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About the HySeas Consortium • Develop, construct, certify 
and validate a hydrogen 
fuel cell drive and construct, 
launch and monitor a sea-
going RoPax ferry 

• Develop innovative business 
models and encourage 
replication by dissemination 
of exploitable lessons 

• DLR contributes to HySeas 
III with environmental, 
economic, social and 
market assessments 
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Motivation 

• Total Shipping contribution to GWP: 
2.89% of total anthropogenic yearly 
CO2 emissions (2018) 

• IMO MEPC 72: Long-term measures: 
„pursue the development and 
provision of zero-carbon or fossil-free 
fuels“ 

• …but first this has to be implemented 
in a small scale 

• RoPax ferries have regular routes and  
some sizes are interesting for the 
implemention of new solutions  
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Motivation 

• Although the long-term seems to be 
far away, ships are relatively long-
lived (RoPax ferries more than 30 
years). 

• Future starts now if we want to 
reduce green house gases by 2050! 

 

 

Gomez J.C., Vogt, T., Brand, U., Wilken, D., Remler, M. (2019). Market Potential Analysis of 

RoPax Ferry Market in Europe. Deliverable 6.1 Project HySeas III  

Based on data of IHS Markit SeaWeb. 
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HySeas III: Location 

• Operating profile – 25 minute crossing, 
continuous operation – 12 voyages a 
day, 1.5 hour lunch break and at berth 
all night. 

Considering the route:  

• Build the drivetrain on land for full scale 
testing first 

• Integration into a newly built vessel 
design 
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HySeas III: First Steps: Small-Scale Testing (Norway) 

Source: Kongsberg 

 

Objective: implement in practice 
a small energy/power system 
using fuel cells/batteries and 
loads 
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HySeas III: First Steps: Small-Scale Testing (Norway) 

Source: Kongsberg 
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HySeas III: Next Steps: Full Size Testing in Norway 

Source: Kongsberg 

 

Objective: testing full size 
system on land 
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HySeas III: Next Steps: Full Size Testing 

Source: Ballard Power Systems 

 

Detail of one of the fuel cell containers 
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HySeas III: Next Steps: Full Size Testing 

Source: Ferguson Marine 

 

Preliminary Dimensions 

• 39.9m LOA 

• 10m Beam 

• 4m Depth Approx. 

• Landing craft style hull 

Powering: 

• 6 x 100kW Ballard 
Fuel cells 

• Li Ion Battery Systems 

• ~1000kg Hydrogen 
stored 

Capacity Requirement: 

• 120 passengers 

• 18 cars 

• 2 Heavy Goods 
Vehicles 

Route: 

• Kirkwall-Shapinsay 

• 4 nautical miles 

• 25 minutes 

• Lifeline Service 

Compressed 

Hydrogen 

storage 

Fuel 

Cells 

DC Li Ion 

Batteries 
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HySeas III: Compressed Hydrogen Bunkering 

• Hydrogen temperature rises significantly during the refilling due to the Joule-Thomson effect, 
which produces increase of temperature for hydrogen expansion at room temperature 

• Temperature rise leads to: exceeding safety temperature of the tank but also lower hydrogen 
density (so lower mass refilled) 

• All fuelling parameters all have influence on the temperature rise, the three most important 
of which: initial pressure, filling rate, initial hydrogen temperature 

• Bunkering compromise: fastest and fullest fuelling but with little heating and limited flowrate 

• A standard exists for light duty vehicles (under 10kg) SAE J2601, but there is no standard for 
refilling around 250kg of H2 – need to start from scratch to define the refuelling protocol 

• Battery charging 
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HySeas III: Compressed Hydrogen Bunkering  

Bunkering possibility at 
noon 

Bunkering possibility: 
End of the journey 

Source: Okney Island Council- Orkney 

Ferries 

Available at: 

http://www.orkneyferries.co.uk/pdfs

/acctimetables/winterspring/shapin

say_winterspring.pdf 
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HySeas III: Compressed Hydrogen Bunkering  

T ambient 0°C -20°C -40°C 

1 dispenser 

2 dispensers 

3 dispensers 

 - complex 

 + complex 

Complexity in terms of : 

• architecture : if have several dispensers and a precooling unit 

• operation : more dispensers = more connections to do 

 If more complex, more expensive and more risks 

• Kirkwall: feasible but most complex case, to be avoided 

• Shapinsay: better cases, can do the simplest case (1 dispenser, ambient temperature) 

 Source: McPhy 

 

Complexity of different alternatives: 
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HySeas III: Environmental Assessment 

Gomez Trillos, J. C., et al. (2019). Chapter 2: Life Cycle Assessment of a Hydrogen 
and Fuel Cell RoPax Ferry Prototype. Progress in Life Cycle Assessment 2019. S. 
Albrecht, M. Fischer, P. Leistner and L. Schebek, Springer Nature Switzerland. 
  
 

Deutsches Zentrum für Luft und Raumfahrt (2020). "Wasserstoff als ein Fundament der 
Energiewende - Teil 2: Sektorenkopplung und Wasserstoff: Zwei Seiten der gleichen Medaille.„ 
Available at: https://www.dlr.de/content/de/dossiers/2020/wasserstoff.html 
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HySeas III: Environmental Assessment 
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Gomez Trillos, J. C., et al. (2019). Chapter 2: Life Cycle Assessment of a Hydrogen and Fuel Cell RoPax Ferry Prototype. Progress in Life Cycle Assessment 2019. S. Albrecht, M. Fischer, P. 
Leistner and L. Schebek, Springer Nature Switzerland. 
  
 



Funded by the European Union’s Horizon 2020  
research and innovation programme under grant 
agreement no: 769417  

HySeas III: Economic Assessment 

Gomez Trillos, J. C., et al. (2020) In press. 
Assumptions: EUR to USD: 1.1; Electrolyser 900USD/kW; Electricity consumption 
50kWh/kg H2; Capacity factor of wind in Orkney: 62%; Lifetime: 25 years; OPEX: 
3% CAPEX/year; Compressed storage in trailers as currently in Orkney; Transport 
with trucks as currently in Orkney;  

Gomez Trillos, J. C., et al. (2020) In press. 
Own calculations assuming a hydrogen price of 3.83 EUR/kg H2, Marine Diesel price 0.73 
EUR/kg, electricity price of 0.10 EUR/kWh (Orkney), ship building price:9.2 MEUR, battery 
price 550 EUR/kWh, Fuel cell price: 1500 EUR/kW heavy duty, hydrogen storage price of 15 
EUR/kWhH2. Fuel Cell and Battery Electric Ship fuel consumption: 54840 kg/year + 164225 
kWh/year. Diesel Battery Electric Ship: 194593 kg diesel/year. Diesel Electric Ship: 221579 
kWh/year. 

Hydrogen Estimated Production Cost Life Cycle Costing of Ship and Energy Supply (End-of-Life Excluded) 
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Hydrogen Availability in Europe: Industrial Plants 
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By-Product Captive Merchant

• Merchant: sold as product 

• Captive: internal use 

• By-product: recovered  

• Global H2 demand: 70 

MMT+40MMT mixed* 

*MMT: Million metric tonnes 

Source: Fuel Cells & Hydrogen Observatory; Available at: 
https://www.fchobservatory.eu/sites/default/files/reports/Chapter_2_Hydrogen_Molecule_Market_070920.pdf   
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Hydrogen Availability: Liquid Hydrogen 
 
It also depends on the physical state of hydrogen... 

Country Output 

kg/day 

USA 209,167 

Canada 51,461 

Japan 35,607 

France 10,500 

Germany 10,100 

Netherlands 5,400 

Guiana 2,500 

Australia 0,25* 

Own plot/Data source: https://h2tools.org/hyarc/hydrogen-production 

 

*Port of Hastings: 

https://hydrogenenergysupplychain.com/port-

of-hastings/ 

 

https://hydrogenenergysupplychain.com/port-of-hastings/
https://hydrogenenergysupplychain.com/port-of-hastings/
https://hydrogenenergysupplychain.com/port-of-hastings/
https://hydrogenenergysupplychain.com/port-of-hastings/
https://hydrogenenergysupplychain.com/port-of-hastings/
https://hydrogenenergysupplychain.com/port-of-hastings/
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Hydrogen Electrolysis Additions and Cost 

Source of data: https://www.iea.org/reports/hydrogen 
 

Prospects for Electrolysis CAPEX reduction: 

experience rates of electrolysis: 18±6% 

 

H2 Electrolysis Expected Cumulative Capacity in Europe [Mwel] 
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Conclusions 

• HySeas III is upscaling a solution for hydrogen and fuel cells powered ships 

•  Bunkering of compressed hydrogen has challenges due to the properties of hydrogen 
(Joule-Thomson effect), leading to longer bunkering times or the need of hydrogen 
precooling 

• The use of hydrogen produced with renewable energies allows the reduction of global 
waming potential effects of the energy supply for ships 

• In terms of costs, hydrogen production via electrolysis is highly dependent on the 
electricity price and has an important influence in the life cycle cost of the ship 

• Physical state of hydrogen also matters: there are only 4 plants producing liquid 
hydrogen in Europe 

• There will be important additions of electrolysis capacity in the next years 
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Thank you! 

 

Juan Camilo Gómez Trillos 

German Aerospace Center (DLR)  

Institute of Networked Energy Systems 

Research Scientist | Energy Scenarios and Technology Assessment 

Phone: 0049-441 99906-247 | Mail: juan.gomeztrillos@dlr.de 
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More about Hydrogen Cost/Price 

Source of data:   

NCE Maritime CleanTech (2019). "Norwegian future value chains for liquid 

hydrogen." Report. URL: https://maritimecleantech. no/wp-

content/uploads/2016/11/Report-liquid-hydrogen. pdf. 

The Future of Hydrogen (2019). IEA. Available at: 

https://www.iea.org/reports/the-future-of-hydrogen 

Glenk, G. and S. Reichelstein (2019). "Economics of converting renewable 

power to hydrogen." Nature Energy 4(3): 216-222. 

European Commission (2020). A hydrogen strategy for a climate-neutral 

Europe. 

  

 

  

 

  

 

  

 

Source
Production 

cost EUR/kg

Retail Price 

EUR/kg
Year Compressed/Liquid Electrolysis/SMR Note

FCH-JU (2017) 4-5 - 2025 Compressed Unknown

Hinicio(2015) 5-7 - 2030 Compressed Unknown

E4 Tech(2014) 2.2-5.0 - 2014 Compressed Electrolysis

E4 Tech(2014) 2.5 - 2014 Compressed Gas Reformation

US DOE*(2012) 1.5-1.9 - 2020 Compressed Gas Reformation

Idealhy(2013) 1.72 - N.A. Liquid Electrolysis

Kawasaki(2018) 2 -

Estimation 

current project 

plans

Liquid Coal gasification

ZEP(2017) 2-4 - 2019 Compressed Gas Reformation

ZEP(2017) 4.8 2019 Compressed Electrolysis

ZEP(2017) 3 - 2045 Compressed Electrolysis/Gas reformation

Shell(2017) 1.5-4 - 2017 Compressed Gas Reformation

Shell(2017) 1.8-3.0 -
Projected Market 

price
Compressed Gas Reformation

Shell(2017) 6-8 2017 Compressed Electrolysis

Shell(2017) 4 -
Projected Market 

price
Compressed Electrolysis

IRENA(2018) 4.4-5.3 - 2018 Compressed Electrolysis

IRENA(2018) - 11.5-14.5 2018 Compressed Electrolysis

IRENA(2018) 0.9-2.6 - 2025 Compressed Electrolysis

IRENA(2018) - 4.4-6.1 2025 Compressed Electrolysis

GCSP(2019) 2.7-2.8 - 2019 Compressed Electrolysis

GCSP(2019) 3 - 2019 Liquid Unknown

DNV-GL(2019) 2-5 . 2030 Compressed Electrolysis

DNV-GL(2019) 1-1.6 2030 Compressed Gas Reformation

Greensight - 7.1 2019 Liquid Gas Reformation

Greensight - 11 2020 Compressed Electrolysis

Greensight 7.5 2023 Compressed Electrolysis

https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
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More about Hydrogen Cost/Price 
Source

Production 

cost EUR/kg

Retail Price 

EUR/kg
Year Compressed/Liquid Electrolysis/SMR Note

Klebanoff & Pratt(2016) - 5.2-6.5 2016 Liquid Unknown

Glenk & Reichelstein(2019) 3.23 - 2015 Compressed Electrolysis Germany

Glenk & Reichelstein(2019) 2.55 - 2015 Compressed Electrolysis Texas

Glenk & Reichelstein(2019) 1.92 - 2030 Compressed Electrolysis Germany

Glenk & Reichelstein(2019) 2.29 - 2030 Compressed Electrolysis Texas

EIA(2019) 1.5-2.1 near-long term - Gas Reformation Australia

EIA(2019) 1.6-2.4 near-long term Gas Reformation Chile

EIA(2019) 1.7-2.3 near-long term Gas Reformation China

EIA(2019) 1.7-2.4 near-long term Gas Reformation Europe

EIA(2019) 1.8-2.4 near-long term Gas Reformation India

EIA(2019) 2.2-2.7 near-long term Gas Reformation Japan

EIA(2019) 1.1-1.6 near-long term Gas Reformation Middle East

EIA(2019) 1.4-2.0 near-long term Gas Reformation North Africa

EIA(2019) 1.2-1.8 near-long term Gas Reformation United States

EIA(2019) 2.0-4.3 near-long term Electrolysis Australia

EIA(2019) 1.5-2.7 near-long term Electrolysis Chile

EIA(2019) 1.5-2.1 near-long term Electrolysis China

EIA(2019) 2.8-3.7 near-long term Electrolysis Europe

EIA(2019) 1.5-2.5 near-long term Electrolysis India

EIA(2019) 3.7-5.6 near-long term Electrolysis Japan

EIA(2019) 1.5-3.8 near-long term Electrolysis Middle East

EIA(2019) 1.5-2.9 near-long term Electrolysis North Africa

EIA(2019) 2.0-3.3 near-long term Electrolysis United States

EU Commission (2020) 1.8-2.3 2030 Gas refomation + CCU Europe

EU Commission (2020) 1.0-2.2 2030 Electricity from Renewables Europe

Source of data:   

NCE Maritime CleanTech (2019). "Norwegian future value chains for liquid 

hydrogen." Report. URL: https://maritimecleantech. no/wp-

content/uploads/2016/11/Report-liquid-hydrogen. pdf. 

The Future of Hydrogen (2019). IEA. Available at: 

https://www.iea.org/reports/the-future-of-hydrogen 

Glenk, G. and S. Reichelstein (2019). "Economics of converting renewable 

power to hydrogen." Nature Energy 4(3): 216-222. 

European Commission (2020). A hydrogen strategy for a climate-neutral 

Europe. 

  

 

  

 

  

 

  

 

https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/the-future-of-hydrogen
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Hydrogen Production Sites in Europe 

Own plot/Data source: https://h2tools.org/hyarc/hydrogen-production  
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HySeas III benefits from work done on 
other projects in Orkney: 

• Hydrogen infrastructure from Surf n Turf 
and BIG HIT – includes specially 
designed hydrogen tube trailers tested 
and approved for transport of hydrogen 
on ferries, consideration of hydrogen 
safety on land based infrastructure 

• HyDime – conversion of a small auxiliary 
genset on a ferry to run on a hydrogen 
mix – includes safety certification and 
crew training, HAZIDs and HAZOPs 

HySeas III: Hydrogen Environment 

Source: https://www.bighit.eu/about 
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HySeas III: Training 
• Orkney Islands Council has worked with Orkney 

College to provide ship specific materials for 
development of training – teaching notes, visual 
aids 

• Currently includes hydrogen safety awareness and 
continuity training for bunkering connections, and 
also additional instruction for hydrogen over LNG 
developed with UK MCA 

• Training comes under the IGF Code, but the ISM 
Code also requires operating company to assure 
adequately qualified and familiarised crew 

• Competence assurance cannot be achieved with 
familiarisation on another vessel 

• No full IGF compliant course for now, but MCA can 
“recognise” what Orkney are doing 

 


