DLR Activities in the Field of Thermoplastic Fiber Placement and Additive Manufacturing

Sebastian Nowotny

Ashley Chadwick, Georg Doll, Olivia Hellbach, Simon Hümbert, Lukas Raps, Ines Schiel, Manuel Simone

Knowledge for Tomorrow

Automated Manufacturing of Thermoplastic Structures

Automated Tape Placement for Thermoplastic Composites

Tape Placement cell at DLR Stuttgart

- AFPT GmbH head
- 1/2" 2" tapes
- 3 x ¹/₂" simultaneously
- 6 kW laser
- Cooled compaction roller

Incoming tapes, laying at a heated tooling

- Using highly automated process
- IR-Laser is welding several tape to a laminate
- Preforming and consolidation at one step
- Planar, cylindrical, and complex structures

Principle of tape placement [2]

Automated Fibre Placement – Two-step or In-situ

Automated Fibre Placement and the Time to Defect Detection

Process development and optimisation Process Chain – Form bulk material to laminates

- Analyse different tape materials
 - Pores and inhomogeneity
 - Thermal behaviour for process borders
- Develop DoE methods incl. fast and cost efficient test methods
- Manufacturing laminate and generate laminate values

Thermal and optical inspection of the bulk material

DoE specimen for fast process optimization [2]

Challenging for high temperature thermoplastics

- deformation due to layer by layer heat introduction -

- Additive manufacturing is defined by heat introduction layer by layer
- Inhomogeneous temperature distribution inside laminate provokes stresses and deformations
- Knowledge in material behaviour is supported by process simulation

Initial parameters without optimisation, Insitu AFP, PEEK sample 300x300mm

Optimised process parameters, Insitu AFP, PEEK sample 650 x 345 mm

Quality evaluation via online process monitoring and evaluation

Use of in-process monitoring to detect defects in thermoplastic AFP-produced parts [4]

- Laser is controlled via thermal camera
- Data is recorded from ever single position of the part
- Compare the data to defined process window
 - Reduce effort for NDT
 - Find scrap parts as soon as possible during the process chain

Application of Automated Tape Placement for Thermoplastic Composites

CleanSky2 Thermoplastic Fuselage Demonstrator

- Augsburg
 - Full Scale Manufacturing (8 m x 3,8 m)
- Stuttgart
 - Maximum performance at a scaled demonstrator

CleanSky 2 Project MFFD [5]

Highlight Project - ATEK

In-situ-manufactured primary structure for two-stage sounding rocket

Part of DLR MAPHEUS programme Material physics experiments at zero gravity Annual launch (beginning 2009) from MORABA facility in Kiruna, Sweden

Current generation vehicles: Two-stage VSB-30 Maximum altitude = 260 km

Launch – June 2019

- Launched on 13 June 2019 (04:21)
 - Maximum altitude = 239 km
- Significant charring of thermal protection system but structural integrity maintained
- Successful landing and recovery
 - 67 km from launch site

<image>

• Video:

https://www.youtube.com/watch?v=JlcReUwZXFU

Combining 3D-Printing with In-situ TP-AFP

- In-situ AFP for large, thin shells
- 3D-Printing for small and complex structures
- 2 areas have to be investigated:
 - 3D-printing on AFP laminates
 - Tapelaying on partially open 3D-printed structures

3D-Printing Setup and Materials

FFF-Printer for High-Temperature Thermoplastics:

- Nozzel Temperature up to 450° C
- Print-bed termperature up to 270° C
- Build-chamber temperature up to 260° C

High Temperature Materials:

- PEEK (up to 30% CF)
- PEI (up to 15% CF)
- PPSU

Engineering Materials:

- PA (up to 30% CF)
- PC-ABS
- ABS

Process Evaluation

Additive Manufacturing of a Sandwich Structure

3D-Printing of a Core on top of an existing Laminate

AFP-Process

Sandwich Structure

Bildquelle: SEEMANN, Ralf: A Virtual Testing Approach for Honeycomb Sandwich Panel Joints in Aircraft Interior. Berlin, Heidelberg : Springer Berlin Heidelberg, 2020

3D-Printing with PEEK / LM-PAEK on existing structures

High temperature gradient

High residual stresses

Low CTE

Uneven / rough surface

Large structures

Mechanical Evaluation

Degree of Surface Cover = $\frac{\text{Surface of Top of Printed Material}}{\text{total Surface}}$

Degree of Surface Cover	8%	50%	100%	16%
Mass	3,47 g	5,04 g	15,36 g	6,58 g
Relative Mass	1	1,45	4,43	1,9
Relative Mass per Surface	1	0,23	0,35	0,95

Schnittebenenansicht A-A

Draufsicht

8%

100%

100%

8%

Α

Manufacturing of Specimen

Manufacturing of Cores with 3D-Printing

Preparation of Cores for Tapelaying

Cores place inside Tapelaying Mould before & after Tapelaying

Optical & Infrared Images during AFP-Process

Test Setup for Tensile Shear Test

DLR

Results: Tensile Shear Test – Strength

$$\tau_{abs} = \frac{F}{A_{abs}}$$

$$\tau_{eff} = \frac{F}{A_{eff}}$$

AFP at 460 °C

Summary

Technology development for high temperature Thermoplastic including

- Tape Placement
- 3D-Printing
- Welding
- Press forming

Technology validations with state of the art tools and scientific background

Focus at aerospace applications like skins and joints for fuselages and Space Applications

DLR Mission:

- Transfer the know how to wide community,
- Transfer from R&D into serial technology

Contact

Institute of Structures and Design

Department for Component Design and Manufacturing Technologies

Pfaffenwaldring 38 – 40 70569 Stuttgart

Mr. Sebastian Nowotny **Head of Department** Sebastian.Nowotny@dlr.de **Head of Composite** Mr. Georg Doll **Technology Group** Georg.Doll@dlr.de Manufacturing Mr. Daniel Fricke Simulation Daniel.Fricke@dlr.de Mr. Simon Hümbert **3D-Printing** Simon.Hümbert@dlr.de Ms. Ines Schiel Ines.Schiel@dlr.de **Automated Fibre Placement** Mr. Lukas Raps Lukas.Raps@dlr.de

References

- [1] DLR Institute of Structures and Design, 'Robot-based Continuous Ultrasonic Welding,' 5th Colloquium on Production Technology special page, May 2019, https://event.dlr.de/en/10jahre-zlp/robotergestuetztes-kontinuierliches-ultraschallschweissen/
- [2] Dreher, P, Chadwick, AR and Nowotny, S, 2019, 'Optimization of in-situ thermoplastic automated fiber placement process parameters through DoE', Proceedings of the SAMPE Europe conference, Nantes, France
- [3] Chadwick, AR, Dreher, P, Petkov, I and Nowotny, S, 2019, 'A fibre-reinforced thermoplastic primary structure for sounding rocket applications', Proceedings of the SAMPE Europe conference, Nantes, France
- [4] Chadwick, AR, and Willmeroth, M, 2019, 'Use of in-process monitoring and ultrasound to detect defects in thermoplastic AFP-produced parts', Proceedings of the 22nd ICCM conference, Melbourne, Australia
- [5] CleanSky 2 Projekt 'Multifunctional Fuselage Demonstrator' https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-15354/24923_read-62324/#/gallery/33698