
applied
sciences

Article

Design of a Low-complexity Graph-Based
Motion-Planning Algorithm for Autonomous
Vehicles

Tamás Hegedűs 1,*, Balázs Németh 2 and Péter Gáspár 2

1 Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and
Economics, Stoczek u. 2, H-1111 Budapest, Hungary

2 Systems and Control Laboratory, SZTAKI Institute for Computer Science and Control, Kende u. 13-17,
H-1111 Budapest, Hungary; balazs.nemeth@sztaki.hu (B.N.); peter.gaspar@sztaki.hu (P.G.)

* Correspondence: hegedus.tamas@mail.bme.hu

Received: 1 September 2020; Accepted: 28 October 2020; Published: 31 October 2020
����������
�������

Abstract: In the development of autonomous vehicles, the design of real-time motion-planning is
a crucial problem. The computation of the vehicle trajectory requires the consideration of safety,
dynamic and comfort aspects. Moreover, the prediction of the vehicle motion in the surroundings
and the real-time planning of the autonomous vehicle trajectory can be complex tasks. The goal
of this paper is to present low-complexity motion-planning for overtaking scenarios in parallel
traffic. The developed method is based on the generation of a graph, which contains feasible vehicle
trajectories. The reduction of the complexity in the real-time computation is achieved through the
reduction of the graph with clustering. In the motion-planning algorithm, the predicted motion of
the surrounding vehicles is taken into consideration. The prediction algorithm is based on density
functions of the surrounding vehicle motion, which are developed through real measurements.
The resulted motion-planning algorithm is able to guarantee a safe and comfortable trajectory for
the autonomous vehicle. The effectiveness of the method is illustrated through simulation examples
using a high-fidelity vehicle dynamic simulator.

Keywords: autonomous vehicles; motion-planning; trajectory design

1. Introduction and Motivation

Nowadays, one of the main challenges for the automotive industry is the development of
autonomous vehicles, which involves the solution of several problems, e.g., motion-planning, control,
design and implementation of the algorithms. In everyday traffic, motion-planning functionality is
crucial, in which several requirements must be simultaneously guaranteed, i.e., the vehicle trajectory
must be dynamically feasible, safe and comfortable. There are existing technologies for this problem,
although they only provide suggestions for the driver during the maneuver [1,2]. The overtaking
maneuvers are especially dangerous since the motion of other participants must be predicted, in order
to guarantee the collision-free trajectory. Furthermore, there can be overtaking situations when a
feasible trajectory cannot be planned between the initial and the target state of the vehicle. The stability
and the trajectory tracking problems of the vehicles under varying circumstances must be solved,
which requires the design of robust control systems. In the future, the first autonomous vehicles will
probably operate in a mixed traffic environment, which means that, besides the automated vehicles,
human-driven cars also will be present on the roads. Therefore, an accurate assessment of the given
traffic situation will be an essential step during autonomous vehicle control, which helps to determine
the collision-free area. In order to address these tasks, the behavior of human drivers must be modeled
and predicted. Since the prediction of a human-driven car involves several uncertainties, it can be

Appl. Sci. 2020, 10, 7716; doi:10.3390/app10217716 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10217716
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7716?type=check_update&version=2

Appl. Sci. 2020, 10, 7716 2 of 21

solved using probability-based approaches. Due to several uncertainties and differences between
the traffic situations the motion-planning is still challenging. Using the collision-free area, and other
information about the environment, one feasible trajectory is planned, which fulfills the comfort and
safety requirements. In recent literature, several approaches can be found, which aims to deal with
this task. In the following, a brief overview of four recent approaches is presented.

1.1. Motion Prediction-Based Decision Making Algorithms

The proposed algorithm uses pre-recorded data to find and identify similarities for modeling
the motion of the vehicles. Németh et al. [3] presents a method to predict the motion of the
human-driven vehicles using a data-driven approach, and Xiaoxin et al. [4] present a motion prediction
for longitudinal and lateral directions. The pre-recorded dataset consists of the positions, velocities and
acceleration of the participating vehicles. Using this data, the algorithm orders the measurements into
clusters. Each cluster describes a specific behavior of human drivers. Using the data of each cluster,
density functions can be fitted. During the evaluation of a given traffic situation, the probabilities
are computed to given road segments. The goal is to guarantee that the probability of collisions in
the given positions is smaller than the previously defined maximum. Using the computed density
functions, collision-free trajectories are can be defined. These results are used during the trajectory
planning. The planned trajectory must guarantee safe cruising and comfort requirements at the same
time. The generation of the trajectory can be made by a model predictive approach, where constraints
can be taken into account. Finally, the trajectory is tracked by a robust Linear Parameter-Varying (LPV)
controller.

1.2. Graph-Based Algorithms

The motion-planning problem can also be solved using a graph-based algorithm. This method
uses three different layers [5]:

1. Prediction of the motion of the surrounding vehicles.
2. Determination of the collision-free trajectories.
3. Computation of the feasible trajectories for the overtaking maneuver.

First, a spatial prediction horizon is defined in such a way to cover the whole area of the overtaking
maneuver. This spatial horizon is discretized in both longitudinal and lateral directions, creating a finite
number of prediction points using equidistant segments. Then, the predictions of the participating
vehicle are performed using a similar algorithm to the method presented in the previous subsection.
In [6], the authors used a multilayer perceptron approach to predict the motion of the vehicles.
The uncertainty is taken into account by Gaussian propagation [7]. The main difference is that the
prediction is extended with the probability of the collision in the lateral direction, which requires the
computation of the lateral motion of the vehicle. The density function of the lateral motion can be
easily computed. The feasibility of the possible trajectories can be determined by considering the
maximum lateral acceleration of the trajectories. Firstly, the probabilities of collisions are computed
for each discrete point of the prediction horizon. Secondly, a graph is created, in which nodes are
assigned to the previously-computed discrete sets. The probability values are computed to every set
and these can be assigned to the nodes. The nodes are connected with edges. Each edge has a weight,
which reflects on the probability of the collision. This leads to one directed, weighted graph. Using a
greedy search method like Dijkstra’s algorithm [8] the shortest path can be found, which means in this
case, the path with the sum of lowest probability values. The greedy search algorithm results in a set
of discrete points. However, these discrete points do not provide a continuous trajectory, therefore it
may not be tracked by the vehicle. Furthermore, an online trajectory planning method is also applied
to ensure the feasibility of the vehicle. The final trajectory is computed by a Model Predictive Control
(MPC) algorithm using the result of the greedy algorithm.

Appl. Sci. 2020, 10, 7716 3 of 21

1.3. Neural-Network-Based Algorithms

The motion prediction-based and graph-based algorithms provide suitable results, but their
computational time may be high [9]. Therefore, neural-network-based solutions are presented,
which aim to make the computation of the algorithms faster. As it is described above, the graph-based
algorithm consists of two main layers. The upper layer is responsible for the motion prediction of the
surrounding vehicles, and the lower layer, using this information, computes the collision-free reference
points. There can be complex traffic situations, in which the prediction and computation of the graph
can be time-consuming. The prediction and the computation of the collision-free points can be made
by a neural network.

As a first step, several simulations have been performed to get a large amount of data.
The appropriate dataset is crucial for each machine-learning, otherwise, the overfitting of the model
may occur. The results of the graph-based algorithm are saved. Using the saved data, a neural
network is trained. The aim of this is to make the prediction, and the computation of the reference
trajectory faster. Unfortunately, a disadvantage of the process is that guaranteeing the performances
of the trained neural network is challenging. This can result in not acceptable outputs of the neural
network, which can be dangerous in some situations. To solve this problem, Németh et al. [10]
proposed a design architecture to guarantee the performances during overtaking. Hegedűs et al. [11]
presented a trajectory design method taking into account several performances. Using the potential
field approach, the surrounding vehicles are incorporated. At the same time, other information is built
in such as maximum lateral acceleration, longitudinal acceleration, width of the road. This leads to the
multi-objective optimization problem, which cannot be solved in real-time. To make the algorithm
implementable, a neural network is used. In this case, the output of the neural network is not just a
reference point but a feasible trajectory. Ji et al. [12] introduced an adaptive-neural-network-based
lateral control for autonomous vehicles.

1.4. Model Predictive Control-Based Trajectory Planning

Model Predictive Control-based methods are widely used during autonomous vehicle control.
In [13] proposes a method for collision avoidance and path planning at the same time and in [14]
a hierarchical approach can be found. During the path planning, the main task is to determine the
collision-free area. The paper summarizes approaches for the determination of the drive-able area
such as graph-based method, where a greedy algorithm can be used. The authors recommend to
use the sampling-based methods, which incrementally builds up the feasible trajectory using feasible
trajectory segments. It can be said that the RRT-type (rapidly-exploring random tree) algorithms are
widely used in autonomous vehicles, in which the algorithm builds up a tree using random samples.
At the end of the paper, the author implements a MPC-based trajectory planning algorithm, in which
several bounds are taken into account. As a test vehicle, a Sport Utility Vehicle (SUV) is used, and the
test case is to provide a double lane change maneuver. The results show that the used algorithm is
able to compute the feasible trajectory, and the previously defined bounds are also taken into account.
These bounds can be crucial, to guarantee the safety and comfort requirements.

1.5. Contributions of the Proposed Method

Several approaches have been presented for solving a motion-planning problem for
autonomous vehicles. All presented approaches have their own advantages and disadvantages.
For example the neural-network-based approach can be computed faster than the graph-based
methods, but guaranteeing the performances of this algorithm is challenging. However,
the neural-network-based algorithm through the learning process can take into consideration
more factors, such as comfort or energy requirements. The goal of this paper is to present a
low-complexity motion-planning for overtaking scenarios in parallel traffic. The proposed graph-based
motion-planning algorithm takes into consideration the predicted motion of the surrounding vehicles.

Appl. Sci. 2020, 10, 7716 4 of 21

The motion prediction algorithm is based on density functions of the surrounding vehicle motion,
which are developed through real measurements. Using density functions, the probabilities of collision
with another vehicle can be computed for the given prediction horizon. During motion-planning,
some constraints must be guaranteed. The first one is to guarantee the safety of the planned trajectory
and the second one is to guarantee the comfort requirements. The safety requirements can be
guaranteed through the limitation of the maximum lateral displacement of the vehicle from the
reference trajectory and the comfort requirements can be guaranteed through the minimization of the
lateral acceleration values.

Briefly, the algorithm consists of the following parts:

1. The core of the motion-planning algorithm is a graph-based method. The generation of the
graph is mainly based on the lateral dynamics of the vehicle, which is presented in Section 2.
Furthermore, the generated graph is extended with the result of the motion prediction in order to
get a collision-free trajectory.

2. In the next step, the motion prediction of the surrounding vehicles must be performed. The motion
of the vehicles is predicted using density functions. These functions are determined using the
Next Generation Simulation (NGSIM) dataset. The computation of these function is detailed in
Section 3.

3. Finally, the computation of the feasible trajectory is made using the neural-network-based
approach.

2. Motion-Planning Graph-Based Algorithm

In this section, the generation of the graph, which is used during the motion-planning process,
is presented. Since guaranteeing the comfort requirements is a crucial part of the graph generation,
the lateral acceleration must be limited during the trajectory planning. The maximum of the lateral
acceleration is determined by the comfort requirements and the dynamical limits of the controlled
vehicle. The motion-planning algorithm is based upon a graph-based approach, in which the nodes
represent the possible positions of the vehicle. The nodes are interconnected with edges. The goal is
to compute the feasible trajectories, and furthermore to find the optimal one. Since the trajectories
are represented with the nodes and edges of the graph, the selected positions of the nodes are crucial.
The whole graph is projected on the given road segment, and two nodes are connected with an edge if
the vehicle can get from one node to another, and an example is presented in Figure 1.

0 5 10 15 20 25 30 35 40

Longitudinal position (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Figure 1. Trajectories between three points.

Appl. Sci. 2020, 10, 7716 5 of 21

Using the computed feasible trajectory segments the maximum value of the lateral acceleration
can be computed, which characterizes the given segment. A segment is described by an edge between
two nodes of the graph. In the following, the calculation of the reference positions is presented in
both lateral and longitudinal directions. The longitudinal positions of the nodes are computed as:

xi =
i·xlength

N , i = 1. . . N where i is the ith layer of the graph and xlength is the length of the prediction
horizon and N gives the number of the layers, which indicates the number of parts the prediction
horizon is divided into. This means, in the longitudinal direction, the graph is equidistantly generated.
The lateral positions of the nodes are computed for the given longitudinal positions. The calculation of
the feasible trajectory is made by a predictive optimization method (see Appendix A). The dynamic
lateral bicycle model is used during the trajectory planning. Furthermore, the kinematic longitudinal
and lateral model is used in the motion prediction of the surrounding vehicles (see: Appendix A.1).
During the computation of the feasible trajectories an edge is defined by the following six parameters:
[xinitial,j, yinital,j, ψinitial,j, xend,j, yend,j, ψend,j], where xinitial,j, yinitial,j are the coordinates of the start point
of the j-th edge, and ψinitial,j gives the yaw angle of the vehicle. The end point of the given edge
is defined by the following triad: xend,j, yend,j, ψend,j. This means that the length of the segment in
longitudinal direction is xl,j = xend,j− xinitial,j and the length in lateral direction is yl,j = yend,j− yinitial,j.
The resulted candidate trajectories must take into account the limitations to the lateral distances,
which means that the trajectories must satisfy the relation

|R(xinitial,j, yinital,j, ψinitial,j, xend,j, yend,j, ψend,j)− yMP| ≤ yb ∀j, (1)

where R gives the reference vector, which can be computed using the initial and end conditions.
In this case, the reference vector for the model predictive optimization is equivalent to the coordinates
of the edges. yb is the bound, which is a design parameter. Constraints can be defined during the
quadratic optimization as it is described in Appendix A. In Figure 1 an example can be seen. In this
case, three nodes of the graph is presented, and also a feasible trajectory, which is built up by two
segments. In order to guarantee the continuity of the trajectory two requirements must be fulfilled:

1. The longitudinal and lateral position of the trajectory must be the same, at the end point, as the
coordinates of the given node: xinitial,j = xend,j−1 and yinitial,j = yend,j−1 using this, the initial yaw
angle can be computed as: ψstart,j−1 = tan−1(yl,j−1/xl,j−1). This can be seen in Figure 1, in which
two trajectories are connects at the (20,0.25) graph node.

2. The yaw angle at the end of the planned trajectory must be the same as (ψend). ψend can be
computed as ψend,j = tan−1(yl,j/xl,j). Note that the ψstart,j can be determined from the previous
edge j− 1. In order to guarantee the feasibility of the trajectory, the following equality must be
guaranteed: ψend,j−1 = ψstart,j.

In Figure 1, three nodes and also the feasible trajectories are presented. The first trajectory
is between (0,0) and (20,0.25), and the second one is between (20,0.25) and (40,0.25). Note that,
both trajectories have the coordinates at the second node. As can be seen, in the longitudinal direction,
the nodes are placed equidistantly. Moreover, it can be said that the two trajectories are connected and
the initial and the end yaw angles are the same (ψstart,j, ψend,j−1).

2.1. Curvature Approximation of the Trajectories

As it is described above, the main goal is to determine the possible lateral positions of the nodes.
Since the longitudinal velocity of the vehicle is known, the lateral acceleration can be computed as:

acp,max,i = cmax,iv2
x, (2)

where cmax,i gives the maximum value of the curvature for the ith trajectory segment and vx is the
longitudinal velocity of the vehicle. The maximum lateral acceleration of the vehicle can be determined

Appl. Sci. 2020, 10, 7716 6 of 21

using the designed trajectory segment between two nodes (see Appendix A). The lateral accelerations
are used in two aspects:

• computing the possible lateral positions of the nodes,
• weighting the edges using the computed lateral accelerations.

The maximum value of the lateral acceleration is chosen by taking into account the comfort and
safety requirements. In this paper, the algorithm is built for everyday traffic situations, in which
the maximum value the lateral acceleration is chosen for a reasonable value. The linear assumption
for the bicycle model gives a sufficiently accurate result. The lateral acceleration is limited through
the steering angle, which results in the limitation of the yaw rate. Therefore the limitation of the
lateral acceleration is sufficient. However, the adhesion coefficient of the given road segment can
be decreased. In these scenarios, the maximum value of the lateral acceleration must be chosen for
smaller value. The computation of the predictive optimization can be time consuming, therefore the
curvature is approximated using a function (f). In order to determine this function feasible trajectories
are computed to various longitudinal and lateral lengths (xl , yl), and also the yaw angle is taken
into account (ψinitial). The maximum value of the curvature is approximated using a polynomial,

which can be found in the form of
N1,N2,N3

∑
i,j,k=0

pi,j,kxi
ly

j
lψ

k
initial , where (N1, N2N3) represent the dimensions

and pi,j,k are the coefficients of the polynomial. During the fitting, it is recommended to select the
dimension of the polynomial as small as possible to avoid the high complexity of the optimization
problem. The determination of the coefficients in function (f), the following optimization problem
must be solved:

JLS =
n

∑
i=1

(cmax,i − f (xl,i, yl,i, ψinitial,i))
2 → min! (3)

The calculated function is used for the computation of the lateral positions of the nodes and plays
an important role in the weighting of the edges.

2.2. Computing the Lateral Positions of the Nodes

Firstly, the lateral positions of the nodes for the candidate vehicle trajectories are calculated. In the
calculation, the limitation of the lateral acceleration is incorporated to avoid the skidding of the vehicle
and uncomfortable trajectories. Since the lateral acceleration increases as the lateral position of the node
increases, the inequality |cmax,i| ≥ f (xl,i, yl,i, ψinitial,i) for the limitation must be satisfied.Moreover,
limitations on the lateral position ymin ≤ yi ≤ ymax is considered. Taking into consideration these
limitations, the set of possible lateral positions can be computed (Y). In Figure 2 an example of the
limitations can be seen. As it can be seen, the lateral position of nth node cannot be selected to the
value of ymax since the lateral acceleration between the two nodes are higher than the previously
defined maximum. However, the lateral position of the 1st node is limited with the road-specific
constraint (ymin).

Appl. Sci. 2020, 10, 7716 7 of 21

Figure 2. Limitations during the graph generation.

Secondly, the positions of the nodes in the given segment is determined. The main aspect
during the computation of the lateral positions is to consider different types of maneuvers
(e.g., overtaking another vehicle, avoiding an obstacle). In order to achieve this, the positions are
computed using the lateral accelerations. The set of acp,max,i can be computed (Acp). In the following
step, the lateral positions are calculated as:

yi ∈ Y , acp,i = min(Acp) +
i(max(Acp)−min(Acp))

N
, cmax,i = f (xi, yi, ψinitial,i) i = 1..N, (4)

where N gives the number of nodes connected to the other node. Acceleration values are determined
equidistantly. Using the computed lateral accelerations, the lateral positions of the given nodes can
be calculated. The computation can be made along the whole prediction horizon. Using this method,
the limitations on the lateral acceleration value can be guaranteed. Assuming that the vehicle moves
into one direction in the given prediction horizon, this results in a directed graph, projected on the road:

G = (V, Ē), (5)

where (V) gives the nodes, which are connected with the edges Ē. In Figure 3 an example is shown.
In this case, the number of nodes connect to another is set to 5. The gray lines show the edges of
the graph, and the blue curves are the feasible trajectories, which are computed by the predictive
optimization method. The red curves are also the feasible trajectories, but these trajectories take place
in the second layer of the graph (second step in the longitudinal direction).

Figure 3. An example for the graph.

Appl. Sci. 2020, 10, 7716 8 of 21

In Figure 3 feasible trajectories can be found between the nodes. Since the initial yaw angle plays
an important role during the trajectory planning, axis z represents the yaw angle of the vehicle at the
end point of the designed trajectory. The lateral acceleration for each segment can be determined and
this lateral acceleration series can be considered as an upper bound of the lateral acceleration of the
whole trajectory.

2.3. Computing the Weights of the Edges

In this subsection, the weighting of the graph is presented. This weighting serves the purpose of
keeping the lateral acceleration during the overtaking in a given value. During the calculation process
of node positions of the candidate trajectories, the physical limits of the acceleration have already taken
into account. The consideration of the lateral acceleration in weighting and the candidate trajectory
computation is to guarantee the comfort and safety requirements at the same time. In Section 2 the
calculation of the lateral accelerations are presented between two nodes. Using this information,
and the following equations the weighting can be made.

W(alateral) =

κ1 − κ2

alateral
alat,1

i f alateral < alat,1,

θ1 − (θ2 − alateral)
2 i f alateral < alat,2,

χ1 + χ2alateral otherwise,

(6)

where (κ, θ, χ) are tuning parameters. Thus, when the maximum of lateral acceleration is smaller
than alat,1, the weights must be increased in order to avoid maneuvers with lower time requirements.
The preferred lateral acceleration value is chosen to alat,2 and when the acceleration value exceeds the
preferred one, the weights must be increased.

2.4. Reducing the Complexity of the Graph

In this subsection, the graph-based motion-planning algorithm is built up for the whole prediction
horizon. The complexity of the problem increases exponentially according to the number of the layers
since every node connects to n nodes. In order to reduce the complexity of the algorithm, the nodes
which have nearly the same parameters are merged. This means, the nodes, which are closer to each
other than a specified distance, are replaced with one node. To solve this, the k-medoids clustering
algorithm [15] is used, which is a clustering algorithm and divides the nodes in a given layer into k
subsets. This plays an important role in calculating probabilities of the collision, using the density
functions. The k-medoids algorithm minimizes the distance between the nodes and the computed
center of the given set (η). During the determination of the number of the clusters, which is the input
of the clustering algorithm, the following inequality must be satisfied:

max(ηi − vj) ≤
yb,p

2
, vj ∈ Vi Vi ⊂ V j = 1. . . n, (7)

where ηi gives the center of the ith set, and n is the number of the elements in the ith subset and
yb,p ≤ yb, where yb is a bound, which is defined in Equation (1). Moreover, for the presented new
subsets (k), new bounds should be defined, which reflect on the probability of the collisions.

In the following example, a graph is built up, where the prediction horizon is set to Tp = 6s.
One node connects to five other nodes. The number of layers was set to 6. This results in a large
amount of possible points. Figure 4 shows the generated graph. As it is described in Section 2,
the longitudinal positions of the nodes are set equidistantly. Since, the velocity of the ego vehicle (vx)
is known, the longitudinal positions of the nodes computed to time ti =

xi
vx

, i = 1. . . N. ti gives the
value when the vehicle reaches the given node.

Appl. Sci. 2020, 10, 7716 9 of 21

Figure 4. Graph used during the motion-planning process.

The total number of nodes, in this case, is 19,531. This graph cannot be used in the real-time
implementation, because the processing of the graph requires high computational effort. In this case,
the number of nodes is reduced from 19,531 to 240. The longitudinal position is changed to time
which is necessary since the whole graph cannot be computed in real-time application. In this case,
the calculated graph does not depend on velocity. Note that using the values of the curvatures and the
velocity of the vehicle, the lateral acceleration can be computed. The result of the k-medoids algorithm
is presented in Figure 5.

Figure 5. Recalculated graph for the motion-planning algorithm.

3. Motion Prediction of the Surrounding Vehicles

This section details the computation of the density functions which are used to predict the
motion of the surrounding vehicles. This work is based on the widely used NGSIM dataset [16].
The data set consists of videos and other information on the participating vehicles such as their
longitudinal and lateral positions, velocities and acceleration values using the sample time Ts = 0.1 s.
Furthermore, the length of the observed section is approximately 640 m and consists of five lanes.
The whole video is recorded on a freeway in Los Angeles, California. Several researches deal with
the evaluation of this dataset [17,18]. In the following subsections, the evaluation of the possible
longitudinal and lateral motions of the vehicles is presented.

Appl. Sci. 2020, 10, 7716 10 of 21

3.1. Lateral Motion of the Vehicle

The overtaking trajectories are collected from the NGSIM dataset. Due to the measurements,
the collected vehicle trajectories can be noisy, and thus, feasible trajectories are fitted to the measured
overtaking path. It can be said that one trajectory is feasible when the curvature of the trajectory is
continuous and bounded. The basic idea behind this method is to build up the given trajectory using
clothoid segments. Assuming clothoid segments, for the given overtaking trajectory, the curvature
values can be computed. Since the velocities of the vehicles can be determined, the lateral accelerations
can be computed. The value of lateral acceleration characterizes the overtaking trajectories, and the
density functions are calculated based on these acceleration values. Assuming clothoid segments as a
feasible trajectory, the coordinates of the smooth trajectory can be formulated as [19]:

x(s) = α
√

πS
(

s√
π

)
,

y(s) = α
√

πC
(

s√
π

)
,

(8)

where x(s) and y(s) the longitudinal and lateral direction of the clothoid segment, S(x) and C(x)

denotes the Fresnel sine and cosine and a is the scaling factor. C(L) =
L∫

0
cos(πt2

2)dt, S(L) =

L∫
0

sin(πt2

2)dt. Using these formulas, the smooth trajectory can be built by clothoid segments,

which guarantees the feasibility. Every trajectory is divided into four segments, where the sharpness
parameter (α) characterizes the given segment. In Figure 6 an illustration on the overtaking trajectories
and the computed smooth trajectories are depicted.

60 80 100 120 140 160 180 200 220

Longitudinal position (m)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Raw data

Smooth trajectory

240 260 280 300 320 340 360 380

Longitudinal position (m)

16

16.5

17

17.5

18

18.5

19

19.5

20

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Raw data

Smooth trajectory

280 300 320 340 360 380 400 420

Longitudinal position (m)

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Raw data

Smooth trajectory

380 390 400 410 420 430 440 450 460 470

Longitudinal position (m)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Raw data

Smooth trajecotry

Figure 6. Comparing the raw data to the smooth trajectories.

Using the fitted smooth trajectories, curvature can be determined as:

κm = slα, (9)

where sl is the length of the given segment. In the following step, the fitted, feasible trajectories are
used to evaluate the overtaking maneuvers. The maximum curvature of the given segment can be
computed using Equation (9). Since the velocity of the vehicles can be computed, the maximum value
of lateral acceleration is calculated. In the next step, the prediction method of the lateral motion of
the vehicle is presented. During the prediction method, the previously computed feasible trajectories
and the longitudinal velocity of the vehicles which are provided by the NGSIM dataset, are used.
As it is described below, the maximum lateral acceleration characterizes the overtaking scenarios.
Density functions are fitted to the saved data, to solve the prediction process. During the determination

Appl. Sci. 2020, 10, 7716 11 of 21

of the density functions nearly 300 overtaking trajectories are selected from the whole NGSIM dataset,
and at the same time, the velocity profile of the vehicles is saved of the given segment. Assuming the
kinematic bicycle model, the lateral acceleration of the vehicle can be computed as it is described in
Equation (2). Using the maximum values of the accelerations, the density function can be computed.
The motion of the vehicles is predicted using the Gamma density function, which widely used in the
field of predictions [20]. The advantage of this distribution is that it can be used for several motion
models and it is easy to implement. The Gamma density function can be formed as:

flat(x, α, β) =
βαxα−1e−βx

Γ(α)
, (10)

where x, α and β are non-negative. In Equation (10) Γ is the Gamma function which is formed as

Γ(α) =
∞∫
0

xα−1e−xdx, where α ∈ N. In Figure 7, the density and distribution functions are shown.

0 1 2 3 4 5 6 7 8

Lateral acceleration (m/s2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
e

n
s
it
y
 f

u
n

c
ti
o

n

0 1 2 3 4 5 6 7 8

Lateral acceleration (m/s2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

Figure 7. Density and distribution function of the lateral accelerations.

The probability can be computed between two lateral acceleration values as: P(al ≤ x ≤ au) =

F(au)− F(al), where F is the distribution function. Using (8) the length of the possible trajectories
can be determined since the velocity of the surrounding vehicles are measurable. The presented
density and distribution functions are similar to previous ones, which can be found in the following
research [21]. Xu et al. [22] determined the upper bound of the comfort level of the lateral acceleration
to 3.6 m/s2. Considering the density functions, it can be said, that the probability of that cases when the
lateral acceleration is below the comfort level is more than 90%. These results can be used to determine
the optimal lateral acceleration value during a lane-change maneuver (see Section 2.3). The choice of
this value is crucial, because if this value is chosen to be above a certain bound, the maneuver does not
meet the comfort criteria. Otherwise, it takes too long to get to the other lane, which is unsatisfactory
from the safety point of view.

3.2. Longitudinal Motion of the Vehicles

In the next step, the longitudinal motion of the vehicles is predicted. The computation of the
density function is based on the NGSIM dataset. Firstly, a start point is selected randomly on the
given road segment. The current longitudinal acceleration (ac) value is saved and assumed that the
vehicle moves with it along the whole segment. The given horizon is predefined and the length of it
is set to T = 8 s. The whole horizon is divided into 10 equidistant segments t ∈ [t1, t2. . . tn], n = 10.
The acceleration values at the previously defined time step ti are saved and compared to the acceleration
value at the start point (ac). The difference between them are recorded ad,i = ac − a(ti), i = 1. . . 10.
During the determination of the density function associated with the longitudinal motions, the whole
dataset is used unlikely to the lateral case.

Appl. Sci. 2020, 10, 7716 12 of 21

The dataset is divided into disjoint sets (A) according to the initial acceleration values. ad,i ∈ Aj,
if ad,i ∈ {Al,j Au,j} and ad,i /∈ Aj+1 if k = 1. . . n, Al,k > Al,k+1 and Au,k < Au,k+1. Al and Au denote the
lower and upper bounds of the given set. To predict the possible longitudinal motion of the vehicles,
Gaussian density functions are calculated to the previously computed sets. The Gaussian density
function can be formulated as:

fk,i(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ)2

k = 1. . . n, (11)

where k denotes the kth prediction time step, and i gives the ith set according to the initial acceleration
as it is described below. Using these, the possible reachability areas can be determined, and also
the probability of collisions during the motion-planning process. In Figure 8 the density functions
are presented.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Difference between the acceleration value at the start point (m/s2)

0

1

2

3

4

5

6

7

8

D
e
n
s
it
y
 f
u
n
c
ti
o
n

t
3

t
4

t
5

t
6

t
7

t
8

-3 -2 -1 0 1 2 3

Difference between the acceleration value at the start point (m/s2)

0

0.5

1

1.5

2

2.5

3

D
e
n
s
it
y
 f
u
n
c
ti
o
n

t
2

t
3

t
4

t
5

t
6

t
7

t
8

Figure 8. Density functions of the longitudinal motion.

In Figure 8 the density functions are depicted where the bounds of accelerations are set to
Al = −0.25 m/s2, Au = 0.25 m/s2. In the right side of the pictures the results are shown, in which
the bounds are set to Al = −1 m/s2, Au = 1 m/s2. Note that at increased acceleration values,
the uncertainty increases as well. The time step is set to ti = 0.8 s. The possible longitudinal and lateral
movements are presented based on the NGSIM data. In the followings, these functions are used to
predict the possible motions of the vehicles, and also help to compute the optimal value of the lateral
acceleration, which is essential during the trajectory planning.

3.3. Prediction of the Vehicle Motion

The velocity of the controlled vehicle can be measured and assumed to be constant along the
prediction horizon. The velocities and the distances measured from the controlled vehicle can be
measured. The motion prediction of the surrounding vehicles is based on the NGSIM dataset,
with which the density functions are computed. The lateral position of the vehicle is taken into
account through the Gamma density function where the parameters of the density function are
computed from the measurements Section 3.1. The longitudinal motion prediction is based on the
Gaussian density functions, which is presented in Section 3.2. Motion-planning is made using the
presented graph-based algorithm, in which weights are assigned to each node. The value of the weight
depends on the maximum value of the lateral acceleration (see Section 2). An important step is to
guarantee a collision-free trajectory during motion-planning. This can be made using the previously
computed graph-based algorithm. Since the positions of the nodes are computed previously, based on
the density functions and the measurements of the states of the surrounding vehicles, the probabilities
can be computed. These values are added to the weighted graph. In order to guarantee a collision-free
trajectory, the probabilities of the collision must be minimized along the reference trajectory.

Appl. Sci. 2020, 10, 7716 13 of 21

The lateral motion of the vehicle can be predicted with the following equation:

Plat(yj) =

amax∫
amin

flat(x, α, β)dx · Pw(σ, µ), (12)

where flat is the Gamma density function and (amin, amax) is the set of the possible lateral accelerations.
Pw is responsible for taking into account the width of the vehicle, where yw is the width of the vehicle
and variance is computed as σ=

√
yw
4 . The µ gives the position of the center of the gravity of the vehicle.

Moreover, the probabilities according to the longitudinal motion are also must be performed:

P(xj, ad,i) =

tivx∫
0

f j,i(x)dx, (13)

where vx gives the longitudinal velocity of the controlled vehicle. xj gives the longitudinal position of
the graph node in the jth time step, and ad,i is the current acceleration of the vehicle. Using Equation (12)
and (13) the probability of collision can be computed to one node as:

P(xj, yj, ad,i) = P(xj, ad,i) · Plat(yj). (14)

During the reduction of the graph, a bound (yb,p) has been defined in Equation (7). The maximum
value of the probability is assigned to the given node:

P(xm, ym) = max(P(xj, y, ad,i)) y ∈ [ym −
yb,p

2
, ym +

yb,p

2
], (15)

where yb,p is the bound, which is used during the k-medoids algorithm, see Equation (7). Finally, to
every node, the probabilities can be computed. The weights between to edges can be assigned as
w : Ē→ R

wn = β(P(xm, ym)) + θ(c · v2
x), (16)

where (xm, ym) represents the coordinates of mth node, which is connected with the nth node and
m > n. The curvature (c) can be easily computed from (4). Note that the collision free trajectory must
be guaranteed, in order to achieve this, β and θ weighting functions can be used. This means the
maximum value of the collision probability is assigned to the nodes.

4. Architecture of the Algorithm

4.1. Decision Making and Trajectory Generation

In the previous sections, the generation of the graph and the motion prediction of the surrounding
vehicles are presented. The positions of the nodes are computed and using the approximating function,
weights can be assigned to the edges. The surrounding vehicles must be taken into account. In order
to achieve this, the probability of collision values is computed to the nodes. These values play an
important role in the graph weighting. Using the weighted graph the main task is to compute a
trajectory with the lowest sum of the values, which can be solved by a greedy algorithm. The output
of the greedy algorithm is the nodes V1, V2. . . VN , where N is the number of the layers. Since the graph
is generated equidistantly in a longitudinal direction, the lateral positions are the main result of this
algorithm. Using the computed reference positions, a neural-network calculates a feasible trajectory
for the ego vehicle.

Appl. Sci. 2020, 10, 7716 14 of 21

4.2. Checking the Probabilities of Collisions

Since the shortest path of the given graph can be computed using the greedy algorithm,
the probability values for the reference trajectory is known. The reference trajectory is defined by
the nodes Vi, i = 1. . . n. The greedy algorithm computes the edges with the lowest sum of weights.
There can be cases, in which even the lowest sum of the weights does not guarantee collision-free
trajectory, e.g., a weight of one node is high, the other ones are low, this results in a low sum of the
weights. In order to guarantee the collision-free trajectory, the probability values P(vi) must be checked.
After defining the maximum value of the probability (ε), the following inequality must be satisfied:

P(vi) ≤ ε, ∀i. (17)

There may be cases when these bounds are violated. Then the longitudinal position of the ego
vehicle must satisfies the following bounds: xego,i < xd,i where xd,i is the modified longitudinal
coordinate of the i-th node. Since the density functions are known, (see Section 3.2), xd,i can be

computed ε =
xd,i∫
0

f (x)dx. Using these longitudinal coordinates the states of the vehicle can be

bounded in the given time steps, using e.g., a model predictive control. Further information can be
found in [23]. Since the curvatures can be computed from the trajectory, the longitudinal motion of the
vehicle can be designed taking into account the maximum value of the combined acceleration.

4.3. Structure of the Algorithm

Finally, in Figure 9, the structure of the algorithm is introduced.

Neural network

Generation of the
graph

Lateral, Longitudinal
density functions

MPC based data
generationNGSIM data

Decision making
and trajectory

generation
Checking the
probabilites of

collisions

Vehicle

Figure 9. Structure of the algorithm.

In Figure 9 the scheme of the algorithm is presented. The blue-colored rectangles represent that
parts of the algorithm, which are responsible for the process of the a priori data. The red parts show
the operation of the algorithm. In Section 3 the NGSIM dataset is detailed, and in Sections 3.1 and 3.2
the computation of the density functions, which are used in longitudinal and lateral motion predictions,
are presented. After computing the trajectory, the probabilities of the collisions are checked in Section 4.
If the values of the probabilities are higher than a previously defined maximum, the longitudinal
velocity of the vehicle must be varied. The rest of the layer is related to the computation of the

Appl. Sci. 2020, 10, 7716 15 of 21

feasible trajectories. The generation of the graph, using the calculated maximum value of the
lateral acceleration is detailed in Section 2. The calculation of the feasible trajectories which are
used during the neural network training process is described in Appendix A. The training of the neural
network is achieved through a previously-generated dataset, and the results of the trained neural
network are validated using the test dataset. The results of the neural network showed appropriate
results. However, safety performances can be guaranteed, using a robust control framework [10].
Finally, the longitudinal motion of the vehicle is taken into account.

5. Simulation Example

In this subsection, a traffic situation is solved using the graph-based motion-planning algorithm.
In Figure 10, the points are presented, where the algorithm is evaluated. During the graph generation
the value of yp,b is set to 0.1 m.

1st

2nd

3rd 4th

5th

Figure 10. The traffic scenario.

First, the motion of the vehicle is predicted, and then the probability values and the weights are
computed. The shortest path of the proposed graph can be found using Dijkstra’s algorithm, which is
a greedy algorithm. Using the reference vector, the neural network trajectory planning algorithm is
evaluated, and finally, the trajectory is tracked by a local controller, where one nonlinear bicycle model
is used. The velocity of the ego vehicles are set to vx = 20 m/s, vother = 15 m/s The distance between
them is d = 16 m, and the acceleration value on the first time step is aother = −1 m/s2. The lateral
position of the vehicle in the front is yother = 0 m. Finally, the width of the vehicle is set to wother = 2.2 m.
In Figure 11 the results for the 1st point are presented. It can be seen, that the vehicle can track the
reference trajectory, which is computed by the neural network.

0 20 40 60 80 100 120

Longitudinal position (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Reference vector for Neural Network

Reference vector from the graph

Real trajectory

Reference vector computed by Neural network

0 20 40 60 80 100 120 140 160

Longitudinal position (m)

-1

-0.5

0

0.5

1

1.5

L
a

te
ra

l
a

c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

Figure 11. Results of the simulation.

It can be said, that the result of the simulations shows, that the algorithm decided to overtake,
and the smooth trajectory is planned by the neural network. The local controller of the ego vehicle was
able to track the reference trajectory, and the lateral accelerations during the simulation were nearly
at the comfort level which is 1.6 m/s2. During the second part of the simulations, only the planned
trajectories are presented. Since the goal of this paper is to introduce a motion-planning algorithm,

Appl. Sci. 2020, 10, 7716 16 of 21

in these cases, the planned trajectory is not tracked by the controlled vehicle. In Figures 12 and 13 the
planned trajectories, and the results of the graph-based algorithm are presented.

0 20 40 60 80 100 120 140 160

Longitudinal position (m)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Reference vector for Neural Network

Reference vector from the graph

Reference vector computed by Nerual Network

(a) Case 2

0 20 40 60 80 100 120 140 160

Longitudinal position (m)

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Reference vector for Neural Network

Reference vector from the graph

Reference vector computed by Neural Network

(b) Case 3

Figure 12. Result of the algorithm in cases 2 and 3.

0 20 40 60 80 100 120 140 160

Longitudinal position (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Reference vector for Neural Network

Reference vector from the graph

Reference vector computed by the Neural Network

(a) Case 4

0 20 40 60 80 100 120 140 160

Longitudinal position (m)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Reference vector for the Neural Network

Reference vector from the graph

Reference vector computed by Neural Network

(b) Case 5

Figure 13. Result of the algorithm in cases 4 and 5.

As it can be seen, the algorithm makes the correct decision in different cases, and using the results,
the neural network-based algorithm planned the feasible trajectory. In Figure 12 the result of the
algorithm can be seen for the second and third cases. The ego vehicle must get to the another lane to
avoid the collision with the other vehicle. Finally, in Figure 13, the vehicle gets back to the original lane
after overtaking the vehicle, which was in front of the controlled vehicle. In Table 1, the differences
between the planned trajectory, and the reference vector are showed.

Table 1. The maximum values of the errors.

Case 1 2 3 4 5

Error (from NN) (m) 0.312 0.258 0.161 0.435 0.419

Table 1 shows the maximum value of the differences between the reference vector, provided by the
graph-based algorithm, and the computed feasible trajectory. The maximum value of the error is 0.435
m. It can be said that the maximum values of the errors are smaller than the maximum value during the
generation of the trajectories (see: Appendix A.3). It can be said, that the graph-based algorithm can
compute the collision-free trajectory. Using a machine learning-based approach, the feasible trajectory
is planned using the results of the graph-based algorithm.

6. Conclusions

In this paper, a graph-based motion-planning algorithm is presented. During the generation of
the graph, several constraints are taken into account in order to guarantee the safety and comfort

Appl. Sci. 2020, 10, 7716 17 of 21

requirements at the same time. The motion prediction of the surrounding vehicles is made by
the density functions which are generated using NGSIM data. The weights of the directed graph
are calculated from the probabilities of collisions and the maximum value of lateral accelerations.
The output of the graph-based algorithm is the reference points, with which the neural network-based
algorithm computes the feasible trajectory. The proposed algorithm is validated through one
comprehensive simulation. The results show that the algorithm is able to determine the collision-free
trajectory, and the trajectory satisfies the bounds.

Author Contributions: conceptualization, algorithms, software, T.H.; methodology, T.H. and B.N.; supervision,
P.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The paper was partially funded by the National Research, Development and Innovation
Office (NKFIH) under OTKA Grant Agreement No. K 135512 and under the National Laboratory for Autonomous
Systems. The work of Balázs Németh was partially supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences and the ÚNKP-20-5 New National Excellence Program of the Ministry
for Innovation and Technology from the source of the National Research, Development and Innovation Fund.
The work of Tamás Hegedűs has been supported by the ÚNKP-20-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development and Innovation
Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Trajectory Planning

Appendix A.1. The Lateral and Longitudinal Model of the Vehicle

During the trajectory planning for the controlled vehicle the well-known two-wheeled lateral
vehicle model is used, which is introduced by Rajamani [24], and includes the following equations:

mvx(ψ̇ + β̇) = C1α1 + C2α2, (A1a)

Izψ̈ = C1α1l1 − C2α2l2, (A1b)

v̇y = vx(ψ̇ + β̇), (A1c)

where Iz is the yaw inertia, m is the mass of the vehicle C1, C2 are the cornering stiffness of the front
and rear tires. Furthermore, l1, l2 is the distances of the front and rear axes measured from the center of
the gravity of the vehicle. The side-slip angles can be computed using equation: α1 = δ− β− ψ̇l1/vx

and α2 = −β + ψ̇l2/vx. Using Equation (A1), the state space representation of the system can be
written in the following form:

ẋ = Ax + Bu, (A2a)

y = CTx + Du, (A2b)

where u is the steering angle (δ). The proposed dynamic model is used during the trajectory planning.
Moreover, during the longitudinal motion prediction of the surrounding vehicles, a constant
acceleration is assumed. Using this assumption the following equation gives the position to the
(k + 1)th time step:

s(k + 1) = s(k) + v(k)t +
1
2

a(k)t2, (A3)

where a(k) gives the longitudinal acceleration and v(k) is the velocity in the kth time step.

Appendix A.2. Predictive Optimization Method

A predictive control-based trajectory planning is presented in this section, and then the Neural
Network-based method is used to make the trajectory planning faster since the computation of the

Appl. Sci. 2020, 10, 7716 18 of 21

quadratic optimization function is time-consuming. The results of the model predictive optimization
approach are used to compute the weights of the edges which are used in the motion-planning layer.
The basis of the discretized state space representation is the dynamic bicycle model (see: Equation (A2)),
which can be written in the following form:

x(k + 1) = φx(k) + Γu(k), (A4)

where φ = eATs and Γ =
(k+1)Ts∫

kTs

eA((K+1)Ts−τ)Bdτ. The states of the discrete state space representation

are: x =
[
y vy ψ̇ ψ δ

]T
. In order to minimize the lateral acceleration, the output of the model is

the lateral position and lateral acceleration of the controlled vehicle. Using Equation (A6) the output

matrix can be formed as: C =

[
1 0 0 0 0

0 0 0 0 v2
x

l1+l2

]
.

In this case, the lateral acceleration of the vehicle can be approximated as alat =
v2

x
R . Using the kinematic

bicycle model, the radius of the given trajectory can be computed as:

R =
l1 + l2
tan(δ)

(A5)

Assuming small angles: tan(δ) ≈ δ. The lateral acceleration of the vehicle can be approximated
by the following equation:

alat =
v2

xδ

l1 + l2
. (A6)

The error, which is measured from the reference vector, can be defined as Németh et al. [9]:

ey = y(U)−R, (A7)

where R is the reference lateral position of the vehicle. The control signal is computed through the
minimization process. The minimization function can be written as

J(U, x(k)) =
1
2

n+k

∑
i=k

ey(U)Tξey(U) + UTλU, (A8)

where U =
[
u(k) . . . u(k + n)

]T
. Moreover, ξ and λ are weighting matrices. This leads to a

quadratic optimization problem, which can be formulated as

min
u(k+1),u(k+2). . . u(k+n)

J(U, x(k)) s.t.

{
HinU < b

ll ≤ ui ≤ lu,
(A9)

where Hin is responsible for the limitation of the states. Which can be computed from the dynamics of
the controlled vehicle. During the trajectory planning, several constraints must be defined to the states
in order to guarantee the safety and comfort requirements. Control input of the system also must be
limited within (ll , lu), taking into account the limitations of a real system.
During the trajectory planning several limitations must be taken into account in order to guarantee the
safety and comfort requirements. The optimization problem is solved with the following limitations:

• Lateral position. It is necessary to limit the lateral error measured from the reference trajectory
in order to avoid dangerous motion of the vehicle. Moreover, it is important to guarantee
that the reference lateral position is reached by the planned trajectory at the end point.

Appl. Sci. 2020, 10, 7716 19 of 21

During the computation, the maximum deviation measured from the reference trajectory is set to
|emax| = 0.5 m .

• Yaw angle. Another important point of the trajectory planning is the yaw angle of the vehicle.
The feasible trajectory must ensure that the yaw angle of the vehicle is the same as the yaw angle
of the reference trajectory.

• Steering angle. The steering angle and its rate must be also bounded. ∆δmin ≤ ∆δ ≤ ∆δmax and
δmin ≤ δ ≤ δmax, where the bounds can be calculated from the limits of the actuator. Moreover the
limitations help to guarantee comfort and safety requirements.

• Lateral acceleration. During the trajectory planning, the lateral acceleration is minimized.
Using the computed data (see Section 3.1), the bounds are set to alat,b ≥ |alat|. Where alat,b
is set to 4 m/s2. More than 95% of the computed maximum accelerations are above this value
(Figure 7).

An example for the trajectory planning is shown in Figure A1.

0 10 20 30 40 50 60 70 80 90 100 110

Longitudinal position (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Reference

Feasible trajectory

0 10 20 30 40 50 60 70 80 90 100

Longitudinal position (m)

0

0.5

1

1.5

2

2.5

3

3.5

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

Reference

Feasbile trajectory

Figure A1. Computed trajectories.

Appendix A.3. Neural Network Based Trajectory Planning

Since the optimization process can be time-consuming, during the implementation the trajectory
planning is performed through a machine learning-based approach. In order to train the machine
learning-based model, a lot of data needed. Therefore, several trajectories have been planned using
the proposed algorithm with different parameter sets. There are several machine learning algorithms
which can deal with the trajectory planning problem [25]. However, in general, the most flexible
solution is provided by the neural networks, since they are capable to solve complex and nonlinear
problems. Therefore, in this paper a neural network-based solution is applied to solve this problem [11].
The trained neural network consists of one input, one output, and three hidden layers.
Since, the number of neurons can be chosen freely, to determine the optimal number of them,
the so-called k-cross validation technique is used. The mentioned method divides the training data
into subsets. The first subset is used to train the network, and at the same time, another randomly
created subsets are used to validate it. The number of neurons in the hidden layer is chosen to be
18-10-16. As it is described, the activation functions have to be chosen. In this paper, the rectified linear
unit (ReLU) and the log-sigmoid functions are used in the network, since these functions can be used
to solve nonlinear problems. The training process is based on the widely used Levenberg–Marquardt
algorithm [26].

References

1. Ziebinski, A.; Cupek, R.; Erdogan, H.; Waechter, S. A Survey of ADAS Technologies for the Future Perspective
of Sensor Fusion. In Proceedings of the Computational Collective Intelligence, Halkidiki, Greece, 28–30
September 2016.

Appl. Sci. 2020, 10, 7716 20 of 21

2. Hasenjager, M.; Heckmann, M.; Wersing, H. A Survey of Personalization for Advanced Driver Assistance
Systems. IEEE Trans. Intell. Veh. 2019, 5, 335 – 344. [CrossRef]

3. Nemeth, B.; Gaspar, P.; Hegedus, T. Optimal Control of Overtaking Maneuver for Intelligent Vehicles.
J. Adv. Transp. 2018, 2018, [CrossRef]

4. Fu, X.; Jiang, Y.; Lu, G.; Wang, J.; Huang, D.; Yao, D. Probabilistic Trajectory Prediction in Intelligent Driving.
IFAC Proc. Vol. 2014, 47, 2664–2672. [CrossRef]

5. Hegedus, T.; Nemeth, B.; Gaspar, P. Graph-based Multi-Vehicle Overtaking Strategy for Autonomous
Vehicles. In Proceedings of the 9th IFAC Symposium on Advances in Automotive Control (AAC),
Orléans, France, 21–22 June 2019; pp. 372–377.

6. Yoon, S.; Kum, D. The Multilayer Perceptron Approach to Lateral Motion Prediction of Surrounding
Vehicles for Autonomous Vehicles. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV),
Gotenburg, Sweden, 19–22 June 2016; pp. 1307–1312.

7. Xu, W.; Pan, J.; Wei, J.; Dolan, J.M. Motion Planning under Uncertainty for On-Road Autonomous Driving.
In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong,
China, 31 May–5 June 2014; pp. 2507–2512.

8. Tsitsiklis, J.N. Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control. 1995,
40, 1528–1538. [CrossRef]

9. Nemeth, B.; Hegedus, T.; Gáspár, P. Model Predictive Control Design for Overtaking Maneuvers for
Multi-Vehicle Scenarios. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy,
25–28 June 2019; pp. 744–749.

10. Nemeth, B.; Hegedus, T.; Gaspar, P. Performance Guarantees on Machine-Learning-based Overtaking
Strategies for Autonomous Vehicles. In Proceedings of the 2020 European Control Conference (ECC),
Saint-Petersburg, Russia, 12–15 May 2020; pp. 136–141.

11. Hegedus, T.; Nemeth, B.; Gaspar, P. Multi-objective trajectory design for overtaking maneuvers of automated
vehicles. In Proceedings of the IFAC World Congress 2020, Berlin, Germany, 12–17 July 2020.

12. Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for
autonomous vehicle at driving limits. Control. Eng. Pract. 2018, 76, 41–53. [CrossRef]

13. Berntorp, K. Path Planning and Integrated Collision Avoidance for Autonomous Vehicles. In Proceedings of
the 2017 American Control Conference, Washington, DC, USA, 24–26 May 2017; pp. 4023–4028.

14. Berntorp, K.; Magnusson, F. Hierarchical Predictive Control for Ground-Vehicle Maneuvering.
In Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015; pp. 2771–2776.

15. Cao, D.; Yang, B. An improved k-medoids clustering algorithm. In Proceedings of the 2nd International
Conference on Computer and Automation Engineering (ICCAE), Singapore, 26–28 February 2010;
pp. 132–135.

16. U.S. Department of Transportation. NGSIM—Next Generation Simulation. 2008. Available online:
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm (accessed on 15 July 2020).

17. Coifman, B.; Li, L. A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory
dataset. Transp. Res. Part Methodol. 2017, 105, 362–377. [CrossRef]

18. Punzo, V.; Borzacchiello, M.T.; Ciuffo, B. On the assessment of vehicle trajectory data accuracy and
application to the Next Generation SIMulation (NGSIM) program data. Transp. Res. Part Emerg. Technol.
2011, 19, 1243–1262. [CrossRef]

19. Gray, A. Modern Differential Geometry of Curves and Surfaces; CRC Press: Boca Raton, FL, USA, 1993.
20. Mahapatra, G.; Maurya, A.K. Dynamic parameters of vehicles under heterogeneous traffic stream with

non-lane discipline: An experimental study. J. Traffic Transp. Eng. 2018, 5, 386–405. [CrossRef]
21. Asaithambi, G.; Shravani, G. Overtaking behaviour of vehicles on undivided roads in non-lane based mixed

traffic conditions. J. Traffic Transp. Eng. 2017, 4, 252–261. [CrossRef]
22. Xu, J.; Yang, K.; Shao, Y.; Lu, G. An Experimental Study on Lateral Acceleration of Cars in Different

Environments in Sichuan, Southwest China. Discret. Dyn. Nat. Soc. 2015, 6, 1–16. [CrossRef]
23. Matute-Peaspan, J.A.; Marcano, M.; Zubizarreta, A.; Perez, J. Longitudinal Model Predictive Control with

comfortable speed planner. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 136–141.

24. Rajamani, R. Vehicle Dynamics and Control; Springer: New York, NY, USA, 2005.

http://dx.doi.org/10.1109/TIV.2019.2955910
http://dx.doi.org/10.1155/2018/2195760
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00997
http://dx.doi.org/10.1109/9.412624
http://dx.doi.org/10.1016/j.conengprac.2018.04.007
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
http://dx.doi.org/10.1016/j.trb.2017.09.018
http://dx.doi.org/10.1016/j.trc.2010.12.007
http://dx.doi.org/10.1016/j.jtte.2018.01.003
http://dx.doi.org/10.1016/j.jtte.2017.05.004
http://dx.doi.org/10.1155/2015/494130

Appl. Sci. 2020, 10, 7716 21 of 21

25. Chen, J.; Zhao, P.; Liang, H.; Mei, T. Motion Planning for Autonomous Vehicle Based on Radial Basis Function
Neural Network in Unstructured Environment. Sensors 2014, 14, 17548–17566. [CrossRef] [PubMed]

26. Demut, H.; Hagan, M.; Beale, M. Neural Network Design; PWS Publishing Co: Boston, MA, USA, 1997.

Sample Availability: Samples of the compounds are available from the authors.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s140917548
http://www.ncbi.nlm.nih.gov/pubmed/25237902
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Motivation
	Motion Prediction-Based Decision Making Algorithms
	Graph-Based Algorithms
	Neural-Network-Based Algorithms
	Model Predictive Control-Based Trajectory Planning
	Contributions of the Proposed Method

	Motion-Planning Graph-Based Algorithm
	Curvature Approximation of the Trajectories
	Computing the Lateral Positions of the Nodes
	Computing the Weights of the Edges
	Reducing the Complexity of the Graph

	Motion Prediction of the Surrounding Vehicles
	Lateral Motion of the Vehicle
	Longitudinal Motion of the Vehicles
	Prediction of the Vehicle Motion

	Architecture of the Algorithm
	Decision Making and Trajectory Generation
	Checking the Probabilities of Collisions
	Structure of the Algorithm

	Simulation Example
	Conclusions
	Trajectory Planning
	The Lateral and Longitudinal Model of the Vehicle
	Predictive Optimization Method
	Neural Network Based Trajectory Planning

	References

