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Image super-resolution is an image reconstruction technique which attempts to

reconstruct a high resolution image from one or more under-sampled low-resolution

images of the same scene. High resolution images aid in analysis and inference in

a multitude of digital imaging applications. However, due to limited accessibility to

high-resolution imaging systems, a need arises for alternative measures to obtain

the desired results. We propose a three-dimensional single image model to improve

image resolution by estimating the analog image intensity function. In recent literature,

it has been shown that image patches can be represented by a linear combination

of appropriately chosen basis functions. We assume that the underlying analog

image consists of smooth and edge components that can be approximated using

a reproducible kernel Hilbert space function and the Heaviside function, respectively.

We also extend the proposed method to pansharpening, a technology to fuse a high

resolution panchromatic image with a low resolution multi-spectral image for a high

resolution multi-spectral image. Various numerical results of the proposed formulation

indicate competitive performance when compared to some state-of-the-art algorithms.

Keywords: super-resolution, reproducible kernel Hilbert space (RKHS), heaviside, sparse representation,

multispectral imaging

1. INTRODUCTION

During image acquisition, we often loose resolution due to the limited density of the imaging
sensors and the blurring of the acquisition lens. Image super resolution, a post process to increase
image resolution, is an efficient way to achieve a resolution beyond what the hardware offers. A
detailed overview of this area is outlined in Farsiu et al. [1], Yang et al. [2], and Park et al. [3].
Current techniques of solving this ill-posed problem are often insufficient for many real world
applications [4, 5]. We propose an analog modeling based three-dimensional (3D) color image
super resolution and pansharpening method.

In recent literature, image super-resolution (SR) methods typically fall into three categories:
interpolation based methods, learning based methods, and constrained reconstruction methods.
Interpolation based methods [6, 7] such as nearest-neighbor, bilinear and bicubic interpolation
use analytical priors to recover a continuous-time signal from the discrete pixels. They work very
well for smooth regions and are simple to compute. In dictionary learning based models, the
missing high frequency detail is recovered from a sparse linear combination of dictionary atoms
trained from patches of the given low-resolution (LR) image [8, 9] or from an external database of
patches [10–12]. Dictionary learning based methods explore the self-similarities of the image and
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are robust, albeit rather slow training time of the dictionary
atoms. Models based on constrained reconstruction use the
underlying nature of the LR image to define prior constraints
for the target HR image. Sharper structures can be recovered
using these models. Priors common to these techniques include
total variation priors [13–15], gradient priors [16, 17] and priors
based on edge statistics [18]. The proposed method falls in
this category. Another category is deep neural network based
approach that uses a large amount of training data to obtain super
results [19–22].

Increased accessibility to satellite data has led to a wide range
of applications in multispectral (MS) SR. These applications
include target detection, scene classification, and change
detection. A multitude of algorithms have been presented in
recent literature to address this task. However, the performance
of many of these algorithms are data dependent with respect to
existing quantitative assessment measures. With the increasing
advancements in technology, there have been varying modes
of image acquisition systems. In remote sensing, satellites carry
sensors that acquire images of a scene in multiple channels
across the electromagnetic spectrum. This gives rise to what is
referred to as multispectral imaging. Due to high cost overheads
in developing sensors that can faithfully acquire scene data with
high spectral and spatial resolution, the spatial resolution in
the data acquisition process is often compromised. The low-
spatial resolution MS images usually consist of images across 4–8
spectral bands: red, green, blue, as well as near infrared bands
(provide Landsat, IKONOS, etc. specifications).

Most satellites also acquire a high-spatial resolution image
known as a panchromatic image. The technique of using
panchromatic (PAN) to compensate for the reduction in spatial-
resolution of the MS images is referred to as pansharpening. The
success of pansharpening relies on the extent one can explore the
structural similarity between the PAN and the high-resolution
(HR) MS image [23]. In recent years, pansharpening methods
fall under three main categories: component substitituion
(CS), multiresolution analysis (MRA), and variational methods.
Detailed surveys can be found in Loncan et al. [24] and Vivone
et al. [25].

The main assumption of CS methods is that the spatial and
spectral information of the high spectral resolution image can
be separated in some space [24]. Examples of CS methods
include principal component analysis (PCA) [26, 27], intensity-
hue-saturation (IHS) methods [28–30], Brovey method [31],
and Gram-Schmidt (GS) based methods [32]. These methods
enhance the spatial resolution of the LR MS image at the expense
of some loss in the spectral detail. Compared to the CS methods,
MRA methods have better temporal coherence between the
PAN and the enhanced MS image. MRA methods yield results
with better spectral consistency at the expense of designing
complex filters to mimic the reduction in the resolution by the
sensors. Spatial details are injected into the MS data after a
multi-scale decomposition of the PAN [24]. Examples of MRA
methods include high-pass filtering (HPF) [30], smooth filter-
based intensity modulation (SFIM) [33], generalized Laplacian
pyramid (GLP) methods [34, 35], additive “á trous" wavelet
transform (ATWT) methods [23, 36] and additive wavelet

luminance proportional (AWLP) [37]. Variational methods are
more robust compared to the CS and MRA techniques, albeit
rather slow in comparison [24]. A common tool used by these
approaches is regularization. This is used to promote some
structural similarity between the LR MS, HR MS, and PAN
images [24, 38, 39]. Among these methods include models based
on the Bayesian framework and matrix factorization methods
[24, 38, 39].

In this paper, we extend the key ideas in the SR model in Deng
et al. [40] to 3D framework. We then test the performance of the
model with single image super-resolution and pansharpening.

1.1. Related Work
In Deng et al. [40], a 2D image defined on a continuous domain
[0, 1] × [0, 1] is assumed to have a density function that is the
sum of two parts, reproducing kernel Hilbert space (RKHS)
and Heaviside functions to study single image super-resolution
(SISR) whereby the problem is cast as an image intensity function
estimation problem. They assume that the smooth components
of the image belong to a special Hilbert space called RKHS,
and can be spanned by a basis based on an approximation
by spline interpolation [41]. The Heaviside function is used to
model the edges and discontinuous information in the input
image. Using a patch-based approach, the intensity information
of the LR input image patches are defined on a coarser grid to
estimate the coefficients of the basis functions. To obtain the
enhanced resolution result, they utilize the obtained coefficients
and an approximation of the basis functions on a finer grid.
Furthermore, to recover more high frequency information the
authors employ an iterative back projection method [42] after
the HR image has been obtained. Color images were tested in
Deng et al. [40], however the analog modeling was done the
luminance channel only after transforming the color space. This
RKHS+Heaviside method is extended to pansharpening in Deng
et al. [43]. In the pansharpening framework the different bands
share the same basis but with different coefficients patch by patch,
and channel by channel. A panchromatic image is used to guide
the model and it is assumed to be a linear combination of the
multiple bands.

1.2. Contribution
Using the same basis as in Deng et al. [40], we present
a three-dimensional SR algorithm for true color images
based on continuous/analog modeling. We also extend it to
pansharpening. Instead of estimating the basis coefficients patch
by patch and band by band, we cluster patches and conduct
computation cluster by cluster. Similarity of patches within one
cluster leads to some natural regularity. We jointly optimize
all the coefficients for all the bands of the model rather than
optimizing for each independent band. Furthermore, we use
clustering techniques to improve the structural coherence of the
desired results in the optimization model. Spatially, we divide
the images into small overlapping patches and cluster these
patches classes using k-means clustering. To improve the spectral
coherence of the results, we cluster the image bands into groups
based on correlation statistics and the perform the optimization
on each of the groups obtained.
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In this paper, we use the RKHS approximations to model the
smooth components of the image whiles preserving the non-
smooth components by the approximated Heaviside function.
For the pansharpening experiments, We also preprocess the data
using fast state-of-the-art MRA techniques [37] to incorporate
some similarity in the spectral channels of the fused image.
Thus we develop a continuous 3D modeling framework for
multispectral pansharpening.

The experiments that follow show that these contributions
yield better enhanced resolution results with faster convergence
speeds at all scales.

The paper is organized as follows. In section 2, we review the
regular functions used in decomposing the image. The proposed
model is described in section 3 with numerical results outlined
in section 4.

2. BACKGROUND REVIEW

In this section, we review the mathematical functions used in
the formulation of our model. Similar as in Deng et al. [40],
we model image intensity function defined on a small image
patch as a linear combination of reproducing Kernel Hilbert
function (RKHS) and approximated Heaviside function (AHF)
which models the smooth and edge components, respectively.

2.1. Reproducible Kernel Hilbert Spaces
RKHS can be used to define feature spaces to help compare
objects that have complex structures and are hard to distinguish
in the original feature space. Wahba [41] proposed polynomial
spline models for smoothing problems. Our proposed model is
based on this approach using the Taylor series expansion. We
review these methods in the following subsections.

2.1.1. Signal Smoothing Using Splines
Let G represent a family of functions on [0,1] with continuous
derivatives up to order (m− 1),

G = {f : f ∈ C
m−1[0, 1], f (m) ∈ L2[0, 1]}.

By Taylor’s theorem with remainder for f ∈ G, we may write

f (t) =

m−1∑

ν=0

tν

ν!
f (ν)(0)

︸ ︷︷ ︸
f0(t)

+

∫ 1

0

(t − u)m−1+

(m− 1)!
f (m)(u)du

︸ ︷︷ ︸
f1(t)

, (1)

for some u, where (x)+ = x for x ≥ 0 and (x)+ = 0 otherwise. Let

φν(t) =
tν−1

(ν − 1)!
, 1 ≤ ν ≤ m, (2)

and H0 = span {φi}1≤ i≤ m endowed with norm ‖φ‖2 =∑m−1
ν=0 [(D

νφ)(0)]2, then D(m)(H0) = 0, where Dm denotes the
mth derivative. It can be shown that a reproducing kernel exists
forH0 and is defined as

R0(s, t) =

m∑

ν=1

φν(s)φν(t), (3)

therefore for any f0 ∈ H, we have f0(t) =
∑m
ν=1 dνφν(t).

Let Bm = {f : f ∈ Cm−1[0, 1], f ν(0) = 0, ν = 0, 1, . . . ,m− 1}
and define

Gm(t, u) =
(t − u)m−1+

(m− 1)!
. (4)

The space

H1 = {f : f ∈ Bm, with f , f ′, . . . , f (m−1)

absolutely continuous, f (m) ∈ L2}

with norm ‖f ‖2 =
∫ 1
0 (f

(m)(t))2dt can be shown to be an RKHS
with reproducing kernel

R1(x, t) =

∫ 1

0
Gm(t, u)Gm(x, u)du, (5)

so that for any f1 ∈ H1, we have f1(t) =
∑n

i=1 ciξi, where
ξi(·) = R1(si, ·). It follows from the properties of the RKHS, we
can construct a direct sum space Gm = H0 +H1 since

∫ 1

0
((Dmf0)(u))

2du = 0,

m−1∑

ν=0

(D(ν)f1(0))
2 = 0. (6)

The reproducing kernel for Gm can be shown [41] to be

R(s, t) = R0(s, t)+ R1(s, t), (7)

with norm

‖f ‖2 =

m−1∑

ν=0

[(Dν f )(0)]2 +

∫ 1

0
(f (m)(t))2dt, f ∈ Gm, (8)

therefore for any f ∈ Gm, we have f = f0 + f1 with f0 ∈ H0, f1 ∈
H1 and

f (t) =

m∑

ν=1

dνφν(t)+

n∑

i=1

ciξi, t ∈ [0, 1]. (9)

Let d = (d1, . . . dm)
T and c = (c1, . . . , cn)

T be coefficient
vectors, f = (f (t1), . . . , f (tp))

T represent the discretization of
f on discrete grids tj, j = 1, 2, · · · nt ,T ∈ R

n×m,6 ∈ R
n×n

with Tjν = φν(tj),6ji = ξi(tj), then f = Td + 6c. Given the
observation data

g = f + η (10)

where η denotes additive Gaussian noise. To find f from g, we
need to estimate the coefficients d and c. Following Wahba [41],
the coefficients d, c are estimated from the discrete measurements
g by

(c, d) = argmin

{
1

n

∥∥g − Td −6c
∥∥2 + µcT6c

}
, (11)

where the termµcT6c is a non-smoothness penalty. Closed form
solutions for c and d can be obtained. The parameter m controls
the total degree of the polynomials used to define T. For example,
whenm = 3 the basis functions are given as φ1(x) = 1, φ2(x) = x
and φ3(x) = x2/2.
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2.1.2. Image Smoothing Using Splines
Extending the one-dimensional spline model to two-dimensional
data, we consider a similar discretization and set up a model
similar to that defined in (11). Let f = (f (t1), . . . , f (tnt ))

T ,
ti ∈ [0, 1] × [0, 1] be a discretization for an observed noisy
image. From Wahba [41], an estimate of f can be obtained from
the additive noise data model in (10) for images by minimizing
the following

min

{
1

n
‖g − f ‖22 + µJm(f )

}
(12)

wherem defines the order of the partial derivatives in L2([0, 1]×
[0, 1]), and with the penalty function defined by

Jm(f ) =

m∑

ν=0

∫ 1

0

∫ 1

0

(
m

ν

)(
∂mf

∂xν∂ym−ν

)2

dxdy. (13)

The null space of Jm is the M =
(2+m−1

2

)
-dimensional space

spanned by polynomials in two variables with total degree at most
m− 1. In this paper, and we choosem = 3 so thatM = 6 and the
null space of Jm is spanned by monomials φ1,φ2, . . . ,φ6 given by

φ1(x, y) = 1, φ2(x, y) = x, φ3(x, y) = y,

φ4(x, y) = xy, φ5(x, y) = x2, and φ6(x, y) = y2.

Duchon [44] proved that a unique minimizer fµ exists for (12)
with representation

fµ(t) =

M∑

ν=1

dνφν(t)+

n∑

i=1

ciEm(t, ti), t ∈ [0, 1]× [0, 1], (14)

where Em is defined as

Em(s, t) = Em(|s− t|) = θm,d|s− t|2m−d ln |s− t|, (15)

and θm,d =
(−1)d/2+m+1

22m−1πd/2(m−1)!(m−d/2)!
.

Based on the work of Duchon [44] and Meinguet [45] we can
rewrite (12) to find minimizers c and d by

(c, d) = argmin

{
‖g − Td − Kc‖2 + µcTKc

}
, (16)

where T ∈ R
nt×M , with Ti,ν = φν(ti) and K ∈ R

nt×nt with
K i,j = Em(ti, tj). Em(s, t) is the two-dimensional equivalent of
ξi(t) in the one-dimensional case. After obtaining the coefficients,
we compute f using the relationship f = Td + Kc.

2.2. Approximated Heaviside Function
The one-dimensional Heaviside step function is defined as

φ(x) =

{
0, x < 0,
1, x ≥ 0

(17)

FIGURE 1 | Illustrating the surfaces corresponding to the approximated

Heaviside functions for varying pairs of θ and c.

Due to the singularity at x = 0, we approximate φ by,

ψ(x) =
1

2
+

1

π
arctan

(x
ε

)
, ε ∈ R (18)

We refer to this as the approximated Heaviside function (AHF),
an approximation to φ(x) as ε → 0. The variable ε controls
the smoothness of the approximation [40]. A two-dimensional
variation of the AHF is given by

9(x, y) = ψ

((
cos θ
sin θ

)
·

(
x
y

)
+ c

)
(19)

with variables θ and c determining the rotations and locations of
the edges as shown in Figure 1, we show the 2D and 3D surface
view of the AHF at two different pairs of θ and c. Kainen et al. [46]
proved that a function f ∈ L2([0, 1]×[0, 1]) can be approximately
represented by the weighted linear combination of approximated
Heaviside functions:

f (x, y) =

nθ∑

j=1

wjψ

((
cos θj
sin θj

)
·

(
x
y

)
+ cj

)
. (20)

We define 9 ∈ R
nt×nθ with 9 i,j = ψ

((
cos θj
sin θj

)
·
( xi
yi

)
+ cj

)
, ti =

(xi, yi), and nθ is the number of rotations considered. Suppose
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FIGURE 2 | Clustering the set of patches PY into k = 2 classes.

f , g are the vectorized high and low resolution discretizations
of f , respectively. The vectorized high resolution image f ∈

R
n1n2 can be obtained by f i = f (thi ) with thi = (xhi , y

h
i ),

xhi ∈ {0,
1

n1−1
, 2
n2−1

, . . . , 1}, yhi ∈ {0,
1

n2−1
, 2
n2−1

, . . . , 1} on a
finer grid. Similarly, vectorized the low-resolution discretization
g ∈ R

m1m2 can be obtained by g i = f (tℓi ) with tℓi = (xℓi , y
ℓ
i ),

xℓi ∈ {0,
1

m1−1
, 2
m1−1

, . . . , 1}, and yℓi ∈ {0,
1

m2−1
, 2
m2−1

, . . . , 1}
on a coarse grid. Now, assuming that the underlying analog
image intensity function is approximated by the sum of a RKHS
function and the variations of AHF with Tℓ ∈ R

m1m2×M , Kℓ ∈
R
m1m2×m1m2 , and 9ℓ ∈ R

m1m2×nθ , we have

g = Tℓd + Kℓc+9ℓe. (21)

Thus, given the low resolution input g, the coefficient vectors
c ∈ R

m1m2 , d ∈ R
M and e ∈ R

nθ for the residual, smooth
and edge components are obtained by solving the following
minimization problem:

min
c,d,e

{
‖g − SB(Thd + Khc+9he)‖2 + µcTKℓc+ γ ‖e‖1

}
,

(22)
where B is the identity matrix in the absence of blur, S is the
downsampling operator, and the superscripts h and ℓ refers to a
fine and course scale matrices. The smooth components of the
image are modeled by the RKHS approach, while AHF caters
for the edges. Since the dictionary 9 is pretty exhaustive, i.e.,
accounting for multiple edge orientations, it is reasonable to use
the ‖ ·‖1 to enforces the sparsity of as all the orientations may not
be present for any given image. Once the coefficients have been
obtained, we have

f = Thd + Khc+9he, (23)

where Th ∈ R
n1n2×M , Kℓ ∈ R

n1n2×m1m2 , and 9ℓ ∈

R
n1n2×nθ . Next, we discuss our proposed model and examine

some numerical experiments in the chapters that follow.

3. PROPOSED MODELS

In this section, we present our proposed models for SISR and
pansharpening based on the functions defined in section 2. We
propose a 3D patch-based approach that infers the HR patches
from LR patches that has been grouped into classes based on their
structural similarity. As a result, we impose similarity constraints
within the classes so that the coefficients for neighboring patches
in a group do not differ substantially. In addition, we use
sparse constrained optimization techniques that simplify the
minimization of the resulting energy functional by solving a
series of subproblems, each with a closed form solution. Two
algorithms will be discussed. The first is a 3D SR model for true
color images andMS images with at most four bands. The second
algorithm is an extension of our SISR model to pansharpening
for MS images with at least four spectral bands. This is a two-step
hybrid approach that incorporates CS andMRAmethods into the
first algorithm to obtain an enhanced resolution result.

3.1. Single Image Super-Resolution
Given a LR image Y ∈ R

m1×m2×λ we estimate the target HR
image X̂ ∈ R

n1×n2×λ with ni = ωmi, whereω is a scale factor and
λ is the number of bands as follows. We begin by decomposing

the LR image into a set of overlapping patches PY = {Ypi}
Np

i=1,

Ypi ∈ R
mp×mp×λ. The size of the square patches, and the overlap

between adjacent patches depend on the dimensions of the input
image. We consider the use of overlapping patches to improve
local consistency of the estimated image across the regions of
overlap. The estimated image X̂ will be represented by the same
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number of patches,Np. Next, for a suitably chosen k, we use the k-
means algorithm with careful seeding [47] to cluster the patches
into k classes P

1
Y , . . .P

k
Y , as shown in Figure 2. In this paper,

the value of k is determined empirically to obtain the best result.
Clustering is done so that each high resolution patch generated
preserves some relationships with its neighboring patches.

Following the clustering, we consider each set of patches
P

i
Y = {Ypj}j∈Ii , for some index set Ii with 1 ≤ i ≤ k. Let

Y(λ,Ii) ∈ R
mpmp×λNIi and X̂(λ,Ii) ∈ R

npnp×λNIi represent the
images corresponding to the set of LR and HR patches P

i
Y and

P
i
X̂
defined by

Y(λ,Ii) = [y1,p1 , . . . , yλ,p1 , . . . , y1,pNIi
, . . . , yλ,pNIi

]

X̂(λ,Ii) = [̂x1,p1 , . . . , x̂λ,p1 , . . . , x̂1,pNIi
, . . . , x̂λ,pNIi

]
(24)

where np = ωmp for some scale factor ω ∈ N, yi,pj and x̂i,pj
represents the vectorization of the i-th band of the j-th patch,
with 1 ≤ i ≤ λ and j ∈ Ii. Here, NIi represents the total number
of patches in the set P

i
Y . Using the RKHS and AHF functions

as in Deng et al. [40] we can find an embedding for the high-
dimensional data that is also structure preserving. We further
assume that the HR and LR image patches have similar local
geometry and are related by the equations

Y(λ,Ii) = TℓD+ KℓC +9ℓE,

X̂(λ,Ii) = ThD+ KhC +9hE,
(25)

where D = [d1, . . . dλNIi
] ∈ R

M×λNIi , C = [c1, . . . cλNIi
] ∈

R
m1m2×λNIi and E = [e1, . . . eλNIi

] ∈ R
nθ×λNIi are coefficient

matrices to be determined. The matrices T,K and 9 represent
the evaluations of the smooth, residual and edge components of
the image intensity function on discrete grids. The superscript
ℓ and h denote the coarse and fine grids and correspond to
lower and higher resolution, respectively. We obtain the fine and
coarse scale matrices T andK following the discretizationmodels
outlined in section 2.1 Similarly, we follow the discretization in
section 2.2 to generate 9ℓ and 9h. The coefficient matrices are
obtained by solving the following minimization problem for each
patch indexed by i:

min
D,C,E

{
1

2
‖TℓD+ KℓC +9ℓE− Y(λ,Ii)‖

2
F

+
µ1

2

∑

jk

wjk‖dj − dk‖
2
2 +

µ2

2
tr
(
CTKℓC

)
+ µ3‖E‖1,1

} (26)

with tr (·) as the trace and adaptive weights

wjk = exp

(
−
‖dj − dk‖

2
2

σ

)
, σ > 0, (27)

where D = [d1, . . . dλNIi
] and µ1,µ2,µ3 ≥ 0. Note that

exp
(
−
‖dj−dk‖

2
2

σ

)
‖dj−dk‖

2
2 is a unimodal function of ‖dj−dk‖

2
2

FIGURE 3 | Flow diagram of the experimental procedure for synthetic

datasets.

that is maximized at 1 and minimized at zero and∞. To simplify
the computations, the adaptive weights are computed using the
coefficients from a previous iteration. The first term of (26) is the
data fidelity. There are three regularization terms in our proposed
model. We assume that coefficients di are likely to vary smoothly
within the same class of images. When di and dj fall into the
same class, wij tends to be larger, forcing the next iterate of di
and dj to be close as well. The second regularization term is a
structure guided regularity following from (16) to guarantee that
the coefficients of the residual components do not grow too large.
Finally, we impose sparsity constraints using the ‖·‖1,1 norm [48]
defined by

‖A‖1,1 =

S∑

s

‖as‖1, A = [a1, . . . , aS], (28)

since we assume that edges are sparse in the image patches. The
resulting minimization can be solved using splitting techniques
to obtain closed form solutions for the coefficients. We solve (26)
iteratively using the alternating direction method of multipliers
(ADMM) algorithm [49, 50].

Due to the non-differentiability of the ‖ · ‖1,1 norm, we
introduce a new variable U and solve the equality-constrained
optimization problem

min
D,C,E,U

{
1

2
‖TℓD+ KℓC +9ℓE− Y(λ,Ii)‖

2
F

+
µ1

2

∑

jk

wjk‖dj − dk‖
2
2 +

µ2

2
tr
(
CTKℓC

)
+ µ3‖U‖1,1

}

subject to U = E.

(29)
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FIGURE 4 | Decomposition of components for the grayscale test image. From top to bottom and left to right: the original, ThD, KhC, 9hE.

By introducing the augmented Lagrangian and completing
the squares, we change the constrained optimization problem
(29) into the following non-constrained optimization where V is
Lagrangian multiplier,

min
D,C,E,U

{
1

2
‖TℓD+ KℓC +9ℓE− Y(λ,Ii)‖

2
F

+
µ1

2

∑

jk

wjk‖dj − dk‖
2
2 +

µ2

2
tr
(
CTKℓC

)

+ µ3‖U‖1,1 +
γ

2
‖U − E+

V

γ
‖2F

}
,

(30)

with step length γ ≥ 0. ADMM reduces (30) to solving the
following separable subproblems:

• D subproblem:

min
D

{
1

2
‖TℓD+ KℓC +9ℓE− Y(λ,Ii)‖

2
F

+
µ1

2

∑

jk

wjk‖dj − dk‖
2
2

}
.

Given that D = [d1, . . . dλNIi
], C = [c1, . . . cλNIi

], E =
[e1, . . . eλNIi

] and we can solve for each column ofD separately

min
dj

{
1

2
‖Tℓdj+Kℓcj+9ℓej− y‖2F +

µ1

2

∑

jk

wjk‖dj− dk‖
2
2

}
,

where y is the corresponding column in Y(λ,Ii) matching the
column index of dj. This gives a solution

dj =
(
TℓTTℓ + µ1

∑

jk

wjkI
)−1(

TℓTTℓy− TℓTKℓcj

− TℓT9ℓej + µ1

∑

jk

wjkdk

)
.

where TℓT represents the transpose of Tℓ.
• C subproblem:

min
C

{
1

2
‖TℓD+ KℓC +9ℓE− Y(λ,Ii)‖

2
F +

µ2

2
tr
(
CTKℓC

)}
.

From which we get

C =
(
KℓTKℓ + µ2K

ℓ
)−1(

KℓTY(λ,Ii)

− KℓTTℓD− KℓT9ℓE
)
.
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FIGURE 5 | Results for baboon using a scale factor ω = 2. From top to bottom and left to right: ground truth, bicubic interpolation, RKHS [40] and the proposed.

• E subproblem:

min
E

{
1

2
‖TℓD+KℓC+9ℓE−Y(λ,Ii)‖

2
F +

γ

2
‖U −E+

V

γ
‖2F

}
.

Similarly, this gives the solution

E =
(
9ℓT9ℓ + γ1I

)−1(
9ℓTY(λ,Ii) −9ℓTTℓD

−9ℓTKℓC + γ (U + V)
)
.

• U subproblem:

min
U

{
µ3‖U‖1,1 +

γ

2
‖U − E+

V

γ
‖2F

}
.

A solution to this problem arising from the group sparsity
constraint can be obtained by applying ℓ1 shrinkage to the rows
of U , i.e.,

uTj = shrink (uTj + vTj /γ ,µ3/γ ),

where

shrink(x, γ ) =





xi − ν, if xi > γ ,
xi + ν, if xi < −γ ,
0, otherwise

for any x ∈ R
n and γ > 0.

The update for V is obtained by

V = V + γ (E− U).

The estimated set of patchesPX̂ can be generated using (25) once
the coefficients have been obtained. After running through the
procedure for all the k sets, we consolidate the patches to form
the enhanced resolution result X̂. The proposed algorithm for
SISR is summarized in Algorithm 1. Step 3 contains most of the
key components of the algorithm so we provide more details.
An outer layer loop is used to pick up residuals and put them
back into the super resolution algorithm to further enhance the
results. τ is the total number of outer layer iterations, B and S

are the blurring and downsampling matrices, respectively. In the
absence of blur, B becomes the identity matrix. Starting from
one cluster of low resolution image patches, Step 3(b) solves
the minimization problem (30) to obtain the coefficients C,D,E,
from which one is able to assemble a higher resolution image as
shown in Step 3(c). From this higher resolution image, we can
create a lower resolution image by applying SB operator on it.
Step 3(d) calculates the error between the actual low resolution
and the simulated one. If the higher resolution image is close
to the ground truth, we expect the error to be small. Otherwise,
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we feeding this difference into the minimization problem (30)
can further recover more details. These details are added to the
previously recovered higher resolution image to achieve a better
image [40].

Algorithm 1: Analog three-dimensional single image SR
model

Input: Y ∈ R
m1×m2×λ, µ1, µ2, µ3, τ > 0, γ , σ

Output: X̂ ∈ R
n1×n2×λ

Step 1. Construct the coarse and fine scale matrices T,K ,
and 9 for the patches

Step 2.Decompose Y into sets of overlapping patches and
cluster them into k classes P

1
Y , . . . ,P

k
Y using k-means

clustering.

Step 3. Initialization for each class: Y
(1)
(λ,Ii)
← Yλ,Ii

for r← 1 to τ do

a. Initialize C(1), D(1), E(1) and U(1).

b. while not converged, t = 1, . . . do

D(t+1) = argmin
D

{
1
2‖T

ℓD+ KℓC(t) +9ℓE(t) −

Y
(r)
(λ,Ii)
‖2F +

µ1
2

∑
jk

wjk‖dj − dk‖
2
2

}

C(t+1) = argmin
C

{
1
2‖T

ℓD(t+1) + KℓC +9ℓE(t) −

Y
(r)
(λ,Ii)
‖2F +

µ2
2 tr

(
CTKℓC

) }

E(t+1) = argmin
E

{
1
2‖T

ℓD(t+1) + KℓC(t+1) +9ℓE−

Y
(r)
(λ,Ii)
‖2F +

γ
2 ‖U

(t) − E+ V(t)

γ
‖2F

}

U(t+1) = argmin
U

{
µ3‖U‖1,1 +

γ
2 ‖U − E(t+1) +

V(t)

γ
‖2F

}

V(t+1) ← V(t) + γ (E(t+1) − U(t+1))

c. X̂
(r)
(λ,Ii)
← ThD(t+1) + KhC(t+1) +9hE(t+1)

d. Y
(r+1)
(λ,Ii)
← Y

(r)
(λ,Ii)
− SB

(
X̂
(r)
(λ,Ii)

)

Step 4. X̂(λ,Ii) =
∑τ

t=1 X̂
(r)
(λ,Ii)

Step 5. Consolidate the patches P
1
X̂
, . . . ,Pk

X̂
to obtain X̂.

3.2. Pansharpening
Given a LR MS image Y and a high spatial resolution PAN
image (P) matching the same scene, our goal is to estimate
a HR MS image X̂ with the spatial dimensions of the PAN.
We propose a two-stage approach to solve the pansharpening
problem. To begin with, we obtain a preliminary estimate for
the target image Ỹ using CS or MRA, two fast and simple

pansharpening techniques. Ỹ has the same size as X̂ but the result
Ỹ obtained using these methods suffer from spectral and spatial
distortion drawbacks. The second step in our proposed two-
stage approach provides a way to reduce the drawbacks. Next,
we feed Algorithm 1 with input Ỹ and proceed with the resulting
optimization model to generate X̂. Considering the image Ỹ , the
modified optimization model becomes

min
D,C,E

{
1

2
‖ThD+ KhC +9hE− Ỹ(λ,Ii)‖

2
F

+
µ1

2

∑

jk

wjk‖dj − dk‖
2
2 +

µ2

2
tr
(
CTKℓC

)
+ µ3‖E‖1,1

}
,

(31)

where Ỹ(λ,Ii) = [̃y1,p1 , . . . , ỹλ,p1 , . . . , ỹ1,pNIi
, . . . , ỹλ,pNIi

] ∈

R
npnp×λNIi for the set of patches P

i
Ỹ
, 1 ≤ i ≤ k. K-means

clustering is used to decompose the number of overlapping
patches into k classes, so that pixels corresponding to similar
kinds of objects in the image will be collectively estimated in each
step. The optimal value of k for a given image was determined
using the silhouette method [51] which measures how similar
a point is to its own cluster compared to other clusters. The
adaptive weights are defined the same way as in (27). Applying
ADMM to (31) we can solve the separable subproblems that
ensue for the coefficientsD,C and E as in the single image model.
We summarize the procedure in Algorithm 2.

4. EXPERIMENTAL RESULTS

4.1. Simulation Protocol
To begin with the simulation procedure, we test the performance
of the proposed algorithm by generating the reduced resolution
image from a given image for some chosen downscaling
factors. We then compute the enhanced resolution result
using the proposed algorithm and compare its performance
with other methods. The experiments are implemented using
MATLAB(R2018a).

For the SISR experiments we compare our three-dimensional
single image super-resolution algorithm to bicubic interpolation
and the RKHS algorithm by Deng et al. [40]. The authors in
Deng et al. [40] implement their SR algorithm following an
independent band procedure. For color images (RGB), they
transform the image to the “YCbCr” color space and apply
model in Deng et al. [40] to the luma component (Y) only since
humans are more sensitive to luminance changes. The “Cb” and
“Cr” components are the blue-difference and the red-difference
chroma components, respectively. This way, the time complexity
of the algorithm is reduced, as compared to an optimization
based methods using all the channels at the same time. To obtain
the desired result, the chroma components (Cb, Cr) are upscaled
by bicubic interpolation. The components are then transformed
back to the RGB color space for further analysis. In our approach,
we apply Algorithm 1 to the three-dimensional color images
directly, without undertaking any transformations.
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We undertake the pansharpening experiments using semi-
synthetic test data. This may be attributed to the fact that existing
sensors cannot readily provide images at the increased spatial
resolution that is desired. A generally acceptable procedure
attributed to Ranchin and Wald [23] for operating at reduced
resolution is as follows (Illustration in Figure 3):

• The enhanced result should be as identical as possible to the
original multispectral image once it has been degraded.
• The enhanced result should be identical to the corresponding

high resolution image that a capable sensor would observe at
the increased resolution.
• Each band of the enhance result should be as identical

as possible to the corresponding bands of the image

Algorithm 2: Pansharpening model

Input: Y ∈ R
m1×m2×λ, P ∈ R

n1×n2 , µ1, µ2, µ3, τ >
0, γ , σ

Output: X̂ ∈ R
n1×n2×λ

Step 1. Construct the coarse and fine scale matrices T,K ,
and 9 for the patches.

Step 2.Obtain the upscaled image Ỹ using P.

Step 3.Decompose Ỹ into overlapping patches and cluster
them into k classes P

1
Ỹ
, . . . ,Pk

Ỹ
using k-means clustering.

Step 4. Initialization for each class: Ỹ
(1)
(λ,Ii)
← Ỹλ,Ii

for r← 1 to τ do

a. Initialize C(1), D(1) and E(1).

b. while not converged, t = 1, · · · do

D(t+1) = argmin
D

{
1
2‖T

hD+ KhC(t) +9hE(t) −

Ỹ
(r)
(λ,Ii)
‖2F +

µ1
2

∑
jk

wjk‖dj − dk‖
2
2

}

C(t+1) = argmin
C

{
1
2‖T

hD(t+1) + KhC +9hE(t) −

Ỹ
(r)
(λ,Ii)
‖2F +

µ2
2 tr

(
CTKℓC

) }

E(t+1) = argmin
E

{
1
2‖T

hD(t+1) +KhC(t+1) +9hE−

Ỹ
(r)
(λ,Ii)
‖2F +

γ
2 ‖U

(t) − E+ V(t)

γ
‖2F

}

U(t+1) = argmin
U

{
µ3‖U‖1,1+

γ
2 ‖U−E

(t+1)+ V(t)

γ
‖2F

}

V(t+1) ← V(t) + γ (E(t+1) − U(t+1))

c. X̂
(r)
(λ,Ii)
← ThD(t+1) + KhC(t+1) +9hE(t+1)

d. Ỹ
(t+1)
(λ,Ii)
← Ỹ

(r)
(λ,Ii)
− X̂

(r)
(λ,Ii)

Step 5. X̂(λ,Ii) =
∑τ

t=1 X̂
(r)
(λ,Ii)

Step 6. Consolidate the patches P
1
X̂
, . . . ,Pk

X̂
to obtain X̂.

that would have been observed by a sensor with
high resolution.

We apply Algorithm 2 to the observed multispectral data and
compare it with existing state-of-the-art approaches.

4.2. Parameter Selection
Parameter selection is essential to obtain good results. However,
to show the stability of our proposed method, we fix the
parameters for all the experiments. Fine tuning of the parameters
might lead to slightly better results. Parameter choices for
the optimization of our proposed algorithms are outlined
as follows:

• Scale factor (ω): In the experiments shown above, we setω = 2
for the SISR problem, and set ω = 4 for the pansharpening
problem. Quantitative measures obtained suggest that for ω >
4 both problems yield unsatisfactory results as the spatial and
spectral measures are less competitive. However, the choice of
ω depends on the dimensions of the observed data. For large
ω, we can select larger patch sizes to improve upon the target.
• Patch size (mp): Patch sizes can vary according to the size of the

given image. We use a default patch size, mp × mp × λ in our
experiments. Reasonable quantitative measures were obtained
for 6 ≤ mp ≤ 8 for the two problems considered. Outside the
given bounds, the algorithms either take time to converge or
yield unsatisfactory results.
• Overlap size: The limits of the overlapping region range from

2 to 4 are limited by the patch size. We set the overlap size to 2.
• Number of classes (k): In our experiments, the value of k

was decided based on the solution that gave the best result
from the silhouette method [51], i.e., by combing through
predetermined values. Future work will involve investigating
whether it is possible to automate this step.

TABLE 1 | Quantitative Results with for single image super-resolution with ω = 2.

Image Index PSNR RMSE SSIM SAM

baboon

Bicubic 22.6453 0.0737 0.9700 4.9851

RKHS [40] 22.8789 0.0718 0.9770 5.1105

Proposed 23.1566 0.0695 0.9780 4.9757

girl

Bicubic 29.7291 0.0326 0.9453 1.3056

RKHS [40] 29.9922 0.0317 0.9564 1.3559

Proposed 30.7616 0.0290 0.9621 1.2173

lena

Bicubic 32.3586 0.0241 0.9740 1.5280

RKHS [40] 32.6024 0.0234 0.9810 1.5230

Proposed 33.2650 0.0217 0.9890 1.4663

lion

Bicubic 29.6166 0.0330 0.9765 1.3992

RKHS [40] 30.1480 0.0311 0.9788 1.6617

Proposed 31.2364 0.0274 0.9801 1.3770

face

Bicubic 31.4943 0.0266 0.9807 2.2896

RKHS [40] 31.6163 0.0263 0.9820 2.6242

Proposed 31.9927 0.0251 0.9829 2.4506

Reference ∞ 0 1 0

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 June 2020 | Volume 6 | Article 22

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Lartey et al. Single 3D Image Super Resolution

TABLE 2 | Quantitative Results with for pansharpening ω = 4.

Image Index SAM SCC RMSE ERGAS PSNR

Pléiades

PCA 5.01 0.93 38.19 4.40 30.14

IHS 5.29 0.93 35.72 4.17 30.26

Brovey 4.66 0.94 35.35 4.07 30.55

GS 4.75 0.96 34.48 4.00 30.86

Indusion 4.52 0.92 37.47 4.36 30.11

HPF 3.64 0.96 27.48 3.23 32.52

SFIM 3.61 0.96 27.18 3.17 32.75

AWLP 3.29 0.96 23.63 2.84 33.61

GLP 3.23 0.97 22.45 2.61 34.42

RKHS [43] 3.19 0.97 23.32 2.58 34.15

Proposed 3.17 0.98 20.19 2.23 36.42

China

PCA 3.52 0.96 20.34 2.64 33.25

IHS 5.04 0.89 27.10 3.56 29.72

Brovey 4.49 0.90 24.12 3.15 30.63

GS 3.51 0.96 20.82 2.76 32.70

Indusion 3.89 0.94 25.28 3.25 31.54

HPF 3.32 0.96 20.84 2.69 33.16

SFIM 3.27 0.96 20.60 2.65 33.27

AWLP 3.02 0.96 19.20 2.50 33.61

GLP 3.27 0.96 20.46 2.71 32.78

RKHS [43] 3.06 0.96 19.52 2.56 33.36

Proposed 2.96 0.96 18.38 2.48 33.53

Toulouse

PCA 4.83 0.90 28.39 4.75 36.82

IHS 4.96 0.87 28.73 4.78 36.36

Brovey 5.23 0.85 29.62 4.91 36.00

GS 4.76 0.90 28.12 4.71 36.90

Indusion 4.54 0.83 29.41 4.88 36.33

HPF 3.99 0.91 23.13 3.89 38.65

SFIM 3.95 0.92 22.76 3.83 38.78

AWLP 4.31 0.92 22.73 3.85 39.03

GLP 3.76 0.93 21.05 3.54 39.46

RKHS [43] 3.65 0.92 21.47 3.58 39.54

Proposed 3.41 0.92 20.83 3.47 39.28

Deimos

PCA 11.66 0.85 0.06 14.05 28.34

IHS 6.30 0.69 0.04 18.67 25.49

Brovey 3.64 0.77 0.05 16.46 25.88

GS 5.77 0.81 0.05 15.30 26.52

Indusion 4.64 0.88 0.04 12.70 28.23

HPF 4.53 0.89 0.04 12.30 28.52

SFIM 4.68 0.69 0.19 102.38 22.38

AWLP 8.39 0.86 0.06 15.04 27.57

GLP 4.73 0.88 0.04 12.74 28.21

RKHS [43] 3.94 0.96 0.03 3.44 33.20

Proposed 3.89 0.94 0.03 9.01 31.22

WV2

PCA 4.50 0.96 62.23 4.31 30.98

IHS 5.04 0.95 65.75 4.48 30.60

Brovey 4.86 0.95 65.01 4.49 30.43

GS 4.52 0.96 62.52 4.33 30.94

Indusion 4.56 0.91 74.77 5.14 29.38

HPF 4.10 0.95 57.14 3.96 31.72

SFIM 4.14 0.95 56.80 3.94 31.78

AWLP 4.62 0.95 52.82 3.88 32.26

GLP 3.90 0.96 50.92 3.55 32.70

RKHS [43] 3.88 0.96 47.32 3.30 33.35

Proposed 3.84 0.96 47.19 3.32 33.38

Reference 0 1 0 0 ∞

The best and the second best results are in bold face and italic bold face.

• Construction of approximation matrices T,K , and 9 : We
generate the matrices based on the procedure outlined in
section 3, withM = 6, ε = 1e−3, and set 20 evenly distributed
angles on [0, 2π] in computing the fine and coarse scale
matrices for T,K and 9 , respectively.
• Regularization penaltiesµ1, µ2,µ3 and γ : Without knowledge

of optimal values for the penalty, we sweep through a range
of values to determine the optimal result. For the experiments
considered, µ1,µ2,µ3, γ ∈ {10

−8, · · · , 102} and choose the
one that leads to the best results evaluated by quantitative
and qualitative measures. The step length γ for updating of
V influences the convergence of the algorithm greatly.
• Preprocessing for Algorithm 2: Our proposed pansharpening

method provides a flexible way to improve the results for
both CS and MRA algorithms. In the experiments shown
above, we preprocess the images using the GS algorithm.
Future work will detail which preprocessing step works best
for multispectral images.

4.3. Quantitative Criteria
To measure the similarity of the enhanced resolution image (X̂)
to the reference image (X), we compute the following image
quality metrics:

• Correlation coefficient (CC): The correlation coefficient
measures the similarity of spectral features between the
reference and pansharpened image. It is defined as

CC(X̂) =
1

λ

λ∑

i=1

1

σX̂i
σXi

E[(X̂i − µX̂i
)(Xi − µXi )]

where Xi and X̂i are the matrices of the i-th band of X and
X̂, with µXi and µX̂i

as their respective mean gray values. The

standard deviations for X̂i and Xi are σX̂i
and σXi , respectively.

• Root mean square error (RMSE):

RMSE(X̂) =

√
MSE(X̂),

where

MSE(X̂) = E[(X̂ − X)2] =
‖X̂ − X‖2F
n1n2λ

.
• Peak signal-to-noise ratio (PSNR): It is an expression of

the ratio between the maximum possible value of the
signal and the distorting noise that affects the quality of
the representation.

PSNR(X̂) = 20 · log10

(
MAXX̂√
MSE(X̂)

)

• Structural Similarity (SSIM): The SSIM index is computed by
examining various windows of the reference and target image.
It is a full reference metric designed to improve upon the
traditional methods such as PNSR and MSE.
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• Spectral angle mapper (SAM): This measure denotes the
absolute value of the angle between the reference and
estimated spectral vectors.
Let X̂{i} = (x̂i,1, . . . , x̂i,λ)

T , 1 ≤ i ≤ n1n2 be a vector collecting
the intensity at all spectral bands at pixel i,

SAM(X̂) =
1

n1n2

n1n2∑

i=1

arccos

(
〈X̂{i},X{i}〉

‖X̂{i}‖‖X{i}‖

)

• Erreur relative globale adimensionnelle de synthése (ERGAS):
The relative dimensionless global error in the synthesis reflects
the overall quality of the pansharpened image.

ERGAS(X̂) = 100d

√√√√ 1

λ

λ∑

i=1

(
RMSE(X̂i)

µX̂i

)2

,

d = downsampling factor.

• Q index: It defines a universal measure that combines the loss
of correlation, luminance, and contrast distortion of an image
and is defined by

Q(X̂) =
1

λ

λ∑

i=1

4σ(Xi ,X̂i)
µXiµX̂i

(σ 2
Xi
+ σ 2

X̂i
)[µ2

Xi
+ µ2

X̂i
])

where σ(Xi ,X̂i)
is the covariance between Xi and X̂i.

4.4. Results
In this section, we compare the visual results and quantitative
measures of the proposed approaches with some existing super-
resolution algorithms. The results of Algorithm 1 will be
compared to bicubic interpolation and the RKHSmodel by Deng
et al. [40]. Results of Algorithm 2 are compared with CS methods
such as PCA, IHS, Brovey, GS and Indusion, as well as MRA
methods such as HPF, SFIM, ATWT, AWLP, GLP techniques,
and the Deng et al. pansharpening model [43]. We begin with
numerical tests for true color images and consider patches of size
8×8×λ. The size of the overlap across the vertical and horizontal
dimensions is 2.

In Figure 4, we show one example of decomposing an
original image into three components. One can see that the
edge information is separated successfully from the smooth
component and the residual. In Figure 5, we compare 3D
super resolution result of the proposed model with bicubic
interpolation and RKHS [40] on a baboon image. We can see that
the proposed method leads to a color image with highest visual
quality. The bicubic interpolation result tends to be blurry. RKHS
[40] result is better but not as good as the proposed. InTable 1, we

list some quantitativemetric comparison formore testing images.
It is observed that the proposed 3D single image super resolution
method (detailed in Algorithm 1) is consistently the best among
the three approaches.

For pansharpening, we compare with 10 other methods in the
literature using five different quantitative metrics (see Table 2).
It is observed that the proposed pansharpening method (detailed
in Algorithm 2) is mostly the best and occasionally the second
among all. The performance is consistently superior.

Note that we did not conduct comparison with deep neural
network based methods. The proposed approach is based on
single image modeling while the deep neural network approach
relies on a lot of external data. We don’t think it is a
fair comparison.

5. CONCLUSIONS

In this paper, we have proposed a technique for single
image SR by modeling the image as a linear combination
of regular functions in tandem with sparse coding. We
show that the proposed scheme is an improvement upon
similar existing approaches as it outperforms these algorithms.
Besides this advantage, the proposed methods can also benefit
image decomposition.

In future work, we will apply the model to
multispectral and hyperspectral image SR where sparse
coding can be useful due to the redundant nature of
the input.
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