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Abstract— Conventional robot programming methods are not
suited for non-experts to intuitively teach robots new tasks. For
this reason, the potential of collaborative robots for production
cannot yet be fully exploited. In this work, we propose an
active learning framework, in which the robot and the user
collaborate to incrementally program a complex task. Starting
with a basic model, the robot’s task knowledge can be extended
over time if new situations require additional skills. An on-line
anomaly detection algorithm therefore automatically identifies
new situations during task execution by monitoring the devi-
ation between measured- and commanded sensor values. The
robot then triggers a teaching phase, in which the user decides
to either refine an existing skill or demonstrate a new skill. The
different skills of a task are encoded in separate probabilistic
models and structured in a high-level graph, guaranteeing
robust execution and successful transition between skills. In the
experiments, our approach is compared to two state-of-the-art
Programming by Demonstration frameworks on a real system.
Increased intuitiveness and task performance of the method can
be shown, allowing shop-floor workers to program industrial
tasks with our framework.

I. INTRODUCTION

Traditional robot programming methods used in today’s
production rely on expert knowledge and advanced program-
ming skills [1]. Due to the lack of flexibility and intuitiveness
of these programming methods, non-experts such as shop
floor workers have difficulties to instruct robots for new
tasks. Favored by the development of new generations of
collaborative robots [2], however, users can easily guide a
robot along a desired trajectory and thereby demonstrate
different motions. In contrast to typical repetitive sequential
robot tasks in the production, conditional tasks involve a
decision about how to react to different observations. As this
requires a state, where the robot decides on how to proceed,
this has been conventionally achieved by writing code, such
as an if -statement. Instead, we facilitate to program such
functionality by demonstration utilizing the robot’s sensing
capabilities. A robot is then not only capable of reproduc-
ing a demonstration, but can also automatically distinguish
between several different situations and react accordingly.

In Programming by Demonstration (PbD), a state-action
mapping is learned from demonstrations provided by a user.
Two key questions of recent research on active learning
[3] [4] are when to demonstrate additional behavior and
on what regions of the input space to focus on with these
demonstrations. While other PbD approaches rely on the
user to monitor the task reproduction in order to identify
new situations and task deficiencies [5]–[8], our proposed
active learning framework automatically detects anomalies
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Fig. 1. Interactive PbD framework for programming of conditions,
represented as decision states (DS) of a task-representing graph. In this
example, a sensed contact force triggers a decision to execute either skill
s1A or s2.

during the execution. This triggers a teaching phase in which
the user incrementally refines or extends the robot’s task
knowledge, leading to higher autonomy when facing similar
conditions in the future.

The contribution of this work is a collaborative robot-
programming framework to incrementally generate and refine
a graph that structures the probabilistically encoded skills
of a task on a high level. The interactive teaching process
not only reduces the workload of the user but also prevents
potentially dangerous situations by detecting anomalies at
an early stage. The topological arrangement of the skills
and the explicit programming of decision states, as shown
in Fig. 1, eliminates perceptual aliasing and guarantees a
successful transition between skills when reproducing known
situations. That allows to scale the complexity of a task
over time without reducing the overall performance. The
low level statistical modeling of the skills compensates local
perturbations in the environment and the model inherent
probability distribution can be used to detect deviations from
the intended behavior.

By combining kinesthetic teaching with a graphical user
interface (GUI) that guides the user throughout the en-
tire teaching process, we present an intuitive interface that
maximally supports novice users. As shown in [9], the
additional feedback loop through combination of execution
and teaching, closes the gap between the user’s assumed and
the robot’s actual task knowledge, which further improves
the teaching performance.



II. RELATED WORK

Common methods for encoding a behavior require mul-
tiple user demonstrations of the same skill under slightly
different environment conditions [6] [8] [10]. However, with
the proposed framework we reduce the number of initial skill
demonstrations. A key question in PbD is how to encode a
task in order to robustly reproduce the demonstrated behav-
ior, while measuring the robot’s imitation performance. Cur-
rent approaches differentiate between a low-level trajectories
encoding and a high-level symbolic encoding. By monitoring
and comparing the user’s task demonstrations to pre- or post-
conditions of a predefined behavior set, a symbolic encoding
partitions the task in action segments [11] [12]. In [8] this
step is followed by arranging the segments of different task
demonstrations in a generalized topology, while in [12], a
recognized sequence of parameterized skills is propagated
to a graphical interface for further processing by the user.
The obtained sequence of skills is forwarded to a symbolic
planner for execution. A commercially available example for
a high level graphical programming scheme is Franka Desk
[13], that allows a user to combine and parameterize different
skills for execution on a robot. In contrast to our approach, a
task programmed with the mentioned methods is composed
of a combination of predefined skills.

Trajectories encoding takes place on a low level of the
motion and tries to directly retrieve a non-linear mapping
between sensory observation and motor action. For this, a
large body of work uses skill encoding based on statistical
modeling [10] [14] [15], dynamical systems [16] [17], or
a combination of both [18] [19]. The algorithm developed
in [18] extracts task constraints from a probabilistic model,
used to modulate a dynamical system. Dynamic Movement
Primitives (DMPs) [20] are a well-known approach to guar-
antee convergence to a goal state, using nonlinear dynamical
systems and non-parametric regression. In [16], a robot
learns an initial policy for a pool stroke in the form of a
DMP through PbD, which is autonomously optimized by the
robot with a reinforcement learning algorithm. This requires
the design of a task specific representation as well as a
task specific cost function, whereas our approach is task
independent and can be used without additional parameter
tuning. Pastor et al. [17] realize early failure detection and
online movement adaption with Associative Skill Memories
(ASM) that combine DMPs with stereotypical sensor traces.

Other approaches encode a task based on statistical mod-
eling to capture the high variability between demonstrations.
Kulić et al. [15] use Hidden Markov Models to reproduce
and recognize repeated motion primitives. The frameworks
presented in [10] and [14] use time parameterized Gaussian
Mixture Models (GMM) to probabilistically encode the
demonstrations and Gaussian Mixture Regression (GMR) to
condition the multivariate normal distributions on a time
vector. Eiband et al. [10] present a method, that allows active
transitioning between skills of a solution pool when anoma-
lies are detected during task execution. In our framework,
the skills are structured in a graph, leading to a smoother
and more robust skill transition.

In [7], [6] and [21], low-level trajectory encodings such
as DMPs are topologically structured on a high task level.

Kappler et al. [7] present a data-driven approach which
structures ASMs in a manipulation graph and triggers a skill
transition during task execution, based on high level sensory
feedback. The considered successor ASMs are determined by
the manipulation graph. In contrast to our approach, the user
needs to manually construct the initial manipulation graph
by choosing predefined skills from an ASM library. Niekum
et al. [6] present an approach in which user demonstrations
are segmented into reusable skills, used to create a finite
state automaton (FSA). If the user intervenes during the
execution to provide corrective demonstrations, the pool of
task demonstrations is again segmented, limiting reusability
of previously learned FSAs. In [21], a high level behavioral
tree hierarchically decomposes the task into sub-tasks. This
enables a cooperative execution, in which sub-tasks can be
assigned either to a human or a robot.

An incremental learning framework is proposed in [5],
where the user physically guides the robot, creating a se-
quence of coherent states that capture the demonstrated
configurations in a Robot State Automaton (RSA). While
demonstrating, the user has to identify situations, in which
the task splits into different possible skills. When the user
inserts a branching state in the RSA, a camera image is
recorded and programmed as the condition for a transition
to the subsequently demonstrated state. We argue that man-
ually programming the transition conditions and creating
branching states in which the robot decides between different
skills is not intuitive for the user, especially if multi-modal
sensor values are considered for a transition. This might
lead to erroneous decisions in branching states, which can
be avoided by our approach that automatically detects new
situations during execution and collaborates with the user to
provide alternative skills.

While previously described methods [5] - [8] rely on the
user to identify unintended or new situations, the approaches
in [3], [4], [10] and [16] aim to automatically detect anoma-
lies or task deficiencies. Maeda et al. [3] propose a method
based on Gaussian Processes to quantify the generalization
capability of an extrapolated trajectory for an unseen situ-
ation. In [4], a mapping from observation to action, bound
on a finite set of basic actions, is learned with a GMM. The
GMM provides a classification confidence with which an
observation can be assigned to one of the action-clusters. The
task outcome prediction of [16] compares sensor experience
recorded during multiple successful task executions with the
perceived sensor values. A z-test, determines if the current
execution is correlated with the successful examples. In
contrast to that, in [10], the sequence of mean vectors and
covariance matrices of the probabilistic skill encoding is
used in every time step to compute a Mahalanobis distance,
quantifying the deviation between measured and commanded
state. Each of the above mentioned frameworks includes
either a manual action-labeling or error threshold tuning.
However, we propose an unsupervised approach that learns
an anomaly boundary from previous experience.

III. INTERACTIVE TEACHING PROCEDURE

With our proposed interactive teaching process, a user
can incrementally program a robot by adding new skills or



refining existing skills of a task model when the robot has
identified a new situation. In the beginning, the robot does
not have any task knowledge, so a task-representing graph
is built from scratch. The teaching process starts with an
initial user demonstration. After the user has demonstrated
the first skill, s/he restores the environment, i.e. manually
putting back all objects to their initial locations. To in-
crease the variability of the training data, especially in the
force domain during object interaction, the robot repeats
the movement and records the sensor readings without the
user’s guidance. These two sensor data sequences from user
demonstration and robot execution are used to encode the
skill in a probabilistic model (see Sec. IV-A). The resulting
trajectory of mean vectors µt and covariance matrices Σt,
represents the first skill and is appended to the start state
of the task-graph. The robot is now capable of reproducing
the task, which currently consists of only one skill, and
starts the execution. During the execution phase, an on-
line anomaly detection algorithm constantly monitors the
deviation between commanded and recorded sensor values
(see Sec. IV-B). As seen in Fig. 2, the robot stops the
movement when an anomaly is detected and interacts with
the user to resolve the new situation. If the user chooses
to ignore the anomaly, the robot continues with the task
execution and does not consider it as a new situation. In case
the user wants to refine the current skill, s/he can do so via
user-refine or auto-refine mode (see Sec. IV-C (b)). If the user
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Fig. 2. Combined execution and teaching phase, in which the robot and
the user collaborate to solve new situations. The user can ignore an anomaly
(red), add new skills (green) or refine existing skills (blue).

decides to add a new skill to the graph after an anomaly was
detected, s/he needs to demonstrate a behavior that resolves
this situation in future executions. The further procedure is
analog to the initial skill demonstration described above (see
also Sec. IV-C (a)).

After the robot has successfully executed the complete
task, the user can also extend the graph by giving a new
demonstration starting from the current end-state configu-
ration. The procedure is similar to demonstrating a new
behavior from an anomaly, with the only difference that the
demonstrated behavior is instead appended to the end-state.

IV. GRAPH-BASED CONDITIONAL TASK LEARNING

A. Probabilistic Encoding of Demonstrations
As mentioned, with our approach, the user only needs

to demonstrate a new behavior once, in order to teach
a new skill. To incorporate the robot’s dynamics of the

execution without the user’s guidance, the robot repeats the
trajectory of the user demonstration and records a second
sequence. The different sensor recordings of the task’s two
examples are used to extract important features, in which
the robot must be exact during reproduction. In parts with
more variability, however, higher deviations are accepted
during the execution, which increases the overall robustness.
Only proprioceptive measurements from the robot’s sen-
sors are considered. Particularly no vision based monitoring
of the environment is used, which is sufficient for the
partially structured production environment and eliminates
errors resulting from poor visibility. The obtained vector
of sensor data xt = [p,o,f , t, g, h]T ∈ R15 at time t,
consists of the end-effector’s Cartesian position p = [x, y, z],
orientation in unit quaternions o = [qw, qx, qy, qz], force
f = [fx, fy, fz] and torque t = [tx, ty, tz], as well as the
gripper finger distance g and the grasp status h ∈ {−1, 0, 1},
depicting “no grasp”, “gripper moving” and “grasping” re-
spectively. The sensor values are recorded with a frequency
of frec = 1000 Hz and are down-sampled to fds = 50 Hz for
a more efficient data handling. The training data is stored
in matrix XU = [xU,1, ...,xU,NU ] ∈ R15×NU for the user
demonstration and XR = [xR,1, ...,xR,NR ] ∈ R15×NR for the
robot demonstration with respective sample length NU and
NR. Similar to [10], we first apply dynamic time warping
(DTW) to align the two sequences on a common time axis
and equalize their length N . In order to make sure that all
dimensions contribute equally to the warping error, the data
is standardized by subtracting the mean and dividing by the
standard deviation in every dimension (z-transformation). For
the next step, we undo the standardization by applying the
inverse z-transformation on every dimension of the aligned
sensor sequences and learn a time-based GMM to generalize
over the demonstrations. An expectation-maximization (EM)
algorithm is used to estimate the multivariate Gaussian
distribution for the input matrix

Gs =

[
n n
XU XR

]
∈ R16×2N (1)

of a new skill s. The EM algorithm is initialized using k-
means clustering and setting the number of clusters propor-
tional to the length N of the demonstrated time series to

k =
N

fds
. The obtained model M = GMM(Gs) and the

time vector n = [1, ..., N ] serve as input to the GMR in order
to compute a regression GMR(M|n) over all dimensions.
The GMR provides a generalized trajectory of sensor values
Ys = [µ1, ...,µN ] ∈ R15×N with an associated sequence of
covariance matrices Zs = [Σ1, ...,ΣN ] ∈ R15×15×N . The
obtained mean value sequence together with the covariance
matrices are required for a monitored execution of the skill.

B. On-Line Anomaly Detection

During the execution of a probabilistically encoded skill,
the robot can autonomously detect new situations. For every
sensor modality a real-time monitoring component constantly
compares the commanded and measured values to detect
abnormal deviations. We are therefore not only able to
detect anomalies with our one-class classification algorithm



on-line, but can also assign them to a sensor category.
According to the modalities, the different categories are: end-
effector position/orientation, force/torque, as well as gripper
opening and grasp status. This enables the anomaly detection
algorithm to identify new situations that result from missing
or shifted objects, different object geometries or weights,
only with the robot’s proprioceptive sensors, including force
measurements. For every timestep t of the execution, the
deviation between the measured state mi,t and commanded
state µi,t of a sensor modality i is quantified using the
Mahalanobis distance metric

DM(i,t) =
√
(mi,t − µi,t)TΣ−1i,t (mi,t − µi,t) . (2)

In combination with a custom anomaly threshold εi for
every modality of the skill, this metric leads to a higher
error sensitivity in timesteps where the execution needs
to be precise, indicated by small values of the reduced
covariance matrix Σi,t. If any DM,i exceeds its skill and
modality specific anomaly threshold εi for e consecutive
timesteps, an anomaly is detected (see Fig. 3a). In contrast to
comparable state of the art methods, our approach does not
rely on manual error threshold tuning. Instead, we compute
an independent anomaly threshold εi for every modality of
a skill, based on the recorded data of the user demonstration
U and robot sampling R. With (3) and (4), we determine
the highest occurring Mahalanobis distance for deviations
between the sensor values md,i,t of all demonstrations d ∈
{U, R} belonging to one skill and the associated mean µi,t
of the same skill. This process is repeated for every sensor
modality of a skill.

D̃M(d,i)= max
t∈[1,N ]

√
(md,i,t − µi,t)TΣ−1i,t (md,i,t − µi,t)

(3)
εi = max

d∈{U,R}
D̃M(d,i) (4)

C. Incremental Graph Generation and Refinement
The robot gains additional task knowledge from the user

demonstrations over time and incrementally builds a graph,
structuring the skills on an abstract task level (see Fig. 3c and
Fig. 3f). The demonstrated skills, represented by the graph’s
edges, are connected by nodes, termed decision states. The
states restrict the number of possible successor edges and
handle the transition between skills, described in more detail
in Sec. IV-D. A teaching phase, in which changes are made to
the graph, is always triggered by the robot if a new situation
is detected during the execution. If an anomaly is detected,
the robot stops the current skill execution at tanomaly (see
Fig. 4a). This can be caused, for example, by an unexpected
object weight during a pick action, indicated by a deviation
in the force-torque sensor values. It is then within the user’s
responsibility to decide whether the detected situation a)
poses a new skill or b) must be incorporated into the currently
executed skill.

a) Extend Graph With a New Skill: If the user decides,
that the newly detected situation requires an additional skill,
s/he demonstrates a new behavior, starting from the robot
configuration in tanomaly (see xi in Fig. 4b). This skill
handles the newly detected situation in future executions of
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Fig. 3. Anomaly detection (left column) and skill transition when
reproducing the situation with the extended task graph (right column). The
green arrows in the graph represent the selected skills and the red arrows
the progress of the execution.

the task. The sensor trajectory of the user demonstration
XUdem(tanomaly, ..., NU) is appended to the recorded sensor
sequence M(tα, ..., tanomaly) during the interval [tα; tanomaly],
resulting in XU. After the user has brought the environment
to the state before the demonstration, the robot moves to the
configuration at timestep tα and repeats the extended user
demonstrationXU. The two recorded sensor sequences of the
alternative behavior are then probabilistically encoded and
saved as skill s2. A new decision state is introduced in the
task-graph, splitting up skill s1 into two parts before and after
the anomaly detection, depicted s1B and s1A respectively (see
Fig. 4c and Fig. 4d). Additional to s1A, s2 is appended to
the newly inserted node. As seen in Fig. 4c, skill s1 is split
at timestep

tα = tthresh + αe , (5)

where tthresh is the timestep in which the sensor deviation
DM(i,t) first exceeds the anomaly threshold εi, e is the
number of consecutive timesteps for which DM(i,t) > εi until
an anomaly is triggered and α ∈ [0; 1[ is a scaling factor,
placing the decision state in between timestep tthresh and



tanomaly. An early and smooth transition from skill s1B to its
successor without unnecessarily long anomaly reproduction,
requires a minimal α, placing the decision state close to
tthresh. However, a robust decision requires distinguishable
sensor readings that can be assigned to a specific skill with a
certain confidence, pushing the decision state towards tanomaly
and thereby α → 1. The decision for the subsequent skill
must be made before tanomaly is reached during execution of
skill s1B, otherwise the anomaly detection wrongly identifies
a new situation for the case s2 (see Fig. 3d). Preliminary
experiments have shown that setting e = 30 and α = 1/3
is a good compromise between robustness and acceptable
decision-making delay.
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Fig. 4. The process of adding a new skill to the task-representing graph.

b) Refine Current Skill: In case the user wants to
refine the skill s, during which the anomaly was detected,
its generalized sensor value trajectory Ys with associated
sequence of covariance matrices Zs is adjusted. Hereby, no
new skill is generated, but the current one becomes capable
of handling more diverse conditions. That enables the robot
to account for deviations in the environment during the task
execution, such as different object weights or geometries,
which must be handled identically and therefore require the
execution of the same skill. For example, a geometry-based
sorting task of different objects, in which the weight of an
object shall not have an influence on the task outcome, can
be realized by refining an initial demonstration with further
examples. The first appearance of an object with a different
weight triggers a force anomaly, which should be regarded
as an expected condition in future executions of that skill. By
incorporating a demonstration of the new situation into the
probabilistic skill model, the anomaly threshold εi for every
sensor modality is adjusted, avoiding false-positive force
anomaly detection results in future executions. An example
of the new setup is either acquired by a user demonstration
in user-refine mode or by the robot in auto-refine mode.
The latter describes the robot continuing the motion after
a detected anomaly until the end of the skill and recording
the new sensor value sequence Xref. During execution of the

remainder of the skill, the anomaly detection is not active.
A manual demonstration in user-refine mode, starting from
the anomaly configuration, offers the possibility to adjust
the full trajectory of the correction. For both options, the
recorded sequence of sensor values Xref(tanomaly, ..., Nref) is
appended to the sensor trajectory M(t1, ..., tanomaly) of the
skill before the anomaly. The new refining demonstration is
used together with the initial training data of that skill for a
new probabilistic encoding, as described in Sec. IV-A. The
task-graph is then updated with the new model of the skill.

D. Execution of the Learned Behavior

An essential concept of our active learning framework is
the combined teaching and execution in a collaborative way.
The task-representing graph enables the robot to robustly
reproduce learned behavior and can be refined or extended by
the user, when the robot detects a new situation. Structuring
the different skills on a high task-level, while using statistical
modeling for the skills on a low level, poses multiple advan-
tages. Decision states are automatically inserted at critical
skill transition timesteps of the task, which accelerates not
only the computation required for the decision process, but
also eliminates perceptual aliasing and thereby the risk of
deciding for a wrong skill. By leveraging the knowledge of
an approaching decision, the next skill can be chosen at an
early timestep, which avoids unnecessary robot movements.
Furthermore, our proposed approach identifies the sensor
modality causing an anomaly. That allows to only consider
relevant sensor values when deciding for the appropriate
subsequent skill in a decision state.

As seen on the right side of Fig. 3, the robot starts the task
with the first skill s1B. If no anomaly is detected during the
execution, the robot reaches the first decision state, in which
the subsequent skill s ∈ {s1A, s2} is determined using the
following equation

s = argmin
s

(‖m− µs,0‖) . (6)

m is the measured vector of the robot’s proprioceptive sensor
values of a modality in the decision state and µs,0 is the
vector of the first timestep of a generalized sensor trajectory
of the same modality. Among all skills attached to the
decision state, the skill s with the shortest Euclidean distance
‖m− µs,0‖ fulfills the transition condition and is executed
next (see Fig. 3e). In contrast to the anomaly detection,
we use the Euclidean distance metric here, because the
Mahalanobis distance favors skills with high uncertainty in
the first timestep, expressed by high values in the covariance
matrix.

V. EXPERIMENTS

We evaluate that our framework is capable of learning
tasks that can contain different conditions which need to
be observed by the robot during execution. Furthermore, we
compare our framework with two alternative approaches that
allow intuitive transfer of conditional tasks to a robot.



A. Experimental Setup

As seen in Fig. 5, a DLR LWR IV [2] is mounted on a
linear axis and equipped with a “Robotiq 85” 2-finger gripper
as well as a FT-sensor, measuring the forces and torques
acting on the end-effector. The robot is impedance controlled
with a control frequency of 50 Hz and parameterized with
constant stiffness- and damping coefficients ktrans = 1200
N/m, krot = 100 Nm/rad and dm = 0.3 Ns/m respectively.
Pedals and a tablet displaying a GUI allow the user to

DLR LWR 4

GUI on 
a tablet

Buttons to 
start/stop 
user demo 
and to oper-
ate gripper

Fig. 5. Experimental setup.

interact with the robot while guiding it at the same time.
The pedals are used to open or close the gripper and to start
or stop the sensor recording when using kinesthetic teaching
in gravity compensation. A GUI guides the user through the
teaching process and requests input from the user when the
task definition requires it. For all experiments, we use the
same object (6.8 cm x 4 cm x 2 cm) in different setups,
shown in Fig. 6.

We designed two different tasks; Reorientation and
Contact-Based Sorting. The Reorientation task is to manipu-
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Fig. 6. Initial and final state of the Reorientation (left) and Contact-Based
Sorting tasks (right) with each different environmental conditions (Cond. 1
and Cond. 2).

late an object from a start to a target. The object’s long edge
shall be aligned with a mark on the table at the target. In
addition, the object can be rotated by 90◦ in the start location
such that the gripper can grasp it over its short edge. This
requires a reorientation of the object before placing it in the
target location. A step-wise description is shown in Fig. 7
and Fig. 8. The Contact-Based Sorting task is to fill a part
storage starting with target I. If target I is occupied, the object
shall be placed on target II. The manipulation steps as well
as the generation of the task graph are shown in Fig. 10 and
Fig. 11.

TABLE I
DIFFERENT METHODS COMPARED IN THE EXPERIMENT

Properties

Methods Sequential
Batch Progr.
(SBP)

Collaborative
Incremental
Progr. (CIP)

User-Trigger.
Incremental
Progr. (UIP)

knowledge
representa-
tion

teaching-
interaction

unidirectional bidirectional unidirectional

incrementally
extendable

8 4 4

anomaly
detection

robot robot user

B. Methods to be Compared
Table I shows an overview of the PbD frameworks we

compare, which all use the same sensory input but no vision
system. Sequential Batch Programming (SBP) is based on
the framework presented in [10], where the teaching and
execution are split up in two distinct phases. First, the teacher
successively demonstrates all different task solutions, which
are independently stored in a solution pool. Whenever an
anomaly is detected during the execution of a task solution,
the system switches to the state within an alternative solu-
tion that minimizes the error between current sensor values
and all alternative solution states. Collaborative Incremental

start0 end1
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1

2

start0 end1
s1

start0 end1
s2

start0 end1
s1

start0 end1
s2

Execu�on:

targetstart

SBP

Fig. 7. Task 1 - Reorientation, SBP: In step (1), the user demonstrates a
pick and place skill s1. In step (2), the user extends the solution pool with a
second skill s2, in which the object gets rotated by 90◦ before placing it in
the target location. During execution of the nominal solution s1, the rotated
object in the start location causes an anomaly, that triggers a transition to
the alternative solution. The bottom row illustrates an example of a failed
execution, where the robot decides for a wrong entry point of the alternative
and skips the reorientation part of s2.

Programming (CIP) is our proposed PbD approach that
combines anomaly detection with collaborative programming
to account for new task conditions. Compared to SBP, the
decision state is explicitly programmed by actively querying
the user instead of allowing arbitrary switching states, which
do not guarantee a successful transition. User-Triggered In-
cremental Programming (UIP) is inspired by the framework
presented in [5], where similar to CIP, a task-representing
graph is incrementally constructed in a combined teaching
and execution phase. The difference between these methods
is, that the teacher has to detect anomalies with UIP during



execution of the task and needs to decide if and when a new
skill demonstration is needed.
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Fig. 8. Task 1 - Reorientation, CIP and UIP: In step (1), the user
demonstrates a pick and place skill s1. Step (2) shows the updated graph
after first execution where an anomaly leads to inserting decision state (DS)
and splitting s1 into s1A and s1B . The DS is created by the anomaly
detection algorithm in CIP and by the user manually in UIP. In step (3), the
user adds a new skill s2 that accounts for the anomaly and properly rotates
the object before placing it.

(a) CIP: Autonomous anomaly de-
tection when grasping object.

(b) UIP: Example for an incorrect
user-triggered anomaly before grasp-
ing object.

Fig. 9. Correct (a) and wrong (b) robot configuration to provide an
alternative skill for solving a new situation. Due to the user’s influence
on the anomaly detection, a configuration in which the robot can’t sense
the anomaly is more likely with UIP.

The methods were tested by two users that did not work
with the system before. They were instructed how to use the
GUI and buttons to operate the robot (Fig. 5). They were
briefed about the robot’s sensing capabilities and that the
robot is able to “feel” forces and to measure what is inside
the gripper. The users were further advised that the system
is not equipped with a vision system.

C. Results
The three methods were compared objectively based on

execution success in Table II.
1) Task 1 - Reorientation: When using SBP, a user failed

in trial 1 to program the Reorientation task such that during
the execution the robot correctly detected an anomaly but
switched to a point in the alternative solution that did not
reorient the object (Fig.7 bottom). This is a limitation of this
method as it does not guarantee feasible solution switching.
In the second trial, the task has been programmed success-
fully by providing an alternative solution with a distinct
entry point without further ambiguous states compared to the
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Fig. 10. Task 2 - Contact-Based Sorting, SBP: The user successively
demonstrates two pick and place skills in step (1) and (2). In demonstration
of skill s2, the object is placed in target location II, if target location I
is occupied by another object. The bottom row shows the execution of the
nominal solution s1, where an unexpected contact force triggers a transition
to s2 while approaching target location I. The robot interpolates to the entry
state of the alternative solution and places the object in location II.
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Fig. 11. Task 2 - Contact-Based Sorting, CIP and UIP: Step (1) shows
the initial demonstration of a pick and place skill s1. Step (2) shows the
updated graph after first execution where an anomaly leads to decision state
(DS) insertion and splitting of s1 into s1A and s1B . The DS is created by
the anomaly detection algorithm in CIP and by the user manually in UIP.
In step (3), the user added a new skill s2 that recovers from the anomaly.

sensor values at the anomaly. Programming with CIP led to a
successful execution in both trials. (Fig. 8 left). With UIP, the
decision state has been manually triggered before the robot
was actually able to sense an anomaly (Fig. 9b). The task is
shown in Fig 8 middle, which caused the execution to fail
as there is no grasping anomaly present at the decision state.

2) Task 2 - Contact-Based Sorting : In this task, SBP and
CIP could be used to program a successful task execution.
Although no explicit decision point has been programmed in
SBP, a feasible path existed from the detected anomaly when
contacting an object at occupied target I (Fig. 10) towards
the alternative solution that handles target II. With CIP,
task definition was successfully handled by the collaborative
programming scheme, leading to the task graph shown in
Fig. 11. Again, programming with UIP failed as the decision
state has been triggered too early by the user. Hereby, the
robot could not measure the contact force of an existing
object at target I, because the decision state has been inserted
wrongly before any contact occurred (Fig. 11 middle).



TABLE II
EXPERIMENTAL RESULTS OF SUCCESSFUL EXECUTIONS

Method SBP CIP (ours) UIP
Task 1 2 1 2 1 2
Trial 1 8 4 4 4 8 8
Trial 2 4 4 4 4 8 8

D. Discussion

In theory, all three methods allow the user to program
the robot by demonstration such that it is able to solve
the experimental tasks. With SBP, conditions are not pro-
grammed explicitly as it rather reacts to any anomaly instead
of making decisions at specified points. Furthermore, each
solution needs to be demonstrated over the whole task,
whereas in both of the other methods, demonstrations start
at possible decision states. With CIP and UIP, conditions are
programmed explicitly. The limitation of UIP is that it does
not guarantee that a condition can be sensed at the time the
user triggers a decision state.

For SBP and UIP, the responsibility for anomaly detection
and insertion of decision states lies by the user. This means
that new situations cannot be handled in absence of the
user. CIP addressed exactly that problem by combining an
anomaly detection with an active learning scheme, where
the user is queried to incrementally add knowledge to the
system. In other words, the user is asked to teach how to
recover from the detected abnormal situation. As this can
happen at any time, the user can seamlessly start with a
basic task demonstration and add further knowledge in the
future. In SBP, the user might not be aware that a transition
between solutions is not feasible during execution. In UIP,
the user might introduce a decision state at a time the robot
cannot measure it or is not equipped with the sensors to do
so, for instance a camera. Consequently, the task execution
of such programs fails. In our proposed method, this problem
is avoided by the active learning scheme, where the system
communicates whenever it encounters difficulties (anomaly
detection) to the user and then the user teaches the robot
how to recover from that.

VI. CONCLUSION AND FUTURE WORK

We proposed an active learning framework that allows
non-experts to intuitively program conditional tasks without
writing code, involving sensor readings of force, motion
and grasp status. We demonstrated that task conditions can
be effectively demonstrated by our interactive programming
scheme, where the robot asks for user input when a new
environmental situation arises. Introducing the parameter-
free on-line anomaly detection during task execution reduces
not only the user’s workload, but also ensures the creation of
a functioning task model. The incrementally generated task-
representing graph eliminates perceptual aliasing and guar-
antees a successful transition between skills in the decision
states. This allows to scale the complexity of a task over
time without reducing the overall performance.

As future work, a user study is planned to reveal more
insights about the intuitiveness of each of the methods and
its applicability for intuitive task programming that involves
environmental conditions or recovery behaviors.
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[2] C. Loughlin, A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer,
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