University of Arkansas, Fayetteville ScholarWorks@UARK

Research Series

Arkansas Agricultural Experiment Station

1-1-1992

The 1991 Field Evaluation of Herbicides on Small Fruit, Vegetables and Ornamental Crops

R. E. Talbert University of Arkansas, Fayetteville

R. A. Wichert University of Arkansas, Fayetteville

V. F. Carey III University of Arkansas, Fayetteville

D. H. Johnson University of Arkansas, Fayetteville

D. F. Ruff University of Arkansas, Fayetteville

See next page for additional authors

Follow this and additional works at: https://scholarworks.uark.edu/aaesser

Part of the Agronomy and Crop Sciences Commons, Botany Commons, Fruit Science Commons, and the Horticulture Commons

Citation

Talbert, R. E., Wichert, R. A., Carey, V. F., Johnson, D. H., Ruff, D. F., & Kendig, J. A. (1992). The 1991 Field Evaluation of Herbicides on Small Fruit, Vegetables and Ornamental Crops. *Research Series*. Retrieved from https://scholarworks.uark.edu/aaesser/193

This Report is brought to you for free and open access by the Arkansas Agricultural Experiment Station at ScholarWorks@UARK. It has been accepted for inclusion in Research Series by an authorized administrator of ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

Authors

R. E. Talbert, R. A. Wichert, V. F. Carey III, D. H. Johnson, D. F. Ruff, and J. A. Kendig

THE 1991 FIELD EVALUATION OF HERBICIDES ON SMALL FRUIT, VEGETABLE AND ORNAMENTAL CROPS

R.E. Talbert, R.A. Wichert, V.F. Carey, III, D.H. Johnson, D.F. Ruff and J.A. Kendig

KANSAS AGRICULTURAL EXPERIMENT STATION

ISION OF AGRICULTURE

UNIVERSITY OF ARKANSAS

UARY 1992

RESEARCH SERIES 417

Editing by Nancy Wyatt; cover design by Elaine Williams

Agricultural Experiment Station, University of Arkansas Division of Agriculture. Preston E. La Ferney, Vice President for Agriculture; Gerald J. Musick, Director. HG8C0192 The Arkansas Agricultural Experiment Station follows a nondiscriminatory policy in programs and employment. ISSN:0099-5010 CODEN:AKAMA6 Field Evaluation of Herbicides on Small Fruit, Vegetable and Ornamental Crops 1991

R. E. Talbert Professor Department of Agronomy

V. F. Carey III Graduate Assistant Department of Agronomy

D. F. Ruff Graduate Assistant Department of Agronomy **R. A. Wichert** Research Assistant Department of Agronomy

D. H. Johnson Graduate Assistant Department of Agronomy

J. A. Kendig Graduate Assistant Department of Agronomy

Arkansas Agricultural Experiment Station Fayetteville, Arkansas 72701

CONTENTS

Page

oduction		٠	•	•	•	•	•	٠	•	٠	•	1
ods and Results		•										2
Bensulide (Weed Spectrum), Fayetteville	э.		•		•	•	٠	•		•	•	2
Cover Crops (Screening), Fayetteville .				•	•		•					2
Bell Pepper, Favetteville							•		•			3
Cole Crops, Fayetteville										•		3
Endive, Fayetteville											•	3
Onions, Fayetteville						•					•	4
Snap Beans, Lowell					•						•	4
Tomato, Fayetteville												4
Cucumbers Kibler							•					5
Squash (Cover Crop), Fayetteville												5
Squash (Cover Crop), Kibler												5
Watermelon (Ethalfluralin), Kibler .												6
Watermelon (Stale Seedbed), Kibler .												6
Watermelon (Preemergence), Jonesboro					2	2	-	÷.	1	-		6
Watermelon (Post-transplant), Jonesbord	· ·	·			Č.	÷.		÷				6
Blackberry, Fayetteville												7
Grapes, Fayetteville	• •	•		÷		1	•			÷.		7
Grapes (Glufosinate), Fayetteville	• •	•	•	•	•		•	•	•	•	•	7
Boxwood (Field), Fayetteville	• •	•	•	·	•	•	•	•	·	•	•	7
Coreopsis (Field), Fayetteville	•••	•	•	•	•		•	•	1	•		7
Dahlia (Field), Fayetteville	• •	•	•	•	•	•	•	•	•	•	•	8
Danila (Field), Fayetteville	• •	•	•	•	•	•	•	•	•	•	•	8
Hosta (Field), Fayetteville												8
Container Ornamentals, Fayetteville	• •	•	٠	•	•	•	•	•	•	•	•	8
Daisy (Container), Fayetteville												8
Hosta (Container), Fayetteville	• •	•	•	٠	•	•	•	•	•	٠	•	9
Wildflowers (Metolachlor), Fayetteville	€.	٠	٠	٠	٠	•	٠	•	٠	٠	•	9
Wildflowers, Fayetteville	• •	•	•	•	•	•	•		•	•		-
Wildflowers (Screening), Fayetteville .	• •	٠	٠	•	٠	•	٠	٠	٠	٠	•	9
Woody Ornamentals, Fayetteville			•	•	٠	•	•	•		•	٠	9
Bedding Plants, Fayetteville	•••	•	•	•	•	•	•	•	•	•	•	10
ary		•			•		٠	•	•	•	٠	10
.es												12
namenen eine som eine som en det som eine												
endix Tables	• •	•	٠	٠	٠	•	٠	٠	•	•	٠	54

ACKNOWLEDGMENTS

This research was made possible in part by financial support through IR-4 program in the Southern Region. The following companies supplied bicides used in these experiments: Agrolinz, American Cyanamid, BASF, I. Du Pont de Nemours, Dow-Elanco, FMC, ICI Americas, Monsanto, Rohm and s and Valent. The financial and technical support received from these panies is appreciated. Appreciation for assistance in these studies is ended to Dennis Motes and Steve Eaton, Resident Director and Research istant, respectively, of the Vegetable Substation, Kibler; Steve Brown Allen Canning Company; Randy Davis of Greenleaf Nursery; John Aselage of ber Products; and Dr. Tina Teague of Arkansas State University, esboro.

FIELD EVALUATION OF HERBICIDES ON SMALL FRUIT, VEGETABLE AND ORNAMENTAL CROPS 1991

R.E. Talbert, R.A. Wichert, V.F. Carey III, D.H. Johnson, D.F. Ruff and J.A. Kendig

INTRODUCTION

The establishment of this field-testing procedure provides the chemical ustry, through its partial support, and the Arkansas Experiment Station h the opportunity to evaluate herbicide performance on small fruit, etable and ornamental crops grown under Arkansas conditions. This ort also provides a means for disseminating information to interested vate and public-service weed scientists.

Experiments were conducted at the Vegetable Substation at Kibler on umber, squash and watermelon. Additional experiments on watermelon were ducted near Jonesboro. Trials on snap beans were performed on private ms near Lowell. Experiments at the Main Experiment Station at etteville were conducted on bell pepper, cantaloupe, cole crops, endive, ons, tomatoes, squash, grapes and ornamentals. An experiment was also ducted at the University of Arkansas horticulture farm on blackberries.

The chemical names and formulations of the herbicides used in these periments are listed in Appendix Table 1. A table for converting metric ts to English units can be found on page 60.

The soil at the Vegetable Substation was a Roxana silt loam with 0.5% anic matter and pH of 6.4. The soil at Jonesboro was a Dubbs fine sandy um with 0.9% organic matter and pH of 7.2. Soil at the Lowell location is a Peridge silt loam with 1.5% organic matter and pH of 5.3. At the n Experiment Station in Fayetteville, all trials were conducted on a btina silt loam with 1.0% organic matter and pH of 5.6 except the cover up and squash trials, which were on a Pembroke silt loam with 0.9% ganic matter and pH of 5.7, and the bensulide trial, which was conducted a Taloka silt loam with 1.3% organic matter and pH of 5.6. Unless thed, the experimental design for all experiments was a randomized aplete block with four replications. Preplant-incorporated, preemergence is postemergence treatments were applied in 187 L/ha of water. All chicked were applied with a hand-held, carbon-dioxide pressurized rayer.

Treatments involving timing and incorporation were (1) preplant corporated (ppi), applied to the soil and incorporated prior to planting; preemergence (pre), applied to the soil surface soon after planting; preemergence prior to transplanting (pre-tp); (4) preemergence to weeds ar-the-top of transplants (tp-pre); (5) postemergence (poe), applied ar-the-top to emerged crops and weeds at various stages--determined ther by days after planting or by crop and weed growth stage; (6) postrected (poe-dir), applied post-directed after the last cultivation d preemergence to late-season weeds. Environmental conditions are esented for each application: air temperature (C); soil temperature at cm deep (C); soil surface moisture as wet, moist or dry; and percent lative humidity (RH) based on wet and dry bulb air temperatures. Percentage of weed control by species was visually estimated: represents no effect, and 100 represents complete control. Ranges for w control are as follows: 70 to 79%, fair; 80 to 89%, good; and 90 to 10 excellent. Weed control less than 70% is considered to be poor. C injury was assessed by counts of the crop stand and visual estimation percent injury: 0 represents no effect, and 100 represents complete pl kill. Crop injury ratings of less than 30% indicate crop tolerance. C yields are reported in metric tons per hectare. Least Signific Difference (LSD) values at the 0.05 level of significance were calcula for each set of treatment means.

Climatological data for 1991 for the Vegetable Substation and the M Experiment Station are presented in Appendix Tables 2 and 3, respective Standardized Plant (Bayer) Codes as recognized by the Weed Science Soci of America for weeds appearing in this report are presented in Appen Table 4.

METHODS AND RESULTS

Pertinent experimental details and a brief discussion of the results these studies follow, and tabulated results are shown in Tables 1 to 7 The following abbreviations are used in the tables: <u>ai</u>, active ingredies <u>cm</u>, centimeter; <u>CO</u>, crop oil concentrate; <u>cot</u>, cotyledon; <u>cv</u>, cultive <u>DAE</u>, days after emergence; <u>DF</u>, dry flowable; <u>dir</u>, directed spray; ; followed by; <u>g/L</u>, grams per liter; <u>kg/ha</u>, kilograms per hectare; <u>L/D</u> liters per hectare; <u>LSD</u>, least significant difference; <u>m</u>, meter; <u>mt/M</u> metric tons per hectare; <u>NS</u>, not significant; <u>pl/m</u>, plants per meter row; <u>TM</u>, tank mix; <u>V1</u>, unifoliolate stage of legume; <u>V2</u>, 1st trifoliola stage of legume; <u>V3</u>, 2nd trifoliolate stage of legume; <u>v/v</u>, volume p volume; <u>WP</u>, wettable powder; <u>WA</u>, wetting agent; <u>WAE</u>, weeks after emergence <u>wk</u>, week(s).

Bensulide, Screening, Fayetteville (Table 1).

Bensulide treatments were applied and incorporated either as a surfablend to a 2-cm depth with a hand rake or incorporated with a rototill set to a depth of 8 cm into 1- by 3.5-m plots on June 3 (air 27 C; soil C, dry; RH 80%). Weed species were planted in rows spaced 25 cm apa across the treatments on the same day. A 1-cm irrigation was then applit to activate the herbicide treatments.

At 3 weeks after application, bensulide at 5.6 kg/ha gave good excellent control of broadleaf signalgrass, large crabgrass, giant foxtai seedling johnsongrass and smooth pigweed. Bensulide at 2.8 kg/ha (one-ha the recommended use rate) gave good to excellent control of lar crabgrass, giant foxtail, seedling johnsongrass and smooth pigweed wh applied as a surface blend. Velvetleaf and entireleaf and pitt morningglory were not controlled by bensulide at the rates evaluate Surface blend and 8-cm incorporation of bensulide gave similar control goosegrass and smooth pigweed. Bensulide at 2.8 and 1.4 kg/ha applied a surface blend provided better control of broadleaf signalgrass, lar crabgrass, giant foxtail and seedling johnsongrass than the 8incorporated treatments. Similar trends were observed at the 5.6-kg/ rate but were not significant. Deeper incorporation may be diluting t herbicide below the threshold of activity on these shallow-germinati weeds.

Cover Crops, Screening, Fayetteville (Table 2)

Rye (Secale cereale) was seeded at 237 kg/ha, crimson clover (Trifoli incarnatum) was seeded at 22 kg/ha, and a rye and clover mix was seeded (b) kg/ha and 11 kg/ha, respectively, into 3- by 3-m plots on November 1, 20. Paraquat at 1.1 kg/ha was applied as a preplant-burndown treatment May 30, 1991 (air 20 C; soil 20 C, wet; RH 85%). Trifluralin and isulide were applied to conventionally tilled plots at 0.7 kg/ha and 7 (ha, respectively, and incorporated with a rototiller on June 7 (air 29 soil 31 C, wet; RH 63%). Tomato, cantaloupe, bell pepper and squash re transplanted into each plot on the same day. Plots were treated with cbaryl (Sevin®) at 1.1 kg/ha on a weekly basis for control of insects.

At 2 weeks after planting, weed control by cover crops was similar to at by trifluralin. By one month after planting, only carpetweed was trolled by the cover crops. In addition, annual rye also gave excellent trol of large crabgrass. Control of tumble pigweed with cover crops was ir. Only squash were harvested due to severe weed competition with the her species.

ll Pepper (<u>Capsicum annuum</u> var. annuum), Fayetteville (Table 3).

Preplant-incorporated and preemergence treatments were applied, and 11 peppers (cv. California Wonder) were transplanted into 2- by 1-m plots th four plants each on May 8 (air 19 C; soil 18 C, dry; RH 80%). stemergence treatments were applied on June 10 (air 18 C; soil 21 C, ist; RH 90%). Plots were harvested five times from June 18 to July 10. differences in maturity were observed, so the five harvests were mbined.

All treatments gave excellent control of large crabgrass and smooth gweed. Only MON-13211 treatments resulted in significant injury and eld reduction compared to the weed-free check. Yields of all other eatments were similar to the weed-free check and significantly greater an the weedy check.

le Crops, Fayetteville (Table 4).

Broccoli (<u>Brassica</u> <u>oleracea</u> Italica)(cv. Premium crop), cabbage <u>rassica</u> <u>oleracea</u> Capitata)(cv. Green Jewel) and cauliflower (<u>Brassica</u> <u>eracea</u> Botrytis)(cv. Alert) were transplanted into 1- by 4-m plots with x plants of each species per plot on March 25. Transplants were set in o rows 30 cm apart with 50 cm between plants within the row. Preplantcorporated and preemergence treatments were applied to the soil surface ior to transplanting, and napropamide was applied over-the-top of ansplants on the same day (air 28 C; soil 18 C, moist; RH 14%). Broccoli d cabbage were injured slightly, and cauliflower was injured severely by freeze on March 31. Postemergence treatments were applied over-the-top the 2- to 4-leaf and 4- to 6-leaf crabgrass stages on April 28 (air 20 soil 15 C, wet; RH 93%) and May 7 (air 11 C; soil 10 C, moist; RH 95%), spectively. Broccoli was harvested on May 21 and 28, cauliflower was freeze on May 24 and 28 and cabbage was harvested on May 28. Maturity fferences were not observed, so harvests were combined for each crop.

All treatments gave good to excellent control of large crabgrass, nbit, smooth pigweed and common lambsquarters. Pyridate caused minor lorosis of broccoli and cauliflower leaves. Yields of cole crops were t affected by herbicide treatments. Cauliflower yields were small and ghly variable due to freeze damage.

dive (<u>Cichorium endiva</u>), Fayetteville (Table 5).

Endive (cv. Florida Deep Hearted 65) plants were transplanted into ots 5 m by 2 rows spaced 1 m apart with 40 plants per plot on April 9. thoxydim was applied on April 23 (air 16 C; soil 14 C, wet; RH 73%) and y 8 (air 16 C; soil 16 C, dry; RH 89%). Endive was harvested on June 5.

3

Sethoxydim gave excellent control of large crabgrass and did not resu in crop injury or yield reduction.

Onions (Allium cepa Cepa), Fayetteville (Table 6).

Onions (cv. 1015Y Texas Super Sweet) were transplanted into 1- by 3 plots with 40 plants per plot on March 12. Transplants were set in t rows 30 cm apart with 15 cm between plants. The preemergence herbicid oxyfluorfen and DCPA were applied over-the-top after transplanting on Mar 13 (air 16 C; soil 16 C, moist; RH 81%). Postemergence treatments we applied over-the-top at the 2- to 4-leaf and 4- to 6-leaf crabgrass stag on April 19 (air 15 C; soil 14 C, wet; RH 70%) and May 2 (air 20 C; soil 12 C, soil 14 C, wet; RH 70%) and May 2 (air 20 C; soil 14 C, wet; RH 70%) and May 2 (air 20 C; soil 14 C, wet; RH 70%) and May 2 (air 20 C; soil 16 C, s

All preemergence treatments gave good to excellent control of large crabgrass, henbit and sibara throughout the growing season. Fluazifop gave excellent control of large crabgrass. Pyridate and fluazifop applied in a tank mixture gave excellent control of all species. I treatment resulted in onion injury. All herbicide treatments excep Enquick® yielded significantly higher than the weedy check.

Snap Beans (Phaseolus vulgaris), Herbicide Screening, Lowell (Table 7).

Snap beans (cv. 156) were planted on May 10 with 224 kg/ha of 15-30-5 fertilizer banded in the row. Plots were 6 m by 4 rows spaced 0.71 apart. Preplant-incorporated and preemergence treatments were applied of the same day (air 19 C; soil 19 C, moist; RH 95%). Preplant treatment were incorporated with two passes of a disk set 10 cm deep at 8 kph. Th cotyledon treatment was applied on May 16 (air 27 C; soil 30 C, dry; F 79%). Postemergence V2 and V3 treatments were applied on May 28 (air 22 C soil 26 C, wet; RH 95%) and June 1 (air 29 C; soil 33 C, dry; RH 73%) respectively. Plots were machine harvested June 30.

All treatments gave excellent control of large crabgrass and pigweeds except for sethoxydim applied alone, which did not control pigweeds. Al treatments that included a postemergence herbicide gave good to excellen control of common ragweed and Pennsylvania smartweed. Treatments includin imazethapyr or bentazon gave good control of prickly sida. Onl imazethapyr treatments resulted in significant snap bean injury. N treatment resulted in yield reductions, and all treatments tended to yiel higher than the weedy check.

Tomato (Lycopersicon esculentum), Fayetteville (Table 8).

Preplant-incorporated and preemergence treatments were applied, an tomatoes (cv. Traveler 76) were transplanted into 2- by 1-m plots with plants per plot on May 8 (air 19 C; soil 18 C, dry; RH 80%). Metribuzi was applied as a post-directed spray on June 10 (air 18 C; soil 21 C moist; RH 90%). Plots were harvested six times from July 10 to August 12 Maturity differences were not observed, so harvests were combined.

All treatments gave excellent control of large crabgrass and smooth pigweed. Plots treated with the standard treatment of trifluralin follower by metribuzin yielded significantly higher than the weedy check and similar to the weed-free check. Dithiopyr and MON-13211 applied post-transplant and preemergence to weeds resulted in significant injury and yield reductions.

ttle Leaf Cucumber (Cucumis sativus), Kibler (Table 9).

Two rows of cucumber seeds spaced 0.6 m apart were planted in 1.8- by 5-m plots, and treatments were applied on May 2 (air 32 C; soil 31 C, 7; RH 41%). A split plot design was used with herbicide treatment as the in plot and cultivar as the subplot. The cultivar 'Calypso' was used as herbicide-tolerant standard to compare with the 'Little Leaf' cultivar. cumbers were thinned to a density of 1 plant/1.35 m² on May 28. thoxydim was applied to all plots for grass control, and the entire test a hand weeded four times. Calypso cucumbers were harvested on June 17 d 29. Little Leaf cucumbers were harvested on June 29 and July 11.

At 3 weeks after planting, injury was observed on the Little Leaf attivar from 2.7 kg/ha (two times the recommended use rate) of malfluralin. At 5 weeks after planting, the injury declined to nongnificant levels; however, weed interference in the untreated and obtalam-treated plots reduced the size of Little Leaf and Calypso plants to 30%. Little Leaf and Calypso yields did not correlate to ethaliralin rate or early injury. Yields were reduced by weed competition in a untreated and naptalam-treated plots as compared to higher-yielding eatments.

ash Cover Crop (<u>Cucurbita maxima</u> Duchesne), Fayetteville (Table 10).

Annual rye was seeded at 146 kg/ha into plots 6 m by 6.4 m on October 1990. Paraquat at 1.1 kg/ha was applied to all plots as a preplantindown treatment on April 23, 1991 (air 13 C; soil 10 C, wet; RH 85%). May 10, rye residues were left standing or mowed, and bensulide was olied and incorporated into conventionally tilled plots (air 29 C; soil C, wet; RH 63%). One row of winter squash (cv. NK-580) was transplanted to 3-leaf plants), and another row was seeded into each plot for a must y of five plants in each row on the same day. Plots were treated ekly with carbaryl at 1.1 kg/ha for insect control. Plots were harvested August 8.

Mowed and standing rye provided good control of all weeds early; wever, weed suppression declined over the growing season. By 5 weeks er planting, weed control was maintained only in the conventional bicide system. Squash was injured due to severe insect infestation in a rye plots. Insect damage combined with poor weed control resulted in squash yield.

ash Cover Crop (<u>Cucurbita maxima</u> Duchesne), Kibler (Table 11).

Bensulide at 6.7 kg/ha was applied preplant-incorporated to conventionly tilled plots, sorghum-sudan was seeded into cover-crop plots, and iter squash (cv. NK-530) was planted into each plot on June 19 (air 34 C; ll 34 C, dry; RH 47%). Plots were 3 m by 9 m with 5 squash in each plot. July 2, when sorghum-sudan was 16-cm tall and squash was 14-cm tall, a cm band of sorghum-sudan was killed around the crop row with sethoxydim 0.34 kg/ha (air 24 C; soil 29 C, dry; RH 86%). Glyphosate at 0.84 kg/ha s used as a directed spray for control of sorghum-sudan in the row ddles on July 9 (air 23 C; soil 26 C, wet; RH 96%). Conventional plots re handweeded on July 9.

Bensulide at 6.7 kg/ha provided excellent control of large crabgrass Palmer amaranth through 3 weeks after planting. Sethoxydim gave cellent control of large crabgrass in the row. Sorghum-sudan only pressed (40 to 50%) large crabgrass and Palmer amaranth in the row ddles. Squash injury ratings and vine length measurements indicated that ghum-sudan as a cover crop reduced squash growth. Visual observations to indicated that insect damage and populations were higher in sorghumtan plots than in conventional plots (data not shown).

Watermelon (Citrullus lanatus), Ethalfluralin layby, Kibler (Table 12).

A single row of watermelon (cv. Crimson Sweet) seed was planted in 3. by 9.1-m plots, and preemergence treatments were applied on May 2 (air C; soil 31 C, dry; RH 41%). Watermelon were thinned to a density of plant/6.7 m_{\star}^2 and sethoxydim was applied to the entire experiment on May to control grasses. Layby treatments were applied on June 17 (air 34 soil 33 C, dry; RH 35%). Plots were cultivated on May 28 and June 16. The entire area was hand weeded on June 13.

Weed control was not significantly affected by layby ethalflural applications. However, there was a tendency for fewer weeds at harvest plots treated with layby applications. No crop injury was observed, as yields were not reduced by layby treatments.

Watermelon (Citrullus lanatus), Stale seedbed, Kibler (Table 13).

A single row of watermelon (cv. Crimson Sweet) seed was planted in 3. by 9.1-m plots, and preemergence treatments were applied to till (conventional) and untilled (stale) seedbeds on May 2 (air 32 C; soil 31 (dry; RH 41%). Watermelon were thinned to a density of 1 plant/6.7 m², ai sethoxydim was applied to the entire experiment on May 28. Lay treatments were applied on June 17 (air 34 C; soil 33 C, dry; RH 35%) Plots were cultivated on May 28 and June 16. The entire area was hav weeded on June 13.

Preemergence treatments applied in combination with burndown herbicide did not control weeds. Good to excellent control of Palmer amaranth ar grasses was maintained for 4 weeks in conventionally tilled plots treate with ethalfluralin at 1.68 kg/ha. At 8 weeks after planting, injury wa observed in napropamide-treated plots. Crop injury from weed interference also occurred in plots with poor weed control. Conventionally tilled plot treated preemergence with ethalfluralin were the highest yielding.

Watermelon (Citrullus lanatus), Jonesboro (Table 14).

Two rows of watermelon (cv. Crimson Sweet) seed were planted in 4.3- b 9.1-m plots, and preemergence treatments were applied on May 15 (air 24 C soil 27 C, wet; RH 80%). On June 15, watermelon were thinned to a densit of 1 plant/6.5 m², and the entire experiment was cultivated and treated wit sethoxydim to control grasses. All plots were hand weeded on June 20 Layby treatments were applied on June 21 (air 33 C; soil 31 C, wet; R 40%). Plots were harvested on July 29 and August 5.

Weed pressure was variable in the test area. Tank mix and sequential herbicide applications generally provided the best control of common cocklebur, carpetweed and Palmer amaranth. No significant crop injury was observed. There were no statistical differences in total watermelow yields.

Watermelon (Citrullus lanatus), post-transplant, Jonesboro (Table 15).

Five-week-old watermelon (cv. Starbrite) were transplanted on May 10 in 4.3- by 9.1-m plots, and preemergence treatments were applied on May 15 (air 24 C; soil 27 C, wet; RH 80%). On June 15, watermelon were thinned to a density of 1 plant/6.5 m_{\star}^2 and the entire experiment was cultivated and then treated with sethoxydim to control grasses. Layby treatments were applied on June 21 (air 33 C; soil 31 C, wet; RH 40%). Plots were harvested on July 16 and 29. Weed pressure was variable in the test area, resulting in no signifidifferences in common cocklebur and pitted morningglory control. etweed control was acceptable (>70%) for all treatments except naptalam bensulide. Palmer amaranth was controlled by all treatments at 5 s after planting, but there were no differences in control by 10 weeks r planting. Watermelon yields of all plots were statistically similar.

kberry (Rubus spp.), Fayetteville (Table 16).

Blackberry (cv. Cherokee) plots, 3 m by 8 m, were sprayed with blachlor on May 14 (air 32 C; soil 32 C, moist; RH 72%). Plots were rested on June 13, 20 and 26. Maturity differences were not observed, ields from the three harvests were combined.

Metolachlor applied post-directed at late bloom did not result in crop ry or adversely affect yield.

es (<u>Vitis labrusca</u>), Fayetteville (Table 17).

Grape (cv. Concord) plots, 3.0 m by 2.4 m with one plant each, were nyed with preemergence herbicides on May 5 (air 25 C; soil 28 C, wet; RH 0.2

Dithiopyr at 2.2 kg/ha and the standard treatment of oryzalin plus on were the only treatments that provided >85% control of horseweed. bes were not affected by the herbicide treatments, and all yields were lar.

pes (Vitis labrusca), Fayetteville (Table 18).

Grape plots, 3 m by 4 m with 1 plant each of the cultivars Saturn, iance and Mars, were treated on May 14 (air 32 C; soil 32 C; RH 72%). ts were harvested on July 10.

Glufosinate gave excellent control of all weed species present at the e of application. Saturn and Reliance suckers were suppressed by fosinate. Glufosinate applied alone gave fair to good control of Mars kers. Small suckers (1 or 2 leaves) were generally controlled best. In glufosinate was applied in combination with oryzalin and diuron, trol of Mars suckers was reduced. No grape injury or yield reduction lted from either treatment.

wood (<u>Buxus</u> spp.), Fayetteville (Table 19).

Boxwood liners (cv. Winter Gem)(15-cm) were transplanted on May 8. t size was 2 m by 2 m with four plants per plot. Bentazon was applied May 17 (air 21 C; soil 22 C, moist; RH 90%), May 27 (air 26 C; soil 31 moist; RH 83%), June 6 (air 23 C; soil 26 C, wet; RH 86%) and June 20 r 19 C; soil 21 C, wet; RH 100%).

Single or repeated bentazon applications did not result in boxwood ury. Multiple bentazon applications were necessary to control yellow sedge.

eopsis (Coreopsis lanceolata), Fayetteville (Table 20).

Coreopsis liners (cv. Lanceleaf) (10-cm) were transplanted on June 8. ts were 1 m by 2 m with four plants each. Sethoxydim was applied on e 18 (air 19 C; soil 21 C, moist; RH 95%) and July 18 (air 23 C; soil 23 moist; RH 96%).

Coreopsis injury was not observed as a result of either single repeated sethoxydim applications.

Dahlia (Dahlia merkii), Fayetteville (Table 21).

Dahlia bulbs were planted on May 8. Plot size was 2 m by 2 m with for plants per plot. Napropamide was applied post-transplant and preemerger to weeds on May 8 (air 22 C; soil 22 C, moist; RH 77%).

Dahlia were not injured by napropamide. Napropamide at 4.5 and 9 kg/ha did not control yellow nutsedge or result in dahlia injury.

Hosta (Fankia undulata), Fayetteville (Table 22).

Hosta liners (20-cm dia.) were transplanted on May 8. Plot size was m by 2 m with four plants per plot. Napropamide was applied pos transplant and preemergence to weeds on May 8 (air 22 C; soil 22 C, mois RH 77%).

Napropamide at 4.5 and 9.0 kg/ha did not control yellow nutsedge result in hosta injury.

Container Ornamentals, Fayetteville (Table 23).

Daisy (<u>Chrysanthium max</u>.)(cv. Silver Princess)(13-cm dia.) and Whi Yarrow (<u>Achillia millefolium</u>) liners (10-cm dia.) were transplanted into L pots containing a composted pinebark medium on May 21 and fertilized wi 6 g of Sierra 17-6-12 Plus Minors® fertilizer. Plots consisted of containers each of daisy and yarrow. All containers were irrigated dai throughout the growing season. Metolachlor was applied on May 21 (air C; medium 26 C, wet; RH 91%). Daisy and yarrow were approximately 10-cm diameter each with 6 to 10 leaves.

Daisy plants were injured by the high rate of metolachlor 7.8E and both rates of metolachlor 5G. Yarrow plants were injured only by the kg/ha rate of metolachlor 5G.

Daisy, Fayetteville (Container) (Table 24).

Daisy (cv. Silver Princess) liners (13-cm dia.) were transplanted in 4-L pots containing a composted pinebark mix on May 29 and fertilized wi 6 g of Sierra 17-6-12 Plus Minors® fertilizer. Plots consisted of containers each with one plant. Oryzalin treatments were made on May (air 29 C; medium 38 C, wet; RH 77%). All containers were irrigated dai throughout the growing season.

Oryzalin at 2.24 or 4.48 kg/ha applied post-transplant and preemergen to weeds did not result in daisy injury.

Hosta, Fayetteville (Container) (Table 25).

Hosta liners (10-cm dia.) were transplanted into 4-L pots containing composted pinebark medium on May 21 and fertilized with 6 g of Sierra 17-12 Plus Minors® fertilizer. Plot size was 5 containers, each with o plant. All containers were irrigated daily throughout the growing seaso Napropamide treatments were applied on May 21 (air 24 C; medium 26 C, we RH 91%). Napropamide at 4.5 or 9.0 kg/ha applied post-transplant and preemere to weeds did not result in hosta injury.

flowers, metolachlor, Fayetteville (Table 26).

Rudbeckia (<u>Rudbeckia hirta</u>) (cv. Black-eyed Susan) and White Yarrow 16 to 10 leaves each were transplanted on June 8. Plot size was 1 m by with 4 plants of each species per plot. Metolachlor was applied postnsplant and preemergence to weeds on June 8 (air 28 C; soil 27 C, moist; 51%).

Neither metolachlor formulation resulted in rudbeckia injury. Both blachlor formulations resulted in significant stunting of yarrow.

iflowers, Fayetteville (Table 27).

Rudbeckia (cv. Black-eyed Susan) and White Yarrow with 6 to 10 leaves h were transplanted on May 15. Plot size was 1 m by 3 m with 4 plants each species per plot. Post-transplant treatments were applied preemerce to weeds on May 15 (air 24 C; soil 24 C, moist; RH 92%). Postemerce treatments were applied on May 29 (air 23 C; soil 26 C, moist; RH).

All treatments gave excellent control of large crabgrass. Oryzalin atments resulted in slight injury to rudbeckia and yarrow, and isoxaben atments severely injured rudbeckia and yarrow.

flowers (Screening), Fayetteville (Table 28).

Wildflowers (Appendix Table 5) were hand planted into rows 30 cm long spaced 25 cm apart on June 3. Preemergence treatments were applied on e 4 (air 27 C; soil 29 C, moist; RH 75%).

California poppy, lanceleaf coreopsis, perennial lupine, red mexican , scarlet flax and corn flower were tolerant to DCPA. Painted daisy, celeaf coreopsis, red mexican hat and blanket flower were tolerant to ropamide. Blue flax, lanceleaf coreopsis, perennial lupine and scarlet x were tolerant to EPTC. Perennial lupine and scarlet flax were erant to metolachlor. No species tolerated simazine or terbacil. celeaf coreopsis, perennial lupine, cornflower and ox-eye daisy were erant to pendimethalin. Blue flax, California poppy and lanceleaf eopsis were tolerant to oryzalin.

dy Ornamentals, Fayetteville (Table 29).

Two 25-cm liners of azalea (cv. Hino Crimson) and crepe myrtle (cv. tennial Spirit) were transplanted into 2- by 2-m plots on May 8, and emergence treatments were applied (air 22 C; soil 21 C, moist; RH 72%). tazon treatments were applied postemergence to yellow nutsedge with 3 to eaves on May 17 (air 21 C; soil 21 C, moist; RH 90%), May 27 (air 26 C; 1 31 C, moist; RH 79%), June 6 (air 23 C; soil 26 C, wet; RH 86%) and e 20 (air 19 C; soil 21 C, moist; RH 99%). Chlorimuron postemergence atments were applied on June 6. By the middle of July, weed control had sipated, so plots were roto-tilled and hand weeded around the plants, preemergence treatments were killed by heat stress in July.

Chlorimuron and imazaquin applied preemergence gave good to excellent trol of yellow nutsedge through 5 weeks after application. Metolachlor) applied preemergence gave fair control of yellow nutsedge through 5 ks after application. All preemergence treatments significantly reduced

9

yellow nutsedge density. Escaping yellow nutsedge plants in the chlo muron- and imazaquin-treated plots were severely stunted and chlorot Four repeated applications of bentazon gave good to excellent yel nutsedge control. No injury was observed on azalea or crepe myrtle up 6 weeks after preemergence applications. However, at 10 and 17 wee crepe myrtles were severely stunted by imazaquin applied preemergence.

Bedding Plants, Fayetteville (Tables 30 and 31).

Twenty-one types of commonly used ornamental bedding plants (Appen Table 6) were transplanted into 2- by 4.5-m plots, and post-transpl treatments were applied preemergence to weeds on May 15 (air 19 C; soil C, wet; RH 90%). Postemergence treatments were applied on May 27 (air C; soil 31 C, wet; RH 79%) and June 15 (air 25 C; soil 25 C, dry; RH 70 Plots were irrigated as needed.

All bedding plants evaluated showed excellent tolerance to a postemergence grass herbicides, sethoxydim and clethodim (Table 3). Tolerance to post-directed glyphosate and glufosinate treatments depend upon the accuracy of application. Species with an upright growth profigenerally exhibited less injury than species with prostrate growth habdue to less contact with spray. However, all plants directly contact with either glyphosate or glufosinate were severely injured. Agerate aster, geranium, hibiscus, vinca and zinnia showed tolerance to a preemergence treatments. In addition, ornamental peppers, petunia alyssum, coreopsis, dahlia, dianthus, impatiens and marigolds were tolerate to dithiopyr at rates of 4.5 kg/ha or less. Celosia, nicotinia, bi salvia, salvia and snapdragons also showed marginal tolerance to dithiopy being injured only at the higher rates. All species except hibiscus, which showed only marginal tolerance to pendimethalin, were tolerant to pendimethalin and metolachlor. Celosia and snapdragons showed only marging tolerance to Rout®, and impatiens, nicotinia, ornamental peppers appetunias were severely injured.

All treatments resulted in excellent control of large crabgrass a pigweed species except sethoxydim and clethodim, which failed to contr the pigweed species. Low rates of isoxaben and dithiopyr gave excelled weed control, so increasing the rates of isoxaben and dithiopyr and usi isoxaben premixes (Snapshot® 80DF and Shapshot® 2.5 G) did not improve we control. Hoe times (Table 31) indicated that the residual control provid by most of the treatments had dissipated by 8 weeks after application Total hoe times for the year on all treated plots were similar and we significantly less than the time required to keep the weed-free check haw weeded.

SUMMARY

Bensulide applied as a surface blend or preplant-incorporated ga excellent control of grasses and small-seeded broadleaved weeds. Bensuli also showed potential for use at lower-than-label-recommended rates control large crabgrass, giant foxtail, seedling johnsongrass and smoo pigweed when applied as a surface blend. Generally as the bensulide ra decreased, the advantages of surface blending bensulide as compared incorporating 8 cm deep became more evident.

The use of rye and rye and clover mixes as cover crops did not appe to adversely affect squash, tomatoes, cantaloupe or winter squas However, insect problems were magnified, and weed control by cover cro lasted only 4 weeks. Sorghum-sudan planted with squash tended to inhib squash growth. No weed control benefit was observed, and squash b problems were intensified. The standard treatment of trifluralin followed by DCPA gave excellent atrol of large crabgrass and smooth pigweed in bell peppers. The new bicides dithiopyr and MON-13211 also gave excellent weed control, but I-13211 resulted in significant injury and yield reduction.

In cole crops, combinations of the standard herbicides trifluralin, nsulide, oxyfluorfen, napropamide, sethoxydim and DCPA gave excellent ntrol of henbit, large crabgrass, smooth pigweed and common lambsarters. Pyridate also showed excellent potential for postemergence weed ntrol in cole crops.

Sethoxydim showed excellent potential as a postemergence herbicide for ass control in endive.

The standard onion herbicides, oxyfluorfen and DCPA, gave excellent ntrol of large crabgrass, henbit and sibara. Combinations of fluazifop-P d pyridate also showed excellent potential for broad-spectrum postemernce weed control in onions.

In snap beans, preplant-incorporated and preemergence herbicide mbinations of trifluralin, metolachlor, EPTC and imazethapyr controlled rge crabgrass and smooth pigweed. In addition, EPTC and imazethapyr gave cellent control of Pennsylvania smartweed and prickly sida. Fomesafen plied postemergence alone or in combination with bentazon and sethoxydim clethodim provided excellent weed control.

The standard tomato treatment of trifluralin followed by metribuzin ve excellent control of large crabgrass and smooth pigweed. The new rbicides dithiopyr and MON-13211 also gave excellent weed control; wever, both significantly injured or killed tomatoes and caused severe ald reductions.

Ethalfluralin applied at rates ranging from 0.67 to 2.69 kg/ha did not fect the yields of Calypso or Little Leaf cucumbers. In watermelons, halfluralin generally provided satisfactory weed control when applied eemergence. Ethalfluralin applied preemergence followed by ethalfluralin a layby treatment did not adversely affect watermelon and tended to crease the duration of weed control. Weed control in stale-seedbed plots s unsatisfactory.

Metolachlor applied at late bloom did not injure blackberry. The andard preemergence herbicides oryzalin plus diuron gave good weed atrol in grapes. Dithiopyr also showed some potential for use as a eemergence herbicide in grapes. Glufosinate and combinations of ufosinate plus oryzalin plus diuron gave excellent postemergence control weeds in grapes and showed some potential for early control of grape ckers.

Napropamide showed potential for use as a preemergence herbicide in hlia and hosta. Oryzalin showed potential for weed control in daisy. lorimuron and metolachlor in combination with bentazon gave excellent ntrol of yellow nutsedge in woody ornamentals. Metolachlor, oryzalin d fluazifop-P showed potential for use in rudbeckia and yarrow. thiopyr, isoxaben alone or in combination with oryzalin or trifluralin, yfluorfen, pendimethalin, metolachlor, sethoxydim and clethodim showed tential for use in several ornamental bedding plants. Dithiopyr showed e greatest range of tolerant ornamental species. DCPA, napropamide, TC, metolachlor, pendimethalin and oryzalin showed potential for eemergence use in wildflower plantings. For use in general landscape intenance, minimal rates of residual-preemergence herbicides should be ed at transplanting and repeated in 8 to 10 weeks. Herbicides such as yphosate, glufosinate, sethoxydim and clethodim can be used to supplement ese treatments.

12

Arkansas

Agricultural

Experiment

Station

Research

Series

4

2	~				W	eed contro	ol after 2 v	veeks1					
Treatment description	BRAPP	DIGSA	ELEIN	SETFA	SORHA	ABUTH	AMACH	IPOHG	IPOLA	SEBEX	SIDSP	XANST	
(kg ai/ha)						(%)						
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	
Surface blend incorporation ²													
Bensulide, 5.6, ppi	86	98	90	98	90	6	100	6	20	0	6	0	
Bensulide, 2.8, ppi	74	93	84	89	85	11	100	0	5	3	0	0	
Bensulide, 1.4, ppi	54	93	63	49	69	0	96	0	5	0	0	0	
Incorporated to an 8-cm depth ²													
Bensulide, 5.6, ppi	48	84	81	50	59	0	100	0	6	0	0	0	
Bensulide, 2.8, ppi	40	54	58	31	45	0	98	0	5	0	0	0	
Bensulide, 1.4, ppi	28	46	46	31	30	0	93	0	0	0	0	0	
LSD (0.05)	22	26	22	28	18	NS	6	NS	NS	NS	NS	NS	
					10/	and contro	ol after 3 v	veeks ¹					
Treatment description	BRAPP	DIGSA	ELEIN	SETFA			AMACH		IPOLA	SEBEX	SIDSP	XANST	
(kg ai/ha)	••••••						The second s						
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	
Surface blend incorporation ²													
Bensulide, 5.6, ppi	88	90	43	100	99	26	94	8	4	0	8	0	
Bensulide, 2.8, ppi	60	91	45	100	94	18	84	ŏ	10	õ	8	ō	
Bensulide, 1.4, ppi	35	78	13	48	91	õ	59	ŏ	Ő	õ	õ	ō	
Incorporated to an 8-cm depth ²													
Bensulide, 5.6, ppi	68	99	56	85	90	0	96	0	0	0	0	0	
Bensulide, 2.8, ppi	14	60	0	38	63	0	80	ŏ	5	ŏ	ő	ŏ	
Bensulide, 1.4, ppi	0	53	15	5	38	0	65	ő	0	0 0	0	0	
		~~				•	~~	-	-		-	-	

Table 1. Bensulide: Effect of incorporation depth and rate on weed control, Fayetteville, 1991.

- ¹ Weed control ratings were taken at 2 and 3 weeks after application. BRAPP = broadleaf signalgrass; DIGSA = large crabgrass; ELEIN = goosegrass; SETFA = giant foxtail; SORHA = johnsongrass; ABUTH = velvetleaf; AMACH = smooth pigweed; IPOHG = entireleaf morningglory; IPOLA = pitted morningglory; SEBEX
 - = hemp sesbania; SIDSP = prickly sida; XANST = common cocklebur.
- ² Surface blend treatments were lightly incorporated with a hand rake prior to planting, and incorporated treatments were incorporated with a single pass of a rototiller set to a depth of 8 cm.

					W	eed cor	itrol ³				
			2 wk						4 wk		
Treatment description ²	DIGSA	MOLVE	AMAAL	CYPES	POROL		DIGSA	MOLVE	AMAAL	CYPES	POROL
(kg ai/ha)			•••••			(%)		•••••••			
Bensulide, 6.72, ppi fb sethoxydim, 0.28											
+ CO (Agri-Dex, 1% v/v), poe	68	5	65	52	56		84	0	78	38	30
Trifluralin, 0.84, ppi fb sethoxydim, 0.28											
+ CO (Agri-Dex, 1% v/v), poe	86	95	88	76	84		66	99	86	48	75
Crimson clover	75	92	79	74	95		35	99	74	15	68
Annual rye	92	90	92	65	92		93	80	86	50	72
Rye / clover mix	88	95	80	68	91		75	99	74	39	72
LSD (0.05)	25	20	NS	NS	23		38	7	NS	NS	24
_	11. I.C.				Crop inj	ury ³			1993		
			2 wk					4 w	<u>'k</u>		Yield
Treatment description ²	tomato	pepper	cantalo	upe s	quash	toma	to pe	pper	cantaloupe	squast	
(kg ai/ha)					(%)						(mt/ha
Bensulide, 6.72, ppi <u>fb</u> sethoxydim, 0.28											
+ CO (Agri-Dex, 1% v/v), poe			0		0				0	0	3
Frifluralin, 0.84, ppi fb sethoxydim, 0.28											
+ CO (Agri-Dex, 1% v/v), poe	0	0				7		7			
Crimson clover	0	0	0		2	0		2	5	15	0.1
Annual rye	0	0	0		2	0		7	0	10	3
Rye / clover mix	0	0	0		0	0		2	0	4	9
LSD (0.05)	NS	NS	NS		NS	NS	Ν	15	NS	12	9

Table 2. Cover Crop: Evaluation of rye and clover for weed control in vegetable production systems, Fayetteville, 1991¹.

¹ DIGSA = large crabgrass; MOLVE = carpetweed; AMAAL = tumble pigweed; CYPES = yellow nutsedge; POROL = common purslane.

² Paraquat at 1.1 kg ai/ha was applied 1 week prior to planting as a preplant burndown treatment.

³ Ratings were taken 2 and 4 weeks after planting vegetables.

14

			Weed	control ²						54)	
	2	wk	3	wk	6 1	wk	C	rop inju	γ ²		
Treatment description	DIGSA	AMACH	DIGSA	AMACH	DIGSA	AMACH	2wk	3wk	6wk	Yield	
(kg ai/ha)					(%)			•••••	•••••	(g/pepper)	(mt/ha)
Weedy check	0	0	0	0	0	0	0	0	0	55	3
Weed-free check	100	100	100	100	100	100	0	з	0	64	11
Trifluralin, 0.5, ppi <u>fb</u>											
DCPA, 6.0, poe											
(4 weeks after transplanting											
to bare soil)	96	100	98	99	93	91	0	1	0	64	13
Dithiopyr, 0.55, pre-tp	100	100	100	99	91	79	0	15	0	59	12
Dithiopyr, 1.1, pre-tp	99	100	100	100	99	93	0	6	0	63	12
MON-13211, 0.55, pre-tp	100	100	100	100	100	100	0	16	9	60	6
MON-13211, 1.1, pre-tp	100	100	100	100	100	100	0	46	43	37	4
LSD (0.05)	4	1	2	2	5	10	NS	15	18	NS	5

 Table 3.
 Bell Peppers: Evaluation of dithiopyr and MON-13211 for phytotoxicity and weed control, Fayetteville, 1991¹.

Average weed size at the time of postemergence application: DIGSA (large crabgrass) = 5 cm with 5 leaves; AMACH (smooth pigweed) = 7 cm with 5 leaves.
 Ratings were taken 2, 3 and 6 weeks after preplant-incorporated and preemergence applications. The 6-week rating corresponds to 1 week after the postemergence application.

³ Combination of 5 harvests.

· · · · · · · · · · · · · · · · · · ·			11 m 1997 1997 19				We	ed contro	1 ³						
	3 wk	6	wk		7	wk			8	wk			9	wk	
Treatment description	LAMAM	DIGSA	LAMAM	DIGSA	LAMAM	AMACH	CHEAL	DIGSA	LAMAM	AMACH	CHEAL	DIGSA	LAMAM	AMACH	CHEAL
(kg ai/ha)								(%)							
Weed-free check	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trifluralin,															
1.1, ppi	100	100	96	100	91	100	85	100	88	100	88	100	78	100	70
Trifluralin,															
1.1, ppi <u>fb</u>															
pyridate, 1.0,															
poe (2-4 lf)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Trifluralin, 1.1,															
ppi <u>fb</u> pyridate,															
1.0, poe (4-6 lf)	100	100	98	100	85	100	83	100	98	100	90	99	100	100	71
Trifluralin,															
1.1, ppi <u>fb</u> pyridate,															
1.0, poe (2-3 lf)															
fb pyridate, 1.0,															
poe (4-6 lf)	100	100	100	100	99	100	100	100	100	100	100	98	100	100	95
Bensulide, 6.7, ppi															
<u>fb</u> oxyfluorfen,															
0.42, pre-tp	100	100	100	100	100	100	100	100	100	100	100	98	100	100	95
Napropamide,															
2.2, tp-pre	100	100	93	100	81	100	98	100	95	100	98	100	74	100	100
Oxyfluorfen, 0.56,															
pre-tp <u>fb</u>															
sethoxydim, 0.21															
+ CO (Agri-Dex®, 1%															
v/v), poe															
(4-6 lf)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Oxyfluorfen, 0.28															
+ DCPA, 5.0, TM,															
pre-tp	100	100	100	100	100	100	100	100	100	100	100	100	100	100	90
LSD (0.05)	. 1	1	6	1	10	1	8	1	8	. 1	4	4	12	1	16

Table 4	Cole Crops:	Evaluation of herbicides for	weed control and	nhytotoxicity	Favetteville 1991 ^{1,2}
rubic 4.	0010 01000.		weed control and	DITATOLOVICIUM,	Tayelleville, 1331

Arkansas Agricultural

Experiment

Station Research

16

_							C	rop inju	ry'			to an in-	21141-2112					
Treatment		3 wk			6 wk			7 wk	210		8 wk			9 wk			Yield⁴	
description	BROC.	CABB.	CAUL.	BROC.	CABB.	CAUL.	BROC.	CABB.	CAUL.	BROC.	CABB.	CAUL.	BROC.	CABB.	CAUL.	BROC.	CABB.	CAUL
(kg ai/ha) -								(%) -									(mt/ha)	******
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.7	23.1	0.8
Weedy check Trifluralin,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.6	19.6	0.7
1.1, ppi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.2	5	0.4
Trifluralin,																		
1.1, ppi <u>fb</u> pyridate, 1.0,																		
poe (2-4 lf)	12	0	0	10	0	0	17	0	13	3	0	0	0	0	0	3.1	5	0.5
Trifluralin, 1.1,																		
ppi <u>fb</u> pyridate,																		
1.0, poe (4-6 lf)	0	0	0	0	0	0	0	0	0	5	3	6	3	0	5	3.9	5	2.6
Trifluralin, 1.1, ppi <u>fb</u> pyridate, 1.0, poe (2-3 lf) <u>fb</u> pyridate, 1.0,																		
poe (4-6 lf) Bensulide, 6.7, ppi	5	1	0	3	0	0	11	0	10	9	3	3	4	0	5	3.6	5	1.3
fb oxyfluorfen,																		
0.42, pre-tp	15	9	0	0	0	0	4	0	0	0	0	0	0	0	0	3.4	20.8	0.18
Napropamide,																		
2.2 tp-pre Oxyfluorfen, 0.56,	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.3	22.8	2.2
pre-tp <u>fb</u> sethoxydim, 0.21 + CO (Agri-Dex, 1% v/v), poe																		
(4-6 lf) Oxyfluorfen, 0.28	21	18	0	0	0	0	0	0	0	0	8	0	0	0	0	4.6	12.6	1.3
+ DCPA, 5.0, TM,																		
pre-tp	13	13	0	0	0	0	0	0	0	0	0	0	0	0	0	3.3	22.9	0.1
.SD (0.05)	11	9	NS	4	NS	NS	4	NS	2	4	NS	3	NS	NS	NS	NS	NS	1.6

Table 4. Continued.

Ornamental Crops 17

bicide

Evaluations

on

Small

Fruit

-

Vegetable

and

- ¹ Average weed sizes at the postemergence applications: 2- to 4-If: AMACH (smooth pigweed) = 4 cm with 6 leaves; CHEAL (common lambsquarters) = 6 cm with 5 leaves; DIGSA (large crabgrass) = 4 cm with 3 leaves; LAMAM (henbit) = 4 cm with 5 leaves. 4- to 6-If: AMACH = 10 cm with 10 leaves; CHEAL = 8 cm with 6 leaves; DIGSA = 6 cm with 6 leaves; LAMAM = 8 cm with 6 leaves.
- ² Weed density on May 6 = 414/m²; weed distribution: 5% AMACH; 3% CHEAL; 52% DIGSA; 40% LAMAM.
- ³ Ratings were taken 3, 6, 7, 8 and 9 weeks after preplant-incorporated and preemergence treatments. The 6-, 7-, 8-, and 9-week ratings correspond to 2, 3, 4, and 5 weeks after the 2- to 3-lf treatments. The 8- and 9-week ratings correspond to 1 and 2 weeks after the 4- to 6-lf postemergence applications.
- ⁴ Maturity differences were not observed, and harvests were combined.
- ⁵ Yields were inadvertently lost.

rbicide
rbicide Evaluations on Small Fruit, Vegetable and O
9
Small
Fruit,
Vegetable
and
l Ornamental Crops
Crops
19

Table 5. Endive: Evaluation of sethoxydim for phytotoxicity and weed control, Fayetteville, 1991^{1.2.3}.

	Weed	control ⁴				
	3	wk		Crop injury	14	
Treatment description	DIGSA	AMACH	2 wk	3 wk	4 wk	Yield
(kg ai/ha)			(%)			(mt/ha)
Control Sethoxydim, 0.3 + CO (BAS 064005, $1\% v/v$), poe	0	0	0	0	0	31
<u>fb</u> sethoxydim, 0.3 + CO (BAS 064005, 1% v/v), poe (applied 15 days later)	100	0	0	0	0	32
LSD (0.05)	1	NS	NS	NS	NS	NS

After the 4-week rating, treatments were maintained weed-free until harvest

² Average weed sizes at the postemergence applications: 1st application: no weeds were present; 2nd application: DIGSA (large crabgrass) = 4 cm with 5 leaves, AMACH (smooth pigweed) = 4 cm with 5 leaves.

³ Weed density on May 8 = 320/m²; weed distribution: 88% DIGSA; 12% AMACH.

⁴ Ratings were taken 2, 3 and 4 weeks after the first application. The 3-week and 4-week ratings correspond to 1 week and 2 weeks after the second application.

		57.77	o na			Wee	d contro	2 ³										
		5 wk			6 wk			7 wk			10 wk			Cro	p injury	<i>م</i>		
Treatment description	DIGSA	LAMAM	SIBVI	DIGSA	LAMAM	SIBVI	DIGSA	LAMAM	SIBVI	DIGSA	LAMAM	SIBVI	5wk	6wk	7wk	10wk	-0	Yield
(kg ai/ha)								((%)								(mt/ha)	(g/onion)
Weed-free check	0	0	0	100	100	100	100	100	100	100	100	100	0	0	0	0	19	180
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	108
Fluazifop-P, 0.21 + WA (X-77@, 0.25% v/v),																		
poe (2-3 lf)	0	0	0	54	0	0	95	0	0	99	0	0	0	0	0	0	10	102
Flauzifop-P, 0.21 + WA (X-77*, 0.25% v/v),	-																	
poe (4-6 lf)	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	10	106
Fluazifop-P, 0.21 + pyridate, 1.0, TM,	Ū	U	U	U	U	v	U	U	U	100	0	0	Ŭ	Ū	Ū	Ŭ	10	100
poe (2-3 lf)	0	0	0	100	100	93	100	100	94	98	98	100	0	0	0	0	19	172
Fluazifop-P, 0.21 +	U	U	U	100	100	30	100	100	34	30	50	100	v	v	v	U	15	
pyridate, 1.0, TM,																		
poe (4-6 lf)	0	0	0	0	0	0	0	0	0	98	90	91	0	0	0	0	15	132
Fluazifop-P, 0.21 +	U	U	U	U	U	v	U	U	U	50	50	51	U	Ŭ	v	v	10	IOL
pyridate, 1.0, TM,																		
poe (2-3 lf) fb																		
fluazifop-P, 0.21 +																		
pyridate, 1.0, TM,																		
poe (4-6 lf)	0	0	0	99	100	94	100	100	99	98	100	99	0	0	0	0	14	130
Oxyfluorfen, 0.56,	U	Ū	U	55	100	34	100	100	00	00	100	00	Ŭ	Ŭ	v	v	1.00	100
tp-pre	99	100	100	96	100	100	78	100	90	95	77	98	14	0	0	5	17	156
DCPA, 10.0, tp-pre	100	99	93	96	100	90	100	97	75	100	100	90	9	õ	õ	õ	12	132
Oxyfluorfen, 0.28 +				00		00		0.			100							102
DCPA, 5.0, TM,																		
tp-pre	100	100	100	100	100	100	100	100	100	93	100	97	14	0	0	0	17	161
Enquik®, 46.7 l/ha,	100									50	. 50			Ū		U		
poe (4-6 lf)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	114
Enguike, 93.5 l/ha,	Ū			U	°,	· ·	•	· ·	U		0	5	U	0		•		
poe (4-6 lf)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	96
LSD (0.05)	2	1	2	6	1	5	4	4	4	4	4	A	7	NS	NS	NS	5	00

 Table 6.
 Onions: Evaluation of herbicides for weed control and phytotoxicity, Fayetteville, 1991^{1,2}.

Table 6. Continued.

- ¹ Average weed sizes at the postemergence applications: 2- to 4-lf: DIGSA (large crabgrass) = 1.5 cm with 2 leaves; LAMAM (henbit) = 2 cm with 10 leaves; SIBVI (sibara) = 8 cm in diameter; 4- to 6-lf: DIGSA = 13 cm with 5 leaves; LAMAM = 8 cm; SIBVI = 12 cm.
- ² Weed density on May 2 = 327/m²; weed distribution: 80% DIGSA; 13% LAMAM; 7% SIBVI.
- ³ Ratings were taken 5, 6, 7 and 10 weeks after preemergence treatments, which corresponds to 0, 1, 2 and 5 weeks after the 2- to 4-lf applications. The 10-week rating corresponds to 3 weeks after the 4- to 6-lf postemergence application.

2000 - 1000 - 10							We	ed contr	rol ^a					10 IV					
Treatment			4 wk					5 wk					6 wk			C	rop inju	ıry³	_
description	DIGSA	AMASE	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	4wk	5wk	6wk	Yield
(kg ai/ha)									(%)										(mt/ha)
Weed free check	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	5.4
Weedy check Trifluralin, 0.56,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.3
ppi	98	86	5	23	0	100	84	5	25	8	100	93	0	25	0	0	0	0	4.5
Metolachlor, 1.7,			•		•			-								-		-	
pre	100	93	5	13	0	100	91	8	23	10	100	84	0	5	5	0	0	0	4.8
Trifluralin, 0.56 + EPTC, 2.7,																			
TM, ppi	98	98	52	96	75	100	89	46	95	76	96	91	54	65	36	8	0	3	4.7
Trifluralin, 0.56 + imazethapyr,																-	-	-	
0.07, TM, ppi	100	100	75	75	75	100	100	80	95	75	100	100	70	75	80	30	35	26	4.0
Trifluralin, 0.56,																			
ppi <u>fb</u> imazethapyr,																			
0.07, pre	100	97	43	98	50	100	99	60	100	57	99	96	50	83	87	3	3	0	5.6
Trifluralin, 0.56,																			
ppi <u>fb</u> imazethapyr, 0.07 + WA (X-77®,																			
0.25% v/v), V2	98	99	58	99	79	100	100	98	98	98	100	100	93	93	88	29	21	19	2.5
Trifluralin, 0.56,	50	55	00	55	10	100	100	50	50	50	100	100	50	50	00	25	21	10	2.5
ppi fb fomesafen.																			
0.21 + WA (X-77®,																			
0.25% v/v), V2	95	100	100	98	88	95	100	100	100	69	99	100	99	100	73	0	0	0	5.7
Trifluralin, 0.56,	00			00	00	50	100		100	00	55	100	00	100		Ũ	v	Ŭ	0.7
ppi fb fomesafen,																			
0.42, + WA (X-77®,																			
0.25%, v/v), V2	95	94	98	100	90	98	98	98	100	80	95	95	98	100	66	3	0	0	5.6
Trifluralin, 0.56,	00	0.	00		00	00	00	50	100	00	00	00	00		00	U	Ū	Ŭ	0.0
ppi fb bentazon,																			
0.42, V2	100	100	97	100	98	100	100	98	100	100	100	100	83	97	83	16	5	5	4.4
Trifluralin, 0.56,					00								00		00			•	
ppi fb bentazon,																			
0.84, V2	98	93	93	98	100	100	100	95	100	96	90	95	90	98	91	14	0	0	5.1

 Table 7.
 Snap Beans: Evaluation of herbicides for weed control and phytotoxicity, Lowell, 1991^{1,2}.

417

Table 7. Continued.

							We	ed contr	rol ³							_			
Freatment			4 wk					5 wk					6 wk				op inju	iry ³	_
description	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	4wk	5wk	6wk	Yield
(kg ai/ha)									(%)								•		(mt/ha
Trifluralin, 0.56,																			
ppi <u>fb</u> fomesafen,																			
0.11 + bentazon,																			
0.22 + WA (X-77®,																			
0.25% v/v), TM, V2	93	100	100	99	79	100	100	99	94	63	90	95	95	78	44	6	5	3	5.0
Frifluralin, 0.56,																			
ppi fb fomesafen,																			
0.21 + bentazon,																			
0.42 + WA (X-77®,																			
0.25% v/v), TM, V2	99	100	100	100	99	98	100	100	100	98	96	100	98	95	85	9	9	0	4.8
Sethoxydim, 0.22 + CO																			
(Agri-Dex®, 1%																			
v/v), V2	99	10	0	3	0	100	18	0	0	0	100	0	0	0	0	0	0	0	4.5
Formesafen, 0.42 +																			
sethoxydim, 0.22																			
+ WA (X-77®, 0.25%																			
v/v), TM, V2	98	100	98	100	88	100	100	100	100	48	100	100	99	100	66	8	0	0	5.7
Bentazon, 0.84, +																			
sethoxydim, 0.22 +																			
CO (Agri-Dex®, 1%																			
v/v), TM, V2	100	100	100	100	100	100	96	98	100	100	99	85	93	88	79	23	15	5	4.8
Formesafen, 0.11 +																			
bentazon, 0.21 +																			
sethoxydim, 0.22, +																			
WA (X-77®, 0.25%																			
v/v), TM, V2	98	100	100	99	76	100	100	98	100	73	100	100	96	98	73	8	4	σ	5.4
omesafen, 0.21 +																•		°.	•
bentazon, 0.42 +																			
sethoxydim, 0.22 +																			
WA (X-77®, 0.25%																			
and a Valence I state to a		100	98	100	100	100	100	99	100	100	100								4.8

Table 7. Continued.

							Wee	ed contr	ola										
Treatment			4 wk					5 wk					6 wk				op inju	_	
description	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	4wk	5wk	6wk	
(kg ai/ha)									(%)										-(mt/ha)
Fomesafen, 0.21 +																			
bentazon, 0.42 +																			
sethoxydim, 0.22 +																			
CO (Agri-Dex*, 1%,																			
v/v), TM, V2	100	100	100	100	100	100	100	100	100	100	100	100	99	100	93	14	5	3	5.7
Imazethpyr, 0.07 +																			
sethoxydim, 0.22 +																			
CO (Agri-Dex®, 1%																			
v/v), TM, V2	91	100	81	91	70	98	100	96	96	76	100	100	84	83	55	38	18	3	3.8
Fomesafen, 0.21 +																			
WA (X-77®, 0.25%																			
v/v), V2 <u>fb</u>																			
sethoxydim, 0.22 +																			
CO (Agri-Dex®, 1%																			
v/v), V3	40	95	98	96	71	100	100	100	100	64	100	100	100	100	65	4	3	0	4.9
Fomesafen, 0.11 +																			
bentazon, 0.21 +																			
WA (X-77®, 0.25%																			
v/v), TM, V2 <u>fb</u>																			
sethoxydim, 0.22																			
+ CO (Agri-Dex®, 1%																			
v/v), V3	92	100	96	98	68	98	100	100	100	75	100	98	100	95	65	1	0	0	5.1
omesafen, 0.21 +																			
bentazon, 0.42 +																			
WA (X-77, 0.25%																			
v/v), TM, V2 <u>fb</u>																			
sethoxydim, 0.22 +																			
CO (Agri-Dex®, 1%																			
v/v), V3	93	100	100	100	98	98	100	100	100	100	100	100	100	100	90	21	3	5	4.4

24

continued

	Tab	le 7.	Continued.
--	-----	-------	------------

2							We	ed conti	rol ³	64 3 46 E						_			
Treatment			4 wk					5 wk					6 wk			C	op inju	iry ³	_
description	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	DIGSA	AMASP	AMBEL	POLLA	SIDSP	4wk	5wk	6wk	Yield
(kg ai/ha)									(%)					•••••	•••••				-(mt/ha)
Imazethapyr, 0.07 + WA (X-77, 0.25% v/v), V2 <u>fb</u> sethoxydim, 0.22 + CO (Agri-Dex®, 1%, v/v), V3 Imazethapyr, 0.07 + WA (X-77%, 0.25%, v/v), cot	78	86	34 98	63 100	48 100	100	100	90 100	94	88 100	100	100	76 95	94 99	71 96	16 40	5 36	3 28	3.9 4.0
LSD (0.05)	15	9	23	16	30	4	11	17	17	30	5	7	17	27	28	11	13	9	1.5

Average weed sizes at the time of V2 applications: DIGSA (large crabgrass) = 4 cm with 4 leaves; AMASP (pigweed species) = 3 cm with 5 leaves; AMBEL (common ragweed) = 5 cm with 4 leaves; POLLA (pale smartweed) = 5 cm with 3 leaves; SIDSP (prickly sida) = 2 cm with 1 leaf.

² Weed density on May 28 = 330/m²; weed distribution: 27% DIGSA, 31% AMAPA (Palmer amaranth), 24% AMACH (smooth pigweed), 20% AMBEL, 4% POLLA, 16% SIDSP.

³ Ratings were taken 4, 5 and 6 weeks after preplant-incorporated and preemergence treatments, which corresponds to 1, 2 and 3 weeks after V2 treatments and 0, 1 and 2 weeks after V3 treatments.

			Weed	control ²							
	2 wk		3 \	3 wk		6 wk			ry²		
Treatment description	DIGSA	AMACH	DIGSA	AMACH	DIGSA	AMACH	2wk	3wk	6wk	Yield	
(kg ai/ha)					(%)					(g/tomato)	(mt/ha)
Weedy check	0	0	0	0	0	0	0	0	0	97	24
Weed-free check Trifluralin, 0.5, ppi <u>fb</u>	100	100	100	100	100	100	0	0	0	118	105
metribuzin, 0.25, dir	100	100	98	100	100	100	0	8	0	121	112
Dithiopyr, 0.55, pre-tp	100	98	94	90	75	60	10	38	55	86	25
Dithiopyr, 1.1, pre-tp	100	100	100	100	100	84	21	60	98	79	10
MON-13211, 0.55, pre-tp	100	100	100	100	100	95	39	69	98		0
MON-13211, 1.1, pre-tp	100	100	100	100	100	100	55	90	100	103	5
LSD (0.05)	1	2	7	4	27	13	8	19	20	NS	37

Table 8. Tomato: Evaluation of dithiopyr and MON-13211 for phytotoxicity and weed control, Fayetteville, 1991¹.

Average weed size at the time of postemergence application: DIGSA (large crabgrass) = 5 cm with 5 leaves; AMACH (smooth pigweed) = 7 cm with 5 leaves.
Ratings were taken 2, 3 and 6 weeks after preplant incorporated and preemergence applications. The 6-week rating corresponds to 1 week after the postemergence application.

		Cucum	ber injury ²		Yield					
		3wk		5wk	н	arvest 1	H	arvest 2		
Treatment description	LLf ¹	Calypso	LLf	Calypso	LLf	Calypso	LLf	Calypso		
(kg ai/ha)	P		- (%)			····· (m	t/ha)			
Untreated check	0	0	23	30	5.5	2.7	4.0	5.3		
Naptalam, 4.48, pre	0	0	28	30	6.9	4.0	5.8	6.1		
Bensulide, 6.72, pre	0	0	0	3	14.2	6.0	6.7	9.3		
Ethalfluralin, 0.67, pre	3	0	0	3	11.5	6.1	7.9	8.4		
Ethalfluralin, 1.01, pre	1	0	0	8	9.7	4.7	5.8	8.7		
Ethalfluralin, 1.34, pre	1	1	8	15	13.2	5.5	7.3	10.1		
Ethalfluralin, 2.02, pre	4	3	8	8	11.1	6.2	6.0	10.2		
Ethalfluralin, 2.69, pre	19	4	15	18	10.2	5.1	7.2	9.2		
LSD (0.05)		10		16		2	.9			

Table 9. Cucumbers: Little Leaf and Calypso cucumber tolerance to herbicides, Kibler, 1991¹.

¹ LLf: Little Leaf cucumber.

² Ratings were taken 3 and 5 weeks after preemergence applications.

								Weed	control	3							
									6١	wk⁴				8	wk		
Treatment				3 wk				rov	N	mid	dle		row			middle	
description ²	DIGSA	ANVCR	POROL	AMAAL	ELEIN	PANDI	CYPES	DIGSA	AMAAL	DIGSA	AMAAL	DIGSA	AMAAL	CYPES	DIGSA	AMAAL	CYPES
(kg ai/ha)									(%)								
Weedy check Bensulide,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.7, ppi	90	99	89	83	95	93	76	100	100	88	0	100	100	100	82	12	0
Standing rye	94	98	98	94	96	89	93	34	65	74	79	20	28	0	20	28	0
Mowed rye	86	98	86	86	93	91	58	72	73	33	29	49	33	0	49	33	0
LSD (0.05)	9	5	8	9	13	7	53	27	20	31	29	48	44	NS	48	NS	NS

Table 10. Cover crops: Evaluation of rye for weed control in winter squash, Fayetteville, 1991¹.

		Crop injury											
	3 w	3 wk			8 w	<u>k</u>	Yie	d					
Treatment description ²	transplant	seeded	transplant	seeded	transplant	seeded	transplant	seeded					
(kg ai/ha)			(%))			(mt/l	na)					
Weedy check	0	0	2	25	47	35	0.1	0					
Bensulide, 6.7, ppi	0	0	0	0	0	0	4.0	0					
Standing rye	20	20	50	48	80	77	0.6	0					
Mowed rye	0	0	31	5	58	52	1.3	0					
LSD (0.05)	NS	NS	27	28	46	37	2.3	NS					

DIGSA = large crabgrass; ANVCR = spurred anoda; POROL = common purslane; AMAAL = tumble pigweed; ELEIN = goosegrass; PANDI = fall panicum; CYPES = yellow nutsedge.

² Paraquat was applied 2 weeks prior to planting as a preplant burndown treatment.

³ Ratings were taken 3, 6 and 8 weeks after planting.

⁴ Due to differences in weed control as a result of rye disturbance during planting, ratings for weed control within the crop row (row) and between crop rows (middle) were evaluated separately.

4

			Weed	control ²								
				3 W	/k ³							
Treatment	2	wk	r	ow	mic	ddle	Sq	uash ir	ijury	Squ	uash he	ight
description	DIGSA	AMAPA	DIGSA	AMAPA	DIGSA	AMAPA	2wk	3wk	4wk	2wk	3wk	4wk
(kg ai/ha)			(%)				(%)			- (cm) -	
Bensulide, 6.7, ppi	40	52	100	100	100	100	0	0	0	14	42	46
Sorghum-sudan ⁴	22	30	100	0	45	48	0	16	45	14	28	32
LSD (0.05)	NS	NS	NS	1	30	20	NS	8	21	NS	7	8

DIGSA = large crabgrass; AMAPA = Palmer amaranth.

² Ratings were taken 2, 3 and 4 weeks after planting.

³ Due to differences in weed control in the crop row (row) and between the crop rows (middle) weed control was evaluated separately.

⁴ A 50-cm band of sethoxydim at 0.34 kg ai/ha + CO (Agri-Dex, 1% v/v) was applied postemergence when sorghum-sudan was at the 3-leaf stage. Sorghum-sudan between the rows was treated with glyphosate at 0.87 kg ai/ha 1 week later.

			Weed control	3				
		AMAPA		Grasses	Crop injury ³			
Treatment description ²	8 wk⁴	8 wk⁵	12 wk	8 wk	8 wk		Yield	
				(%)		(mt/ha)	(no/ha)	(kg/melon)
Ethalfluralin, 1.68, pre (check) Ethalfluralin, 1.68, pre,	63	70	17	63	0	22	3897	6.0
fb ethalfluralin, 0.84, layby Ethalfluralin, 1.68, pre,	70	80	43	40	13	20	2498	8.2
fb ethalfluralin, 1.68, layby thalfluralin, 1.68, pre,	83	100	70	67	0	23	3997	5.9
fb ethalfluralin, 3.36, layby	83	100	53	90	0	27	5296	5.4
.SD (5%)	NS	NS	NS	NS	NS	NS	NS	1.7

Table 12. Watermelons: Evaluation of over-the-top, layby ethalfluralin treatments for weed control and phytotoxicity, Kibler, 1991¹.

Weed density on May 28 was 130/m²; weed distribution: 98% AMAPA (Palmer amaranth), 2% variable stand of ERBGR (southwestern cupgrass), SORHA (johnsongrass), ELEIN (goosegrass).

² Sethoxydim was applied to all treatments at 5 weeks after planting for grass control.

³ Ratings were taken 8 and 12 weeks after planting.

⁴ Eight-week AMAPA ratings of plants that germinated with the crop.

Eight-week AMAPA ratings of newly germinated (5-cm) plants.

			Wee	ed control ^a							
			APA		Gras	ses	Crop	injury ³			
Treatment description ²	4 wk	8 wk ⁴	8 wk ⁵	12 wk	4 wk	8 wk	4 wk	8 wk		Yield	
					(%)				- (mt/ha)	(no/ha)	(kg/melon
Conventional seedbed preparation:											
Veedy check	0	17	47	13	100	67	0	70	8.6	1499	4.1
Naptalam, 2.8 + bensulide, 5.6, TM, pre	23	50	55	30	100	68	0	30	6.6	1349	4.8
Ethalfluralin, 1.68, pre	88	76	60	20	100	83	0	0	22.1	2773	8.1
apropamide, 2.24, pre	34	47	70	33	100	70	0	33	6.0	1199	4.1
apropamide, 4.48, pre	28	58	75	28	100	70	0	28	6.0	1124	5.9
Vapropamide, 2.24, pre,											
fb napropamide, 2.24, ot, layby		58	83	35		80		43	6.6	1649	3.7
Napropamide, 2.24 +											
clomazone, 0.28, TM, pre	57	57	80	50	100	80	0	20	10.7	1799	6.0
Napropamide, 2.24 +											
ethalfluralin, 1.68, TM, pre	94	89	63	45	100	73	0	0	17.6	2548	6.8
thalfluralin, 1.68, pre 1-m band, atrazine,		100,000					~		0 - 2000 A.D.	0.000000000	
1.12, pre, directed off of 1-m band	83	63	67	17	100	60	17	0	18.0	2498	7.2
Ethalfluralin, 1.68, pre,								-			
fb DCPA, 11.2, ot layby		65	78	40		76		3	14.7	2023	7.2
tale seedbed preparation:											
lyphosate, 0.84 + naptalam, 2.8 +											
bensulide, 5.6, TM, pre	37	60	67	13	13	33	0	63	1.3	400	3.1
alyphosate, 0.84 +											
ethalfluralin, 1.68, TM, pre	73	53	60	18	78	68	0	35	6.6	1274	5.1
alyphosate, 0.84 +											
napropamide, 2.24, TM, pre	53	48	68	23	50	55	0	35	4.8	974	5.0
araquat, 0.56 + naptalam,											
2.8 + bensulide, 5.6, TM, pre	73	58	65	33	60	58	O	15	10.8	1948	5.2
araquat, 0.56 +											
ethalfluralin, 1.68, TM, pre	59	48	60	18	53	60	0	33	6.1	1349	4.4
Paraguat, 0.56 +											
napropamide, 2.24, TM, pre	70	50	75	28	63	68	0	23	5.9	1499	4.3
SD (5%)	28	22	16	NS	14	23	5	22	8.7	NS	2.0

Table 13. Watermelons: Evaluation of conventional and stale seedbed treatments for weed control and phytotoxicity, Kibler, 1991¹.

31

Table 13. Continued.

- ¹ Weed density on May 28 was 180/m²; weed distribution: 98% AMAPA (Palmer amaranth), 2% variable stand of ERBGR (southwestern cupgrass), SORHA (johnsongrass), ELEIN (goosegrass).
- ² Sethoxydim was applied to all treatments at 5 weeks after planting for grass control.
- ³ Ratings were taken 4, 8 and 12 weeks after planting.
- ⁴ Eight-week AMAPA ratings of plants that germinated with the crop.
- ⁵ Eight-week AMAPA ratings of newly germinated (5-cm) plants.

					Weed	control	3		8 8							
		XANS	ST	MC	LVE		IPOL	A	AM	APA		Crop in	jury	_		
Treatment description ²	3wk	5wk	10wk	3wk	5wk	3wk	5wk	10wk	5wk	10wk	3wk	5wk	10wk		Yield	
						('	%)							(mt/ha)	(no/ha)	(kg/melon
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	9	26.5	4951	5.4
Veed-free check	100	93	99	100	76	100	99	100	99	99	0	19	16	45.0	7180	6.3
lapropamide, 4.48, pre	55	61	88	100	86	58	78	100	100	100	8	9	18	33.2	6250	5.3
lapropamide, 2.24, pre																
fb napropamide,													-		_	
2.24, ot, layby	78	84	100	90	86	13	63	95	98	96	15	10	8	35.7	7024	5.1
lapropamide, 2.24 + clomazone, 0.28,																
TM, pre	95	93	98	100	83	50	75	95	98	96	10	15	11	32.3	5347	6.0
lapropamide, 2.24 +	00	55	50	100	00	50	15	33	50	50	10	15		52.5	5547	0.0
ethalfluralin,																
1.68, TM, pre	78	70	95	100	96	78	91	100	100	99	15	13	11	40.2	6460	6.2
laptalam, 2.24 +																
bensulide, 4.48, TM,																
pre (banded on drill)																
fb ethalfluralin,																
1.68, poe-dir, layby	78	38	90	50	10	58	30	100	100	96	10	10	10	28.0	4679	6.0
laptalam, 2.24 +																
bensulide, 4.48, TM,																
pre (banded on drill)																
fb napropamide, 2.24,																
ot, layby	85	38	88	15	10	75	30	83	100	99	3	30	14	27.3	5283	5.2
laptalam, 2.24 +																
bensulide, 4.48, pre	20	33	74	45	0	70	10	90	65	98	0	10	10	36.1	6618	5.5
thalfluralin, 1.68, pre	45	0	76	85	40	68	30	100	98	98	10	10	8	31.1	4500	6.9
SD (5%)	44	34	NS	39	25	NS	51	NS	31	NS	NS	NS	NS	NS	NS	NS

Table 14. Watermelons: Evaluation of herbicide treatments for weed control and phytotoxicty, Jonesboro, 1991¹.

Weed density on June 3 was 120/m²; weed distribution: MOLVE (carpetweed) = 90%; variable stands of XANST (common cocklebur), IPOLA (pitted morningglory) and AMAPA (Palmer amaranth) = 10%. Sethoxydim was applied to all treatments at 5 weeks after planting for grass control. Ratings were taken at 3, 5 and 10 weeks after planting.

2

з

					eed cont										
-	DIGSA	-	LVE		NST		DLA	-	APA		Crop in		-		
Treatment description ²	3wk	3wk	5wk	5wk	10wk	5wk	10wk	5wk	10wk	3wk	5wk	10wk	100 000 000 000 000 000 000 000 000 000	Yield	
						(%)							(mt/ha)	(no/ha)	(kg/melon)
Weedy check	0	0	0	0	0	0	0	0	0	0	0	0	25.5	2953	8.6
Weed-free check	100	70	80	87	97	88	95	98	100	0	7	10	26.3	3004	8.8
Napropamide, 4.48, pre	100	80	85	68	73	20	27	100	77	13	30	3	25.5	2937	8.7
Napropamide, 2.24, pre															
<u>fb</u> napropamide,										_					
2.24, ot, layby	100	97	83	58	75	53	60	100	95	0	13	0	36.0	4085	8.8
Napropamide, 2.24 +															
clomazone, 0.28,														00.15	
TM, pre	100	100	87	63	85	43	27	100	98	0	15	20	34.9	3945	8.9
Napropamide, 2.24 +															
ethalfluralin,	-							-			~~				
1.68, TM, pre	67	67	90	85	85	87	87	93	100	0	22	12	25.9	3412	7.6
Naptalam, 2.24 +															
bensulide, 4.48, TM,															
pre (banded on drill)															
fb ethalfluralin,	100		~~	70	~~			100	400	0	~	47	00.0	0504	10.5
1.68, poe-dir, layby	100	57	38	70	90	87	80	100	100	0	8	17	36.9	3504	10.5
Naptalam, 2.24 +															
bensulide, 4.48, TM,															
pre (banded on drill)															
fb napropamide, 2.24,	100	40	47	50	50	60	07	00	00	0	0	20	00.0	5065	7.6
ot, layby Naptalam, 2.24 +	100	40	47	58	58	60	37	98	93	0	2	20	38.6	2002	7.0
bensulide, 4.48, pre	100	70	40	00	00	20	20	100	100	-	17	7	24.0	1051	8.4
Ethalfluralin, 1.68, pre	100	73 67	40 75	80 40	93 53	33 57	30 13	100 100	100 67	7 0	7	7	34.0 42.1	4051 5459	8.4 7.7
Lutanurant, 1.00, pre	100	0/	15	40	53	5/	13	100	10	U	1	1	42.1	5459	1.1
LSD (5%)	31	NS	38	NS	NS	NS	NS	7	NS	NS	NS	NS	NS	NS	NS

Table 15. Watermelons: Evaluation of herbicides applied post-transplant, over-the-top for weed control and phytotoxicity, Jonesboro, 1991¹.

Weed density on June 3 was 120/m²; weed distribution: DIGSA (large crabgrass) = 10%; MOLVE (carpetweed) = 90%; variable stands of XANST (commo cocklebur), IPOLA (pitted morningglory) and AMAPA (Palmer amaranth).

² Sethoxydim was applied to all treatments at 5 weeks after planting for grass control.

Table 16. Blackberry: Evaluation of metolachlor for phytotoxicity, Fayetteville, 1991.

	Crop injury ¹	
Treatment description	2 wk	Yield ²
(kg ai/ha)	(%)	(mt/ha)
Control	0	2.27
Metolachlor, 2.24, poe-dir	0	2.17
Metolachlor, 4.48, poe-dir	0	2.57
LSD (0.05)	NS	NS

Ratings were taken 2 weeks after post-directed applications. There were no differences in maturity, so harvests were combined for total yield. 2

Table 17. Grapes: Evaluation of dithiopyr and MON-13211 for phytotoxicity and weed control, Fayetteville, 1991.

	ERICA control ^{1,2}	Crop	injury ²	
Treatment description	6 wk	2 wk	6 wk	Yield
(kg ai/ha)		(%)		(mt/ha)
Weedy check	0	0	0	13
Dithiopyr, 0.55, pre	43	0	0	15
Dithiopyr, 1.1, pre	58	0	0	12
Dithiopyr, 2.2, pre	86	0	0	19
MON-13211, 0.55, pre	17	0	0	18
MON-13211, 1.1, pre	40	0	0	19
MON-13211, 2.2, pre	30	0	0	12
Oryzalin, 2.2 + diuron, 2.8, TM, pre	97	0	0	14
LSD (0.05)	47	NS	NS	NS

ERICA = horseweed.

Ratings were taken 2 and 6 weeks after preemergence applications. 2

Arkansas

		1227			Sucker contro	ol ²			
		2 wk			3 wk			4 wk	
Freatment description	Saturn	Reliance	Mars	Saturn	Reliance	Mars	Saturn	Reliance	Mars
(kg ai/ha)					(%)				
Control	0	0	0	0	0	0	0	0	0
Glufosinate, 0.84, poe-dir	29	30	71	23	3	82	10	0	85
Glufosinate, 0.84 + oryzalin, 2.2 + diuron, 2.2, TM, poe-dir	10	43	40	23	47	53	62	43	40
SD (0.05)	NS	NS	25	NS	NS	40	36	NS	21

						w	eed cor	trol ²									
Treatment		1	wk ²			2 wk			3	wk		4 v	vk	Crop		Yield	
description	ERICA	LACSE	OEOLA	VICVI	ERICA	LACSE	VICVI	ERICA	LACSE	OEOLA	VICVI	ERICA	LACSE	Injury ^{2,3}	Saturn	Reliance	Mars
(kg ai/ha)								- (%)								(mt/ha)	
Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	7	3
Glufosinate, 0.84,																	
poe-dir	100	99	100	100	100	100	100	100	100	100	100	100	100	0	8	6	4
Glufosinate, 0.84 + oryzalin, 2.2 + diuron, 2.2, TM,																	
poe-dir	99	90	100	94	100	100	100	100	100	100	100	100	100	0	5	6	7
LSD (0.05)	2	2	40	3	1	1	1	1	1	1	1	1	1	NS	NS	NS	NS

Average weed sizes at the time of postemergence applications: ERICA (horseweed) = 50 cm; LACSE (prickly lettuce) = 40 cm; OEOLA (cutleaf eveningprimrose) = 40 cm dia.; VICVI (common vetch) = 60 cm; suckers: Saturn = 10-100 cm with 5-15 leaves; Reliance = 10-100 cm with 5-15 leaves; Mars = 10-100 cm with 5-15 leaves.

² Ratings were taken 1, 2, 3 and 4 weeks after application.

1

³ No crop injury was observed for the varieties evaluated during the rating period, so results were averaged over variety and time.

Treatment		CY	PES cont	rol ²	1 2 2.7.7720 2.372	CYPES density ³			Injury ²		
description	2 wk	3 wk	4 wk	6 wk	9 wk	6 wk	2 wk	3 wk	4 wk	6 wk	9 wk
(kg ai/ha)			(%)			(#/m²)			(%)		
Weedy check Bentazon, 1.12 + CO (Agri-	0	0	0	0	0	1158	0	0	0	0	0
Dex [●] , 1% v/v), poe (1 wk, 4 wk, 7 wk) ⁴ Bentazon, 1.12 + CO (Agri-	0	0	24	53	94	893	0	0	0	0	0
Dex®, 1% v/v), poe (1 wk, 3 wk, 4 wk, 7 wk)⁴	0	0	25	56	75	1027	0	0	0	0	0
LSD (0.05)	NS	NS	NS	30	14	NŞ	NS	NS	NS	NS	NS

Table 19. Boxwood: Evaluation of bentazon for weed control and phytotoxicity, Fayetteville, 1991¹.

CYPES = yellow nutsedge.

² Ratings were taken 2, 3, 4, 6 and 9 weeks after planting.

³ Density counts were made 6 weeks after planting.

⁴ Bentazon treatments were made 1, 3, 4 and 7 weeks after planting.

Table 20. Coreopsis: Evaluation of sethoxydim for phytotoxicity, Fayetteville, 1991.

	Inj	ury ¹	
Treatment description	1 wk	5 wk	
(kg ai/ha)	(*	%)	
Weedy check	0	0	
Sethoxydim ² , 0.56 + CO (Agri-Dex [®] , 1% v/v), poe	0	0	
Sethoxydim, 1.12 + CO (Agri-Dex [®] , 1% v/v), poe	0	0	
Sethoxydim, 0.56 + CO (Agri-Dex [®] , 1% v/v), poe <u>fb</u>			
sethoxydim, 0.56 + CO (Agri-Dex [®] , 1% v/v), poe (30 days later)	0	0	
LSD (0.05)	NS	NS	

Injury ratings were taken 1 and 5 weeks after the first sethoxydim application. The 5-week rating corresponds to 2 weeks after the second sethoxydim application.

² Poast Plus[®] was used as the source of sethoxydim.

		CYPES	control ²		CYPES density ³		Inju	iry ²	
reatment description	2 wk	3 wk	4 wk	6 wk	4 wk	2 wk	3 wk	4 wk	6 wk
(kg ai/ha)		('	%)		(pl/m²)		(%)	
Veedy check	0	0	0	0	112	0	0	0	0
lapropamide, 4.5, tp-pre	0	0	10	0	161	0	0	0	0
lapropamide, 9.0, tp-pre	0	0	16	5	228	0	0	0	0
SD (0.05)	NS	NS	NS	NS	NS	NS	NS	NS	NS

CYPES = yellow nutsedge.

2 Ratings were taken 2, 3, 4 and 6 weeks after application.

Density counts were made 4 weeks after application. 3

Table 22. Hosta: Evaluation of napropamide for weed control and phytotoxicity, Fayetteville, 1991¹.

			We	ed control ²			Crop				10000
	1000 U.U.	CY	PES		AN	1AAL	density ³		Inji	ury ²	
Treatment description	2 wk	3 wk	4 wk	6 wk	2 wk	3 wk	4 wk	2 wk	3 wk	4 wk	6 wk
(kg ai/ha)				- (%)			(pl/m²)		(%	6)	
Weedy check	0	0	0	0	0	0	169	0	0	0	0
Napropamide, 4.5, tp-pre	0	0	0	0	100	100	77	0	0	0	0
Napropamide, 9.0, tp-pre	0	0	23	0	100	100	265	0	0	0	0
LSD (0.05)	NS	NS	15	NS	1	2	NS	NS	NS	NS	NS

CYPES = yellow nutsedge; AMAAL = tumble pigweed. 2

Ratings were taken 2, 3, 4 and 6 weeks after application.

		10 - 100 - 100 -			In	jury ¹		and dominants of a	2 7			
Treatment			Daisy					Yarrow			Plants	s/Plot ²
description	1 wk	2 wk	3 wk	4 wk	6 wk	1 wk	2 wk	3 wk	4 wk	6 wk	Daisy	Yarrow
(kg ai/ha)					(%)					10	
Control	0	0	0	0	0	0	0	0	0	0	5	5
Metolachlor (7.8E),												
4.48, tp-pre	0	0	0	1	13	0	0	0	5	5	4.5	5
Metolachlor (7.8E),												
8.96, tp-pre	0	0	0	8	23	0	0	0	4	0	4.5	5
Metolachlor (5G),												
4.48, tp-pre	0	0	0	5	25	0	0	0	28	25	4	5
Metolachlor (5G),												
8.96, tp-pre	0	0	0	23	58	0	0	0	24	23	4	4.5
LSD (0.05)	NS	NS	NS	NS	31	NS	NS	NS	6	9	NS	NS

Table 23. Container Ornamentals: Evaluation of metolachlor for phytotoxicity on daisy and yarrow, Fayetteville, 1991.

Injury ratings were taken 1, 2, 3, 4 and 6 weeks after application. Recorded 6 weeks after treatment.

2

Table 24. Daisy: Evaluation of oryzalin for phytotoxicity on container-grown daisy, Fayetteville, 1991.

		Ini	ury ¹	
Treatment description	1 wk	2 wk	3 wk	5 wk
(kg ai/ha)		(%)	
Control	0	0	0	0
Oryzalin, 2.24, tp-pre	0	0	0	0
Oryzalin, 4.48, tp-pre	0	0	0	0
LSD (0.05)	NS	NS	NS	NS

Ratings were taken 1, 2, 3 and 5 weeks after treatment.

-			1	njury1		
Treatment description	1 v	vk 21	vk :	3 wk	4 wk	6 wk
(kg ai/ha)				(%)		
Control	(D	0	0	0	0
Napropamide, 4.5, tp-pre		0	0	0	0	0
Napropamide, 9.0, tp-pre		D	D	0	0	0
LSD (0.05)	NS	S N	S	NS	NS	NS

Table 25. Hosta: Evaluation of napropamide for phytotoxicity on container-grown hosta, Fayetteville, 1991.

Ratings were taken 1, 2, 3, 4 and 6 weeks after treatment.

Table 26. Wildflowers: Evaluation of metolachlor for phytotoxicity on rudbeckia and yarrow, Fayetteville, 1991.

	i	Inju	ıry ¹	
	Rud	beckia	Ya	rrow
reatment description	2 wk	5 wk	2 wk	5 wk
(kg ai/ha)		((%)	
Control	0	0	0	0
letolachlor (8E), 4.48, tp-pre	0	0	8	13
letolachlor (8E), 8.96, tp-pre	0	0	23	43
fetolachlor (5G), 4.48, tp-pre	0	0	18	26
letolachlor (5G), 8.96, tp-pre	0	8	5	30
SD (0.05)	NS	NS	13	13

-	DIG	SA				Inju	Iry ²					
Treatment	con	trol		Rud	beckia			Yar	row		Stand cou	ints ³
description	2 wk	4 wk	2 wk	4 wk	5 wk	8 wk⁴	2 wk	4 wk	5 wk	8 wk⁴	Rudbeckia	Yarrow
(kg ai/ha)					(%	,)					(pl/plo	t)
Weedy check Fluazifop-P, 0.42 + WA (X-77®, 0.25%	0	0	0	0	0	0	0	0	0	0	4.0	4.0
v/v), poe Fluazifop-P, 0.84 + WA (X-77®, 0.25%		100	0	0	0	0	0	0	0	0	4.0	4.0
v/v), poe Isoxaben, 0.56,		100	13	5	18	5	0	3	8	15	3.3	3.8
tp-pre Isoxaben, 1.12,	100	100	53	28	63	8	65	40	88	90	1.5	0.8
tp-pre Isoxaben, 2.24,	100	100	59	58	79	40	85	100	98	••	1.3	0.0
tp-pre Oryzalin, 2.24,	100	100	68	68	78	20	88	95	98		1.3	0.0
tp-pre Oryzalin, 4.48,	100	100	15	10	18	0	18	18	23	18	3.0	3.0
tp-pre	100	100	23	23	45	23	20	26	25	33	2.3	3.8
LSD (0.05)	1	1	26	20	25	25	21	24	23	27	0.9	0.9

Table 27. Wildflowers: Evaluation of herbicides for weed control and phytotoxicity, Fayetteville, 1991'.

DIGSA (large crabgrass) size at the fluazifop-P application was 1-5 cm with 2-4 leaves.

² Ratings were taken at 2, 4, 5 and 8 weeks after the tp-pre applications. The 4-, 5- and 8-week ratings correspond to 2, 3 and 6 weeks after the postemergence applications.

³ Stand counts were taken 8 weeks after the tp-pre applications.

⁴ The 8-week rating is based only on surviving plants.

<u>. </u>			y	a1.	Injury ¹				
			0 6 6 6	-		Red		Tall	
Treatment	Painted	Blue	California	Lanceleaf	Perennial	Mexican	Scarlet	Evening	Blanket
description	daisy	Flax	Poppy	Coreopsis	Lupine	Hat	Flax	Primrose	Flower
		••••••		•••••	(%)	•••••		•••••	•••••
Weed-free check	0	0	0	0	0	0	0	0	0
DCPA, 11.2, pre	33	43	0	7	7	0	10	33	100
Napropamide, 2.2, pre	0	55	75	0	60	0	50	50	0
EPTC, 3.3, pre	37	23	50	10	0	93	13	100	90
Metolachlor, 2.2, pre	87	53	90	40	7	87	27	100	87
Simazine, 2.2, pre	100	100	100	100	100	100	100	100	100
Pendimethalin, 1.1, pre	30	33	17	7	7	100	63	33	50
Terbacil, 1.1, pre	100	100	100	100	100	100	93	100	100
Oryzalin, 2.2, pre	67	73	27	7	10	70	63	43	50
LSD (0.05)	66	55	22	33	32	23	41	76	87
					Injury				
Treatment	b	Corn-	Lemon	Ox-ey		-eyed	Prairie	Blazing	White
description	Chicory	flower	Mint	Daisy		san C	Coneflower	Star	Yarrow
					(%)	••••••		••••••	•••••
Weed-free check	0	0	0	C		0	0	0	0
DCPA, 11.2, pre	57	0	100	67		80	83	67	60
Napropamide, 2.2, pre	75	45	50	100		100	100	50	90
EPTC, 3.3, pre	47	33	100	100		100	100	100	100
Metolachlor, 2.2, pre	87	50	100	100		100	100	67	100
Simazine, 2.2, pre	100	100	100	100		100	100	100	100
Pendimethalin, 1.1, pre	67	23	65	7		100	67	33	67
Terbacil, 1.1, pre	100	100	100	100		100	100	100	100
Oryzalin, 2.2, pre	67	67	100	100		100	100	100	100
LSD (0.05)	44	39	49	38		28	44	68	55

Table 28. Evaluation of selected herbicides for phytotoxicity to wildflowers, Fayetteville, 1991.

42

			55 (A242)A	Wee	d contr	ol ²															
			C	YPES			DIGSA	C	YPES	densit	γ ²			a injur					yrtle i		
Treatment description	3wk	4wk	5wk	6wk	10wk	17wk	6wk			10wk		3wk	4wk	5wk	6wk			5wk	6wk	10wk	17wk
(kg ai/ha)					(%)				(plan	its/m²)						(%)					
Control	0	0	0	0	0	0	0	687	930	925	164	0	0	0	0	0	0	0	0	0	0
Metolachlor (5G), 6.72,																					
tp-pre ³	66	73	73	50	28	98	98	297	231	213	2	0	10	6	0	0	0	0	0	0	0
Metolachlor (5G), 6.72,																					
tp-pre fb bentazon,																					
1.12 + CO (Agri-Dex,																					
1% v/v), poe (3-4 lf)																				12	
(2 wk, 4 wk, 5 wk, 7 wk) ⁴	70	73	78	86	80	99	96	277		126	2	0	0	0	1	0	0	0	0	0	0
Chlorimuron, 0.036, tp-pre ³	86	79	83	74	34	96	60	158	174	328	14	0	0	0	0	0	0	0	4	0	0
Chlorimuron, 0.062, tp-pre ³	93	93	95	85	70	99	70	213	134	239	0	0	0	3	3	0	0	0	6	0	0
Chlorimuron, 0.036, tp-pre ³																					
fb bentazon, 1.12 + CO																					
(Agri-Dex, 1% v/v), poe																					
(3-4 lf) (2 wk, 4 wk,			101101	200				-				140			2			_			20
5 wk, 7 wk)⁴	85	86	86	81	69	73	60	217	210	307	94	0	15	0	4	0	0	0	4	0	0
Chlorimuron, 0.036, tp-pre ³																					
fb chlorimuron, 0.036,	-		_									-			_	_		-	-		
poe (5 wk)⁴	84	80	71	76	92	94	51	253	223	96	22	0	8	0	3	0	0	0	6	0	0
Bentazon, 1.12 + CO																					
(Agri-Dex, 1% v/v), poe																					
(3-4 lf) (2 wk, 4 wk,	-						-								-		-	_	-		_
5 wk, 7 wk)⁴	0	30	43	63	94	45	8	574		55	140	0	0	3	3	0	0	0	3	0	0
mazaquin, 0.43, tp-pre ³	94	88	75	69	40	97	95	144	482	343	17	0	20	5	5	0	0	0	8	74	60
_SD (0.05)	14	13	12	19	12	28	19	168	202	113	97	NS	NS	NS	NS	NS	NS	NS	5	12	2

Table 29. Woody Ornamentals: Yellow nutsedge control programs in woody ornamentals, rayettevine, 1991.

CYPES = yellow nutsedge; DIGSA = large crabgrass.

² Weed control ratings, crop injury ratings and weed counts were taken 3, 4, 5, 6, 10 and 17 weeks after the preemergence treatments were first applied.

³ Plots were hand weeded and preemergence treatments were reapplied on July 18, which corresponds to 10 weeks after the first preemergence application.

⁴ Postemergence treatments were applied at 2, 4, 5 or 7 weeks after preemergence treatments.

Table 30. Bedding plants: Evaluat		ndiciue	5 101 W	eeu co	niroi anu j	ohytotoxici	<u>iy, ray</u>	Injury		•					
			Ageratu					sum (c	v. New			200	Aster		
101211 AT 24 101 102 109			Blue Da			-		pet of S					Double		
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk		6wk	10wk	1wk	2wk	4wk	<u>6wk</u>	10wk
(kg ai/ha)				••••••				(%)							
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Isoxaben, 0.8, pre	10	7	17	27	0	100	73	100	100	100	0	0	72	43	77
Isoxaben, 1.1, pre	0	7	10	30	0	91	67	100	100	100	0	0	73	37	30
[Isoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	0	0	З	0	0	87	10	100	100	100	0	0	30	0	10
[Isoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	0	0	0	10	0	73	30	98	100	100	0	0	72	7	17
Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	0	5	14	20	0	70	23	100	100	100	0	0	38	8	53
Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	0	3	7	10	0	87	10	95	100	100	0	0	28	10	47
Dithiopyr, 1.1, pre	0	0	0	0	0	45	20	78	60	33	0	0	59	25	8
Dithiopyr, 2.2, pre	0	0	0	0	0	45	3	94	65	75	0	0	34	0	45
Dithiopyr, 4.5, pre	0	3	3	10	8	88	28	95	100	100	0	0	29	25	43
Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout®, 3.36), pre]	20	28	5	3	0	68	58	50	10	0	0	0	60	0	8
Pendimethalin, 2.2, pre	0	0	0	0	0	30	0	48	20	0	0	0	27	10	23
Aetolachlor (Pennant® 5G), 4.5, pre	0	0	0	0	10	7	3	7	0	0	0	0	17	0	43
Sethoxydim, 0.21 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	0	5	0	0	0	10	0	0	0	0	23	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	0	0	0	8	0	19	4	20	0	0	39	0	15
Clethodim, 0.14 + WA															
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30
lyphosate, 0.83, poe-dir ³	0	0	6	0	0	45	0	62	48	45	0	0	29	58	53
alufosinate, 0.82, poe-dir3	0	0	0	0	0	50	0	20	0	0	0	0	49	0	70
SD (0.05)	NS	8	6	14	NS	34	22	23	28	34	NS	NS	28	33	38

Table 30. Bedding plants: Evaluation of herbicides for weed control and phytotoxicity, Fayetteville, 1991¹.

44

Table 30.	Continued.
-----------	------------

			100 0 0		<i>0</i>			Injury ²							
			Celosi	-				Coreop					Dahlia	-	
			Kewpie					I. lance					(cv. Fig		anta a ¹
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk		4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk
(kg ai/ha)								(%)							
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lsoxaben, 0.8, pre	23	0	33	82	87	50	16	58	23	10	7	0	52	40	100
Isoxaben, 1.1, pre	25	3	67	71	100	13	3	37	37	33	0	0	30	70	100
lsoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	7	3	30	40	87	60	43	90	73	0	0	0	20	0	87
[Isoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	13	3	50	70	100	10	0	31	20	30	13	0	17	47	77
[Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	5	3	34	45	83	5	20	23	0	0	8	0	10	18	60
Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	13	0	42	57	95	37	3	40	37	33	0	0	5	17	97
Dithiopyr, 1.1, pre	0	0	8	0	15	0	0	14	0	0	0	0	0	0	50
Dithiopyr, 2.2, pre	0	0	24	23	53	0	0	0	0	0	0	0	3	0	0
Dithiopyr, 4.5, pre	0	0	16	13	65	0	0	0	0	0	0	0	5	5	50
Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout [®] , 3.36), pre]	25	10	58	48	23	33	30	13	0	0	13	13	3	5	15
Pendimethalin, 2.2, pre	0	0	10	0	20	0	3	0	0	0	0	0	0	13	20
Metolachlor (Pennant® 5G), 4.5, pre	0	0	7	7	10	0	0	0	0	0	0	0	3	0	0
Sethoxydim, 0.21 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	3	0	0	8	0	З	0	0	0	0	3	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	4	0	0	0	0	0	0	0	0	0	3	0	0
Clethodim, 0.14 + WA															
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	8	0	0	0	0	0	0	0	0	13	0
Glyphosate, 0.83, poe-dir ³	0	0	8	Ō	68	Ō	0	69	75	75	Ō	Ō	14	10	75
Glufosinate, 0.82, poe-dir ³	10	Ō	16	13	80	23	Ō	48	33	75	8	Ō	4	0	75
- LSD (0.05)	14	23	23	22	33	29	27	27	31	37	NS	NS	12	29	44

Continued.

cide

T	ab	le	30.	Cor	ntin	ued.

								Injury	2						
			Dianth	JS			(Geraniu	ım				Hibiscu	1000 C	
		(cv	. Fanta	isia)			(cv. F	Pinwhe	el Red)				outhern	Belle)	
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk		10wk	1wk	2wk	4wk	6wk	10wk
(kg ai/ha)			••••••					(%)							
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lsoxaben, 0.8, pre	27	0	40	47	100	0	3	43	33	10	0	3	7	0	0
lsoxaben, 1.1, pre	30	0	50	50	67	0	3	23	37	33	7	3	10	10	0
Isoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	10	3	32	37	67	7	0	12	0	0	33	20	62	13	0
lsoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	17	0	27	23	42	0	0	7	0	20	10	7	23	17	0
Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	38	5	58	74	65	0	0	8	0	23	0	5	23	0	0
Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	13	0	10	17	50	0	з	7	7	10	3	з	25	0	27
Dithiopyr, 1.1, pre	22	0	0	0	0	0	0	15	0	0	0	0	0	0	0
Dithiopyr, 2.2, pre	0	0	0	0	0	0	з	29	5	8	5	3	13	5	0
Dithiopyr, 4.5, pre	5	0	20	8	60	8	0	34	23	20	5	5	8	5	0
Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout®, 3.36), pre]	0	3	3	5	0	0	5	11	0	8	38	38	25	0	0
Pendimethalin, 2.2, pre	0	5	33	33	67	0	0	7	0	0	20	7	37	40	17
Metolachlor (Pennant® 5G), 4.5, pre	0	0	0	0	30	0	3	35	13	10	10	10	7	0	0
Sethoxydim, 0.21 + CO															
(Agri-Dex♥, 1% v/v), poe ³	8	0	8	0	0	0	0	5	0	0	3	0	0	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	8	0	8	0	0	0	0	10	0	0	З	0	5	0	0
Clethodim, 0.14 + WA															
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	10	0	0	0	0	15	0	0	0	5	0
Glyphosate, 0.83, poe-dir ³	0	0	35	43	75	8	0	7	0	0	0	0	9	0	0
Glufosinate, 0.82, poe-dir ³	23	0	31	0	50	8	0	18	0	15	18	0	8	0	0
LSD (0.05)	NS	4	30	33	48	10	4	22	22	30	13	8	12	12	14

Table 30. Continued.

Table 30. Continued.		2.5						Injury	2	**				1. V.	
		lm	patiens	s (cv.				Marigo	ld				Marigo	ld	
		Super	Elfin C	()range			(cv. Pir	neapple	e Crush)		(cv	. Red I	Hero)	
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk
(kg ai/ha)								(%)							
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Isoxaben, 0.8, pre	47	12	78	67	87	33	3	62	53	43	37	13	60	53	10
Isoxaben, 1.1, pre	33	13	77	70	97	13	0	27	43	20	47	13	53	63	33
[Isoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	33	3	65	53	73	10	0	7	0	0	0	0	10	7	0
[Isoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	10	0	50	27	20	0	0	49	53	43	7	2	43	37	0
[Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	5	3	55	40	40	0	0	3	3	8	15	5	13	13	20
[Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	7	0	22	17	10	7	0	0	10	0	7	0	30	30	10
Dithiopyr, 1.1, pre	0	0	25	0	8	0	0	0	0	0	8	3	5	0	0
Dithiopyr, 2.2, pre	0	0	13	5	0	0	0	0	0	0	0	0	0	0	0
Dithiopyr, 4.5, pre	8	5	24	13	18	5	0	5	8	0	0	0	0	0	0
[Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout [®] , 3.36), pre]	75	100	100	100	100	25	0	30	23	0	40	20	39	20	0
Pendimethalin, 2.2, pre	0	0	58	27	23	0	0	3	13	0	0	0	7	13	13
Metolachlor (Pennant® 5G), 4.5, pre	0	0	33	10	0	0	0	10	20	0	0	2	10	0	43
Sethoxydim, 0.21 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	13	0	0	0	0	0	0	0	5	0	0	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex [®] , 1% v/v), poe ³	0	0	20	0	10	0	0	5	0	0	0	0	0	0	0
Clethodim, 0.14 + WA															
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0
Glyphosate, 0.83, poe-dir ³	0	0	20	0	10	0	0	0	8	0	0	0	8	0	0
Glufosinate, 0.82, poe-dir ³	0	0	28	8	23	0	0	3	0	0	0	0	15	13	25
LSD (0.05)	27	5	22	18	30	14	NS	20	18	20	17	31	30	24	33

Continued.

Table 30. Continued.

								Injury	2							
			Nicotin	ia			Ornar	nental	Peppers	5		Petunia				
		(cv	. Nicki	Red)			(cv.	Fire W	(orks)			(cv.	Red C	loud)		
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk	
(kg ai/ha)								(%)					••••••			
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	
lsoxaben, 0.8, pre	77	20	100	100	100	27	12	55	73	43	27	0	17	30	10	
lsoxaben, 1.1, pre	50	3	98	100	100	43	23	65	67	67	23	3	13	37	10	
[Isoxaben, 0.55 + oryzalin,																
1.65 (Snapshot® 80DF, 2.2), pre]	43	10	100	100	100	27	12	42	30	20	13	0	40	27	0	
[Isoxaben, 0.83 + oryzalin,																
2.48 (Snapshot [®] 80DF, 3.3), pre]	40	З	91	77	67	30	10	40	27	30	23	0	18	13	10	
[Isoxaben, 0.84 + trifluralin,																
3.36 (Snapshot [®] 2.5G, 4.2), pre]	31	10	95	95	100	18	12	33	58	30	0	5	8	8	0	
[Isoxaben, 1.12 + trifluralin,																
4.48 (Snapshot® 2.5G, 5.6), pre]	47	o	100	100	100	27	3	27	40	23	3	З	3	10	20	
Dithiopyr, 1.1, pre	0	0	19	0	30	0	0	0	0	0	0	з	8	0	8	
Dithiopyr, 2.2, pre	0	0	53	48	73	8	0	20	3	8	0	0	8	0	0	
Dithiopyr, 4.5, pre	10	3	78	90	100	10	3	39	31	25	15	з	56	50	50	
Oxyfluorfen, 1.12 + oryzalin,																
2.24 (Rout [®] , 3.36), pre]	85	61	95	98	25	95	73	95	100	100	13	96	100	75	100	
Pendimethalin, 2.2, pre	7	0	47	13	0	0	7	10	0	0	25	7	23	0	17	
Metolachlor (Pennant® 5G), 4.5, pre	0	0	7	13	10	10	7	23	13	0	10	0	8	0	0	
Sethoxydim, 0.21 + CO																
(Agri-Dex [®] , 1% v/v), poe ³	0	0	0	0	0	0	0	З	0	0	0	0	5	0	0	
Sethoxydim, 0.31 + CO																
(Agri-Dex [®] , 1% v/v), poe ³	0	0	0	0	0	0	0	5	0	0	0	0	4	0	0	
Clethodim, 0.14 + WA																
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	
Glyphosate, 0.83, poe-dir ³	0	0	8	18	18	3	0	24	25	15	0	0	33	13	25	
Glufosinate, 0.82, poe-dir ³	15	0	10	8	18	0	0	3	0	0	8	0	28	25	45	
LSD (0.05)	26	12	19	19	37	17	12	27	32	36	NS	5	26	29	37	

Table 30. Continued.

	-					1 K		Injury	2						
			Petuni					Blue Sa					Salvia		
		(cv.	Snow	Cloud)	<u></u>	<u>10 10 0</u>		. Blue					. Red I	Pillar)	
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk	6wk	10wk
(kg ai/ha)								(%)							
Weed-free check	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0
Isoxaben, 0.8, pre	0	13	43	53	67	86	60	100	100	100	97	70	100	100	100
Isoxaben, 1.1, pre	17	0	50	33	0	67	37	100	100	100	100	93	100	100	100
[Isoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	57	0	38	0	33	43	17	93	100	100	100	85	100	100	100
[Isoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	23	0	43	13	30	27	33	88	100	100	100	100	100	100	100
[Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	0	0	21	5	0	23	3	78	86	98	35	20	91	95	100
[Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	7	0	40	27	20	50	3	88	98	100	63	26	95	100	100
Dithiopyr, 1.1, pre	0	0	14	0	0	0	3	8	0	0	0	8	33	0	72
Dithiopyr, 2.2, pre	15	0	3	8	0	0	5	34	10	0	0	3	18	13	75
Dithiopyr, 4.5, pre	30	3	29	15	40	0	45	68	63	73	0	3	48	8	90
[Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout [®] , 3.36), pre]	100	60	78	58	50	36	0	25	0	0	33	26	34	0	0
Pendimethalin, 2.2, pre	17	13	20	0	0	0	0	53	30	0	0	8	35	17	33
Metolachlor (Pennant® 5G), 4.5, pre	10	0	52	13	0	0	0	0	0	0	0	0	20	13	10
Sethoxydim, 0.21 + CO															
(Agri-Dex®, 1% v/v), poe ³	8	0	3	0	0	0	0	0	0	0	0	0	0	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex®, 1% v/v), poe ³	0	0	8	0	0	0	0	3	3	0	0	0	4	0	15
Clethodim, 0.14 + WA															
(X-77 [®] , 0.25% v/v), poe ³	0	0	0	0	15	0	0	0	0	0	0	0	0	0	35
Glyphosate, 0.83, poe-dir ³	5	0	13	8	23	0	0	15	20	10	0	0	8	10	35
Glufosinate, 0.82, poe-dir ³	10	0	23	8	23	0	0	6	0	19	8	0	18	0	38
LSD (0.05)	19	20	38	32	44	23	19	21	22	23	16	12	18	15	39

Continued.

Crops

cide

Evaluations

on

Small

Fruit,

Vegetable

and

Ornamental

								Injury	2		224 1240	tonesola en			
		S	napdra	igon				Vinca	1				Zinnia	a	
			v. Tah				(cv.	Bright	Eyes)		13 	(cv. \	ellow l	Marvel)	
Treatment description	1wk	2wk	4wk	6wk	10wk	1wk	2wk	4wk		10wk	1wk	2wk	4wk	6wk	10wk
(kg ai/ha)				•••••				(%)		•••••	•••••	•••••			
Weed-free check	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lsoxaben, 0.8, pre	27	36	88	93	100	0	0	32	27	23	7	13	33	30	0
Isoxaben, 1.1, pre	55	53	97	100	100	10	0	23	20	27	0	3	23	30	0
[Isoxaben, 0.55 + oryzalin,															
1.65 (Snapshot® 80DF, 2.2), pre]	53	33	75	77	77	7	0	13	13	47	13	0	30	20	0
[Isoxaben, 0.83 + oryzalin,															
2.48 (Snapshot® 80DF, 3.3), pre]	33	18	83	100	97	17	0	33	37	43	0	3	12	10	0
[Isoxaben, 0.84 + trifluralin,															
3.36 (Snapshot® 2.5G, 4.2), pre]	25	13	81	73	98	15	3	24	25	25	0	5	20	8	0
[Isoxaben, 1.12 + trifluralin,															
4.48 (Snapshot® 2.5G, 5.6), pre]	43	10	88	87	77	0	3	18	10	10	7	7	13	23	10
Dithiopyr, 1.1, pre	0	3	5	8	0	0	0	0	0	0	0	5	5	0	0
Dithiopyr, 2.2, pre	18	19	30	23	40	0	0	0	0	0	0	3	0	0	0
Dithiopyr, 4.5, pre	35	5	70	35	80	10	8	18	10	10	0	0	0	0	0
[Oxyfluorfen, 1.12 + oryzalin,															
2.24 (Rout®, 3.36), pre]	65	85	64	30	38	0	25	3	0	0	23	23	15	18	0
Pendimethalin, 2.2, pre	20	17	8	7	10	0	0	0	0	0	0	3	10	0	0
Metolachlor (Pennant® 5G), 4.5, pre	27	7	10	20	0	0	0	10	0	0	0	3	0	0	0
Sethoxydim, 0.21 + CO															
(Agri-Dex●, 1% v/v), poe³	1	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Sethoxydim, 0.31 + CO															
(Agri-Dex®, 1% v/v), poe³	5	0	10	0	0	0	0	3	0	0	0	0	4	0	0
Clethodim, 0.14 + WA															
(X-77®, 0.25% v/v), poe ³	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glyphosate, 0.83, poe-dir ³	15	0	28	38	50	0	0	13	22	25	0	0	3	0	0
Glufosinate, 0.82, poe-dir ³	18	0	8	0	23	13	0	20	0	0	0	0	0	0	0
LSD (0.05)	28	18	23	30	_38	NS	NS	28	NS	NS	NS	_17_	17	18	

			We	ed control	С.		
		DIGSA	1		n	AMASP	
Treatment description	2wk	4wk	10wk		2wk	4wk	10wk
				(%)			
Weed-free check	0	0	0		0	0	0
Isoxaben, 0.8, pre	100	98	100		100	100	80
Isoxaben, 1.1, pre	100	100	97		100	100	100
[Isoxaben, 0.55 + oryzalin,							
1.65 (Snapshot® 80DF, 2.2), pre]	100	100	97		100	100	100
[Isoxaben, 0.83 + oryzalin,							
2.48 (Snapshot® 80DF, 3.3), pre]	100	100	93		100	100	100
[Isoxaben, 0.84 + trifluralin,							
3.36 (Snapshot [®] 2.5G, 4.2), pre]	99	100	100		100	100	100
[Isoxaben, 1.12 + trifluralin,							
4.48 (Snapshot® 2.5G, 5.6), pre]	99	99	100		100	100	100
Dithiopyr, 1.1, pre	100	100	100		100	94	98
Dithiopyr, 2.2, pre	99	100	100		100	100	100
Dithiopyr, 4.5, pre	100	100	100		100	100	98
Oxyfluorfen, 1.12 + oryzalin,							
2.24 (Rout [®] , 3.36), pre]	100	100	90		83	100	100
Pendimethalin, 2.2, pre	98	100	75		100	100	57
Metolachlor (Pennant® 5G), 4.5, pre	100	100	77		100	100	80
Sethoxydim, 0.21 + CO							
(Agri-Dex [®] , 1% v/v), poe ³	0	100	80		0	0	0
Sethoxydim, 0.31 + CO							
(Agri-Dex●, 1% v/v), poe ³	0	100	100		0	0	0
Clethodim, 0.14 + WA							
(X-77®, 0.25% v/v), poe³	0	100	95		0	0	0
Glyphosate, 0.83, poe-dir ³	0	76	96		0	98	96
Glufosinate, 0.82, poe-dir ³	0	83	86		0	88	73
LSD (0.05)	22	4	16		12	5	24

¹ DIGSA = large crabgrass; AMASP = pigweed species.

² Injury and weed control ratings were taken 1, 2, 4, 6 and 10 weeks after the preemergence treatments. The 4-, 6- and 10-week ratings correspond to 2, 4 and 8 weeks after the first postemergence application. The 6- and 10-week injury ratings correspond to 2 and 6 weeks after the second postemergence application.

³ Postemergence treatments were applied on 5-27-91 and 6-15-91.

UNIVERSITY LIBRARY.

			Hoe times	1		Hoe costs ^{1,2}					
Treatment description	4 wk	6 wk	<u>8 wk</u>	11 wk	Total	4 wk	6 wk	8 wk	11 wk	Tota	
(kg ai/ha)		mi	inutes/10	m ²				- \$/10m ²			
Weed-free check	30.5	5.1	8.5	21.8	65.9	2.54	0.43	0.71	1.81	5.49	
soxaben, 0.8, pre	9.6	0.6	7.3	8.6	26.1	0.80	0.05	0.60	0.72	2.17	
soxaben, 1.1, pre	3.6	1.0	7.4	12.3	24.2	0.30	0.08	0.61	1.02	2.01	
Isoxaben, 0.55 + oryzalin,											
1.65 (Snapshot® 80DF, 2.2), pre]	1.0	0.6	7.3	8.0	16.9	0.08	0.05	0.60	0.67	1.41	
Isoxaben, 0.83 + oryzalin,											
2.48 (Snapshot® 80DF, 3.3), pre]	2.3	0.1	7.9	6.5	16.8	0.19	0.10	0.66	0.54	1.40	
Isoxaben, 0.84 + trifluralin,											
3.36 (Snapshot [®] 2.5G, 4.2), pre]	3.1	0.7	6.9	5.6	16.3	0.26	0.06	0.57	0.47	1.36	
Isoxaben, 1.12 + trifluralin,											
4.48 (Snapshot® 2.5G, 5.6), pre]	4.0	0.3	4.8	5.6	14.6	0.33	0.02	0.40	0.47	1.22	
Dithiopyr, 1.1, pre	6.9	0.5	4.3	5.9	17.5	0.58	0.04	0.35	0.49	1.46	
Dithiopyr, 2.2, pre	6.2	0.4	4.3	5.9	16.7	0.52	0.03	0.35	0.49	1.39	
Dithiopyr, 4.5, pre	3.3	0.6	4.3	4.8	13.8	0.28	0.05	0.41	0.41	1.15	
Oxyfluorfen, 1.12 + oryzalin,											
2.24 (Rout [®] , 3.36), pre]	4.0	0.4	5.0	9.5	25.3	0.33	0.20	0.78	0.79	2.10	
Pendimethalin, 2.2, pre	5.8	2.0	9.4	8.1	26.0	0.48	0.17	0.84	0.68	2.17	
Metolachlor (Pennant® 5G),											
4.5, pre	6.6	1.1	10.1	10.6	28.9	0.55	0.09	0.88	0.88	2.41	
Sethoxydim, 0.21 + CO											
(Agri-Dex [®] , 1% v/v), poe ³	13.5	3.1	10.5	12.3	36.1	1.12	0.26	0.60	1.02	3.01	
Sethoxydim, 0.31 + CO											
(Agri-Dex [●] , 1% v/v), poe ³	8.8	5.1	7.3	12.0	32.3	0.73	0.42	0.54	1.00	2.69	
Clethodim, 0.14 + WA											
(X-77®, 0.25% v/v), poe ³	0.0	21.3	6.5	11.6	39.9	0.0	1.77	0.59	0.97	3.33	
Glyphosate, 0.83, poe-dir ³	10.6	4.4	7.1	5.8	27.2	0.88	0.36	0.54	0.48	2.26	
Glufosinate, 0.82, poe-dir ³	16.5	4.8	9.0	9.9	40.1	1.38	0.39	0.75	0.82	3.34	
LSD (0.05)	11.4	2.1	3.8	5.6	15.9	0.94	0.17	0.32	0.46	1.31	

Table 31. Bedding Plants: Time and cost spent handweeding, Fayetteville, 1990.

Test plots were hand weeded 4, 6, 8 and 11 weeks after the preemergence treatmente, which correspond to 9, 4, 6, and 0, weeks after the first posterior of the treatmente which correspond to 9, 4, 6, and 0, weeks after the first posterior of the treatmente which correspond to 9, 4, 6, and 0, weeks after the first posterior of the treatmente which correspond to 9, 4, 6, and 0, weeks after the first posterior of the treatmente which correspond to 9, 4, 6, and 0, weeks after the presented to 9, 1, 6, and 0, weeks after the presented to 9, and 0, and 0,

Designation and trade names	Chemical name and formulation
aciduation (Blazare)	adium 5 (0 ablance 4 /killussamethullahasawi) 0 aitahasasata 040 a /l
acifluorfen (Blazer®)	sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, 240 g/L
Agri-Dex®	 Coblem Nothel NV (1 methodethal) 1.2.5 trianing 0.4 diaming 00 DE
atrazine (Aatrex®) BAS 064005	6-chloro-N-ethyl-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine, 90 DF
bensulide (Prefar®)	Q,Q-bis(1-methylethyl) S-[2-phenylsulfonyl)amino]ethyl]phosphorodithioate, 480 g/L
bentazon (Basagran®)	3-(1-methylethyl)-(1 <u>H</u>)-2,1,3-benzothiadiazin-4(3 <u>H</u>)-one 2,2-dioxide, 480 g/L
chlorimuron (Classic®)	2-[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid, 25 DF
clethodim (Select®)	(E,E)-(+/-)-2-[1-[[(3-chloro-2-propenyl)oxy]imino]propyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one, 113 g/L
clomazone (Command®)	2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone, 480 g/L
DCPA (Dacthal®)	dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate, 75 WP
dithiopyr (Dimension®)	S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridinedicarbothioate, 120 g/L and 1% G
diuron (Karmex®)	<u>N</u> '-(3,4-dichlorophenyl)- <u>N,N</u> -dimethylurea, 80 WP
Enquik®	monocarbamide dehydrogen sulfate
EPTC (Eptam®)	S-ethyl dipropylcarbamothioate, 840 g/L
ethalfluralin (Curbit®)	N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)benzenamine, 360 g/L
fluazifop-P (Fusilade 2000®)	(R)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid, 120 g/L
fomesafen (Reflex®)	5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide, 240 g/L
glufosinate (Ignite®)	ammonium-DL-homoalanin-4-yl(methyl)phosphinate, 200 g/L
glyphosate (Roundup®)	<u>N</u> -(phosophonomethyl)glycine, 360 g/L
imazaquin (Scepter®)	2-[4,5-dihydro-4-4-methyl-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid, 180 g/L
imazethapyr (Pursuit®)	(+/-)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid, 240 g/L
isoxaben (Gallery®)	N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide, 75 DF
metolachlor (Dual®, Pennant®)	2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide, 960 g/L
metribuzin (Sencor®, Lexone®)	4-amino-6-(1,1-dimethylethyl-3-methylthio)-1,2,4-triazin-5(5 <u>H</u>)-one, 75 DF
MON-13211	, 240 g/L
napropamide (Devrinol®)	<u>N,N</u> -diethyl-2-(1-naphthalenyloxy)propanamide, 50 WP
naptalam (Alanap®)	2-[(1-naphthalenylamino)carbonyl]benzoic acid, 240 g/L
oryzalin (Surflan®)	4-(dipropylamino)-3,5-dinitrobenzenesulfonamide, 480 g/L
oxyfluorfen (Goal®)	2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene, 192 g/L
paraquat (Gramoxone Extra®)	1,1'-dimethyl-4,4'-bipyridinium ion (as dichloride salt), 300 g/L
pendimethalin (Prowi®)	N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine, 480 g/L, 5% G
pyridate (Tough®)	<u>Q</u> -(6-chloro-3-phenyl-4-pyridazinyl) <u>S</u> -octyl carbonothioate, 450 g/L
sethoxydim (Poast®)	2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one, 180 g/L
trifluralin (Treflan®)	2,6-dinitro- <u>N,N</u> -dipropyl-4-(trifluoromethyl)benzenamine, 480 g/L
X-77®	

Crops

53

cide

Evaluations

g

Small

Fruit,

Vegetable

and

Ornamental

		May			June			July		
	Ter	mp.	Rain-	Te	mp.	Rain-	Ter	mp.	Rain-	
Day	Max	Min	fall	Max	Min	fall	Max	Min	fall	
	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	
1	28	10		36	22		39	21		
2	29	11		34	19	8.4	39	23	0.3	
3	26	17	13.2	33	20		35	21	14.5	
4	30	16	5.1	38	19		37	19		
5	20	8		30	20		40	20		
6	25	5		31	18		39	20		
7	28	10		32	18		42	22		
8	28	15		34	17		41	23		
9	24	17		33	16		39	22		
10	30	18		32	18	3.6	39	23		
11	34	17		33	20	12.4	40	21		
12	34	20		36	21		40	21		
13	36	20		37	22		40	22		
14	36	19	0.8	36	22		37	20		
15	28	17	0.8	35	22		38	19		
16	32	17		35	21	3.6	38	19		
17	33	20		37	19		40	16		
18	35	19	11.9	37	20		41	21		
19	31	19	12.7	36	22		42	21		
20	30	21	3.3	37	20		40	21	8.4	
21	30	21	1.3	38	21	0.3	40	21		
22	25	21	1.0	38	21	1.0	42	21		
23	36	21	1.5	36	21		42	22		
24	33	19	39.9	38	21	9.7	40	22	10.4	
25	33	19	4.1	37	22		24	20	3.6	
26	34	20		37	22		34	19		
27	34	20		35	22		27	21	8.1	
28	35	20		37	20		34	21		

Appendix Table 2. Climatological data, Vegetable Substation, Kibler, 1991.

		Mar	ch		Apr	il		Ma	ay		Jur	ne	unt und 20	July		
	Ter		Rain-	Ter		Rain-	Ter	np.	Rain-	Te	mp.	Rain-	Ter	mp	Rain-	
Day	Max	Min	fall	Max	Min	fall	Max	Min	fall	Max	Min	fall	Max	Min	fall	
	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	(°C)	(°C)	(mm)	
1	18	9	6.9	19	8		26	9		31	22		32	24		
2	21	4	1.5	22	6		21	8		31	18	9.4	34	23		
3	6	-2		24	11	11.4	26	14	38.6	28	19		34	22	3.3	
4	7	-3		17	11	5.6	24	14	0.3	29	19		27	16	4.3	
5	18	0		19	7		27	10	0.8	31	18		33	21		
6	26	10		25	12		13	3		26	18	5.8	34	21		
7	13	0		24	18	0.8	21	9		26	14		33	22		
8	10	-2		23	16	6.6	23	12		28	18		34	22		
9	13	-2		23	11		24	14		28	16		35	23		
10	13	-2		20	3		23	16		28	16		35	25		
11	17	8		22	7	24.1	25	15		26	19	0.3	36	24		
12	19	13		18	11	21.8	28	20		27	19	2.3	36	23		
13	21	4		24	16	0.3	29	20		31	19		36	23	1.0	
14	4	0		23	12	31.2	31	17		32	23		33	19		
15	3	1		20	8	1.8	29	19		31	23		31	17		
16	7	2		23	8		26	16	0.5	31	19	0.3	33	18		
17	18	7	25.4	27	13		28	18		29	18		33	16		
18	16	6		27	14	15.5	29	19		29	19	12.4	35	19		
19	18	5		24	8		29	17	4.8	31	18		36	21		
20	21	9		13	8	0.3	26	19	1.3	31	19					
21	20	16		12	6		26	19	5.1	31	21					
22	24	13	33.5	12	7	4.1	27	21		33	21		36	23		
23	21	7	14.7	13	4		22	19	3.8	33	18	14.0	37	23		
24	20	3		22	8		29	19		31	19		37	22	1.0	
25	24	8		24	12	1.3	29	18	37.6	32	21		31	19	4.1	
26	24	17		23	13	085	28	19	1909 (35)	28	22		22	17	2.5	
27	26	18	4.3	27	14	6.9	30	18		27	22		30	21		
28	21	2		27	14	1.0	31	19		32	18		30	21	2.0	
29	21	1	6.1	27	13	3.0	31	21		31	22		32	21		
30	9	-2		27	11		31	21		32	23		29	14		
31	11	1		29	22		33	17		52			20	• • • • •		

Appendix Table 3. Climatological data, Main Experiment Station, Payetteville, 1991.

Appendix Table 4. Standardized plant (Bayer) codes, Weed Science Society of America, for weeds appearing in this report.

ABUTH Abutilon theophrasti velvetleaf AMAAL Amaranthus albus tumble pigweed AMACH Amaranthus hybridus smooth pigweed AMACH Amaranthus palmeri Palmer amaranth AMBEL Ambrosia artemisiifolia common ragweed AMBEL Ambrosia artemisiifolia common ragweed ANVCR Anoda cristata spurred anoda BRAPP Brachiaria platyphylla broadleaf signalgrass CHEAL Chenopodium album common lambsquarters CYPES Cyperus esculentus yellow nutsedge DIGSA Digitaria sanguinalis large crabgrass ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed <
AMAALAmaranthus albustumble pigweedAMACHAmaranthus hybridussmooth pigweedAMACHAmaranthus palmeriPalmer amaranthAMBELAmbrosia artemisiifoliacommon ragweedANVCRAnoda cristataspurred anodaBRAPPBrachiaria platyphyllabroadleaf signalgrassCHEALChenopodium albumcommon lambsquartersCYPESCyperus esculentusyellow nutsedgeDIGSADigitaria sanguinalislarge crabgrassELEINEleusine indicagoosegrassERBGREriochloa gracilissouthwestern cupgrassERICAConyza canadensishorseweedIPOHGIpomoea hederaceavar. integriusculavar. integriusculaprited morninggloryLACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
AMACHAmaranthus hybridussmooth pigweedAMAPAAmaranthus palmeriPalmer amaranthAMBELAmbrosia artemisiifoliacommon ragweedANVCRAnoda cristataspurred anodaBRAPPBrachiaria platyphyllabroadleaf signalgrassCHEALChenopodium albumcommon lambsquartersCYPESCyperus esculentusyellow nutsedgeDIGSADigitaria sanguinalislarge crabgrassELEINEleusine indicagoosegrassERBGREriochloa gracilissouthwestern cupgrassERICAConyza canadensishorseweedIPOHGIpomoea hederaceavar. integriusculavar. integriusculaprited morninggloryLACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
AMAPAAmaranthus palmeriPalmer amaranthAMBELAmbrosia artemisiifoliacommon ragweedANVCRAnoda cristataspurred anodaBRAPPBrachiaria platyphyllabroadleaf signalgrassCHEALChenopodium albumcommon lambsquartersCYPESCyperus esculentusyellow nutsedgeDIGSADigitaria sanguinalislarge crabgrassELEINEleusine indicagoosegrassERBGREriochloa gracilissouthwestern cupgrassERICAConyza canadensishorseweedIPOHGIpomoea hederaceavar. integriusculavar. integriusculaprickly lettuceLACSELactuca serriolaprickly lettuceLAMMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
AMBELAmbrosia artemisiifoliacommon ragweedANVCRAnoda cristataspurred anodaBRAPPBrachiaria platyphyllabroadleaf signalgrassCHEALChenopodium albumcommon lambsquartersCYPESCyperus esculentusyellow nutsedgeDIGSADigitaria sanguinalislarge crabgrassELEINEleusine indicagoosegrassERBGREriochloa gracilissouthwestern cupgrassERICAConyza canadensishorseweedIPOHGIpomoea hederaceavar. integriusculaVar. integriusculaprickly lettuceLACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
ANVCRAnoda cristataspurred anodaBRAPPBrachiaria platyphyllabroadleaf signalgrassCHEALChenopodium albumcommon lambsquartersCYPESCyperus esculentusyellow nutsedgeDIGSADigitaria sanguinalislarge crabgrassELEINEleusine indicagoosegrassERBGREriochloa gracilissouthwestern cupgrassERICAConyza canadensishorseweedIPOHGIpomoea hederaceavar. integriusculaVar. integriusculaprited morninggloryLACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
BRAPP Brachiaria platyphylla broadleaf signalgrass CHEAL Chenopodium album common lambsquarters CYPES Cyperus esculentus yellow nutsedge DIGSA Digitaria sanguinalis large crabgrass ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula Var. Integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
CHEAL Chenopodium album common lambsquarters CYPES Cyperus esculentus yellow nutsedge DIGSA Digitaria sanguinalis large crabgrass ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula POLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
CYPES Cyperus esculentus yellow nutsedge DIGSA Digitaria sanguinalis large crabgrass ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
DIGSA Digitaria sanguinalis large crabgrass ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula Var. integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
ELEIN Eleusine indica goosegrass ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula Var. integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
ERBGR Eriochloa gracilis southwestern cupgrass ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea var. integriuscula Var. integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
ERICA Conyza canadensis horseweed IPOHG Ipomoea hederacea entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
IPOHG Ipomoea hederacea var. integriuscula entireleaf morningglory IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
var. integriusculaentireleaf morninggloryIPOLAIpomoea lacunosapitted morninggloryLACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
IPOLA Ipomoea lacunosa pitted morningglory LACSE Lactuca serriola prickly lettuce LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
LACSELactuca serriolaprickly lettuceLAMAMLamium amplexicaulehenbitMOLVEMollugo verticillatacarpetweedOEOLAOenothera laciniatacutleaf eveningprimrose
LAMAM Lamium amplexicaule henbit MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
MOLVE Mollugo verticillata carpetweed OEOLA Oenothera laciniata cutleaf eveningprimrose
OEOLA <u>Oenothera laciniata</u> cutleaf eveningprimrose
PANDI <u>Panicum</u> dichotomiflorum fall panicum
POLLA Polygonum lapathifolium pale smartweed
POROL Portulaca oleracea common purslane
SEBEX <u>Sesbania exaltata</u> hemp sesbania
SETFA <u>Setaria faberi</u> giant foxtail
SIBVI <u>Sibara virginica</u> sibara
SIDSP <u>Sida spinosa</u> prickly sida
SINAR Brassica kaber wild mustard
SORHA Sorghum halepense johnsongrass
VICVI <u>Vicia sativa</u> common vetch
XANST Xanthium strumarium common cocklebur

lix Table 5. Common and scientific names of wildflowers.

Scientific name
Achillea millefolium
Asclepias tuberosa
Centaurea cyanus
Chrysanthemum carinatum
Chrysanthemum leucanthemum
Coreopsis lanceolata
Echinacea purpurea
Eschscholzia californica
Gaillardia aristata
Liatris pycnostachya
Linum grandiflorum var. rubrum
Linum lewisii
Lupinus perennis
Monarda citriodora
Rudbeckia hirta
Oenothera missouriensis
Oenothera speciosa
Oenothera hookeri
Ipomopsis rubra
Echinacea pallida
Cichorium intybus
Ratibida columnaris
Ratibida columifera
Liatris spicata

dix Table 6. Common, cultivar and scientific names of bedding plants.

on name	Cultivar	Scientific name
um	Blue Danube	Ageratum houstonianum
m	New Carpet of Snow	Lobularia maritima
	Double Blue	Callistephus chinensis
3	Kewpie Red	Celosia cristata
osis	lanceleaf	Coreopsis lanceolata
	Firgaro	Dahlia X hybrida
us	Fantasia	Dianthus barbatus
um	Pinwheel Red	Pelargonium X hortorum
JS	Southern Belle	Hibiscus moscheutos
ens	Super Elfin Orange	Impatiens wallerana
bld	Pineapple Crush	Tagetes patula T. Erecta
d	Red Hero	Tagetes patula
nia	Nicki Red	Nicotiana alata
ental pepper	Fire Works	Capsicum annuum
a	Red Cloud	Petunia X hybrida
a	Snow Cloud	Petunia X hybrida
	Blue Rhea	Salvia farinacea
	Red Pillar	Salvia splendens
Dragon	Tahitii	Antirrhinum majus
	Bright eyes	Catharanthus roseus
	Yellow Marvel	Zinnia elegans

U.S. to Metric			Metric to U.S.		
		Multiply the			Mu
to convert from:	to:	U.S. unit by	to convert from:	to:	me
length			length		
miles	Kilometers	1.61	kilometers	miles	0.6
yards	meters	0.91	meters	yards	1.0
feet	meters	0.31	meters	feet	3.2
inches	centimeters	2.54	centimeters	inches	0.3
area volume			area and volume		
sq yards	sq meters	0.84	sg meters	sq yards	1.2
sq feet	sq meters	0.09	sq meters	sa feet	10.
sq inches	sq centimeters	6.45	sq centimeters	sa inches	0.
cu inches	cu centimeters	16.39	cu centimeters	cu inches	0.0
acres	hectares	0.41	hectares	acres	2.4
liquid measure			liquid measure		
cu inches	liters	0.02	liters	cu inches	61
cu feet	liters	28.34	liters	cu feet	0.0
gallons	liters	3.79	liters	gallons	0.2
quarts	liters	0.95	liters	quarts	1.0
fluid ounces	milliliters	29.57	milliliters	fluid ounces	0.0
weight and ma	155		weight and mass		
pounds	kilograms	0.45	kilograms	pounds	2.2
ounces	grams	28.35	grams	ounces	0.0
temperature			temperature		
F	С	5/9(F-32)	C	F	(9/

CONVERSION TABLE