table 6.2 Various matrices for all models. ................................................................................... 51 

 

 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 10 

 

1. INTRODUCTION 

DeepFakes are synthesized images or videos that look like real content. Many DeepFakes can be 

found on www.youtube.com such as [1]. Fake videos of many political leaders, cinema actors, 

and other celebrities are generated to spread propaganda or to diminish their social reputation. 

Imagine a fake video of a political leader announcing something horrific. Such things can lead to 

catastrophic outcomes in society. Synthesized fake content can be a threat to society when seeing 

does not translate to believing [2]. In this research, we explore ways to detect such fake content. 

Our goal is to quantify the accuracy of DeepFake detection for a variety of natural settings using 

deep learning-based techniques. 

Fake media can be of many kinds. One of such kind is swapping the identity of one person with 

another. This specific identity swap method is called DeepFake. We briefly explain other kinds 

of fake contents generation methods later in this report. DeepFakes are generally created with 

specific kinds of neural networks called Generative and adversarial Networks (GANs). While a 

kind of neural network architectures such as Autoencoders (AEs) are also used, GAN-based 

models can generate realistic looking DeepFakes [3, 4]. GANs, AEs, and variants of such neural 

networks are deep learning subareas of machine learning methods in the Artificial Intelligence 

domain. Machine learning methods such as deep learning need a very high amount of data and 

computation to find patterns and make meaningful insights into the data. Deep learning-based 

models can be trained in a supervised manner to learn some specific kind of universal 

approximations to translate data into some insightful information. 

We propose a generic model that does not rely on a specific DeepFake generation method and 

tries to generalize the DeepFake detection holistically. We have used DeepFake Detection 

Challenge (DFDC) dataset [7] in this research to train our proposed models. DFDC dataset is 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 11 

 

chosen for this research as it contains DeepFake samples generated with many state-of-the-art 

methods, contains subjects with rich ethnic diversity, and also the video samples are recorded in 

a variety of natural settings. 

In this report, Chapter 2 builds the background to explain an overview of neural networks, 

common methods used to generate synthetic contents and explore prior work done in the 

DeepFake detection problem space. Then in Chapter 3, we mention the hardware, frameworks, 

and tools used to develop the code and utilized to perform various experiments. Further, we 

explain the design of our models and various regularization techniques used to improve the 

efficiency of our model in Chapter 4. We have proposed a novel approach to detect DeepFake by 

introducing MRI-GAN. We explain this architecture in detail with the mathematical background, 

in Chapter 4. We have extended the idea of [10] in the MRI-GAN and proposed new way to 

learn features of the fake content. We also used Optical Flow method discussed in [22] to detect 

the DeepFakes. After that, in Chapter 5 we explain the implementation of the design with links to 

access the source code of this research, various methods of data preprocessing we applied to train 

the model to generalize the predictions, and steps to replicate our work. Then we explain the 

various experiments we performed and quantify our results in Chapter 6. Later, we specify the 

limitations of our approaches and future work related to that in Chapter 7. Finally, we end the 

discussion with our conclusion in Chapter 8. 

 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 12 

 

2. BACKGROUND 

In this Chapter, we briefly explain the technical background needed to understand the research 

performed in this report. This explanation serves as an overview only for the technical concepts. 

Details of these concepts can be explored by visiting references mentioned in the Chapter. First, 

we begin with an overview of various kinds of neural networks as they are used extensively to 

implement the algorithms we proposed. Then we explain common kinds of face synthesis 

methods used to understand the overall spectrum of fake contents and the scope of our work. At 

last, we review prior work done by different researchers in the DeepFake detection problem 

space. 

2.1. Artificial Neural Networks 

Perceptrons are building blocks of Artificial Neural Networks (ANN). A perceptron has one or 

more inputs with associated weights and an output. The perception multiplies the weights with 

the corresponding inputs and adds them together. This operation is also represented as a dot-

product of weight and input vectors. The output of the dot-product is given to an activation 

function before generating the output result. The activation function can bound the inputs and 

help the perceptron learn a non-linear relationship between the inputs. Sigmoid, ReLu, Tanh, 

leaky ReLu are some of the many activation functions. A bias term is also given as an additional 

input to the perceptron. The bias is always ON and has its own weight, it helps to shift the input 

function and enable the model to be more flexible about the learned function. ANN consists of 

one or more perceptrons. The output of one perceptron can be given as input to the next 

perceptron to form series or layers of the perceptron.  One or more perceptrons can be connected 

back-to-back, and in parallel with each input vector and some combinations of it to learn 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 13 

 

complex non-linear function. This can be roughly considered as a directed acyclic graph. This 

architecture is collectively referred to as Multi-Layer Perception (MLP) [11]. 

While MLP provides good results on many of the classification tasks, it has its own limitations. 

One of the core limitations of MLP is that it needs a huge number of perceptrons to achieve some 

reasonable amount of accuracy and in many of the complex problems, such as computer vision, 

it fails to get any acceptable accuracy. The main reason the MLP does not work well with images 

is that it does not learn geometric information of the subjects in images. Convolution Neural 

Network (CNN) was proposed as an attempt to solve these limitations. CNNs uses convolution 

operation with kernels of specified dimension as filters to learn geometric information of the 

subjects. Kernels are used as a sliding window with specified strides and learn to detect many 

features of the inputs. Usually, max-pooling or average-pooling layers are also applied after the 

convolution and activation functions. CNNs are applied on 1D, 2D, and 3D data. There are many 

variations of the CNNs proposed by researchers. Some of the variations downsample the inputs, 

upsamples the inputs, and some large architectures with hundreds of layers are also proposed. 

CNNs have proven to achieve better accuracy in computer vision problems with a lower number 

of model parameters compared to MLP [11]. ImageNet dataset is commonly used for 

benchmarking various CNN architectures, as this dataset is very rich in diversity of images and 

1000 classes of images are provided with it. ResNet-50, Xception Net, ResNext-101 are a few of 

the very large and complex architectures claimed to achieve state-of-the-art accuracy with the 

ImageNet dataset. These architectures have millions of parameters needed for training.  

Design of the CNNs brings a new set of challenges, which include tuning the depth and width of 

the layers with respect to the resolution of the images. The increasing complexity of the model 

results in vanishing gradients problems and it is not guaranteed that complex architectures will 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 14 

 

perform better [11, 12]. To overcome the vanishing gradient problem, the U-Net architecture was 

proposed which has skip-connections to transfer gradient from one layer to some other layer 

directly and skipping some intermediate layers [13]. Tan M. et al. [12] proposed a set of 

architectures called Efficient-Nets which is claimed to achieve accuracy comparable to complex 

architectures with relatively a smaller number of parameters.  Tan M. et al. have proposed eight 

different models called B0 to B7. Figure 2.1 shows the comparison of the accuracy of these 

models with respect to model parameters of recent state-of-the-art architectures [12]. 

 

 

Figure 2.1 Comparison of various CNN-based models 

 

We have used Efficient-Net B0 in our research to extract the feature-maps of the images. Model 

weights are given with the model architecture and we use this pre-trained model to utilize the 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 15 

 

transfer-learning aspect of deep learning. We explain the architecture of our model in detail in 

the Chapter 4. 

Input is forwarded to various layers before getting the final output in the MLP and CNN-based 

model. They do not utilize a feed-back loop kind of mechanism; hence these kinds of models are 

collectively referred to as feed-forward networks. To handle a sequence of input data or time-

series data, a new set of models are proposed which uses temporal information of the inputs and 

passes output as one of the inputs to the model. Such models are called Recurrent Neural 

Networks (RNNs). These kinds of models can be roughly considered as cyclic graphs. These 

models employ memory cells to remember previous inputs in addition to current inputs to predict 

the output. Long Short-Term Memory (LSTM) and Gated-Recurrent Unit (GRU) are some of the 

examples of such models [11]. We have used LSTM in one of our models to learn temporal 

discrepancy between a sequence of frames to detect DeepFake videos. Details of these models 

are only briefly discussed in our report, as our attempt to use LSTM did not produce acceptable 

results. 

Yet other kinds of architectures are invented to learn to generate images. Autoencoders (AEs) 

and Generative adversarial Networks (GAN) some of the popular model architectures. Powerful 

architectures of AEs, GANs, and variants of these models are capable to generate a new set of 

media contents that can be fake in nature but looks realistic to humans. This side-effect of 

technology is one of the sources of the rise of DeepFakes and associated threats. Design of AEs 

has encoder and decoder sub-modules. Images are encoded into a latent space by downsampling 

the features using the encoder module. Latent space is generally in a smaller dimension than 

input and it can represent encoded feature maps of the input images. Decoders are trained to 

sample from this latent space and upsampled to generate the images of the targeted dimension. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 16 

 

GAN-based models have two main modules called generator and discriminator. Utilizing game 

theory, both of these components are trained in a zero-sum game. The role of the generator is to 

sample vectors from a latent space and learn to generate an image that looks realistic to the 

discriminator. The role of the discriminator is to classify the images generated by the generator is 

from the training set (which gets considered as a real image from the discriminator’s point of 

view) or not. While both modules of the networks are trained it's expected that the overall model 

will reach equilibrium at some time where the generator is able to generate realistic-looking fake 

images and able to fool the discriminator such that the discriminator fails to classify if the image 

generated is real or fake. Training GAN models are very difficult [11, 14]. There are many 

variants of the GANs proposed by researched to solve a specific set of problems. One such 

architecture is called Pix2Pix GAN [15] which is designed to transform the domain of one image 

sets into another one. Pairs of images are given as inputs to the model and Pix2Pix GANs are 

trained to transform one component of the pair to the other. We have utilized this architecture 

and trained a novel model, called MRI-GAN, which generates the MRI of any human face and it 

is used to detect if the face is synthesized or real. We have explained the details of the MRI-

GAN in our report. 

In this subsection, we have briefly explained some of the common and very powerful 

architectures of neural networks. In the next subsection, we explain some of the common 

methods used in synthesizing fake faces and prior work done in detecting the DeepFakes. 

2.2. Common Face Synthesis Methods. 

Entire face synthesis, identity swap, face attributes manipulation, and facial expression 

manipulation are four common types of face synthesis methods. Entire none-existent faces are 

generated using AEs and GANs. The generated faces are completely fictitious yet resembles a 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 17 

 

human face. Identity swap methods use source and target images. The face of the source image is 

used to replace the face of the target image while maintaining the background environment of the 

target image. Fake contents generated using this method is also known as the DeepFakes. The 

primary scope of our project is to detect if a video is DeepFake or not. With facial attribute 

manipulation methods, the identity of the face is not changed but some attributes of the faces like 

hair or skin tone, age, etc. are changed. Facial expression manipulation techniques take source 

and target images as inputs and generate a fake image with a facial expression of source image 

imposed on the target images [3]. See Figure 2.2 for the samples of each manipulation method 

[3]. 

 

Figure 2.2  Samples of common face synthesis methods 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 18 

 

2.3. Prior work 

DeepFakes are generally created with off-the-shelf models including but not limited to 

StyleGAN [16], CycleGAN [17], FaceSwapGAN [18] and sometimes combined with some post-

processing of the images and videos such as color balancing to make the fake video look 

realistic. There have been quite a few researches done on detecting DeepFakes. Many of them 

used different matrixes to report the outcome such are accuracy, Area Under the Curve (AUC), 

Equal Error Rate (EER), etc. and they used different datasets so it’s hard to compare all such 

researches [3].  Facebook has launched the DeepFake detection challenge (DFDC) [19] and also 

provided a dataset for the competition [7]. We have used this same dataset in our research. The 

winner of the competition [19, 20] achieved 82% of the test accuracy on the complete DFDC test 

dataset. We have inherited some ideas such as frame-based detections from the winning solutions 

and greatly extended the idea with new features and a different classification model. Rossler et 

al. Tang et al. [5] used mesoscopic and deep learning features using CNN on Face Forensics 

(FF)++ FaceSwap Low Quality (LQ) dataset [21] and achieved around 94% accuracy.  Sabir et 

al. [6] used temporal information of the video frames such as discrepancies between consecutive 

frames with CNN and RNN based models and achieved 96.3% AUC on the FF++ FaceSwap, LQ 

dataset.  Amerini et al. [22] used Optical Flow fields on fake media generated with Face 

Manipulation techniques and achieved 81.6% accuracy. We extended this idea to generate the 

Optical Flow between consecutive frames of each identified person in the fake video and used it 

as a feature for our model to classify the DeepFake media. Li et al. [10] used x-ray of the images 

as features to detect DeepFakes. They used the DFDC dataset and reported an AUC of 80.92. We 

have extended this idea and proposed a novel method to generate structural dissimilarity of 

images and we call it Magnetic Resonance Imaging (MRI) of the images.  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 19 

 

3. HARDWARE, FRAMEWORKS, AND TOOLS 

Deep learning-based projects are very compute-intensive for data processing and training.  In this 

Chapter, we explain the configuration of the hardware, framework, and tools we utilized to 

achieve the overall development and various experiments. 

The implementation of the overall project is based on Python. We used Pandas, Numpy, 

Matplotlib, Sklearn, facenet_pytorch, and many common python libraries throughout the project. 

The PyTorch framework is used to implement ANN models. For video file manipulation we used 

FFMPEG. The development is done on the Ubuntu 18.04 operating system. The hardware 

configuration of the workstation is mentioned in Table 3.1.  

 

Table 3.1 Hardware configuration of the workstation 

CPU 

Brand and model Intel i9-9940X 

Clock Frequency 3.30GHz 

Num of threads 28 

Cache 19.25 MB Intel Smart Cache 

CPU Liquid 

Cooling 

Brand and model Corsair Hydro Series H115i PRO 

Fan Speed 1200 RPM 

Fan size 140mm 

radiator size 280mm 

DRAM Brand and model Corsair CMK32GX4M2A2666C16 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 20 

 

Speed 2666MHz 

Capacity 16x 8GB = 128GB 

Motherboard Brand and model Asus WS x299 sage 

GPU 

Brand and model Nvidia Titan RTX 

Total Video Memory 24 GB GDDR6 

Tensor Cores 576 

CUDA Cores 4608 

Base Clock (MHz) 1350 MHz 

Single-Precision 

Performance 
16.3 TFLOPS 

Tensor Performance 130 TFLOPS 

Primary 

Storage 

Brand and model Sabrent 2TB Rocket NVMe 

Read Speed 3400 MB/s 

Write Speed 2750 MB/s 

Secondary 

Storage 

Brand and model Seagate IronWolf 12TB HDD 

Read Speed 150 MB/s 

Write Speed 100 MB/s 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 21 

 

4. DESIGN 

In this Chapter, we discuss the design of the models we implemented to detect the DeepFake 

videos and various methods performed for feature engineering. This is critical to understand the 

core ideas we have applied to classify the DeepFakes. We have tried various model architectures 

using RNNs and CNNs. We pass a set of ordered frames to RNN and the output of the RNN is 

passed to the classifier for final prediction of the video. We tried some combinations of 

parameters such as ten consecutive frames, twenty constitutive frames, one and two layers of 

LSTMs, dropout layer with 50% probability, and label smoothing.  These all resulted in accuracy 

of less than 57%. We also tried several experiments with CNN-based models, such as pass only 

the first frame to the model, pass three consecutive frames placed next to each other as a single 

feature vector, using custom CNN-based model, and using features extraction utilizing Efficient-

Net B0. These all also resulted in less than 60% test accuracy. One particular architecture based 

on CNN worked well for the DFDC dataset, we explain this model in detail. We also 

experimented with extracting different features from frames and used the same model to classify 

DeepFake detection. Since other model architectures did not produce any reasonable accuracy, 

we omit them in our discussion. Now we begin by explaining the overall design of our best 

performing CNN-based model and pipeline of the data flow. Then we discuss various techniques 

used to extract the features from the videos to help the model learn better and finally we explain 

the architecture of the CNN-based model. Only the frames of the video are used and the audio 

stream of the videos is dropped in our experiments. 

4.1. Overall design and pipeline of the data flow. 

Figure 4.1 shows the overall core design. We begin with a video sample in Step 1. Then we 

extract frames from the video in Step 2. We used pre-trained MTCNN [23] in Step 3 to locate the 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 22 

 

faces of the humans in each frame. There could be more than one person in each frame. Detected 

faces are cropped from the frames and saved on disk. We repeat this process for each video of 

the dataset. At the end of Step 3, we have a set of frames for all videos. These frames contain 

only the faces of humans. The faces could be either fake or real. Then in Step 4, we use our 

model to predict if each of these frames is of a fake or real person. In the model, each frame is 

passed to the pre-trained Efficient-Net B0 model to extract the features. These features are 

passed to a custom classifier to predict if the given frame is fake or real.  In Step 5 we need to 

aggregate the results of each frame and at last in Step 6 we need to predict if the given video is 

fake or real. There could be multiple ways to aggregate the results of individual frames to predict 

the overall video classification. E.g., if 50% of the frames are detected as fake with a probability 

of more than 60% then we predict the entire video as fake. In the Implementation Chapter, we 

discuss our algorithm to translate frame-level classification to overall video-level classification. 

Also due to limitations of computing resources we only extracted every tenth frame of each 

video, rather than all the frames. In the report, we use the term ‘consecutive frames’ to refer to 

every tenth frame. There could be more than one face in the video and so our classification 

approach is to count how many fake faces are detected in the entire video. If there is more than 

one face in a frame each face is detected independently and passed to the classifier to detect if 

the face is fake or real. A final decision of the entire video is made using aggregation of each 

face-based classification. 

We choose the Efficient-Net B0 model to extract the features of the images as it achieves the 

accuracy of the current state-of-the-art models and uses much less computational resources [12]. 

The output of the Efficient-Net B0 is passed to the average pooling layer and then to the 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 23 

 

classifier. The classifier is an MLP-based model with the output of a single logit to perform 

binary classification. We explain the architecture of the model later in this Chapter. 

 

 

Figure 4.1 Overall flow of the design using plain frames 

4.2. Variants of different features. 

The pipeline discussed in Figure 4.1 shows the flow of ‘plain frames’. We have applied data 

augmentation statically and dynamically, which is discussed in the Data preprocessing 

subsection of the Implementation Chapter. We also extracted features such as Optical Flow and 

Magnetic resonance imaging (MRI) of the images after Step 3 and before passing them to our 

model in Step 4. We borrowed the term MRI from medical science. Now we discuss all three 

variants of features we have used to design our architecture. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 24 

 

4.2.1. Plain images as features 

This is the simplest of all the features design. We do not extract any feature explicitly from the 

frames after Step 3. We only apply dynamic augmentation after Step 3 and then pass the frames 

to our model. Figure 4.1 shows this design flow. 

4.2.2. Optical Flow as features 

Amerini et al. [22] experimented with extracting the Optical Flow of the images to detect Face 

manipulations. We have adopted the same idea but applied it to detect DeepFakes. According to 

[22], Optical Flow is a vector field which is computed on two consecutive frame fሺtሻ and fሺt൅1ሻ 

to extract apparent motion between the observer and the scene itself. They claim that the Optical 

Flow can exploit discrepancies in motion across frames synthetically created. Figure 4.2 shows 

an example of the Optical Flow of fake and real frames [22].  

 

Figure 4.2 Optical Flow for original (left) and Fake (right) video 

We created new features using Optical Flow with similar methods. We take two consecutive 

frames and find the Optical Flow from frame fሺtሻ to fሺt൅1ሻ using model [24]. This Optical Flow 

is a set of vectors. We use the Flowiz library [25] to covert these vectors to images. The Flowiz 

uses the direction and dimension of the vectors to generate various hues of the image. Figure 4.3 

shows an example of the Optical Flow, the top row has two consecutive frames on the left and 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 25 

 

the corresponding Optical Flow is on the right. Same for the bottom row with the other two 

consecutive frames. 

 

Figure 4.3 Samples of Optical Flow for consecutive frame 

With the Optical Flow variant, we use the same pipeline as described in Figure 4.1, but we pass 

images of Optical Flow at Step 3 instead of ‘plain frames’. Figure 4.4 shows the end-to-end flow 

for the Optical Flow design. In addition to architecture defined in Figure 4.1, we have Step 3a 

and Step 3b depicted in Figure 4.4. At Step 3a we use two consecutive frames and generate an 

Optical Flow image. At Step 3b we pass these images for dynamic augmentation and then to our 

model for classification. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 26 

 

 

Figure 4.4 Architecture of the Optical Flow-based model 

4.2.3. Learning to generate MRIs using proposed MRI-GAN 

This is the most complex feature we have utilized and needs extensive explanation. MRI term is 

used as an enhancement to the x-ray technique discussed in [10]. Facial masks are learned for 

fake images and these masks are used to detect the fake images. We extended this idea to learn 

structure similarity index. Before we propose our novel architecture of MRI-GAN, we explain 

how two images can be compared effectively. Zhou et al. [8] and Wang et al. [9] shows that 

structural similarity considers texture of the images as well, unlike Mean Squared Error (MSE). 

We utilized this idea in our MRI-GAN. 

4.2.3.1. Structural Similarity Index Measurement (SSIM) 

The core idea behind generating MRI is finding the structural difference between a set of images. 

SSIM is proposed by [8] and we have provided a brief discussion here from the same paper. The 

normalized Structural Similarity Index between two images is a value in the range of 0 to 1. 

Where 0 indicates both images are very different and 1 indicates both images are very similar. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 27 

 

While the Structural Similarity Index is calculated with the proposed set of mathematical 

equations, the actual SSIM image can also be derived. Zhou et al. [8] have proposed to use 

similarity measurement using three components: luminance, contrast, and structure. Let’s define 

these terms first and then we need to compare these terms between the set of images to get the 

SSIM image. 

a. Luminance 

Luminance 𝜇௫ is defined as the mean intensity over all pixel values. 

 
μ୶ ൌ

1
N

෍

୒

୧ୀଵ

x୧ 

 

 

… Eq. (4.1) 

 

Luminance comparison function lሺx, yሻ as given in Eq. (4.2) ,  

 
𝑙ሺ𝑋, 𝑌ሻ ൌ

2𝜇௫𝜇௬ ൅ 𝐶ଵ

𝜇௫
ଶ ൅ 𝜇௬

ଶ ൅ 𝐶ଵ
 

 

… Eq. (4.2)  

 

where X and Y are the two images being compared and C1 denotes a constant to ensure the 

stability of the equation when the denominator becomes zero. The C1 is defined in Eq. (4.3), 

where K1 ൌ 0.001 and L = the data range of the input image (distance between minimum and 

maximum possible values) 

 
𝐶ଵ ൌ ሺ𝐾ଵ𝐿ሻଶ 

 

… Eq. (4.3) 

 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 28 

 

b. Contrast 

The standard deviation of all pixel values is used as an estimation of the contrast 𝜎௫. This 

function simply removes the mean intensity from the image. 

 

𝜎௫ ൌ ൭
1

𝑁 െ 1
෍

ே

௜ୀଵ

ሺ𝑥௜ െ 𝜇௫ሻଶ൱

ଵ
ଶ

 

 

… Eq. (4.4) 

 

Same way the contrast comparison function 𝑐ሺ𝑥, 𝑦ሻ 𝑖s defined as, 

 
𝑐ሺ𝑥, 𝑦ሻ ൌ

2𝜎௫𝜎௬ ൅ 𝐶ଶ

𝜎௫
ଶ ൅ 𝜎௬

ଶ ൅ 𝐶ଶ
 

 

… Eq. (4.5) 

 
                 where, 𝐶ଶ ൌ ሺ𝐾ଶ𝐿ሻଶ 

 

… Eq. (4.6) 

Also, K2 ൌ 0.003, and L is the same as defined for C1. 

c. Structure  

Now, both images are normalized by their standard deviation to get both of them in unit standard 

deviation for comparison purposes. 

 
𝑆ሺ𝑋ሻ ൌ

𝑋 െ μ௫

σ௫
, 𝑆ሺ𝑌ሻ ൌ

𝑌 െ 𝜇௬

𝜎௬
 

 

… Eq. (4.7) 

The structural similarity or correlations between SሺXሻ and SሺYሻ, is equivalent to the correlation 

coefficient between and X and Y. So, the Structure comparison function 𝑠ሺ𝑋, 𝑌ሻ is defined by 

 

𝑠ሺ𝑋, 𝑌ሻ ൌ
𝜎௫௬ ൅ 𝐶ଷ

𝜎௫𝜎௬ ൅ 𝐶ଷ
 

 

… Eq. (4.8) 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 29 

 

 
𝑤ℎ𝑒𝑟𝑒, 𝜎௫௬ ൌ

1
𝑁 െ 1

൭෍ሺ𝑥௜ െ 𝜇௫ሻ൫𝑦௜ െ 𝜇௬൯

ே

௜ୀଵ

൱ 
 

… Eq. (4.9) 

To simplify the equations Eq. (4.8) and Eq. (4.9) the authors proposed to use, 𝐶ଷ  ൌ   ஼మ

ଶ
  

And finally, the SSIM is defined by Eq. (4.10). 

 𝑆𝑆𝐼𝑀ሺ𝑋, 𝑌ሻ ൌ ሾ𝑙ሺ𝑋, 𝑌ሻሿఈ. ሾ𝑐ሺ𝑋, 𝑌ሻሿఉ. ሾ𝑠ሺ𝑋, 𝑌ሻሿஓ … Eq. (4.10) 

 

To simplify the Eq.(4.10), authors have suggested to use α ൌ β ൌ γ ൌ 1, and so, 

 
𝑆𝑆𝐼𝑀ሺ𝑋, 𝑌ሻ ൌ

൫2𝜇௫𝜇௬ ൅ 𝐶ଵ൯൫2𝜎௫௬ ൅ 𝐶ଶ൯

൫𝜎௫
ଶ ൅ 𝜎௬

ଶ ൅ 𝐶ଶ൯൫𝜎௫
ଶ ൅ 𝜎௬

ଶ ൅ 𝐶ଶ൯
 

 

… Eq. (4.11) 

 

The structural similarity index can be calculated by simply taking the mean of Eq. (4.11) over all 

the pixel values. The authors of the paper also suggest that Eq. (4.11) may not work well in 

practice as this calculates the SSIM over the entire image globally and better results may be 

derived when using the small patches of the images in a sliding window manner and calculating 

the statistics over the local regions. 

4.2.3.2. MRI-GAN 

In the previous Chapter, we discussed how to get the SSIM of two images. If two images are 

similar SSIM will generate a tensor of all zeros otherwise the structural difference between the 

images. For our DeepFake detection purpose, we need dissimilarity between the fake and real 

images and we call it MRI. So, we simply use inversion of SSIM as dissimilarity tensor if SSIM 

is non zero. We define the MRI of two images X and Y in Eq. (4.12) 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 30 

 

 𝑀𝑅𝐼 ሺ𝑋, 𝑌ሻ ൌ  1 െ  𝑆𝑆𝐼𝑀ሺ𝑋, 𝑌ሻ, 𝑤ℎ𝑒𝑟𝑒 0 ൑ 𝑆𝑆𝐼𝑀ሺ𝑋, 𝑌ሻ ൑ 1  … Eq. (4.12)  

 

The DFDC training set has metadata to identify real video used to generate a given fake video. 

We use this fake and real video pair to learn about the structural dissimilarity of frames. So, if 

there is dissimilarity in the structure of a pair of images it can be captured as some kind of 

artifact and there are no dissimilarities then the difference between them would be all zeros.  All 

zeros can be considered as a black image. We use the structural dissimilarity of two images as 

MRI of the pair. Figure 4.5 shows an example of MRIs of pairs of fake images. In the top row, 

the left image is of a real person, the middle image is the synthesized image, and the rightmost 

image is the MRI of these fake and real images. Same for the bottom row. 

 

Figure 4.5 Example MRI images of the fake samples 

 

Now our challenge is to learn a way to generate an MRI of any unseen image. A Pix2Pix GAN 

can be handy in this scenario. A Pix2Pix GAN is used to convert one image to another image. 

For training, it expects a pair of images, say Image-A and Image-B. The Pix2Pix GAN learns to 

convert Image-A into Image-B using supervised learning. In our case we trained the Pix2Pix 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 31 

 

GAN with pair of an image and its MRI, we call this model MRI-GAN. This is a novel 

architecture we have come up with. If the image is of a real person the MRI is specified as a 

black image and if the image is of a fake person then its MRI would have corresponding 

artifacts. Again, we have pairs of real and fake videos from the training set and we use it 

extensively here. We trained our MRI-GAN using this technique from scratch and generated 

MRIs of all samples in the dataset. Figure 4.6 shows samples generated by the MRI-GAN. The 

top row is the image of persons which can be either fake or real. The middle row is the MRI of 

the corresponding persons from the top row. This row serves as the ground truth for the training. 

If the person is fake its MRI will have some kind of artifacts and if the person is real then the 

MRI will be a black image. The bottom row is the MRIs generate by our trained MRI-GAN. As 

you can see, the MRI-GAN seems to have learned to generate MRI in most of the cases. For the 

fourth person, the MRI-GAN generated some artifacts even though the person is real. This may 

be a limitation of the MRI-GAN we trained. 

 

Figure 4.6 Samples generated by MRI-GAN 

Using this technique, we have generated MRIs of all samples in the dataset. Just like ‘plain 

frames’ and Optical Flow methods, we have also passed MRIs as inputs to the model to classify 

if the video is fake or real. Figure 4.7 shows the end-to-end flow for the model utilizing MRIs. In 

addition to architecture defined in Figure 4.1, we have Step 3a and Step 3b explain in Figure 4.7. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 32 

 

At Step 3a we pass the frame to MRI-GAN and generate an MRI of the face.  At Step 3b we pass 

these MRIs for dynamic augmentation and then to our model for classification. 

 

Figure 4.7 Architecture of the MRI-based model 

4.3. Model architecture 

Figure 4.8 shows the model architecture. In Step 1, we provide an input image to the model. This 

image can be a plain frame, Optical Flow image, or MRI of the face. The input image is expected 

to be 224 x 224 to match the native size of the Efficient-Net B0 model. The pre-trained 

Efficient-Net B0 is deployed at Step 2, in our model to extract the convolution features of the 

input image.  At Step 3 we apply adaptive average pooling. The output of Step 3 is flattened and 

send to the classifier in Step 4. The classifier is two layers of fully connected MLP with dropout 

and Relu activation applied in between. Finally Step 6 is the final output of the model which is a 

single neuron to indicate if the input image is fake or real. This model architecture is the same 

for all kinds of input features we have experimented with. In the implementation Chapter, we 

explain other optimizations we have performed. 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 33 

 

 

Figure 4.8 Model architecture 

 

DeepFake detection problem involves detecting given media is fake or real, so it is a binary 

classification problem. Since our goal is to detect DeepFakes we declare it as succuss and denote 

the label to one for all fake samples. For real images, we denote the label as zero. We use Binary 

cross-entropy (with logits loss) to find the loss between the predictions and the actual labels. The 

loss function is defined in Eq. (4.13). 

 
𝐿𝑜𝑠𝑠 𝑙ሺ𝑓, 𝑟ሻ ൌ െ

1
𝑁

෍ 𝑟௜

ே

௜ୀଵ

. 𝑙𝑜𝑔൫𝑝ሺ𝑓௜ሻ൯ ൅ ሺ1 െ 𝑟௜ሻ. 𝑙𝑜𝑔൫1 െ 𝑝ሺ𝑓௜ሻ൯ 
 

… Eq. (4.13) 

 

 

Adaptive average pooling is the average pooling layer but we don’t have to explicitly specify the 

kernel size, stride, and padding hyper-parameters. We only need to specify the target image 

dimension; the needed hyper-parameters are set by the layer to get the targeted image 

dimensions. We have set the target image size to be the same as the input image size. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 34 

 

5. IMPLEMENTATION 

In this Chapter, we walk through the details of the implementation. We begin by providing links 

to access the source, the dataset used, and data preprocessing. Then we explain the 

implementation of the model using PyTorch and how to replicate our work with the source code 

provided. 

5.1. Source code 

The source code of the entire implementation can be found at 

http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring20/pratik/index.php?Bio.php#top

as well as at  https://github.com/pratikpv/deep_fake_detection 

5.2. Dataset 

We have used DeepFake Detection Challenge (DFDC) [7] dataset. Approximately 3426 paid 

actors and actresses were hired by Facebook and explicit consent was made available to modify 

their identity. The videos are recorded in natural settings and with 1080p resolution. Some 

DeepFake methods applied are less-realistic to represent low-effort results. The number of 

videos per-method is not equal. Training, validation, and test set are provided with the dataset. 

Some of the videos of the test set are kept private and not made available publicly.   

The training data set contains 119,154 video clips each being ten seconds long. There are 486 

unique subjects in the training set. Total 100,000 clips (approx. 84%) are DeepFakes and no 

augmentations are applied to the training set. The validation set contains 4,000 video clips each 

being ten seconds long. Total 2,000 clips (50%) are DeepFakes in the validation set. There are 

214 unique subjects recorded in this set. These subjects are not part of the training set. The test 

set is comprised of two parts, private and public. The private test set is not available and 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 35 

 

Facebook used it to evaluate the DFDC challenge at Kaggle [19]. The public set is made 

available and contains 5,000 clips each being ten seconds long. Total 2,500 of them (50%) are 

DeepFakes. There are 260 unique subjects recorded in the test set which does not appear in the 

train and validation set. We have used the entire training, validation and public test set in our 

experiments. The validation and test set are heavily augmented with various kinds of methods. 

Different types of noise, rotation, color transformations, different frame-rates, different video 

resolutions are some of the augmentation methods applied. The validation and test set also 

contains distractions in many videos. Some of the distraction methods include the appearance of 

random text, random geometric shapes, and random logo to appear either at random frames of 

scrolls from any of the directions. Faces may also have dog and flower crown filters in random 

videos. This makes the whole dataset very heavily augmented and challenges arise to generalize 

the model accuracy. To overcome this, we have to apply a similar kind of augmentation and 

distractions to the training set so that model may become more resilient and learns to generalize 

better. 

5.3. Data preprocessing 

To make our model generalize better we have applied augmentation and distractions to the 

training dataset heavily with various methods. We used static and dynamic mode of 

augmentation and the only static way to apply distractions. With the static method, we applied 

both kinds of data preprocessing methods before Step 1 of the data pipeline explained in Figure 

4.1. We choose to apply the static way of augmentation and distractions to resemble real-world 

scenarios such as low-quality, low-resolution, distraction applied in various settings, etc. The 

MTCNN face detection model will need to detect faces in this heavily manipulated data set. In 

practice, many times MTCNN failed to recognize faces in some of the frames or fails completely 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 36 

 

to detect any faces in the entire video. This becomes one of the limitations of our implementation 

as MTCNN fails to detect faces for some of the videos. We discuss more on this case in the 

Limitation Chapter of this report. The static data preprocessing methods are applied to a random 

set of videos from the training set. Note that the dynamic mode of augmentation is applied on the 

final frames which have only the faces detected by the MTCNN. The static mode of 

augmentation is applied to the entire frame before passing the frame to MTCNN to detect the 

faces. Figure 5.1 gives a pictorial view of all data preprocessing we have applied. With dynamic 

mode, we apply simple preprocessing or complex based on the features we chose to pass to the 

model. Later in the results Chapter, we clarify which dynamic mode of preprocessing we applied 

on the given feature set. 

 

Figure 5.1 Data preprocessing methods 

 

Now we discuss methods implemented for static data preprocessing methods. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 37 

 

a. Augmentation methods 

Various types of noise are added to each frame of the videos. Types of noise implemented are 

Gaussian, Speckle, Salt-and-Pepper, Pepper, Salt, Poisson, and Localvar. We also applied other 

augmentation methods such as blur, rotation, horizontal flip, rescale, brightness, and contrast. 

b. Distraction methods 

We implemented static, rolling, and spontaneous methods of data distractions. Each method 

includes text and geometric shapes as an object to generate distractions. When a text is used as a 

distraction, a random alpha-numeric text of length eight is generated and applied to the video. 

The font size of the text is chosen randomly from the scaling of one to six units. The font 

thickness is chosen randomly from the scaling of one to three units. The font colors are chosen 

randomly supported colors. Red, blue, green, white, and black is supported colors. In the case of 

static text, a random text is generated and it is overlaid on the video at a fixed location. The 

location is chosen randomly and fixed for the entire video. In the rolling text scenario, a random 

text moves from a fixed direction for the duration of the video. The starting location of the text is 

chosen randomly at the start and the rolling direction could be any of the following: right-to-left, 

left-to-right, up-to-down, down-to-up. The spontaneous text method overlays a random text at 

random locations at random times in the video. All the various options implemented for text-

based distraction applies to shapes-based-distractions as well. Circle and rectangle shapes are 

chosen for the shapes-based-distractions method. 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 38 

 

We have applied various combinations of random augmentation and random distractions. So a 

video might have one of more random augmentation applied as well as one or more random 

distractions also applied to it. We applied this static method of data preprocessing to 30% of the 

training set. Table 5.1 shows the distribution of various data augmentation and distractions 

methods applied to 30% of the training dataset. The method column mentions if we only one of 

the data preprocessing methods of a combination of the methods on the same sample. The 

corresponding row mentions how many samples we used to apply the specified set of data 

preprocessing methods. 

Table 5.1 Distribution of various data augmentation and distractions methods applied. 

Method Percentage of videos 

Random distractions only 35% 

Random distraction, followed by random noise on the same sample. 35% 

Random distractions, followed by random noise, and finally random 

augmentation 

15% 

Random noise 5% 

Random augmentation followed by random noise 

 

5% 

Random augmentation 5% 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 39 

 

Also, note that the static mode of data preprocessing is applied at the very beginning of the 

implementation phase on randomly chosen samples in the training set. After this data 

preprocessing step, we follow the pipeline process mentioned in Figure 4.1. We also apply 

dynamic data preprocessing after Step 3, before passing the frames to our model. We use the 

transform library of the PyTorch to apply data augmentation in dynamic mode. With this mode 

every time a batch of data is passed to the model the specified random set of augmentation is 

applied. Figure 5.2 shows samples of all types of augmentation and distractions we have 

implemented and applied to the training set. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 40 

 

 

Figure 5.2 Examples of augmentations and distractions 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 41 

 

5.4. Model implementation 

The model implementation is pretty straight forward. We use the timm [26] library to get a pre-

trained Efficient-Net B0 model.  We use the torch.nn library of the PyTorch for 

AdaptiveAvgPool2d, Dropout, Relu, and Linear layers. 

We have defined ‘DeepFakeDetectModel_6’ class for the CNN-based discussed in this 

report. This class is inherited from torch.nn.Module. We initialize the Efficient-Net B0 and all 

the layers discussed in the model architecture in the init method of this class. In the forward() 

method of the class, we transform the input data and pass it to various layers of the model. 

Finally, the logits are returned by the forward() method. We have used Binary cross-entropy 

(with logits loss) as our loss criterion. Adam optimizer is used for gradient descent steps. We 

have use label smoothing [27] and dropout for regularization. 

5.5. Aggregation algorithm 

We classify each frame independently if it's fake or real. The model may perform poorly to 

classify certain frames and so our challenge is to transform the frame-level classification to the 

entire video-level classification. 

We have used a simple algorithm to aggregate the frame-level classification results to quantify 

the video-level classification. We can check the probability of each frame being fake and we can 

also calculate how many of such frames are detected by the model. We can use these two 

statistics along with the total number of frames of the video to classify the entire video. The 

algorithm to transform frame-level classification to video-level classification is given in Figure 

5.3 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 42 

 

 

Figure 5.3 The Aggregation algorithm 

 

probability_of_fake() simply returns, as the name suggests, probability if the frame 

being fake. FAKE_FRAME_THRESHOLD is the threshold we need to set to create a set of frames 

that are detected as fake with at least this threshold value. FAKE_FRACTION can be between 0 

and 1 to represent how many such high probable frames are needed to classify the entire video as 

fake. We have experimented with few values of these parameters and the results are discussed 

later in the report. 

5.6. Replication steps 

In this Chapter, we explain how to use our code to replicate the overall project. There are three 

main steps to use our code. The first step is data preprocessing to perform static augmentation, 

detecting faces using MTCNN, and saving crops of the detected faces. The second step is to 

extract Optical Flow features and MRIs. We also explain how to train MRI-GAN and use it to 

extract the MRI of faces. The third step includes model training and testing.  All steps are very 

time and computation resources consuming. It can easily take several days for data preprocessing 

and few days for training. We have used a moderately high-end workstation and implemented 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 43 

 

most of the data preprocessing code using python’s multiprocessing library to run the 

preprocessing in parallel. The training, validation, and testing is performed using GPU. Overall 

system configuration is described in the Chapter of “Frameworks, Tools, And Hardware”.  

The entire implementation is controlled using the config.yml file. It contains various 

configuration options, paths of the dataset, and paths of the intermediate files generated. We 

explain an overview of the steps needed to replicate our work; further details of the 

implementation can be found in the code. 

5.6.1. Data preprocessing 

First, we applied static augmentation and distractions to the training set. Following commands 

can be used to apply static augmentation and distractions. 

$ python data_preprocess.py --gen_aug_plan 

$ python data_preprocess.py --apply_aug_to_all 

Then we use MTCNN to detect faces in the training, validation, and test set and save the location 

of faces in the JSON files for each sample.  

$ python data_preprocess.py --extract_faces 

In the next step, we extract the faces from each sample and save the crops of the faces on the 

disk. These crops are plain faces of the subjects detected in the samples. 

$ python data_preprocess.py --crop_faces 

Then we need to generate a CSV file with all frames and a separate image and its label. The label 

can be either fake (1) or real (0). This label is replicated several frames times to assign a 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 44 

 

dedicated label to each frame. This is needed as we pass each frame independently to the model 

for classification. 

$ python data_preprocess.py --gen_frame_label 

5.6.2. Features extraction 

In this subsection, we explain how to extract Optical Flow and MRI features. 

5.6.2.1. Optical Flow features extraction 

Use the below command to generate Optical Flow data.  

$ python features_extract.py --gen_optic_data 

5.6.2.2. MRI features extraction 

Extracting MRI features is a very involved process. Overall we need to train the MRI-GAN 

model, and use the generator part of the GAN to extract MRIs for the whole dataset.  

a. MRI-GAN training 

MRI-GAN is trained in a supervised manner. This is a Pix2Pix GAN and it expects pairs of 

images. In our case, a pair can be the face of the person and its MRI. In this pair, if the person is 

real, we use a black image as its MRI. If the face of the person is fake, we use structural 

differences between this fake image and its corresponding real image. The DFDC training 

dataset contains a mapping between all fake and real videos, which is used to generate the pairs. 

Use the below command to generate an MRI of fake samples. 

$ python features_extract.py --gen_xray 

Use the below command to generate pairs of the samples. This command will generate a CSV 

file with paths of the images in the pair and its label. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 45 

 

$ python features_extract.py --gen_xray_pairs 

Now we train the MRI-GAN with the below command. 

$ python train_pix2pix.py --train_from_scratch 

b. MRIs extraction 

At this point, we are ready to generate MRIs of all samples in our dataset using the trained MRI-

GAN. The below command generated the MRIs of all the samples. These MRIs can be passed to 

the model for classification. 

$ python features_extract.py --extract_mri 

5.6.3. Model execution 

Model execution is controlled by config.yml. Some of the important configuration options 

are model_name, label_smoothing, label_smoothing, train_transform, batch_format, epochs, 

learning_rate, batch_size,  and dataset. The code contains detailed descriptions of all of these 

parameters. We can set these parameters and execute the training with the below command. 

$ python detect_deepfake.py --train_from_scratch 

We can resume the training from the saved checkpoint with the below command. 

$ python detect_deepfake.py --train_resume <path to chkpt file> 

If we want to test our saved model in the checkpoint file, the below command can be used. 

$ python detect_deepfake.py --test_saved_model <path to chkpt 

file> 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 46 

 

6. EXPERIMENTS AND RESULTS 

We discuss various experiments performed and quantify the output of our experiments in this 

Chapter. Although we have implemented various CNN-based models and an RNN-based model, 

we discuss the experiments done with one of the CNN-based models i.e., 

‘DeepFakeDetectModel_6’, which gives better accuracy. We have discussed this model 

widely in this report so far and the results discussed in this Chapter are with the same model 

only. As we have used three ways (plain frames, Optical Flow, and MRI) to pass images or theirs 

features to the model we provide accuracy, loss, confusion matrix, Receiver Operating Curve 

(ROC), etc. matrices of all of them to compare the results. Figure 6.1 shows the training and 

validation (Val) accuracy of the model with all three features we utilized.  

 

Figure 6.1 Plot of train and validation accuracies for all models 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 47 

 

Figure 6.2 shows the mean binary cross-entropy loss for all the methods during the execution of 

each epoch. 

 

Figure 6.2 Plot of train and validation losses for all models 

 

These accuracy and loss values are for the frames we have passed to the model. These values do 

not represent the aggregated accuracies for the video-level classification. We have tried two sets 

of values for FAKE_FRAME_THRESHOLD and FAKE_FRACTION parameters for the 

aggregation algorithm discussed in the Implementation Chapter.   

Table 6.1 shows the matrix we tried and the name given to the specific configuration. We can 

infer that if we use frame-level classification only then, FAKE_FRAME_THRESHOLD and 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 48 

 

FAKE_FRACTION would be 0.5 and one respectively, but we are relaxing these thresholds with 

the aggregation algorithm. We have classified the frame as fake if the probability of being fake is 

at least 50% in our core model. 

 

Table 6.1 Thresholds matrix for aggregating frame-level results. 

Configuration name FAKE_FRAME_THRESHOLD FAKE_FRACTION 

Video Agg1 0.6 0.3 

Video Agg2 0.5 0.5 

Frame level 0.5 1 

 

Figure 6.3 shows the results of using these thresholds on the overall accuracy of the model. We 

can see that by relaxing the thresholds with the algorithm, the accuracy of the model improves. 

Amongst both sets of values we tried for the aggregation, Video Agg2 set gives better accuracy. 

So, in nutshell, we classify a given video being fake or real if we find at least 50% of all the 

frames are detected fake and each of these frames are classified as fake with at least 50% 

probability. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 49 

 

 

Figure 6.3 Plot of accuracies with different aggregation parameters for all models 

Figure 6.4 shows the ROC curves and Figure 6.5 shows confusion matrixes for all the methods 

with utilizing Video Agg2 parameters for transforming the frame-level classification to the 

video-level. 

 

Figure 6.4 Plot of ROC curves for the test of all models 

 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 50 

 

 

Figure 6.5 Confusion matrixes, left: for plain frames, middle: for Optical Flow, right: for MRI 

 

We have used label smoothing with a factor of 0.1, Adam optimizer with a learning rate of 

0.001, and a batch size of 192 for all the results discussed in the report. We have used a complex 

level of dynamic augmentation for plain frames and a simple level of dynamic augmentation for 

Optical Flow and MRI methods. Data used in all three methods go through static augmentation 

before we extract each frame of the videos. We have used Binary Cross Entropy with logits loss 

as our loss function for this binary classification problem. We have run the train and validation 

for sixteen epochs, and then we have run final testing on the test dataset. At each epoch, we save 

model weights when we find the best accuracy on the validation set. The test results are 

generated with the model which exhibits the best validation accuracy during the training, we did 

not use the overfitted model for the final testing. Also, note that the training set contains roughly 

83% of fake videos, and both the validation and test set contain 50% of fake videos. 

We also tried some combinations of no label smoothing, learning rates of 0.0001 and 0.0002, 

simple and complex dynamic augmentations. But they did not result in better accuracy. 

Table 6.2 shows various matrices for all three models side-by-side to compare them. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 51 

 

Table 6.2 Various matrices for all models. 

Score Plain Frames Optical Flow MRI 

True Positive Rate (TPR) 0.92 0.72 0.8 

False Negative Rate (FNR) 0.08 0.28 0.2 

False Positive Rate (FPR) 0.11 0.33 0.21 

True Negative Rate (TNR) 0.89 0.67 0.79 

Accuracy 0.9 0.69 0.79 

Balanced Accuracy 0.9 0.7 0.8 

F1-score 0.9 0.67 0.79 

Precision 0.88 0.62 0.78 

Specificity 0.89 0.67 0.79 

Area Under the curve ROC 

(AUC ROC) 

0.95 0.73 0.80 

 

 

 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 52 

 

7. LIMITATIONS AND FUTURE WORK 

In this Chapter, we explain the limitations of our approaches and how it may be mitigated with 

future research. 

We use the aggregation technique to convert frame-level classification results to video-level 

classification. We use the probability of being a fake frame and the number of fake frames 

detected in the video. There could be the optimal set of these parameters which may lead to 

better overall accuracy but we tried with only a few of them, so our results represent the lower 

bound of the accuracy. In future work, we may also try to generate a metamodel to learn about 

the best set of these parameters to find the upper bound of the accuracy. Also, MTCNN falls 

short to recognize faces in some of the videos, which may be due to heavy augmentation or the 

nature of the environment in the video. This leads to having no information about such videos. 

We simply drop such videos from our dataset. In the future, we may choose to try other face 

detection model. Due to computation limitations, we chose to use the Efficient-Net B0 model to 

extract convolution features. The B0 model is the simplest and the base-line model of Efficient-

Nets. One may try with a complex and bigger model such as Efficient-Net B7 or any such other 

models to extract convolution features. These limitations apply to all three features we 

experimented with. 

The DFDC dataset is very challenging. There could more than one person in the video. In many 

of the videos, some person appears only for a certain duration. The persons are walking and 

changing their positions. This resembles a more natural way of collaboration and appearance in 

the video. Due to this, the MTCNN might detect some faces in some frames while others in the 

rest of the frames. Also ordering of face detection can change. E.g., let’s consider if there are two 

persons in the entire video and person A appears for the initial few frames and then person B 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 53 

 

appears. In another scenario, person A and person B are walking. In such cases, MTCNN detects 

faces in an out-of-band manner and the identity of the persons are not matched. Also, we crop 

the faces detected in each frame as they appear in the sequence of the frame, many times person 

B gets detected as the first person, instead of the second person in the context of the video. We 

calculate the Optical Flow of the two consecutive frames. Sometimes these both frames will not 

be of the same person. E.g. For Optical Flow, we need frame f of person A and frame f+1 of 

same person A, but we end up with frame f of person A and frame m of person B. This leads to 

the wrong Optical Flow. To overcome this, we also tried using You Only Look Once (YOLO)-

V3 [28] to check if we can maintain the identity of the person in the context of the video. We 

found, YOLO-V3 based face detection also suffers from the same issue with the DFDC dataset. 

To enhance this model, we may look for new ways to preserve the identity of the persons 

detected and generate more accurate Optical Flow. 

Also, we have trained MRI-GAN using 80% of the DFDC train dataset. Even though MRI-GAN 

learns to generate MRIs, there are more opportunities to enhance the MRI-GAN. The test and 

validation set of the model uses DeepFake techniques which are not present in the training set. 

So, MRI-GAN may have fallen short to generalize in generating MRIs. To train the MRI-GAN, 

we may choose other data set as well, so that MRI-GAN learns to generalize better. Researchers 

are proposing new techniques very frequently to generate DeepFakes. If MRI-GAN is used to 

detect DeepFake in the future, the MRI-GAN can be retrained in a supervised manner to learn 

about the newly proposed methods and generate MRIs more realistically. 

The accuracy of deep learning-based models depends on the tuning of hyper-parameters. There 

might be a better set of hyper-parameters than we proposed and more experiments may reveal 

better accuracy. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 54 

 

8. CONCLUSION  

Fake media can be a threat to our society. Face swapping is one of the four common methods 

used to generate fake content. The method of swapping the faces or identities in the images and 

videos is called DeepFake. Our scope in this research was to quantify the accuracies of the model 

to detect DeepFakes in commonly available natural settings. 

We used the DFDC dataset to train our models as the dataset contains a very diverse set of 

DeepFake videos in large quantity. Only images as visual information is used and audio 

information is not used in our approaches.  We have applied static mode of augmentation and 

distractions to replicate real-world normal scenarios of video clips. We extract the frames from 

the video, perform features extractions, dynamic augmentation, and send the final tensors to our 

model for classification. We aggregate the frame-level classification results to transform them 

into the video-level classification. Our best performing models are based on CNN. We use 

Efficient Net-B0 to extract encodings of the input images to utilize transfer learning and pass the 

encodings to our custom classifier. We used many regularization methods such as label 

smoothing and dropouts to avoid overfitting. One of the core techniques in our research is to 

extract features from the faces. We have created three main types of feature extractions. They are 

simply passing the frames to the model, generating an image of Optical Flow between 

consecutive frames, and generating MRIs of the faces. We used the different levels of dynamic 

data augmentation to achieve the best possible accuracies of the model. Without complex 

dynamic augmentation, label smoothing, and dropout the model using plain frames as features 

achieved 80% test accuracy. After applying the regularization techniques, the model was able to 

generalize better and achieved 84%. Also, after implementing the aggregation algorithm the 

model achieved accuracy of 90%. We used the same CNN-based model with all three different 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 55 

 

kinds of features we experimented with. We proposed a novel method for extracting MRIs of the 

faces and demonstrated it with our proposed MRI-GAN architecture. 

We have quantified our results with matrices including TPR, FNR, FPR, TNR, Accuracy, 

Balanced Accuracy, F1-score, Precision, Specificity, and AUC ROC. The model using plain 

frames performs best with 90% test accuracy, MRI based model achieves 79% accuracy and the 

Optical Flow-based model achieves 69% test accuracy. 

Rather than training the model to detect any specific kind of DeepFake generation method, we 

attempted to propose a model that generalizes DeepFake detection irrespective of DeepFake 

generation methods. With future advancement and new research, we expect a new method will 

be proposed and help our society to combat threats like DeepFakes. With this, we conclude our 

report and an attempt to contribute to the research of detecting synthesized fake media. 

  



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 56 

 

LIST OF REFERENCES 

[1] https://www.youtube.com/watch?v=xkqflKC64IM, Accessed: 2020-01-30 

[2] https://www.forbes.com/sites/robtoews/2020/05/25/deepfakes-are-going-to-wreak-havoc-

on-society-we-are-not-prepared/, Accessed: 2020-08-30 

[3] Tolosana, Ruben, et al. "DeepFakes and Beyond: A Survey of Face Manipulation and 

Fake Detection." arXiv preprint arXiv:2001.00179 (2020). 

[4] Mirsky, Yisroel, and Wenke Lee. "The Creation and Detection of Deepfakes: A 

Survey." arXiv preprint arXiv:2004.11138 (2020). 

[5] Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and ¨M. Nießner, 

“FaceForensics++: Learning to Detect Manipulated Facial Images,” in Proc. IEEE/CVF 

International Conference on Computer Vision, 2019. 

[6] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan, “Recurrent 

Convolutional Strategies for Face Manipulation Detection in Videos,” in Proc. IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops, 2019. 

[7] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and 

Cristian Canton Ferrer. The DeepFake Detection Challenge (DFDC) dataset. arXivpreprint 

arXiv:2006.07397, 2020.  

[8] Zhou Wang; Bovik, A.C.; ,”Mean squared error: Love it or leave it? A new look at Signal 

Fidelity Measures,” Signal Processing Magazine, IEEE, vol. 26, no. 1, pp. 98-117, Jan. 

2009. 

[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: 

From error visibility to structural similarity,” IEEE Transactions on Image Processing, 

vol. 13, no. 4, pp. 600-612, Apr. 2004. 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 57 

 

[10] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, “Face X-ray for More 

General Face Forgery Detection,” arXiv preprint arXiv:1912.13458v1, 2019. 

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT 

Press 

[12] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural 

networks,” Proceedings of the 36th International Conference on Machine Learning 

(ICML), 2019. 

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical 

image segmentation,” in International Conference on Medical image computing and 

computer-assisted intervention. Springer, 2015, pp. 234–241. 

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, 

Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative adversarial 

networks. CoRR abs/1406.2661 

[15] Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional 

adversarial networks. In: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE 

Conference on. (2017) 

[16] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo 

Aila. Analyzing and improving the image quality of stylegan. arXiv preprint 

arXiv:1912.04958, 2019 

[17] Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Unpaired image-to-image translation 

using cycle-consistent adversarial networks. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2223–2232. 

[18] https://github.com/shaoanlu/faceswap-GAN, Accessed 2020-01-15 



Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings. 58 

 

[19] https://www.kaggle.com/c/deepfake-detection-challenge, Accessed 2020-01-15 

[20] https://github.com/selimsef, Accessed 2020-09-15 

[21] “FaceForensics++: Learning to detect manipulated facial images,” in ICCV, 2019 

[22] Amerini, Irene, Leonardo Galteri, Roberto Caldelli, and Alberto Del Bimbo. "Deepfake 

video detection through Optical Flow based cnn." In Proceedings of the IEEE 

International Conference on Computer Vision Workshops, pp. 0-0. 2019. 

[23] Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using 

multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–

1503 

[24] https://www.github.com/sniklaus/pytorch-liteflownet.git, Accessed 2020-08-15 

[25] https://pypi.org/project/flowiz/, Accessed 2020-08-15 

[26] https://github.com/rwightman/pytorch-image-models, Accessed 2020-06-15 

[27] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton. Regularizing neural 

networks by penalizing confident output distributions. ICLR Workshops, 2017. 

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” in CVPR, pp. 779–788, 2016 


	Quantifying DeepFake Detection Accuracy for a Variety of Natural Settings
	Recommended Citation

	Microsoft Word - CS298_report_v0.8.docx

