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Abstract 

 There have been a multitude of word embedding techniques developed that allow a 

computer to process natural language and compare the relationships between different words 

programmatically. In this paper, similarity analysis, or the testing of words for synonymic 

relations, is used to compare several of these techniques to see which performs the best. The 

techniques being compared all utilize the method of creating word vectors, reducing words down 

into a single vector of numerical values that denote how the word relates to other words that 

appear around it. In order to get a holistic comparison, multiple analyses were made, with the 

WOVe technique performing the best overall at producing both the most synonyms and the most 

accurate synonyms. 
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1. Introduction 

1.1 Background 

The process of word embedding, or the reduction of text into real number vectors, has 

long been one of the primary methods used to perform natural language processing. A word 

embedding allows researchers to reduce text, which previously provided no way for a computer 

to analyze its semantic or syntactic meanings, into vectors that can be compared against each 

other to provide meaning and practical value. For instance, Ibrahim et al. [5] used word 

embedding techniques in order to enrich consumer health vocabularies by mapping health jargon 

into layman terms. This was done by finding jargon that appeared in similar contexts to the 

layman terms and deducing that these words have the same general meanings. Another example 

of the use of word vectors is that of query expansion. In this case, as shown by Kuzi et al. [6], 

word embeddings can be used to find similar words to those included in a search query, so as to 

provide a wider range of documents for a user to select from once the search query runs. 

However, in order to be usable, the vectors produced by these word embedding 

algorithms must be highly accurate so as to produce meaningful results. One test used to 

determine this accuracy is the synonym task, a similarity analysis. This paper will compare three  

algorithms – GloVe, WOVe, and Word2Vec – to see which produces the most accurate word 

vectors in a set context. 
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1.2 Objectives 

The main objective of this research was to compare three different word-embedding 

algorithms in a similarity analysis in order to determine which was the most effective at 

generating correct synonyms for a variety of target words. This evaluation would help provide 

insight into which of the algorithms perform better in certain circumstances, allowing future 

researchers to determine which would be the best to use for their research goals. This comparison 

would be completed in two ways.  

 First, the overall number of correct synonyms generated by each of the three algorithms 

would need to be compared. In order to show that the word vectors generated by these three 

word embedding algorithms are accurate and reliable, one would need to show that they would 

be able to generate the same words that a human would when tasked with finding synonyms for a 

certain word.  

 Second, once the synonyms have been generated, the algorithms need to show that their 

generated synonyms are more accurate than the others’. This is done by comparing the positions 

of human-ranked synonyms to the ones outputted by the algorithms.  

 

2. Related Works 

 The main idea behind using word embeddings to find synonyms is that of the 

distributional hypothesis, the idea of which was originally described by Harris [3]. In essence, 

the distributional hypothesis states that words that appear in similar contexts are more likely to 

be similar to each other. Applying this hypothesis is one of the main ways that word embedding 
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algorithms have been tested for accuracy, since it is achievable for humans to find instances 

where this will occur and provide the evaluation datasets needed so that the word vectors 

generated by the algorithms can be compared against real data.  

In the past, multiple researchers have looked at the various existing word embedding 

algorithms and compared them against each other to see which has had the best performance in a 

variety of circumstances. Wang et al. [13] compared six different word embedding algorithms, 

including GloVe and ngram2vec, in a variety of tests ranging from word analogies to concept 

categorization and outlier detection, with multiple different algorithms performing better at each. 

In another paper, Sutton and Cristianini [12] compared GloVe, Word2Vec, and fastText, on the 

task of capturing concepts from randomly generated word lists. 

This research expands on those past works by comparing two of the generally highest 

performing algorithms, GloVe and Word2Vec, with a more recently released one, WOVe, a 

GloVe modification that has not been fully compared against them. Although WOVe has been 

described to outperform GloVe in the analogy task (using word vectors to find the missing word 

in an analogy), it has not been tested in the other popular natural language processing test – the 

synonym test (using word vectors to find correct synonyms for a word). Because of this, this 

paper aims to provide insight into this particular performance comparison. 

 

3. Approach 

3.1 Overview 

 There are a multitude of word embedding models available that train word vectors for 

language processing. One popular method, Word2Vec, uses the continuous-bag-of-words 

(CBOW) approach to generate word vectors based on context word probability [8]. Another 
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method, GloVe, uses a log bilinear approach to reduce the dimensionality of word-word 

cooccurrence matrices [10], resulting in a word vector that can be trained quickly and has been 

shown to be highly accurate. Recently, Cox proposed a new method, WOVe, that expands on the 

functionality of GloVe by taking distance from a target word into account and combining 

multiple word vectors together for a more accurate word vector representation [2]. However, 

Cox mainly focused on comparing the performance of WOVe to GloVe when generating words 

for analogies – the analogy task. Because of this, we looked at a comparison of the performance 

of the three algorithms – Word2Vec, GloVe, and WOVe – in a similarity analysis to evaluate 

their effectiveness at the synonym task.   

 

3.2 Method 1 – Word2Vec (using Continuous-Bag-Of-Words) 

 The first word embedding technique being looked at in this paper is Word2Vec, a 

prediction-based method where the CBOW approach is used to generate word vectors. CBOW is 

a neural network approach to the word embedding problem that works by providing probabilities 

of how likely other words will be in the context of the target word and then putting these weights 

into a word vector representation. For each target word, all the context words around it are 

processed through a shallow neural network that takes the words in, weights them depending on 

their arrangement and relation to the target word in a hidden layer, and then outputs the target 

word’s word vector. The advantages of this CBOW approach is that neural networks use much 

less RAM than giant cooccurrence matrices while still generating accurate word vector results 

based on the probabilities generated. However, this kind of method can take a long time to train 

word vectors from scratch due to the complexity of the neural network. 
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3.3 Method 2 – Global Vectors for Word Representation (GloVe) 

The next word embedding technique being compared in this paper is GloVe [10], a count-based 

method proposed by Pennington et al. in 2014. In essence, the algorithm goes through a series of 

steps, shown in Figure 1, that counts the number of times each word in a corpus of text appeared, 

generates a word-word cooccurrence matrix of those words, shuffles the positions of the items in 

the matrix to provide some randomness, and trains the resulting cooccurrence matrix on a 

weighted least squares model to provide the resulting word vectors. The most important steps in 

this process are the creation of the cooccurrence matrix and the weighted least squares model. 

 

  

Figure 1: Overview of the steps GloVe takes to produce word vectors 

 

This model is trained using a local context window (e.g. +/- 5 words) to look at the words 

surrounding a target word and put them into a word-word cooccurrence matrix using inclusive 

matrices. For instance, consider the following sentences to be the corpus being analyzed: 

“I have a dog that sits on my lap.” 

“At the park, a dog enjoys running around.” 

“Animal shelters have dogs to adopt.” 

 

If we are trying to generate an inclusive matrix for the word “dog” with context size 2, 

then we would find the number of times each word within 2 words of the word “dog” appeared. 

This is represented in Table 1. 

Corpus Cooccurrence Matrix Word Vectors 
  

Vocab count and creating inclusive matrices Weighted least squares model 
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 have a that  sits park enjoys running shelters to adopt 

dog 2 2 1 1 1 1 1 1 1 1 

 

Table 1: An entry in an inclusive cooccurrence matrix with a context window of size 2 for the 

above sentences   

Once this cooccurrence matrix has been created and includes all the words in the corpus, 

then the positions of the items in each entry get shuffled so as to not be in the same positions 

they were in the corpus. Since a general pitfall for this kind of approach is that cooccurrence 

matrices can get to be very large very quickly when taking into account all the possible ways 

words can be combined in sentences, GloVe goes one step further and performs a dimensionality 

reduction of the cooccurrence matrix by removing contexts that very seldom occurred, as well as 

traditional connector words (such as “the”, “and”, “a”, etc.) since these are not the words we are 

trying to derive meaning and word vectors from.  

 

The last step is the weighted least squares model where the final word vectors are 

generated using the formula in Equation 1, where 𝑋𝑖𝑗 is the number of times that the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

word occur together, 𝑤𝑖 is the word vector of the 𝑖𝑡ℎ word, w �̃� is the context word vector of the 

𝑗𝑡ℎ word, and 𝑏𝑖 and b �̃� are biases for the 𝑤𝑖 and w �̃�.  

𝐽 = ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇w˜𝑗 + 𝑏𝑖 + b˜𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)

2
𝑉

𝑖,𝑗=1
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Equation 1: The weighted least squares model used by GloVe to generate word vectors. 

Further explanation in the GloVe paper [10] 

 

GloVe became a popular word-embedding model to use due to how easy and quick it was 

to train on an inputted corpus, as well as the fact that it outperformed most other models at the 

analogy task at the time, including Word2Vec. 

 

3.4 Method 3 – Word Order Vectors (WOVe)  

The final word embedding technique evaluated in this paper is WOVe [2], a modification 

upon GloVe proposed by Cox in 2019 that was able to improve GloVe’s effectiveness in the 

analogy task by 9.7%. While GloVe does use word-weighting based on those words’ distance 

from the target word when creating the word vector, it does so by generating inclusive matrices. 

For an inclusive matrix, all words from the target word to the edge of the context window are 

considered and weighted according to their distance, resulting in a singular vector. WOVe 

proposes going one step further and generating exclusive matrices, where the words at each step 

away from the target word to the edge of the context window are considered separately, resulting 

in multiple vectors being created and then combined together in post-processing. For example, if 

the same sentences from 3.3 are used, then for a local context window of size 2, the following 

two partial exclusive matrices are generated. 
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 a that  enjoys have to 

dog 2 1 1 1 1 

 

Table 2: An entry in the partial exclusive cooccurrence matrix with a context window of size 2 

and a range of 1 

 have sits park running shelters adopt 

dog 1 1 1 1 1 1 

 

Table 3: An entry in the partial exclusive cooccurrence matrix with a context window of size 2 

and a range of 2   

Each of these exclusive matrices would then go through the weighted least squares 

portion of GloVe before being combined together to produce a more accurate representation of 

each entry’s word. While this does result in the size of the final word vectors being dramatically 

increased from m (the size of original vector) to m*n (the size of the original vector times the 

size of the context window) and a much increased time required to train the vectors, it did also 

result in an improvement over GloVe’s already impressive results.  

 

3.5 Testing Approach 

In order to perform the similarity analysis, the overall goal would be to compare a list of 

ranked synonyms for a target word from the hard-truth synonym datasets described in Section 

4.1 to a list of ranked synonyms for that same target word from the algorithms. Then, one would 
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be able to see how many correct synonyms the algorithm generated, as well as how similarly 

ranked they were to the hard-truth dataset.  

To output this list of ranked synonyms from the algorithms, the first necessity would be 

to generate word vectors from the pre-processed text corpus. Then, a target word from the 

datasets could be fed in with a program outputting the ten-closest word vectors to the word 

vector for that target word by using cosine similarity. Cosine similarity is a method of comparing 

how similar two vectors are by putting them through the following formula, which will output a 

value from -1 to 1 based on how similar the two vectors are, with values closer to 1 being 

designated as more similar: 

cos(𝜃) =
�⃗� ∙ �⃗⃗�

‖𝑎‖‖𝑏‖
  

Once this list has been generated, it can be compared to the list of synonyms of the same 

target word in the hard-truth dataset. To find the number of correct synonyms generated, one 

only needs to count how many of the synonyms in the hard-truth list are in the algorithm-

generated list. Then, to find out how correct these found synonyms were, the positions of the 

synonyms in the two lists need to be compared. The closer the positions of the synonyms in the 

two lists were to each other, the better the algorithm was doing a better job at producing correct 

synonyms. 

 

3.6 – Metrics 

For the first test in this paper, we evaluated the total number of correct synonyms 

generated by each algorithm. We ran each algorithm in each context window +/- 1 through +/- 5, 

and compared the top ten synonyms generated to the hard-truth synonyms provided in our 
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dataset. For every synonym that matched, regardless of its position, we added 1 to the total 

number of correct synonyms generated by that algorithm at that context window. Then, once all 

the algorithms had been run at that context window size, the summed results could be compared 

against each other (as seen in Table 4).  

 

 For the second test in this paper, we evaluated the average rank of the word embedding 

algorithms. To do this, we started with the same process as in the first test by generating the top 

ten synonyms for each target word and comparing them to the hard truth datasets to see how well 

they matched. Then, to find out how correct these found synonyms were, the positions of the 

synonyms in the two lists were saved and compared. For example, if the human-ranked list had 

three synonyms for a target word at positions {1, 2, 3} out of a list of ten, and the algorithmically 

generated list had those same three synonyms at positions {5, 7, 9} respectively, then the average 

rank of the algorithm for that target word would be the average of the differences between the 

two lists:  

(5 − 1) + (7 − 2) + (9 − 3)

3
  =   

15

3
  =   5 

 If a synonym existing in the hard-truth dataset was not found in the list of the top ten 

synonyms generated by the algorithm, then it would be given a difference of 10 (1 more than the 

maximum possible between found synonyms) when calculating the average target word rank. 

Once the average rank of each target word had been calculated, then the overall average rank of 

the algorithm for that context window would be the average of all the average target word ranks. 

This was taken by summing all the average target word ranks and dividing by the number of 

target words. 
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4. Evaluation 

The overall goal of the similarity analysis evaluations was to determine which of the 

three word-vector algorithms performed the best at generating correct synonyms (where 

correctness is determined by comparing algorithmically generated synonyms to human ranked 

ones). Word vectors can provide a good way to do this, and are why we chose to use three 

different word-vector algorithms, since one can compare the word vector of a target word to the 

word vectors of other words, with the most similar being more likely to be a synonym of the 

original word. 

 

4.1 Datasets 

In order to generate the results described in this paper, we used an 8.7 GB corpus of text 

from a 2019 Wikipedia text dump (the same corpus used for the WOVe paper in order to assure 

consistency). This text corpus was first tokenized to remove all XML tags, new lines, and 

punctuation. Then, all the remaining text was lower-cased and each word was separated by a 

single space. This was once again to ensure consistency with the text corpus expectations of the 

GloVe, WOVe, and Word2Vec algorithms. 

 

For the testing, five different synonym datasets were used as the hard-truth datasets to 

compare the three algorithms to. These datasets were ones that are commonly utilized in the field 

of similarity analysis, containing a list where each element included a target word, a prospective 

synonym, and a human generated ranking on how similar those two words were. To use them in 

this research, we sorted each of them by target word, and then sorted that by descending human-

generated ranking of the pair of words. So, if a target word had multiple pairings associated with 
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it, they would be listed in order from most to least similar. The datasets used were as follows: 

Miller-Charles 28 dataset [9], Rubenstein-Goodenough dataset [11], WordSim353 dataset [1], 

Stanford’s Contextual Word Similarities dataset [4], and the Stanford Rare Word Similarities 

dataset [7]. 

  

 

4.2 Method 

 In order to generate the results found in this paper, we first took our pre-processed 

Wikipedia dump as a corpus and gave it to each of the algorithms in order to have them generate 

word vectors. We chose to make these word vectors have a size of 50 in order to be consistent 

with both each other and the way that the data in the WOVe paper was gathered. Then, once the 

vectors had been generated, we carried out the similarity analysis tests on them, using 5 different 

context window sizes, from +/- 1 to +/- 5, for each of the algorithms. Overall, 2,480 target words 

(from the similarity datasets) were used during each run. 

 

4.3  Results 

The results generated from these methods can be found below in Tables 4, 5, and 6. For 

the number of found synonyms, Word2Vec initially performs better than both GloVe and 

WOVe, but after the context window increases to a size of greater than +/- 2, WOVe pulls ahead 

and becomes the best algorithm for generating the correct synonyms. However, in the case of the 

average rank of the found synonyms, GloVe initially has the best performance, with an average 

rank of 1.437 off from the hard-truth dataset on a context-window of +/- 1. After that, WOVe has 
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the best performance consistently, with the lowest average rank in the context windows of  +/- 

(2,3,5). 

 

 +/- 1 +/- 2 +/- 3 +/- 4 +/- 5 

GloVe 285 332 357 385 386 

WOVe 299 395 415 425 416 

Word2Vec 378 417 404 406 396 

Table 4: Total number of correct synonyms found per context window 

 

 +/- 1 +/- 2 +/- 3 +/- 4 +/- 5 

GloVe 1.437 4.777 3.947 3.835 4.054 

WOVe 4.039 3.882 3.748 4.100 3.730 

Word2Vec 4.680 4.727 4.248 4.081 4.635 

Table 5: Average rank similarities to the hard-truth datasets of correctly found synonyms 

 

 # of Found Synonyms Average Rank of Synonyms 

GloVe 

(+/- 5) 

386 4.054 

WOVe  

(+/-4) 

425 4.100 

Word2Vec (+/- 2) 417 4.727 

Table 6: Comparison of best performing context window sizes for each algorithm 
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4.4 Results Discussion 

Overall, the WOVe algorithm performed the best across the multiple context windows at 

producing the greatest number of synonyms, doing so in context windows {1,3,4,5}. This is 

likely due to the fact that the vectors created by the WOVe algorithm ended up being larger than 

the other two algorithms, since it combined multiple exclusive matrices together to form its word 

vectors. This extra context provided in the word vector could have allowed it perform better at 

generating word vectors that were slightly more similar to the target word. However, it is 

interesting to note that despite the fact that WOVe’s overall performance at producing synonyms 

was greater than the other two algorithms, the number of generated synonyms in context window 

5 was less than the number of generated synonyms in context window 4. This, supported by the 

fact that Word2Vec’s number dropped as well and GloVe’s upward trend slowed down 

dramatically at this point, suggests that a context window of 5 might be the point at which words 

no longer become important in being included in a word vector’s context.  

 

In terms of producing the most accurate synonyms, WOVe also performed better in the 

majority of cases than the other two algorithms, having the most accurate synonyms compared to 

the hard-truth datasets in context windows {2,3,5}. Once again, this is likely due to the larger 

word vector size, attributed to the combination of exclusive matrices together. 
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5. Discussion 

5.1 Conclusions  

The main goal of this paper was to examine three word embedding techniques – GloVe, 

Word2Vec, and WOVe – and compare them on the task of similarity analysis, or of generating 

synonyms. This was done by using datasets of human-ranked synonyms as a hard-truth and 

observing how, on average across multiple context window sizes, the algorithmically generated 

synonyms of these techniques compared to those. Both the number of correct synonyms 

generated and the similarity to the correct ranks of these synonyms were examined in this 

analysis (as described in Section 4). Overall, the WOVe algorithm performed the best at both 

tests, making it the algorithm we would recommend for other word-embedding researchers to 

use. 

 

5.2 Performance Summarization of GloVe and WOVe 

 As described in Section 3, the GloVe algorithm is one of the most popular word-

embedding models currently available and was the inspiration for WOVe (which modified 

GloVe slightly to increase its accuracy). This prominence originated from Pennington’s 2014 

paper that described a new method to generate word vectors, using a global log-bilinear 

regression model to quickly train co-occurrence matrices into word vectors that were highly 

accurate. Across multiple test cases in both the analogy and similarity tests, it frequently 

outperformed other algorithms such as Word2Vec and other vector log-bilinear models. Because 

of this success, Cox recently made modifications to the way GloVe generated its coocurrence 
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matrices, mainly in the usage of exclusive matrices instead of GloVe’s inclusive matrices, in 

hopes of showing that performance could be increased. In the creation of WOVe, Cox showed 

that the performance of GloVe in the analogy test could be improved upon, with the Direct 

Concatenation modifications providing a 9.7% accuracy improvement. 

 

5.3 Future Work 

 Although these results provide some insight into the differences in effectiveness between 

the Word2Vec, GloVe, and WOVe algorithms’ performances in a similarity task, there are still 

ways that this work could be improved upon in the future. For instance, it might be useful to 

compare the results seen in this paper (where the word vector size used was 50) to results 

generated with larger word vector sizes (such as 100, 200, etc.). This comparison could end up 

uncovering new and different results of the effectiveness of these three algorithms when they are 

being used in different contexts. This would be useful for researchers using text corpuses of 

different sizes and make-ups, since there might be one particular algorithm excelling in one 

scenario while another is better in a different one. 

 Another way to continue on with this work would be to use different text corpuses than 

simply a Wiki dump. Although the Wiki dump used in this paper was a very good tool to train 

word vectors on, due to its diverse collection of vocabulary and topics, it would be interesting to 

see how these algorithms performed when using a corpus of strictly one main topic, such as one 

of medical questions and responses. In a case such as this, it might be possible to get an even 

better understanding of the different strengths of these algorithms (the neural-network generated 

probabilistic context of Word2Vec vs. the dimensionality reduced cooccurrence matrices used by 

GloVe and WOVe) in more specific contexts.  
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