

The 27th CIRP Conference on Life Cycle Engineering

13th -15th May, 2020 - Grenoble, France

Multidimensional Assessment of Passenger Cars: Comparison of Electric Vehicles with Internal Combustion Engine Vehicles

Dennis Wilken, Matthias Oswald, Patrick Draheim, Christian Pade, Urte Brand, Thomas Vogt

and

Presenting author

Matthias Oswald

Organized by

Matthias.Oswald@dlr.de

Grenoble INP

aénie industriel

Deutsches Zentrum für Luft- und Raumfahrt

German Aerospace Center

Institute of Networked Energy Systems

http://www.lce2020.fr

Goal: Multidimensional assessment of the sustainability of passenger cars

Multidimensional Assessment

 Combination of different (life cycle) assessment methods and multicriteria decision making methods (MCDM)

Sustainability

- Environmental, economic and social aspects

Passenger cars

- Battery electric vehicles (BEV)
 - European energy mix (BEV_EU-mix), Wind energy (BEV_wind), Photovoltaics (BEV_pv)
- Fuel Cell electric vehicles (FCEV)
 - European energy mix (FCEV_EU-mix), Wind energy (FCEV_wind), Photovoltaics (FCEV_pv)
- Internal combustion engine vehicles (ICEV)
 - Gasoline (ICEV_gas), diesel (ICEV_diesel)

Source: DLR-VE

Sustainability dimensions / Stakeholder and respective criteria	Abbreviation	Parameter					
Environment & human health							
Global warming potential	GWP	g CO2 eq/km					
Terrestrial acidification potential	TAP	g SO2 eq/km					
Metal depletion potential	MDP	g Fe eq/km					
Fossil resources depletion potential	FRDP	g oil eq/km					
Photochemical oxidant formation potential	POFP	g NMVOC/km					
Particulate matter formation potential	PMFP	g PM10 eq/km					
Human toxicity potential	HTP	g 1,4-DB eq/km					

- 6 Weighting Scenarios
 - S1: Equal weights
 - S2: Intragenerational justice
 - S3: Intergenerational justice
 - S4: Functionality with ecological criteria
 - S5: Functionality without ecological criteria

- 3 different weighting options
 - Very Important → Factor 2
 - Important \rightarrow Factor 1
 - Not important \rightarrow Factor 0

- S6: Ecological criteria		S1	S2	S3	S4	S 5	S6
		Equal weights	Intra- generational justice	Inter- generational justice	Functionality vith ecological criteria	Funtionality without ecological criteria	Ecological criteria
Global warming potential	GWP	7,69%	6,67%	20,00%	5,26%	0,00%	14,29%
Particulate matter formation potential	PFMP	7,69%	13,33%	10,00%	5,26%	0,00%	14,29%
Photochemical oxidant formation potential	ΡΟΤΡ	7,69%	13,33%	10,00%	5,26%	0,00%	14,29%
Terrestrial acidification potential	TAP	7,69%	13,33%	10,00%	5,26%	0,00%	14,29%
Human toxicity potential	HTP	7,69%	13,33%	10,00%	5,26%	0,00%	14,29%
Metal depletion potential	MDP	7,69%	6,67%	20,00%	5,26%	0,00%	14,29%
Fossil resources depletion potential	FRDP	7,69%	6,67%	20,00%	5,26%	0,00%	14,29%
Total costs of ownership	тсо	7,69%	6,67%	0,00%	10,53%	16,67%	0,00%
Capital expenditure	CAPEX	7,69%	13,33%	0,00%	10,53%	16,67%	0,00%
Operational expenditure	OPEX	7,69%	6,67%	0,00%	10,53%	16,67%	0,00%
Fueling/charging time	FT	7,69%	0,00%	0,00%	10,53%	16,67%	0,00%
Fueling/charging points	FP	7,69%	0,00%	0,00%	10,53%	16,67%	0,00%
Driving range	RNG	7,69%	0,00%	0,00%	10,53%	16,67%	0,00%

	Alternatives								
Rank	BEV_wind	BEV_PV	ICEV_diesel	ICEV_gas	FCEV_wind	FCEV_PV	BEV_EU- mix	FCEV_NG- SMR	FCEV_EU- mix
1	71,11%	-	28,89%	-	-	-	-	-	-
2	13,33%	62,22%	8,89%	15,56%	-	-	-	-	-
3	15,56%	6,67%	57,78%	15,56%	4,44%	-	-	-	-
4	-	31,11%	-	51,11%	13,33%	4,44%	-	-	-
5	-	-	4,44%	13,33%	57,78%	-	24,44%	-	-
6	-	-	-	4,44%	24,44%	48,89%	13,33%	8,89%	-
7	-	-	-	-	-	31,11%	26,67%	42,22%	-
8	-	-	-	-	-	15,56%	35,56%	48,89%	-
9	-	-	-	-	-	-	-	-	100,00%

<u>Results</u>

- Results vary between scenarios, but tendencies are still shown
- BEV appear more sustainable than ICEV if charged with renewable energy
- Current FCEV are less sustainable than ICEV and BEV, regardless of electricity mix

Ranking with individual criteria impacts

The 27th CIRP Conference on Life Cycle Engineering, Grenoble, France http://www.lce2020.fr

- Scenarios enable to take various stakeholder perspectives simultaneously into account
 - More elaborated weighting scenarios could enhance the assessment
 - Integrate stakeholder directly into the assessment
- The applied method allowed to rank the alternatives while taking different dimensions into account
 - More criteria necessary to reach holistic assessment, especially regarding the social and economic dimension
- Approach showed a way to incorporate already existing studies, which only looked at one dimension into a holistic assessment
 - Incorporate more studies into the assessment as input data

- Lifetime:
 - 240.000 km
 - 17 years of service
 - WLTP driving cycle
- Vehicles: compact car class
 - VW Golf (gasoline, diesel)
 - VW e-Golf (BEV)
 - Hyundai NEXO (FCEV)

Perfomance of each alternative compared to ICEV-diesel in all criteria

Preference scenario	Preference function	Indifference threshold q	Preference threshold p	
P1	Usual Criterion	-	-	
P2	Linear Criterion with Indifference area	Linear Criterion with Indifference area		
Р3	Linear Criterion with Indifference area	10%	20%	
P4	Linear Criterion with Indifference area	Linear Criterion with Indifference area		
Р5	Linear Criterion with Indifference area	10%	80%	
P6	Linear Criterion with Indifference area	10%	100%	
P7	Linear Criterion with Indifference area	25%	50%	
P8	Linear Criterion with Indifference area	Standard deviation	Distance between minimum and mximum	
P ILCD	Linear Criterion with Indifference area	10 % / 30 %	30 % / 50 %	

