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Abstract

Indoor positioning systems (IPS) allow assets on the shop-floor to be tracked with a relatively high accuracy. In order to obtain the useful,
underlying production information, smart and fast processing algorithms are needed, as IPSs produce an immense amount of data in a very
short period. In the paper, a novel approach is presented that offers the near real-time calculation of assembly times, based on the dynamically
streamed spatial data stream of assets. The approach relies on probabilistic analytic models, respecting the needs of manufacturing and operations

management. The efficiency of the results is presented through an industry-related application case.
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1. Introduction

Just as a costumer wishes to track the status of her ordered
items, a real-time tracing of shop-floor assets embrace fruitful
knowledge for plant management. With the spread of digital
technologies, the opportunity of collecting spatial data in in-
dustrial environments is not a troublesome question anymore,
but rather the efficient use of these process-related data in enter-
prise level decision making processes. Considering the mana-
gerial objectives, the key requirements related to the digital
technologies are the real business value that they are able to
bring, and the associated return on investments. Many new
technologies in the prototype and introduction stages have un-
certain business-related benefits, as the high-level performance
indicators and cost factors depend on the environment in which
they are applied. Therefore, the importance of the so-called
proof-of-concept projects is crucial in the digitization era, as
many new solutions are available and each company seeks for
those that best fit in their value chains.

Among these new applications, indoor positioning systems
(IPS) have also received higher attention from the manufactur-
ing industry, as they provide the opportunity of tracking and
tracing assets in shop-floor environment more efficiently than
ever. IPSs can be used for locating almost any kind of physi-
cal asset in a production environment; typical examples are the
tracing of products, tools and fixtures. The relevance of accu-
rate positioning might be even higher in production logistics, as
transportation resources’ routes are usually more complicated
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to follow than those of the products that can be located by e.g.,
Radio Frequency IDentification (RFID), where receivers are in-
stalled on predefined places. In contrast, tugger trains, auto-
mated guided vehicles (AGV), industrial drones or forklifts can
move almost freely on the shop-floor, increasing the complex-
ity to locate them, and optimize their utilization based on their
historical paths’.

In the paper, a novel statistical solutions is presented that
enables the utilization of IPS data in production management
related decision, e.g., to balance assembly lines, predict lead
times or optimize the utilization of certain resources. As IPSs
usually provide the data in raw or semi-processed formats,
therefore advanced analytics methods are often required to ob-
tain the information that is useful for decision makers in the
aforementioned processes.

The paper is structured as it follows. First, a literature review
is provided, focusing on the introduction of recently applied
IPSs and their utilization in production management and con-
trol (Section 2). In Section 3, the problem in question is spec-
ified, with the description of the production environment, the
nature of the collected data and the results expected. Section 4
provides data analytics techniques that are applied to obtain in-
formation to support decision in production management. In
order to demonstrate the applicability of IPSs in such decision
making processes, numerical experimental results are presented
in Section 5. The summation and future views are provided in
Section 6.
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2. Literature Review

In the era of the Internet-of-Things (IoT), smart devices are
gaining more attention from the industry, with the aim of in-
creasing the digitization rate of shop-floor applications [11].
A typical IoT application is the indoor positioning, as it can
be applied at nearly every domain of manufacturing industry,
and can be also installed in already operating systems. Sev-
eral technology providers offer accurate IPS solutions, however
the applied machinery ranges from visual sensors [21], through
ultra-wideband (UWB) technology — that enables to achieve up
to 2-5 cm accuracy, depending on the environment [19] —, to
radar-based tracking [2]. Utilizing the fast wireless communi-
cation and the accurate asset tracking, IPSs enable to implement
scalable and reliable real-time location systems (RTLS) used in
warehouse management, fleet management of shop-floor man-
agement [4]. As for the physical architecture, a typical IPS is
built up of a central data management server that implements
the storage and processing of the data, received from the field
devices. The latter is a set of tags that are emitting a signal in
certain periods, and a set of fix anchors that are capable of re-
ceiving the tags’ signals, and calculating the positions by using
triangulating and/or trilateration functions [9]. The tags are usu-
ally equipped with a battery that—depending on the usage—
can last up to months with a single charge. Thanks to the small
size of an average tag, they can be attached to even small-size
products, tools or machines.

As a result of decreasing prices of smart devices, the
hardware-related costs of an industrial IPS application are rel-
atively low [15], and the real strength of these systems relies
in their scalability and flexibility in terms of use [1]. They en-
able the digitization of production systems besides relatively
low IT investments, while useful data can be obtained about
the product, processes and resources in near real time. How-
ever, the continuously generated data stream requires special
care to be taken to ensure that the compressed summary faith-
fully captures the overall information that the data hold [10].
In industrial applications, the target shop-floor area is usually
subdivided in zones [13], and the IPS system can determine
the zone in which a given tag was in an active state, based on
its x and y (and relatively rarely z) coordinates. Although a
typical IPS employs advanced signal processing and noise fil-
tering algorithms to assign tags to zones [6,24], some further
post-processing algorithms [25] are often necessary to derive
the target metrics, indirectly from the raw coordinates. Typical
data and signal processing techniques—among others—rely on
Kalman-filters [3,16], Monte Carlo [7,8] and machine learning
approaches [12,17].

The aforementioned metrics are typically utilized in a higher
level of the decision making hierarchy, e.g., to derive pro-
duction control logic, scheduling policies or to improve pro-
cesses based on actual parameters that reflect the real system
behaviour. In production management and especially in con-
trol, data-driven decisions that consider the actual state of the
system at any given point of time are called situation-aware
ones. They usually utilize the fusion of a model-based system
representation, and the real parameters obtained from the sys-
tem, so as implementing the digital twin of it. In this way, one
can make decisions about the system operation with a foresight
on possible outcomes of certain scenarios, without disturbing

the operation of the real system. In the paper, the IPS data is
processed with the aim of obtaining the real values of some
process-related metrics, enabling the later implementation of a
situation-aware production control.

3. Problem statement

In the paper, two data analytics problems are investigated,
namely, how spatial data provided by an IPS could be processed
to gain profitable information and how it can be utilized ef-
ficiently in production management. The positioning system
provides raw data about the asset locations over time, and the
overall goal is to mine out such performance metrics that char-
acterize the dynamics of the system, considering cycle times,
utilization rates and workloads.

3.1. Description of the Production Environment

First, the production environment is introduced where the
IPS is operated, and collects data about the products’ loca-
tions. In the experiments of the paper, a discrete-event simu-
lation (DES) model was used as a test environment, however, a
real industrial use case with the corresponding infrastructure is
the main motivation for this implementation of the study. Al-
though the original use-case is from the automotive sector, the
presented approaches and the applied analytics architecture are
not limited to this industrial domain, but also applicable in any
discrete manufacturing environment where asset location with
IPS can be solved. The simulation model is a realistic testbed
of the system in a sense that it provides information about the
tracked assets’ locations in near-real-time, reflecting the oper-
ation of an industrial IPS system. Replacing both the physical
production environment and the IT infrastructure of the IPS, the
simulation model implements both functions in a single model,
and capable of streaming location data towards any application
in real time.

The layout of simulation model of the manufacturing en-
vironment with seventeen workstations (WS;, ..., WS;7) and
buffers (By, ..., Bi7), one rework area (WS, and B,) and a qual-
ity checkpoint is shown in Figure 1. The prefixed routing path
of the products is also marked. In this production environment
the elements are moved from one station to the other by op-
erators of the shop-floor, and every assembly operation is per-
formed by operators also. In a highly operator-based environ-
ment like this one, IPS might be the best solution for tracking
assets, as — besides attachment at the beginning and detach-
ment at the end of the line — it does not require any further
attention from the operators (as opposed to RFID systems). On
the assembly line, one main product type is assembled, but the
method can be easily adopted into a multi-type production en-
vironments. The headcount of operators ranges between seven
to seventeen, therefore, output rate and lead times strongly de-
pend on the amount of available manual workforce. In order
to avoid blocked processes and smooth the material flow, part
buffers are placed between each consecutive workstations. Af-
ter the assembly process at WS4, a functional test is performed
by a robot, and the rejected parts are transferred to a dedicated
rework station to be corrected by a specially skilled operator.
From the data processing perspective, it might be important
that the shape of the line shows some typical patterns (e.g. U-
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shape).

Fig. 1. Production layout

This DES model is independent from any specific industrial
domain, therefore these workstations can be used to symbolize
any arbitrary assembly operations. Since the product is also
a general one, the complete model is ready to be applied at
any shop-floor with an installed IPS. As for the processes under
study, the DES model of an assembly system was implemented
in Siemens Tecnomatix Plant Simulation.

3.2. Structure of position logs

As already mentioned before, the simulation model does not
only represent the physical production environment, but also
replaces the real IPS by streaming the parts’ location data in
real time. In the name of IPS installation, a data streaming in-
terface (representing the IoT assets) and also a data collection
platform are implemented. The data streaming is performed by
the DES model itself, which is able to log the location of the
tracked assets in every 8-10 seconds (relative to simulation, can
be changed arbitrarily) in mySQL [23] database, including the
ID of the tracked tag, its raw (unfiltered) x and y coordinates
and the corresponding timestamp. Following the architecture
of a real positioning system, depending on the amount of work-
in-progress (WIP), the system can generate hundreds or even
thousands of logs under a minute of operation. This leads to
a massive amount of data over days and weeks of operation,
asking for an efficient way of capturing, storing and filtering it.

As for the nature of the data, raw position logs are typically
noisy, mostly because of the dynamic operating environment.
In order to simulate this phenomena, a random noise was added
to the position log stream, based on experiences from the origi-
nal use case. The analyzed assembly area is cca. 25x50 metres,
and the workstations have a cca. 2x2 metres size. The IPS sys-
tem has an accuracy of cca. 10 cm, reflected by a normally
distributing random noise on the position data. Following a re-
alistic case, there are some outlier values in the data, resulted
by environmental changes and issues. These outliers are sim-
ulated by a larger noise on the same position data, i.e., with a
combination of geometrical and normal distributions. Accord-
ingly, a normally distributed position error is added with O cm
mean and 80 cm variance to some data points determined with
a geometrical distribution, where the probability of a value 0 is
set to be p = 0.5. Accordingly, this "larger” noise is added to
cca. every second data sample of the stream.

3.3. Purpose of the Analysis and Questions to be Addressed

The paper is aimed at obtaining production management
related metrics from the above characterized noisy IPS logs.
Applying efficient approaches to filter the noise from a large
amount of streamed data, the overall objective is to calculate
such metrics from the positions that can be utilized in produc-
tion control and process improvement decisions. The task is to
calculate assembly cycle times, production lead times and sta-
tions’ workloads by using the IPS data. The cycle times are
considered to be the effective amount of human labor put in
performing a certain assembly operation, as the products are
only staying at a workstation when they are assembled, other-
wise they stay in a buffer. In the know of the actual cycle times,
engineers can refine the assembly line balances and the pro-
duction schedule if needed. The workloads, more specifically
the utilization rates of the workstations are indirectly calculated
from the cycle times, supporting production managers to derive
Overall Equipment Effectiveness (OEE) related metrics.

4. Data processing

Every IPS system has its weaknesses and usually it mani-
fests in disposition, which may lead to calculating highly in-
correct statistics, resulting in corrupted data to analyze. Some
papers (see e.g., [14]) provide an overview of the existing wire-
less indoor positioning solutions and attempt to classify differ-
ent techniques and systems. This section focuses on solving the
problem of disposition by using a novel method based on noise
reduction and the theory of Markov chains.

4.1. Noise reduction

The first step of spatial data cleansing is the reduction (or fil-
tration) of additional noise. Several effective filtering methods
exist, however, selecting the right one always depends on the
problem in question [20]. A Savitzky-Golay filter [22] [18] is
a digital filter that can be applied to a set of data points for the
purpose of smoothing, that is, to increase the precision of the
data without distorting the signal tendency. This is achieved—
in a process known as convolution—by fitting successive sub-
sets of adjacent data points with a low-degree polynomial by
the method of linear least squares. When the data points are
equally spaced, an analytical solution to the least-squares equa-
tions can be found, in the form of a single set of “convolution
coefficients” that can be applied to all subsets of data, to give es-
timates of the smoothed signal, (or derivatives of the smoothed
signal) at the central point of each subset. The process of S-G
filtering is presented in Algorithm 1.

Algorithm 1 Savitzky—Golay filter

1: input: (7, x,)tT=1 € R x R where 7, is the tth timestamp
2: Set parameters p,n € N where n must be odd
3 forr =21 :(T—%)do

n=1

e

% =Y %, Csxeu, where the convolution coefficients C;
§s=5"

depend or; parameter p (discussed in details in [18])
5. end for

One of the main advantages of the S—G process is the fact
that new data can be added easily and incrementally. The latter
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attribute enables the user to implement easily the concept even
on extremely large and constantly increasing data sets. By all
means, numerous variations of noise reduction exist, e.g. spline
fitting [5].

4.2. Stochastic Rezoning

Matching the observed spatial data with a predefined rout-
ing consists of two parts: first, the smoothed data must be
dragged onto the route, then a probability-based correction is
applied. Formally, the prefixed process routing is described by
a directed graph G which consists of N vertices (v; € V) and
directed edges (e;; € E). The vertices of this graph are called
zones, as they represent distinct workstations on the shop-floor.
The exact spatial coordinates of every zone are assumed to be
known. For each product k, the filtered spatial data of move-

. T, \K
ments are available: ((Tf, xf)t 1) where x* = (xf, yf,zf) e R?
=Uk=1

is a multidimensional (2-D or 3-D) vector. The elements of
this sequence are dragged onto graph G, simply by finding the
closest (by any arbitrary distance metric, e.g., Euclidean or
Manhattan) vertex a*, i. e. finding the closest zone. In this

i 9
way, another sequence A* = (a’]‘, as, - ,a’}k) is born whose el-

ements are the vertices of G where @ € V. Let us also de-

k— ([, & k ok k k
ﬁnF: A = ((al,.az) , (az,as) Lo ,(aTk_l,aTk)) sequence of state
pairs which will be referred to as steps from one zone to an-
other.
The steps defined as above are assigned into two categories:

true and false steps. If the step (af, aﬁrl) has the same start and

end points (i.e., af = af, ), then the step is considered to be

true. Otherwise, a certain step must complete two conditions to
be a true step. First, it has to be enabled by the prefixed routing

line, i.e. the step (a’f, afﬂ) can be a true step if there is a directed

k . Secondly, there must not be

edge in the graph G from af? toay,,.

coming backs later, i.e. forall r > r+ 1 : af # d*,, = da* # af
stands. If any of these statements are not completed for the
observed step, then it is considered to be a false step. Even
after the noise filtration, several false steps might emerge in A*
due to the inaccuracy of IPS. This phenomena requires some
further correction.

To accomplish the probability-based correction on A*, for
each edge e;; from v; to v; of graph G, we assign a p;; probabil-
ity based on the frequency of good steps. The p;; probabilities
can be mathematically formulated as

i #SY
S #St

L

Dij (D

where # denotes the cardinality of the sets. The set Sf.‘. con-
tains all steps from v; to v; zones (vertices of G graph), i.e
Sffj = {(a,ﬁ) e AF: (a,B) = (vi,vj)}. The set 5?‘]. con-
sists of only the true steps of A* from v; to v;, formally,
Sfj = {(cx,ﬂ) e A*:Vr>ind(B): a’,‘ * vi}, where ind (8)
means the lower index of element 8 € A*. If the routing is
a simple path, i.e. from every station only one other station is
reachable (graph G is a directed acyclic graph), then the denom-
inator of Equation 1 is exactly the number of finished products.

By using the above-defined p;; probabilities, sequences ¢
are updated w.r.t. the predefined routing line. By running
through A%, whenever a false step is found, a Bernoulli trial with
probability 1 — pg,.q,., is performed. If the trial is successful,
then all later occurrences of the starting zone must be removed
from A%, therefore the false step is purified into a true step. This
process can be imagined as tossing a special coin. This coin
says ’stay’ with probability 1 — pg, 4., O ‘move’ with prob-
ability Padt, - When the result says ‘move’ then the jump is
accepted and all later occurrences of ay, are removed i.e. going
back becomes impossible. However if it says ’stay’ then a4
is set to ay, so the state is not changed. With this method, a
well defined sequence of movements is obtained. Algorithm 2
summarizes the calculation steps discussed above.

Algorithm 2 Routing path integration

7\K ) .
1: input: ((T’;, xf)tk) coordinates, prefixed routing path
k=1

»

Noise filtration (e.g. S—G filter) : (T f, if),Tzkl

Match (Xf)IT_Al points to the nearest workstation
AF and A¥ as above
pij probabilities as in (1)
for k in Products do
fort=1:(T; —1)do
if a # d* | then
if Ir > 1 : a* = a then
Delete all following occurrences of a* with prob-
ability of p“rkafn

AN A O

—_
—_

Rewrite af,, = a; with probability of I — p
12: end if

13: end if
14:  end for
15: end for

Note that, in real life cases it often happens that not so many
false steps occurs after noise filtration. In those cases, it might
be time-saving to consider simply removing those false steps
instead, if the removal does not induce a significant amount of
data loss.

4.3. Periodic refinement

The core idea behind repeatedly performing the above re-
zoning method is based on the stochastic nature of the system.
As the algorithm highly depends on estimation of probabilities,
the reestimation is essential to possess the reliable parameters.
Another — maybe even grater — question is how to handle IPS’s
continuously flowing data stream, and in what way could it be
possible to process and use the latest arriving set of coordinates
without losing the information that was already gained from
previous calculations. Furthermore, the environment of a real-
life production system can change overtime which may cause
uncertainties in the precision of IPS, therefore a regular refine-
ments are necessary.

As the purpose of periodic refinement is to learn about the
recent behaviour of the system without losing previous results,
a measure of goodness of rezoning must be defined. This mea-
sure is a function (o) of a chosen KPI, e.g. the cycle time (CT)
of assembly stations. The primary requirement for this function
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is to be able to surely compare the outcome of two rezoning
models. If the chosen KPI is known to be almost stable (i.e.
the full sample is derived from the same distribution), then the
variance might be an effective measuring function. Let us note
here, that the o must be defined individually for every produc-
tion system, since each of them has its own specifications and
conditions.

Algorithm 3 Periodic refinement of probabilities
1: input:
For the first K > 1 product: p?j = pij from Algorithm 2

»

3: Let 0¥ be the variance of CTs at WS;, and 0° = ZT”O
4141

5: while o' is not sufficiently small do

6:  For the next K products: pj; = p;; from Algorithm 2,

cod .
and & £ Z’T(T as in step 3
7:
=1 -1
I a_ @ I-1 o =
Pij = iy P Y P )
8 I+=1

Rezone on this set of products as in Algorithm 2 using
the new pf i probability values

10:  Similarly to the step 1 and step 2: o/ £ Li%

K
11: end while

In the next section, an experiment of the overall process is
presented.

5. Numerical experiments and results

In order to assess the effectiveness of the IPS data process-
ing method described above, here we perform an experiment
by using the DES model of the assembly system, which was
introduced in the previous section (Figure 1). All calculations
were performed by C++. The training data set was obtained
by simulating the production within one working shift, which
resulted in cca. 18 K data points in the IPS log, stored in the
mySQL database. For the sake of comparability, the true cy-
cle times were also exported from the simulation experiments,
and by nature, the idle times spent in mid-process buffers are
disregarded. During the simulation run, 1000 products were as-
sembled in the target area. The first step of data cleansing is
the filtration of the random noise for each and every product.
Figure 2 shows the effect of applying the Savitzky-Golay filter
(Algorithm1) with parameters » = 9 and p = 2, and the result
of spline fitting. It can be easily observed that without the noise
filtration, the collected data might lead to corrupted cycle time
calculations.

Then, the smoothed data of the first 100 products was fitted
to a predefined routing by following the steps of Algorithm 2.
In our case, the process routing is the following: Buffer —» WS;
- WS; - .- —» WS;; —» OutBuffer. The Rework zone is
only visited in certain cases, and it is located between WS4
and WSs. Then, for the rest of the IPS data set, Algorithm3 is
run with the period of K = 100 products.

Raw data

- 'Spllne
0 —+ S-G filter YaGEY
Zone centers 11
ﬁ‘;~ Lt
wS12 TWS13
i’ 4 4 | I
<100 S — oo o M~ Wy 3 | oE
WS 1 WS 2 WS 3 WS 4 I W =3k
L] g P WS 17
. Sl & sV ) .
8 A< A e WS 11 WS 14 = = ik
o -200 WST7. \"WS6 WS 5 s N WS 16
2 ]
\ N i N\
e p
i ;,/’ w? \l..,,/ \}\dv-
&7 £ i + WS 15
-300 W§ 8 Ws 9 ‘V&S I10 Rework
-400
100 200 300 400 500 600 700 800 900
PosX

Fig. 2. Different filtering methods

A fine enough approximation of the cycle times at the work-
stations is of crucial importance in the scope of leadtime pre-
diction models. To analyze the accuracy of our method, we
estimated the cycle times from the raw, the once processed and
the 7-times processed data as well. Considering the mean abso-
lute error (MAE) as the measure of comparison, the quartiles of
multi-cleaned data’s MAE were closer to zero than those of the
raw data’s, almost everywhere. This phenomenon corresponds
to our vision, according to which repeated data cleansing de-
velops more precise approximation of cycle time (Figure 3). At
every workstation, the approximation based on processed data
produces lower MSE than that based on raw data, except for one
stations, WS . This anomaly can be explained by the behaviour
of the DES software: even before an item is logged into the
first station, it has already appeared in the system as a floating
object.

20

® Raw
= 1st
u 7th

Mean Absolute Error
>

i, M, oy M, Mgy Misg sy My sy M, sy, s, s, M, His,, M M,

Workstations

Fig. 3. Mean Absolute Error of each WS’s CT estimation, without any data
processing (red), after rezoning once (blue) and after refining 7 times (green)

6. Conclusions and future work

Performing the numerical comparison of the IPS calcula-
tions based on raw, filtered and repeatedly processed data, let
us summarize the main benefits of the above described algo-
rithms in production management.

In industrial environments, viability of advanced IoT appli-
cations is determined by the business value that they can bring.
Similarly to any IoT data analytics application, the garbage-in-
garbage-out law holds, namely, the right conclusions cannot be
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drawn of an analytics project, in case of unrealistic or unreli-
able input data is applied. In case production engineers aim at
improving the processes based on the pre-calculated utilization
rates and cycle times, only the realistic ones of those will pro-
vide a good starting point for the improvement. Similarly, if
line balancing or scheduling problems are solved based on a set
of parameters provided by an IPS analysis, the structure of the
optima solution (e.g., a line balance) can really much depend
on the accuracy of the considered cycle times. Conclusively,
it is worth to implement and apply advanced analytical meth-
ods in IPS calculations, as they provide more reliable process
parameters, than those calculated from the raw location data.

As for the future work, the authors plan to further enhance
the applied methods to increase the overall accuracy of the an-
alytics. Furthermore, a more comprehensive benchmark of fil-
tering and smoothing algorithms is planned to be performed,
with the aim of assessing their accuracy in production environ-
ments, considering various different assembly and machining
shop-floor configurations.

A major part of the future work relates to the predictive an-
alytics domain, including the prediction of manufacturing lead
times, makespans of various production sequences or resource
allocation rules. In this way, predictive analytics results could
be integrated directly in the decision making processes, so as
making a step towards the so-called prescriptive production
management.
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