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Abstract
In this paper,we studymulti-budgeted variants of the classicminimumcut problemand
graph separation problems that turnedout to be important in parameterized complexity:
Skew Multicut and Directed Feedback Arc Set. In our generalization, we
assign colors 1, 2, . . . , � to some edges and give separate budgets k1, k2, . . . , k� for
colors 1, 2, . . . , �. For every color i ∈ {1, . . . , �}, let Ei be the set of edges of color i .
The solution C for the multi-budgeted variant of a graph separation problem not only
needs to satisfy the usual separation requirements (i.e., be a cut, a skew multicut, or
a directed feedback arc set, respectively), but also needs to satisfy that |C ∩ Ei | ≤ ki
for every i ∈ {1, . . . , �}. Contrary to the classic minimum cut problem, the multi-
budgeted variant turns out to be NP-hard even for � = 2. We propose FPT algorithms
parameterized by k = k1 + · · · + k� for all three problems. To this end, we develop a
branching procedure for the multi-budgeted minimum cut problem that measures the
progress of the algorithm not by reducing k as usual, by but elevating the capacity of
some edges and thus increasing the size of maximum source-to-sink flow. Using the
fact that a similar strategy is used to enumerate all important separators of a given size,
we merge this process with the flow-guided branching and show an FPT bound on the
number of (appropriately defined) important multi-budgeted separators. This allows
us to extend our algorithm to the Skew Multicut and Directed Feedback Arc

Set problems. Furthermore, we show connections of the multi-budgeted variants with
weighted variants of the directed cut problems and the Chain �- SAT problem, whose
parameterized complexity remains an open problem. We show that these problems
admit a bounded-in-parameter number of “maximally pushed” solutions (in a similar
spirit as important separators are maximally pushed), giving somewhat weak evidence
towards their tractability.

Keywords Important separators · Multi-budgeted cuts · Directed feedback vertex
set · Fixed parameter tractability · Minimum cut
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1 Introduction

Graph separation problems are important topics in both theoretical area and applica-
tions. Although the famous minimum cut problem is known to be polynomial-time
solvable, many well-known variants are NP-hard, which are intensively studied from
the point of view of approximation [1,2,11,13,14,18] and, what is more relevant for
this work, parameterized complexity.

The notion of important separators, introduced by Marx [24], turned out to be
fundamental for a number of graph separation problems such as Multiway Cut

[24],Directed Feedback Vertex Set [4], or Almost 2- CNF SAT [29]. Further
work, concerning mostly undirected graphs, resulted in a wide range of involved
algorithmic techniques: applications of matroid techniques [20,21], shadow removal
[8,27], randomized contractions [5], LP-guided branching [10,15–17], and treewidth
reduction [26], among others.

From the above techniques, only the notion of important separators and the related
technique of shadow removal generalizes to directed graphs, giving FPT algorithms for
Directed Feedback Arc Set [4],Directed Multiway Cut [8], and Directed
Subset Feedback Vertex Set [7]. As a result, the parameterized complexity of a
number of important graph separation problems in directed graphs remains open, and
the quest to investigate them has been put on by the third author in a survey from 2012
[25]. Since the publication of this survey, two negative answers have been obtained.
Two authors of thiswork showed thatDirected Multicut isW[1]-hard even for four
terminal pairs (leaving the case of three terminal pairs open) [28], while Lokshtanov
et al. [23] showed intractability of Directed Odd Cycle Transversal.

During an open problem session at Recent Advancements in Parameterized Com-
plexity school (December 2017) [12], Saurabh posed the question of parameterized
complexity of a weighted variant of Directed Feedback Arc Set, where given a
directed edge-weighted graphG, an integer k, and a target weightw, the goal is to find
a set X ⊆ E(G) such thatG−X is acyclic and X is of cardinality at most k and weight
at most w. Consider a similar problem Weighted st- cut: given a directed graph G
with positive edge weights and two distinguished vertices s, t ∈ V (G), an integer k,
and a target weightw, decide if G admits an st-cut of cardinality at most k and weight
at most w. The parameterized complexity of this problem parameterized by k is open
even if G is restricted to be acyclic, while with this restriction the problem can easily
be reduced toDirected Feedback Arc Set (add an arc (t, s) of prohibitively large
weight).

The Weighted st- cut problem becomes similar to another directed graph cut
problem, identified in [6], namely Chain �- SAT. While this problem is originally
formulated in CSP language, the graph formulation is as follows: given a directed
graph G with a partition of edge set E(G) = P1 � P2 � . . . � Pm such that each Pi is
an edge set of a simple path of length at most � (the input paths could have common
nodes), an integer k, and two vertices s, t ∈ V (G), find an st-cut C ⊆ E(G) such that
|{i |C ∩ Pi �= ∅}| ≤ k. This problem can easily be seen to be equivalent to minimum
st-cut problem (and thus polynomial-time solvable) for � ≤ 2, but is NP-hard for
� ≥ 3 and its parameterized complexity (with k as a parameter) remains an open
problem.
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In this paper we make progress towards resolving the question of parameterized
complexity of the two aforementioned problems: weighted st-cut problem (in general
digraphs, not necessary acyclic ones) and Chain �- SAT. Our contribution is twofold.

Multi-budgeted variant We define a multi-budgeted variant of a number of cut prob-
lems (including the minimum cut problem) and show its fixed-parameter tractability.
In this variant, the edges of the graph are colored with � colors, and the input specifies
separate budgets for each color. More formally, we primarily consider the following
problem.

Multi- budgeted cut

Input A directed graphG, two disjoint sets of vertices X ,Y ⊆ V (G), an integer
�, and for every i ∈ {1, 2, . . . , �} a set Ei ⊆ E(G) and an integer ki ≥ 1.

Question Is there a set of arcsC ⊆ ⋃�
i=1 Ei such that there is no directed X −Y

path in G\C and for every i ∈ [�], |C ∩ Ei | ≤ ki .

Similarly we define multi-budgeted variants of Directed Feedback Arc Set

and Skew Multicut (see Sect. 4 for formal definitions).
We observe that Multi- budgeted cut for � = 2 reduces to Weighted st- cut

as follows. Let (G, X ,Y , E1, E2, k1, k2) be a Multi- budgeted cut instance for
� = 2. First, observe that we may assume that E1 ∩ E2 = ∅, as we can replace every
edge e ∈ E1 ∩ E2 with two copies e1 ∈ E1\E2 and e2 ∈ E2\E1. Second, construct an
equivalentWeighted st- cut instance (G ′, s, t, k, w) as follows. To constructG ′, first
add two vertices s, t toG and edges {(s, x)|x ∈ X} and {(y, t)|y ∈ Y } of prohibitively
largeweight.Assign alsoprohibitively largeweight to every edge e ∈ E(G)\(E1∪E2).
Assign weight (k1 +1)k2 +1 to every edge e ∈ E1. For every edge e ∈ E2, add k1 +1
copies of e to G ′ of weight 1 each. Finally, set k := (k1 +1) · k2 + k1 as the cardinality
bound andw := k1((k1+1)k2 +1)+ (k1 +1)k2 as the target weight. The equivalence
of the instances follows from the fact that the cardinality bound allows to pick in the
solution at most k2 bundles of k1 + 1 copies of an edge of E2, while the weight bound
allows to pick only k1 edges of E1.

Thus,Multi- budgeted cut for � = 2 corresponds to the case of Weighted st-
cutwhere the weights are integral and both target cardinality and weight are bounded
in parameter.1 This connectionwas our primarymotivation to study themulti-budgeted
variants of the cut problems.

Contrary to the classic minimum cut problem, in Sect. 6 we note that Multi-

budgeted Cut becomes NP-hard for � ≥ 2.2 We show thatMulti- budgeted Cut

is FPT when parameterized by k = k1 + · · · + k�. For this problem, our branching
strategy is as follows. First, note that in the problem definition we assume that each ki
is positive, and thus � ≤ k. A standard application of the Ford–Fulkerson algorithm
gives a minimum XY -cutC of size λ and λ edge-disjoint X −Y paths P1, P2, . . . , Pλ.

1 For a reduction in the other direction, replace every arc e of weight ω(e) with one copy of color 1 and
ω(e) copies of color 2, and set budgets k1 = k and k2 = w.
2 We believe this problem must have been formulated already before and proven to be NP-hard. However,
we were not able to find it in the literature, and thus we provide our own simple NP-hardness reduction for
completeness.
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If C is a solution, then we are done. Similarly, if λ > k, then there is no solution.
Otherwise, we branch which colors of the sought solution should appear on each
paths Pj ; that is, for every i ∈ [�] and j ∈ [λ], we guess if Pj ∩ Ei contains an
edge of the sought solution, and in each guess assign infinite capacities to the edges
of wrong color. If this change increased the size of a maximum flow from X to Y ,
then we can charge the branching step to this increase, as the size of the flow cannot
exceed k. The critical insight is that if the size of the maximum flow does not increase
(i.e., P1, . . . , Pλ remains a maximum flow), then a corresponding minimum cut is
necessarily a solution. As a result, we obtain the following.

Theorem 1 Multi- budgeted Cut admits an FPT algorithm with running time
bound O(2k

2� · k · (|V (G)| + |E(G)|)) where k = ∑�
i=1 ki .

The charging of the branching step to a flow increase appears also in the classic
argument for bound of the number of important separators [4] (see also [9, Chapter 8]).
We observe that our branching algorithm can be merged with this procedure, yielding
a bound (as a function of k) and enumeration procedure of naturally defined multi-
budgeted important separators. This in turn allows us to generalize our FPT algorithm
to Multi- budgeted Skew Multicut and Multi- budgeted Directed Feed-

back Arc Set.

Theorem 2 Multi- budgeted Skew Multicut andMulti- budgeted Directed

Feedback Arc Set admit FPT algorithms with running time bound 2O(k3 log k)

(|V (G)| + |E(G)|) where k = ∑�
i=1 ki .

The arguments for Multi- budgeted Cut are presented in Sect. 3. The general-
ization for important separators is contained in Sect. 4.

Bound on the number of pushed solutions While we are not able to establish fixed-
parameter tractability of the weighted variant of the minimum cut problem (even in
acyclic graphs) nor of Chain �- SAT, we show the following graph-theoretic state-
ment. Consider a directed graph G with two distinguished vertices s, t ∈ V (G). For
two (inclusion-wise) minimal st-cuts C1, C2 we say that C1 is closer to t than C2 if
every vertex reachable from s in G −C2 is also reachable from s in G −C1. A classic
submodularity argument implies that there is exactly one closest to t minimum st-cut,
while the essence of the notion of important separators is the observation that there is
bounded-in-k number of minimal separators of cardinality at most k that are closest to
t . In Sect. 5 we show a similar existential statement for the two discussed problems.

Theorem 3 For every integer k there exists an integer g such that the following holds.
Let G be a directed graph with positive edge weights and two distinguished vertices
s, t ∈ V (G). Let F be a family of all st-cuts that are of minimum weight among all
(inclusion-wise) minimal st-cuts of cardinality at most k. Let G ⊆ F be the family of
those cuts C such that no other cut of F is closer to t . Then |G| ≤ g.

Theorem 4 For every integers k, � there exists an integer g′ such that the following
holds. Let I := (G, s, t, (Pi )mi=1, k) be aChain �- SAT instance that is a yes-instance
but (G, s, t, (Pi )mi=1, k − 1) is a no-instance. Let F be a family of all (inclusion-wise)
minimal solutions to I and let G ⊆ F be the family of those cuts C such that no other
cut of F is closer to t . Then |G| ≤ g′.
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Unfortunately, our proof is purely existential, and does not yield an enumeration
procedure of the “closest to t” solutions.

2 Preliminaries

For an integer n, we denote [n] = {1, 2, . . . , n}. For a directed graph G, we use V (G)

to represent the set of vertices of G and E(G) to represent the set of directed edges of
G. In all multi-budgeted problems, the directed graph G comes with sets Ei ⊆ E(G)

for i ∈ [�] which we refer as colors. That is, an edge e is of color i if e ∈ Ei , and of
no color if e ∈ E(G)\ ⋃�

i=1 Ei . Note that an edge may have many colors, as we do
not insist on the sets Ei being pairwise disjoint.

Let X and Y be two disjoint vertex sets in a directed graph G, an XY -cut of G
is a set of edges C such that every directed path from a vertex in X to a vertex in Y
contains an edge of C . A cut C is minimal if no proper subset of C is an XY -cut, and
minimum ifC is of minimum possible cardinality. LetC be an XY -cut and let R be the
set of vertices reachable from X in G\C . We define δ+(R) = {(u, v) ∈ E(G)|u ∈ R
and v /∈ R} and note that if C is minimal, then δ+(R) = C .

Let (G, X ,Y , �, (Ei , ki )�i=1) be aMulti- budgeted cut instance and let C be an

XY -cut. We say that C is budget-respecting if C ⊆ ⋃�
i=1 Ei and |C ∩ Ei | ≤ ki for

every i ∈ [�]. For a set Z ⊆ E(G) we say that C is Z -respecting if C ⊆ Z . In such
contexts, we often call Z the set of deletable edges. An XY -cut C is a minimum Z-
respecting cut if it is a Z -respecting XY -cut of minimum possible cardinality among
all Z -respecting XY -cuts.

Our FPT algorithms start with Z = ⋃�
i=1 Ei and in branching steps shrink the set

Z to reduce the search space. We encapsulate our use of the classic Ford–Fulkerson
algorithm in the following statement.

Theorem 5 Given a directed graph G, two disjoint sets X ,Y ⊆ V (G), a set Z ⊆
E(G), and an integer k, one can in O(k(|V (G)| + |E(G)|)) time either find the
following objects:

– λ paths P1, P2, . . . , Pλ such that every Pi starts in X and ends in Y , and every
edge e ∈ Z appears on at most one path Pi ;

– a set B ⊆ Z consisting of all edges of G that participate in some minimum
Z-respecting XY -cut;

– aminimum Z-respecting XY -cut C of sizeλ that is closest to Y among all minimum
Z-respecting XY -cuts;

or correctly conclude that there is no Z-respecting XY -cut of cardinality at most k.

Proof Assign capacity 1 to every edge of Z and capacity +∞ to every edge not in
Z . Run k + 1 rounds of the Ford–Fulkerson algorithm. If the final flow exceeded
k, return that there is no Z -respecting XY -cut of cardinality at most k. Otherwise,
decompose the final flow into unit flow paths P1, . . . , Pλ in a standard manner. For
the set B, observe that B consists of exactly those edges that are fully saturated in the
flow network, and their reverse counterparts in the residual network are not contained
in a single strongly connected component of the residual network (and thus can be
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MultiBudgetedCut(G, X, Y, �, (Ei, ki)�i=1)
Input: A directed graph G, two disjoint set of vertices X, Y ⊆ V (G), an integer �,
for every i ∈ [�] a set Ei ⊆ E(G) and an integer k.
Output: an XY cut C ⊆ ⋃�

i=1 Ei such that for every i ∈ [�], |C ∩ Ei| ≤ ki if it
exists, otherwise return NO.

1. Z :=
⋃�

i=1 Ei;
2. return Solve(Z);

Solve(Z)
a. apply Theorem 5 to (G, X, Y, k, Z) where k =

∑�
i=1 ki, obtaining objects (Pi)λi=1,

B, and C, or an answer NO;
b. if the answer NO is obtained, then return NO;
c. if C is budget-respecting, then return C;
d. for each (A1, ..., A�) such that for every i in [�], Ai ⊆ [λ] and |Ai| ≤ ki do
d.1 Ẑ := Z;
d.2 for each i ∈ [�] do

for each j ∈ [λ] \ Ai do
Ẑ := Ẑ \ (Ei ∩ E(Pj));

d.3 D = Solve(Ẑ);
d.4 if D �=NO then return D;
e. return NO;

Fig. 1 FPT algorithm for Multi- budgeted cut

discovered in linear time). Finally, observe that the sought cut C consists of the last
edge of B on every path Pi . 
�

3 Multi-budgeted Cut

We now give an FPT algorithm parameterized by k = ��
i=1ki for the Multi-

budgeted cut problem. We follow a branching strategy that recursively reduces
a set Z of deletable edges. That is, we start with Z = ⋃�

i=1 Ei (so that every solu-
tion is initially Z -respecting) and in each recursive step, we look for a Z -respecting
solution and reduce the set Z in a branching step.

Consider a recursive call where we look for a Z -respecting solution to the input
Multi- budgeted cut instance (G, X ,Y , �, (Ei , ki )�i=1). That is, we look for a Z -
respecting budget-respecting cut. We apply Theorem 5 to it. If it returns that there is
no Z -respecting XY -cut of size at most k, we terminate the current branch, as there is
no solution. Otherwise, we obtain the paths P1, P2, . . . , Pλ, the set B (which we will
not use in this section), and the cut C .

If C is budget-respecting, then it is a solution and we can return it. Otherwise, we
perform the following branching step. We iterate over all tuples (A1, . . . , A�) such
that for every i ∈ [�], Ai ⊆ [λ] and |Ai | ≤ ki . Ai represents the subset of paths
P1, . . . , Pλ on which at least one edge of color i is in the solution for each i ∈ [�]. For
those edges of color i which are on the paths not indicated by Ai , they are not in the
solution. Thus we can safely delete them from Z . More formally, for every i ∈ [�] and
j ∈ [λ]\Ai , we remove from Z all edges of E(Pj ) ∩ Ei . We recurse on the reduced
set Z . A pseudocode is available in Fig. 1.
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Theorem 6 The algorithm in Fig. 1 for Multi- budgeted cut is correct and runs
in time O(2�k2 · k · (|V (G)| + |E(G)|)) where k = ��

i=1ki .

Proof We prove the correctness of the algorithm by showing that it returns a solution
if and only if the input instance is a yes-instance. The “only if” direction is obvious, as
the algorithm returns only Z -respecting budget-respecting XY -cuts and Z ⊆ ⋃�

i=1 Ei

in each recursive call.
We prove the correctness for the “if” direction. Let C0 be a solution, that is, a

budget-respecting XY -cut. In the initial call to Solve, C0 is Z -respecting. It suffices to
inductively show that in each call to Solve such that C0 is Z -respecting, either the call
returns a solution, or C0 is Ẑ -respecting for at least one of the subcalls. Since C0 is
Z -respecting, the application of Theorem 5 returns objects (Pi )λi=1, B, and C . If C is
budget-respecting, then the algorithm returns it and we are done. Otherwise, consider
the branch (A1, A2, . . . , A�) where Ai = { j |E(Pj ) ∩ Ei ∩ C0 �= ∅}. Since C0 is
budget-respecting, C0 ⊆ Z , and no edge of Z appears on more than one path Pj , we
have |Ai | ≤ ki for every i ∈ [�]. Thus, (A1, A2, . . . , A�) is a branch considered by
the algorithm. In this branch, the algorithm refines the set Z to Ẑ . By the definition of
Ai , for every i ∈ [�] and j ∈ [λ]\Ai , we have C0 ∩ Ei ∩ E(Pj ) = ∅. Consequently,
C0 is Ẑ -respecting and we are done.

For the time bound, the following observation is crucial.

Claim Consider one recursive call Solve(Z) where the application of Theorem 5 in
line (a) returned objects (Pi )λi=1, B and C . Assume that in some recursive subcall
Solve(Ẑ) invoked in line (d.3) (Fig. 1), the subsequent application of Theorem 5 in
line (a) of the subcall returned a cut of the same size, that is, the algorithm of Theorem5
returned a cut Ĉ of size λ̂ = λ. Then the cut Ĉ is budget-respecting and, consequently,
is returned in line (c) of the subcall.

Proof Since |Ĉ | = λ is a Ẑ -respecting XY -cut, Ẑ ⊆ Z , and every edge e ∈ Z appears
on at most one path Pi , we have that Ĉ consists of exactly one edge of Ẑ on every
path Pi , that is, Ĉ = {e1, e2, . . . , eλ} and e j ∈ E(Pj ) ∩ Ẑ for every j ∈ [λ]. In other
words, the paths (Pj )

λ
j=1 still correspond to a maximum flow from X to Y with edges

of Ẑ being of unit capacity and edges outside Ẑ of infinite capacity because (Pj )
λ
j=1

are paths satisfying that any two of them are disjoint on Ẑ ⊆ Z and λ is still equal to
the size of the maximum flow. If e j ∈ Ei for some j ∈ [λ] and i ∈ [�], then by the
construction of set Ẑ , we have j ∈ Ai . Consequently, |{ j |e j ∈ Ei }| ≤ |Ai | ≤ ki for
every i ∈ [�], and thus Ĉ is budget-respecting. 
�

Claim 3 implies that the depth of the search tree is bounded by k, as the algorithm
terminates when λ exceeds k. At every step, there are at most (2λ)� ≤ (2k)� different
tuples (A1, . . . , A�) to consider. Consequently, there are O(2(k−1)k�) nodes of the
search tree that enter the loop in line (d) and O(2k

2�) nodes that invoke the algorithm
of Theorem 5. As a result, the running time of the algorithm isO(2�k2 · k · (|V (G)| +
|E(G)|)). 
�
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4 Multi-budgeted Important Separators with Applications

Similar to the concept of important separators proposed by Marx [24] (see also [9,
Chapter 8]), we define multi-budgeted important separators as follows.

Definition 1 Let (G, X ,Y , �, (Ei , ki )�i=1) be a Multi- budgeted cut instance and

let Z ⊆ ⋃�
i=1 Ei be a set of deletable edges. Let C1,C2 be two minimal Z -respecting

budget-respecting XY -cuts. We say that C1 dominates C2 if

1. every vertex reachable from X in G − C2 is also reachable from X in G − C1;
2. for every i ∈ [�], |C1 ∩ Ei | ≤ |C2 ∩ Ei |.
We say that Ĉ is an important Z -respecting budget-respecting XY -cut if Ĉ is aminimal
Z -respecting budget-respecting XY -cut and no other minimal Z -respecting budget-
respecting XY -cut dominates Ĉ . Ĉ is an important budget-respecting XY -cut if it is
an important Z-respecting budget-respecting XY -cut for Z = ⋃�

i=1 Ei .

Chen et al. [4] showed an enumeration procedure for (classic) important separators
using similar charging scheme as the one of the previous section. Our main result in
this section is a merge of the arguments from the previous section with the arguments
of Chen et al., yielding the following theorem.

Theorem 7 Let (G, X ,Y , �, (Ei , ki )�i=1) be a Multi- budgeted cut instance, let

Z ⊆ ⋃�
i=1 Ei be a set of deletable edges, and denote k = ∑�

i=1 ki . Then one can

in 2O(k2 log k)(|V (G)| + |E(G)|) time enumerate a family of minimal Z-respecting
budget-respecting XY -cuts of size 2O(k2 log k) that contains all important ones.

Theorem 2 follows from Theorem 7 via an analogous arguments as in [4]; we
postpone them to Sect. 4.1. First, we focus on the proof of Theorem 7.

Proof of Theorem 7. Consider the recursive algorithm presented in Fig. 2. The recur-
sive procedure ImportantCut takes as an input a Multi- budgeted Cut instance
I = (G, X ,Y , �, (Ei , ki )�i=1) and a set Z ⊆ ⋃�

i=1 Ei , with the goal to enumerate
all important Z -respecting budget-respecting XY -cuts. Note that the procedure may
output some more Z -respecting budget-respecting XY -cuts; we need only to ensure
that

1. It outputs all important ones,
2. It outputs 2O(k2 log k) cuts, and
3. It runs within the desired time.

The procedure first invokes the algorithm of Theorem 5 on (G, X ,Y , k, Z), where
k = ∑�

i=1 ki . If the call returned that there is no Z -respecting XY -cut of size at most k,
we can return an empty set. Otherwise, let (Pj )

λ
j=1, B, andC be the computed objects.

We perform a branching step, with each branch labeled with a tuple (A1, A2, . . . , A�)

where Ai ⊆ [λ] and |Ai | ≤ ki for every i ∈ [�]. A branch (A1, A2, . . . , A�) is
supposed to capture important cuts C0 with { j |C0 ∩ B ∩ E(Pj ) ∩ Ei �= ∅} ⊆ Ai for
every i ∈ [�]; that is, for every i ∈ [�] and j ∈ [λ]we guess ifC0 contains a bottleneck
edge of color i on path Pj . All this information (i.e., paths Pj , the set B, the cut C ,
and the sets Ai ) are passed to an auxiliary procedure Enum.
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ImportantCut(I, Z)
Input: A Multi-budgeted cut instance I = (G, X, Y, �, (Ei, ki)�i=1) and a set
Z ⊆ ⋃�

i=1 Ei.
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that con-
tains all important ones.
1. S := ∅;
2. apply the algorithm of Theorem 5 to (G, X, Y, k, Z) with k =

∑�
i=1 ki, obtaining

either objects (Pi)λi=1, B, and C, or an answer NO;
3. if an answer NO is obtained, then return S;
4. for each (A1, ..., A�) such that for every i in [�], Ai ⊆ [λ] and |Ai| ≤ ki do
4.1 S := S ∪ Enum(I, Z, (Pj)λj=1, B, C, (Ai)�i=1)
5. return S

Enum(I, Z, (Pj)λj=1, B, C, (Ai)�i=1)
Input: A Multi-budgeted cut instance I = (G, X, Y, �, (Ei, ki)�i=1), a set Z ⊆
⋃�

i=1 Ei, a family (Pj)λj=1 of paths from X to Y such that every edge of Z appears
on at most one path Pj , a set B consisting of all edges that participate in some
minimum Z-respecting XY -cut, a minimum Z-respecting XY -cut C closest to Y ,
and sets Ai ⊆ [λ] of size at most ki for every i ∈ [�]
Output: a family S of minimal Z-respecting budget-respecting XY -cuts that con-
tains all cuts C0 that are important Z-respecting budget respecting XY -cuts and
satisfy {j|E(Pj) ∩ B ∩ C0 ∩ Ei �= ∅} ⊆ Ai for every i ∈ [�].
a. Ẑ := Z;
b. for each i ∈ [�] do

for each j ∈ [λ] \ Ai do
Ẑ := Ẑ \ (B ∩ Ei ∩ E(Pj));

c. apply the algorithm of Theorem 5 to (G, X, Y, k, Ẑ), obtaining either objects
(P̂i)λ̂i=1, B̂, and Ĉ or an answer NO;
d. if λ̂ exists and λ̂ > λ, then
d.1 S := S∪ ImportantCut(I, Ẑ);
e. else if λ̂ exists and equals λ, then
e.1 S := S ∪ {Ĉ};
e.2 for each i ∈ [�] do

for each j ∈ Ai do
A′

i := Ai \ {j} and A′
i′ := Ai′ for every i′ ∈ [�] \ {i}

S := S ∪ Enum(I, Ẑ, (Pj)λj=1, B̂, Ĉ, (A′
i)

�
i=1).

f. return S

Fig. 2 FPT algorithm for enumerating important multi-budgeted Z -respecting XY -cuts

The procedure Enum shrinks the set Z according to sets Ai . More formally, for
every i ∈ [�] and j ∈ [λ]\Ai wedelete from Z all edges from B∩Ei∩E(Pj ), obtaining
a set Ẑ ⊆ Z . At this point, we check if the reduction of the set Z to Ẑ increased the
size of minimum Z -respecting XY -cut by invoking Theorem 5 on (G, X ,Y , k, Ẑ)

and obtaining objects (P̂j )
λ̂
j=1, B̂, Ĉ or a negative answer. If the size of the minimum

cut increased, that is, λ̂ > λ, we recurse with the original procedure ImportantCut.
Otherwise, we add one cut to S, namely Ĉ . Furthermore, we try to shrink one of the
sets Ai by one and recurse; that is, for every i ∈ [�] and every j ∈ Ai , we recurse
with the procedure Enum on sets A′

i ′ where A′
i = Ai\{ j} and A′

i ′ = Ai ′ for every
i ′ ∈ [�]\{i}.

Let us first analyze the size of the search tree. A call to ImportantCut invokes
at most

(
λ�
≤k

) ≤ (k� + 1)k calls to Enum. Each call to Enum either falls back to

ImportantCut if λ̂ > λ or branches into
∑�

i=1 |Ai | ≤ k� recursive calls to itself.
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In each recursive call, the sum
∑�

i=1 |Ai | decreases by one. Consequently, the initial
call to Enum results in at most (k�)k recursive calls, each potentially falling back to
ImportantCut. Since each recursive call to ImportantCut uses strictly larger value
of λ, which cannot grow larger than k, and � ≤ k, the total size of the recursion tree is
2O(k2 log k). Each recursive call toEnum adds atmost one set toS, while each recursive
call to ImportantCut and Enum runs in time O(2k� · k · (|V (G)| + |E(G)|)). The
promised size of the family S and the running time bound follows. It remains to show
correctness, that is, that every important Z -respecting budget-respecting XY -cut is
contained in S returned by a call to ImportantCut(I , Z).

We prove by induction on the size of the recursion tree that (1) every call to Impor-
tantCut(I , Z) enumerates all important Z -respecting budget-respecting XY -cuts, and
(2) every call to Enum(I , Z , (Pj )

λ
j=1, B,C, (Ai )

�
i=1) enumerates all important Z -

respecting budget-respecting XY -cuts C0 with the property that { j |Ei ∩ E(Pj )∩ B ∩
C0 �= ∅} ⊆ Ai for every i ∈ [�].

The inductive step for a call ImportantCut(I , Z) is straightforward. Let us fix an
arbitrary important Z -respecting budget-respecting XY -cut C0. Since C0 is budget-
respecting, C0 is a Z -respecting cut of size at most k, and thus the initial call to
Theorem 5 cannot return NO. Consider the tuple (A1, A2, . . . , A�) where for every
i ∈ [�], { j |E(Pj )∩Ei ∩B∩C0} = Ai . SinceC0 is budget-respecting and the paths Pj

do not share an edge of Z , we have that |Ai | ≤ ki for every i ∈ [�] and the algorithm
considers this tuple in one of the branches. Then, from the inductive hypothesis, the
corresponding call to Enum returns a set containing C0.

Consider now a call to Enum(I , Z , (Pj )
λ
j=1, B,C, (Ai )

�
i=1) and an important Z -

respecting budget-respecting XY -cuts C0 with the property that { j |Ei ∩ E(Pj ) ∩
B ∩ C0 �= ∅} ⊆ Ai for every i ∈ [�]. By the construction of Ẑ and the above
assumption, C0 is Ẑ -respecting. In particular, the call to the algorithm of Theorem 5
cannot return NO. Hence, in the case when λ̂ > λ, C0 is enumerated by the recursive
call to ImportantCut and we are done. Assume then λ̂ = λ.

For i ∈ [�], let Âi = { j |Ei ∩ E(Pj ) ∩ B̂ ∩ C0 �= ∅}. Since Ẑ ⊆ Z but the sizes
of minimum Z -respecting and Ẑ -respecting XY -cuts are the same, we have B̂ ⊆ B.
Consequently, Âi ⊆ Ai for every i ∈ [�].

Assume there exists i ∈ [�] such that Âi � Ai and let j ∈ Ai\ Âi . Consider then
the branch (i, j) of the Enum procedure, that is, the recursive call with A′

i = Ai\{ j}
and A′

i ′ = Ai ′ for i ′ ∈ [�]\{i}. Observe that we have { j |Ei ′ ∩ E(Pj ) ∩ B̂ ∩ C0 �=
∅} ⊆ A′

i ′ for every i ′ ∈ [�] and, by the inductive hypothesis, the corresponding call
to Enum enumerates C0. Hence, we are left only with the case Âi = Ai , that is,
Ai = { j |Ei ∩ E(Pj ) ∩ B̂ ∩ C0 �= ∅} for every i ∈ [�].

We claim that in this case C0 = Ĉ . Assume otherwise. Since |Ĉ | = λ̂ = λ

and Ẑ ⊆ Z , Ĉ contains exactly one edge on every path Pj . Also, Ĉ ⊆ B̂ by the
definition of the set B̂. Since Ĉ is the minimum Ẑ -respecting XY -cut that is closest
to Y , Ĉ = {e1, e2, . . . , eλ} where e j is the last (closest to Y ) edge of B̂ on the path Pj

for every j ∈ [λ].
Let R0 and R̂ be the set of vertices reachable from X in G − C0 and G − Ĉ ,

respectively. Let D be a minimal XY -cut contained in δ+(R0∪ R̂). (Note that δ+(R0∪
R̂) is an XY -cut because X ⊆ R0∪ R̂ andY∩(R0∪ R̂) = ∅.) Then since D ⊆ C0∪Ĉ ⊆
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Z , D is Z -respecting. By definition, every vertex reachable from X in G − R0 is also
reachable from X in G − D.

We claim that D is budget-respecting and, furthermore, dominates C0. Fix a color
i ∈ [�]; our goal is to prove that |D ∩ Ei | ≤ |C0 ∩ Ei |. To this end, we charge every
edge of color i in D\C0 to a distinct edge of color i in C0\D. Since D ⊆ C0 ∪ Ĉ ,
we have that D\C0 ⊆ Ĉ , that is, an edge of D\C0 of color i is an edge e j for some
j ∈ [λ] with e j ∈ Ei and e j ∈ D\C0.
Recall that we are working in the case Ai = { j |Ei ∩ E(Pj ) ∩ B̂ ∩C0 �= ∅}. Since

e j ∈ Ĉ ⊆ Ẑ , we have that j ∈ Ai . Hence, there exists e′
j ∈ Ei ∩ E(Pj ) ∩ B̂ ∩ C0.

By the definition of Ĉ , e j is the last (closest to Y ) edge of B̂ on Pj . Since e j /∈ C0,
e′
j �= e j and e′

j lies on the subpath of Pj between X and the tail of e j . This entire

subpath is contained in R̂ and, hence, e′
j /∈ D.

We charge e j to e′
j . Since e

′
j ∈ E(Pj )∩ Ei ∩ B̂ ∩ (C0\D), for distinct j , the edges

e′
j are distinct as the paths Pj do not share an edge belonging to Z and B̂ ⊆ Ẑ ⊆ Z .

Consequently, |D ∩ Ei | ≤ |C0 ∩ Ei |. This finishes the proof that D dominates C0.
Since C0 is important, we have D = C0. In particular, R̂ ⊆ R0. On the other hand,

for every j ∈ [λ]we have that e j ∈ Ĉ ⊆ Ẑ ⊆ Z ⊆ ⋃�
i=1 Ei . In particular, there exists

i ∈ [�] such that e j ∈ Ei and j ∈ Ai . Hence, we also have Ei ∩ E(Pj )∩ B̂ ∩C0 �= ∅.
But the entire subpath of Pj from X to the tail of e j lies in R̂ ⊆ R0, while e j is the last
edge of B̂ on Pj . Hence, e j ∈ C0. Since the choice of j is arbitrary, Ĉ ⊆ C0. Since Ĉ
is an XY -cut and C0 is minimal, Ĉ = C0 as claimed.

This finishes the proof of Theorem 7. 
�

4.1 Applications

The Directed Feedback Arc Set problem is a classic problem that played major
role in the development of parameterized complexity. In this problem, given a directed
graph G and an integer k, the problem is to decide if there exists an arc set S of size at
most k such that G − S has no directed cycles. The multi-budgeted variant is defined
as follows.

Multi- budgeted Directed Feedback Arc Set

Input A directed graph G, an integer �, and for every i ∈ {1, 2, . . . , �} a set
Ei ⊆ E(G) and an integer ki ≥ 1.

Question Is there a set of arcs S ⊆ ⋃�
i=1 Ei such that there is no directed cycle

in G − S and for every i ∈ [�], |S ∩ Ei | ≤ ki .

The first FPT algorithm for the Directed Feedback Arc Set problem is given
by Chen et al. [4]. In their algorithm, they use iterative compression and reduce the
Directed Feedback Arc Set compression problem to theSkew Edge Multicut

problem. They propose a pushing lemma for Skew Edge Multicut and solve Skew
Edge Multicut through enumerating important cuts. We show that for the multi-
budgeted variant, a similar strategy works with the help of Theorem 7. Formally, the
Multi- budgeted Skew Edge Multicut problem is defined as follows.
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Multi- budgeted Skew Edge Multicut

Input A directed graph G, an integer �, for every i ∈ {1, 2, . . . , �} a set Ei ⊆
E(G) and an integer ki ≥ 1, and a sequence (si , ti )

q
i=1 of terminal pairs.

Question Is there a set of arcs C ⊆ ⋃�
i=1 Ei such that there is no directed path

from si to t j for any i ≥ j in G − C and for every i ∈ [�], |C ∩ E(i)| ≤ ki?

As in the case of Multi- budgeted Cut, the assumption that ki ≥ 1 for every
i ∈ [�] implies � ≤ k.

We start by observing a direct corollary of themaximality criterium in the definition
of important budget-respecting separators.

Lemma 1 Given an instance (G, X ,Y , �, (Ei , ki )�i=1) of Multi- budgeted cut,
for every minimal budget-respecting XY -cut C there exists an important budget-
respecting XY -cut C ′ that dominates C.

Similar to the pushing lemma for Skew Edge Multicut [4],wepropose a pushing
lemma for the multi-budgeted variant.

Lemma 2 Every yes-instance I = (G, �, (Ei , ki )�i=1, (si , ti )
q
i=1) of Skew Edge

Multicut admits a solution that contains an important budget-respecting XY -cut
for X = {sq} and Y = {t1, t2, . . . , tq}.
Proof Let C be a solution to I . Let X = {sq}, Y = {t1, . . . , tq}, and R be the set of
vertices reachable from sq in G − C . Since C is a solution, δ+(R) ⊆ C is a budget-
respecting XY -cut; let D ⊆ δ+(R) be a minimal one. By Lemma 1, there exists an
important budget-respecting XY -cut D∗ dominating D. Let R∗ be the set of vertices
reachable from sq in G − D∗. We claim that C∗ := (C\D) ∪ D∗ is a solution to I as
well.

Suppose for contradiction that there is a directed path P from si to t j for some i ≥ j
inG−C∗. If P contains one vertex of R∗, it contradicts that D∗ is an XY -cut because P
must contain one edge of D∗. Thus P is disjoint from R∗. Since R ⊆ R∗, P is disjoint
from R, and hence P is disjoint from D. Since P is not cut by C∗ = (C\D) ∪ D∗, P
is not cut by C\D. It follows that P is not cut by C = (C\D) ∪ D, contradicting that
C is a solution.

To complete the proof, note that for every i ≤ [�] we have |D∗ ∩ Ei | ≤ |D ∩ Ei |
since D′ dominates D, and hence |C∗ ∩ Ei | ≤ |C ∩ Ei |. Consequently, C∗ is budget-
respecting. 
�

Lemma 2 yields the following branching strategy.

Lemma 3 There is an FPT algorithm forMulti- budgeted Skew Edge Multicut

running in time 2O(k3 log k)) · (|V (G)| + |E(G)|).
Proof We perform a recursive branching algorithmwhere the budgets ki will decrease,
thuswe allow instanceswith the inequalities ki ≥ 1 violated. If ki < 0 for some i ∈ [�],
then we can answer NO. Otherwise, if q = 0, then we can answer YES. Otherwise,
perform a depth-first search from sq . If no terminal ti has been reached, delete the
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visited vertices (as they are not contained in any s j -to-t j ′ path for any 1 ≤ j, j ′ ≤ q)
together with tq (as there is no sq -to-tq path in the graph), decrease q by one and restart
the algorithm. Since this operation can be performed in time linear in the size of the
deleted part of the graph, in total it takes linear time.

Otherwise, proceed as follows. By Lemma 2 if the input instance is a yes-instance,
there is a solutionC∗ which contains an important budget-respecting sq {t1, t2, . . . , tq}-
cut. By Theorem 7, we can enumerate in time 2O(k2 log k)(|V (G)| + |E(G)|) a set of
minimal budget-respecting XY -cuts S of size 2O(k2 log k) that contains all important
ones. We invoke this enumeration, and branch on the choice of important budget-
respecting sq{t1, t2, . . . , tq}-cut contained in the sought solution. In a branch where a
cut D is chosen, we delete D from the graph and decrease each budget ki by |D∩ Ei |.
Since at least one terminal ti is reachable from sq , in every branch the cut D is
nonempty and thus k = ∑�

i=1 ki decreases by at least one. Consequently, the depth
of the recursion is bounded by k. The running time bound follows. 
�

We now use the algorithm of Lemma 3 to give an algorithm forMulti- budgeted

Directed Feedback Arc Set, completing the proof of Theorem 2.

Lemma 4 Multi- budgeted Directed Feedback Arc Set can be solved in time
2O(k3 log k)(|V (G)| + |E(G)|).
Proof Let I = (G, �, (Ei , ki )�i=1) be an input instance. We start by applying the
algorithm of Lokshtanov et al. [22] for the classic Directed Feedback Vertex

Set on G with parameter k = ∑�
i=1. If the call returned that there is no solution, we

can safely return NO. Otherwise, let W be the returned solution: |W | ≤ k and G −W
is acyclic.

Suppose I is a yes-instance and there is a solution S. ThenG−S is a directed acyclic
graph, admitting a topological ordering of V (G). This ordering indices a permutation
of the vertices inW . In our algorithm,we branch on every permutation of the vertices in
W , ensuring that at least one of the permutation is the same as the permutation induced
by the topological ordering of G− S. Letw1, . . . , w|W | be an arbitrary permutation of
the vertices in W . We construct a graph G ′ as follows. For each i ∈ [|W |], we replace
every vertex wi with two vertices si , ti , every edge (wi , a) with (si , a) of the same
color and every edge (b, wi ) with (b, ti ) of the same color. Then we add a directed
edge (ti , si ) for each i ∈ [|W |] with no color. In this manner, we construct a Multi-

budgeted Skew Edge Multicut instance I ′ = (G ′, �, (E ′
i , ki )

�
i=1, (si , ti )

|W |
i=1)

corresponding to the permutation w1, . . . , w|W |.
We claim that the input instance I of Multi- budgeted Directed Feedback

Arc Set is a yes-instance if and only if there exists one permutation w1, . . . , w|W | of
W such that the correspondingMulti- budgeted Skew Edge Multicut instance
I ′ is a yes-instance. For the “only if direction”, let S be a solution to I . We have
a topological ordering of V (G), inducing an ordering w1, . . . , w|W | on W . For this
ordering, let I ′ be the corresponding instance of Multi- budgeted Skew Edge

Multicut. According to thewaywe constructG ′, every edge in S has a corresponding
edge in G ′. Let S′ be the set of the corresponding edges in G ′. We claim that S′ is
a solution for I ′. Obviously S′ is budget-respecting. Suppose for contradiction that
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s t

C1 C2 C3 C4

A1 A2 A3 A4

B4 B3 B2 B1

Fig. 3 A schematic picture of a 4-bowtie

there is a directed path P from si to t j for some i ≥ j in G ′ − S′. If i = j , then
the corresponding edges of P form a directed cycle passing through wi in G − S, a
contradiction. Suppose that i > j . If P goes through some edge in {(ti , si )|i ∈ [|W |]},
then there must be a subpath of P ′ from si ′ to t j ′ such that i ′ > j ′ and P ′ contains
no edges in {(ti , si )|i ∈ [|W |]}. Then the corresponding edges of P ′ is a directed path
from wi ′ to w j ′ , contradicting that wi ′ is later than w j ′ in the topological ordering of
V (G) after removing S.

For the “if direction”, suppose that S′ is a solution for I ′ and w1, . . . , w|W | is the
corresponding ordering ofW . Let S be the set of edges consisting of the corresponding
edges of S′. We claim that S is the solution for I . Obviously S is budget-respecting.
Suppose that there is a cycle Q in G − S. Since W is a feedback vertex set for G, Q
must go through at least one vertex inW . Suppose that Q goes through a vertex inW ,
namely wi . Then we can find a path from si to ti in G ′ − S′, contradicting that S′ is a
solution to I ′.

This finishes the proof of the lemma and of the whole Theorem 2. 
�

5 Bound on the Number of Solutions Closest to t

In this section we prove Theorems 3 and 4. The central definition of this section is the
following (see also Fig. 3).

Definition 2 Let G be a directed graph with distinguished vertices s and t and let k
be an integer. An a-bowtie is a sequence C1,C2, . . . ,Ca of pairwise disjoint minimal
st-cuts of size k each such that each cut Ci can be partitioned Ci = Ai � Bi such that
for every 1 ≤ i < j ≤ a, the set Ai is exactly the set of edges of Ci reachable from s
in G − C j and Bj is exactly the set of edges of C j reachable from s in G − Ci .

Our main graph-theoretic result is the following.

Theorem 8 For every integers a, k ≥ 1 there exists an integer g such that for every
directed graph G with distinguished s, t ∈ V (G), and a family U of pairwise disjoint
minimal st-cuts of size k each, if |U | ≥ g, then U contains an a-bowtie.
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The next two lemmata are key observations to prove Theorems 3 and 4, respectively,
with the help of Theorem 8.

Lemma 5 Let k, g, G, s, t ,F , and G be as in the statement of Theorem 3. Then G does
not contain an a-bowtie for a >

(k+2
2

)
.

Proof Assume the contrary, let (Ci , Ai , Bi )ai=1 be such a bowtie. Since a >
(k+2

2

)
,

there exists i < j with |Ai | = |A j | and |Bi | = |Bj | (there are
(k+2

2

)
choices for

(|Ai |, |Bi |)). However, then Ai ∪ Bj and A j ∪ Bi have also cardinality k, are st-
cuts, and have together twice the minimum weight. Furthermore, the set of vertices
reachable from s in G − (A j ∪ Bi ) is a strict superset of the set of vertices reachable
from s in G − Ci and G − C j . This contradicts the fact that Ci ,C j ∈ G. 
�
Lemma 6 Let k, �, I = (G, s, t, (Pi )mi=1, k), F , and G be as in the statement of
Theorem 4. Then G does not contain a 4-bowtie (Ci , Ai , Bi )4i=1 in which the edge set
of every path Pj intersects at most one cut Ci .

Proof Assume the contrary.Let (Ci , Ai , Bi )4i=1 be such a4-bowtie.Consider i ∈ {2, 3}
and two edges e ∈ Ai and f ∈ Bi . In G −C4, the edge e is reachable from s while f
is not; consequently, e and f cannot appear on the same input path with e being earlier
(by assumption, C4 is disjoint from the input path in question). A similar reasoning
for G − C1 shows that e and f cannot appear on the same input path with f being
earlier than e.

Hence, e and f cannot appear together on a single path Pj . For a set of edges D, by
the cost of D we denote |{ j |D ∩ Pj �= ∅}|. Since the choice of e and f was arbitrary,
we infer that the sum of costs of A2 ∪ B3 and of A3 ∪ B2 equals the sum of costs of C2
and of C3. Hence, both these st-cuts have minimum cost. However, A2 ∪ B3 is closer
to t than C2, a contradiction. 
�
Proof of Theorem 3 Assume |G| > g for some sufficiently large g to be fixed later. For
i ∈ [k], let Gi be the set of u ∈ G of cardinality i . We apply the Sunflower Lemma to
the largest set Gi : If g > k · k!gk1 for some integer g1 to be chosen later, there exists
G1 ⊆ G with |G1| > g1, every element of G1 being of the same size k′, and a set c
such that u ∩ v = c for every distinct u, v ∈ G1.

Let k̂ = k′ − |c|, û = u\c for every u ∈ G1, Ĝ1 = {̂u | u ∈ G1} and Ĝ = G − c.
Since every u ∈ U is a minimal st-cut of size k′ in G, every û ∈ Ĝ1 is a minimal
st-cut of size k̂ in Ĝ. Furthermore, every û ∈ Ĝ1 is a minimal st-cut of size at most k̂
in Ĝ of minimum possible weight: if there existed an st-cut x̂ of smaller weight and
cardinality at most k̂, then x = x̂ ∪ c would be an st-cut in G of cardinality at most k
and weight smaller than every element of G1. Similarly, if there were a minimal st-cut
x̂ in Ĝ of minimum weight and cardinality at most k̂ that is closer to t than û for some
û ∈ Ĝ1, then x̂ ∪ c would be an st-cut in G of cardinality at most k and minimum
weight that is closer to t than u, a contradiction. By construction, the elements of Ĝ1
are pairwise disjoint.

Lemma 5 bounds the maximum possible size of a bowtie in Ĝ1. Hence, Theorem 8
asserts that Ĝ1 has size bounded by a function of k. This finishes the proof of the
theorem. 
�
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Proof of Theorem 4 We proceed similarly as in the proof of Theorem 3, but we need
to be a bit more careful with the paths Pj . Assume |G| > g for some sufficiently large
integer g.

As before, we partition G according to the sizes of elements: for every i ∈ [k�],
let Gi = {u ∈ G | |u| = i}. Let i ∈ [k�] be such that |Gi | > g/(k�). For u ∈ Gi ,
let J (u) = { j | u ∩ Pj �= ∅}. By the assumptions of the theorem, every set J (u)

is of cardinality exactly k. We apply the Sunflower Lemma to {J (u) | u ∈ Gi }: If
g > (k�) · k! · gk1 for some integer g1 to be fixed later, then there exists G1 ⊆ Gi of
size larger than g1 and a set I ⊆ [m] such that for every distinct u, v ∈ G1 we have
J (u) ∩ J (v) = I . For every u ∈ G1, let uI = u ∩ ⋃

j∈I Pj . Since |I | ≤ k, there are at

most 2k� choices for uI among elements u ∈ G1. Consequently, there exists G2 ⊆ G1
of cardinality larger than g2 := g1/2k� such that uI = vI for every u, v ∈ G2. Denote
c = uI for any u ∈ G2.

Let û := u − c for every u ∈ G2. Let Ĝ2 = {̂u | u ∈ G2}.
Define now Ĝ = G − c and define a partition P̂ of E(Ĝ) into paths of length at

most � as follows: we take all paths Pi for i /∈ I and, for every i ∈ I , each edge of
Pi\c as a length-1 path. Furthermore, denote k̂ = k − |I |. Note that (Ĝ, s, t, P̂, k̂)
is a Chain �- SAT instance for which every û ∈ Ĝ2 is a solution. Furthermore,
(Ĝ, s, t, P̂, k̂ − 1) is a no-instance, as if x̂ were its solution, then x̂ ∪ c would be a
solution to (G, s, t, (Pi )mi=1, k−1), a contradiction. Similarly, if there were a solution
x̂ to (Ĝ, s, t, P̂, k̂) that is closer to t than û for some û ∈ Ĝ2, then x̂ ∪ c would be a
solution to (G, s, t, (Pi )mi=1, k) that is closer to t than u, a contradiction. Furthermore,
by construction, the elements of Ĝ2 are pairwise disjoint and no path of P̂ intersects
more than one element of Ĝ2.

Lemma 6 bounds the maximum possible size of a bowtie in Ĝ2. Hence, Theorem 8
asserts that Ĝ2 has size bounded by a function of k and �. This finishes the proof of
the theorem. 
�

We now focus on the proof of Theorem 8. To this end, we need to introduce some
abstract notions.

Let k be an integer. A k-maze is a family U of pairwise disjoint sets of size k,
together with a function fu,v : u → {⊥,�} for every ordered pair u, v ∈ U , u �= v. A
flower in a k-maze U is a subset F ⊆ U such that there exists a value ζ ∈ {⊥,�} and
an element e(u) ∈ u for every u ∈ F such that fu,v(e(u)) = ζ for every u, v ∈ F ,
u �= v. An a-bowtie in a k-maze U is a sequence u1, u2, . . . , ua of pairwise distinct
elements of U together with a partition ui = ai � bi of every set in the sequence, such
that the following holds for every 1 ≤ i, j ≤ a, i �= j :

– If i < j then fui ,u j (e) = ⊥ for e ∈ ai and fui ,u j (e) = � for e ∈ bi ;
– If i > j then fui ,u j (e) = � for e ∈ ai and fui ,u j (e) = ⊥ for e ∈ bi .

We need two basic observations. First, flowers in restrictions project to flowers in
original mazes. That is, given a k-maze U and a set û ⊆ u for every u ∈ U with
|û| = k̂, the natural restrictions of the functions fu,v give a structure of a k̂-maze on
Û := {û : u ∈ U}. It is immediate from the definition that a flower in Û projects back
to a flower in U . Second, a reverse of a bowtie is a bowtie as well, but one needs to
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swap the roles of ai and bi . That is, one can check directly from the definition that if
(ui , ai , bi )ai=1 is an a-bowtie, then (ui , bi , ai )1i=a is an a-bowtie as well.

An iterated Ramsey argument shows the following.

Theorem 9 For every integers k, a, b ≥ 1 there exists an integer g such that any
k-maze of size at least g contains either an a-bowtie or a flower of size at least b.

Proof We prove Theorem 9 by induction over k and denote the resulting value g as
g(k, a, b). Pick k, a, b ≥ 1 and pick a k-maze U . For every u ∈ U pick an arbitrary
element eu ∈ u and denote û = u\{eu}.

Fix an arbitrary total order ≺ on U . Consider a complete graph H with vertex set
U and edges with the following annotations for distinct u, v ∈ U with u ≺ v.

– An edge uv is light red if fu,v(eu) = fv,u(ev) = ⊥.
– An edge uv is dark red if fu,v(eu) = fv,u(ev) = �.
– An edge uv is light blue if fu,v(eu) = ⊥ and fv,u(ev) = �.
– An edge uv is dark blue if fu,v(eu) = � and fv,u(ev) = ⊥.

We say that an edge uv is red if it is light or dark red, and similarly for blue.
By Ramsey’s theorem, if U is large enough, we have one of the following objects.

– A light red clique of size b or a dark red clique of size b. But such a clique is in
fact a flower of size b with e(u) = eu and ζ = ⊥ if it is a light red clique or ζ = �
if it is a dark red clique.

– A light blue clique or a dark blue clique of sizem1, for some integerm1 to be fixed
later. We denote this clique by C and proceed further.

If k = 1, we take m1 = a and observe that such a blue clique is an a-bowtie.
For k > 1,wedefine a (k−1)-maze Û := {û : u ∈ C}.We takem1 = g(k−1,m2, b)

wherem2 = (a−1)2 +1 and apply the inductive assumption to Û , obtaining either an
m2-bowtie or a b-flower. If the inductive assumption gives a flower, it projects back to a
flower inU . Otherwise, we have anm2-bowtie (ûi , âi , b̂i )

m2
i=1. Sincem2 = (a−1)2+1,

there exist indices 1 ≤ i1 < i2 < · · · < ia ≤ m2 such that (ui j )
a
j=1 is ordered

increasingly or decreasingly by ≺. Then, by the definition of light and dark blue
edges, either (ui j , âi j ∪ {eui j }, b̂i j )aj=1 or (ui j , âi j , b̂i j ∪ {eui j })aj=1 is an a-bowtie.
This finishes the proof. 
�

Let us now relate the above abstract notions and results to cuts of cardinality at most
k in a directed graphG with distinguished verticesG, s, and t . For two disjointminimal
st-cuts C, D of size k, we can define fC,D : C → {⊥,�} as follows: fC,D(e) = ⊥ if
the tail of e is reachable from s in G− D, and fC,D(e) = � otherwise. This definition
gives a structure of a k-maze on a family U of pairwise disjoint minimal st-cuts of
size k. Furthermore, a direct check from the definitions show that the two notions of
a bowtie are equivalent. By Theorem 9, if such a family U is large enough, it contains
an a-bowtie (which is the conclusion of Theorem 8) or a flower of size b. To conclude
the proof of Theorem 8, it remains to show the following.

Lemma 7 Let G be a directed graph with two distinguished vertices s and t and let k
be an integer. Let U be a family of pairwise disjoint minimal st-cuts of size k with the
aforementioned structure of a k-maze. Then every flower in U has cardinality at most
(k + 1)4k+1.
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Lemma 7 is an easy corollary of the so-called anti-isolation lemma (see e.g. [28]
for a proof).

Lemma 8 (Anti-isolation lemma) Let k be an integer, G be a directed graph with a
distinguished vertex s, and let T ⊆ V (G). Assume that for every t ∈ T there exists a
set Ct ⊆ E(G) of size at most k such that t is the only vertex of T reachable from s in
G − Ct . Then |T | ≤ (k + 1)4k+1.

Proof of Lemma 7 Let F ⊆ U be a flower with a value ζ ∈ {⊥,�} and an element
e(u) ∈ u for every u ∈ F such that fu,v(e(u)) = ζ for every v ∈ F\{u}. Observe
that if we revert all the edges of G and switch the roles of s, and t , U remains a family
of minimal st-cuts of size k, but the values of ⊥ and � in functions fu,v swap. In
particular, F remains a flower with the same choice of e(u) for every u ∈ F , but the
value of ζ changes. Hence, without loss of generality we can assume that ζ = �.

Fix u ∈ F . Let t(u) be the tail of e(u) for every u ∈ F . Since u is a minimal st-cut,
t(u) is reachable from s in G − u. Since fu,v(e(u)) = ζ = � for every v ∈ F\{u},
t(u) is not reachable from s in G − v. In particular, the tails t(u) are pairwise distinct
for different u ∈ F . Lemma 8 implies that the set {t(u) | u ∈ F} is of cardinality at
most (k + 1)4k+1, which implies the same bound on |F |. 
�

6 NP-Hardness of MULTI-BUDGETED CUT

Although it is well-known that the minimum cut problem is polynomial-time solvable,
we prove that the Multi- budgeted cut problem is NP-hard for � ≥ 2.

Lemma 9 Multi- budgeted cut problem is NP-hard for every � ≥ 2.

Proof We prove this lemma by making a reduction from constrained minimum vertex
cover problem on bipartite graphs (Min- CBVC), which is proved to be NP-hard by
Chen and Kanj [3]. In theMin- CBVC problem the input consists of a bipartite graph
G = (U � L, E) and integers kU , kL ; the goal is to find a vertex cover X ⊆ U ∪ L
such that |X ∩U | ≤ kU and |X ∩ L| ≤ kL .

We reduce to a Multi- budgeted cut instance with � = 2. For larger values of
�, it is straightforward to pad the instance as follows: for every 3 ≤ i ≤ �, create a
new edge ei with tail in s and head in t and set Ei = {ei }, ki = 1.

Given an instance (G, kU , kL) of Min- CBVC, whereG = (U∪L, E) is a bipartite
graph, we construct an instance (G ′, X ,Y , 2, (Ei , ki )2i=1) of Multi- budgeted cut

as follows. We take V (G ′) = V (G) ∪ {s, t}, where s and t are two new vertices, and
set X = {s} and Y = {t}. Then for each vertex u ∈ U , we add an arc (s, u) with color
1 to G ′ and for each vertex v ∈ L , we add an arc (v, t) with color 2 to G ′. For each
undirected edge (u, v) ∈ E(G) such that u ∈ U and v ∈ L , we add an arc (u, v) with
no color. Let E1 be the set of arcs of color 1 inG ′ and E2 be the set of arcs of color 2 in
G ′. Let Z = E1 ∪ E2 be the deletable arcs. Let the budgets of theMulti- budgeted

cut instance be k1 = kU , k2 = kL . This completes the construction.
Now we show that (G, kU , kL) is a yes instance if and only if (G ′, X ,Y , 2,

(Ei , ki )2i=1) is a yes instance. Suppose (G, kU , kL) is a yes instance. Then there exists
a vertex cover U ′ ∪ L ′ of G such that U ′ ⊆ U , L ′ ⊆ L , |U ′| ≤ kU and |L ′| ≤ kL . Let
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C1 = {(s, u)|u ∈ U ′} and C2 = {(v, t)|v ∈ L ′}. We claim that C1 ∪ C2 is a solution
for (G ′, X ,Y , 2, (Ei , ki )2i=1). Obviously |C1| ≤ k1, |C2| ≤ k2 and C is Z -respecting.
For contradiction, suppose that there is a directed path su′v′t in G ′\(C1 ∪ C2). It
follows that u′ /∈ U ′ and v′ /∈ L ′. Thus there is an edge u′v′ which is not covered by
U ′ ∪ L ′ in G, contradicting that U ′ ∪ L ′ is a vertex cover of G.

Suppose that (G ′, X ,Y , 2, (Ei , ki )2i=1) is a yes instance. Then there is a Z -
respecting budget-respecting st-cut C = C1 ∪ C2 such that C1 is a set of arcs of
color 1 of size at most k1 and C2 is a set of arcs of color 2 of size at most k2. Obvi-
ously any arc between U and V in G ′ is not in the solution because they are not
deletable. Let U ′ = {u|(s, u) ∈ C1} and L ′ = {v|(v, t) ∈ C2}. We get that U ′ ⊆ U ,
L ′ ⊆ L , |U ′| ≤ k1 = kU and |L ′| ≤ k2 = kL . We claim that U ′ ∪ L ′ is a solution
for (G, kU , kL). For contradiction, suppose that there is an edge u′v′ not covered by
U ′∪L ′. It follows that su′v′t is a directed path inG ′\C , contradicting thatC = C1∪C2
is a solution for (G ′, X ,Y , 2, (Ei , ki )2i=1). This completes the proof. 
�

7 Conclusion

We would like to conclude with a discussion on future research directions. First, our
upper bound of 2O(k2 log k) on the number of multi-budgeted important separators
(Theorem 7) is far from the 4k bound for the classic important separators. As pointed
out by an anonymous reviewer at IPEC 2018, there is an easy lower bound of k! for the
number of multi-budgeted important separators: Let � = k, ki = 1 for every i ∈ [�],
and let G consist of k paths from s to t , each path consisting of � edges of different
colors. Then there are exactly k! distinct multi-budgeted important separators, as we
can freely choose a different color i ∈ [�] to cut on each path. We are not aware of any
better lower bound, leaving a significant gap between the lower and upper bounds.

Second, our existential statement of Theorems 3 and 4 can be treated as a weak
support of tractability of Chain �- SAT and Weighted st- cut. Are they really FPT
when parameterized by the cardinality of the cut?
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