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Abstract16

Dawn’s framing camera observed boulders on the surface of Vesta when the space-17

craft was in its lowest orbit (lamo). We identified, measured, and mapped boulders in18

lamo images, which have a scale of 20 m per pixel. We estimate that our sample is vir-19

tually complete down to a boulder size of 4 pixels (80 m). The largest boulder is a 400 m-20

sized block on the Marcia crater floor. Relatively few boulders reside in a large area of21

relatively low albedo, surmised to be the carbon-rich ejecta of the Veneneia basin, either22

because boulders form less easily here or live shorter. By comparing the density of boul-23

ders around craters with a known age, we find that the maximum boulder lifetime is about24

300 Ma. The boulder size-frequency distribution (SFD) is generally assumed to follow25

a power law. We fit power laws to the Vesta SFD by means of the maximum likelihood26

method, but they do not fit well. Our analysis of power law exponents for boulders on27

other small Solar System bodies suggests that the derived exponent is primarily a func-28

tion of boulder size range. The Weibull distribution mimics this behavior and fits the29

Vesta boulder SFD well. The Weibull distribution is often encountered in rock grind-30

ing experiments, and may result from the fractal nature of cracks propagating in the rock31

interior. We propose that, in general, the SFD of particles (including boulders) on the32

surface of small bodies follows a Weibull distribution rather than a power law.33

1 Introduction34

Boulders on small Solar System bodies provide a window into the interior. Boul-35

ders may be created by spallation during large impacts and therefore are typically found36

in and around fresh craters. They do not survive forever, but are gradually eroded into37

dust by exposure to the space environment (Delbo et al., 2014; Basilevsky et al., 2015).38

In the literature, the location and outline of boulders are typically mapped and a size-39

frequency distribution (SFD) is produced. Studies of main-belt asteroids often focus on40

finding the crater of origin of sparsely distributed boulders (P. Lee et al., 1996; Thomas41

et al., 2001; Küppers et al., 2012). In contrast, the surface of near-Earth asteroids is densely42

populated by boulders of all sizes, all thought to originate from the destruction of a par-43

ent body (Mazrouei et al., 2014; DellaGiustina et al., 2019; Michikami et al., 2019). Gen-44

erally, a power law is fitted to the cumulative boulder SFD, with an exponent defining45

the slope. In a seminal paper, Hartmann (1969) provided a table in which empirically-46

derived exponents are linked to various geological processes. The largest exponent in the47

table is associated with the ejecta of hypervelocity impacts. The exponents of asteroid48

boulder SFDs are generally found to be close to this value. However, published expo-49

nents show considerable variation, and the reason for this is often not clear. What clues50

does a particular value of the exponent provide to the composition and physical prop-51

erties of the surface?52

From its vantage point in the lowest mapping orbit, the nasa Dawn spacecraft was53

able to distinguish boulders on the surface of Vesta. A first analysis of the global boul-54

der population was performed by Denevi et al. (2016), who inferred a typical regolith55

depth of about 1 km. We extend their analysis by mapping the location of all boulders56

that we could recognize to investigate their distribution in and around individual craters,57

as well as the distribution of craters with boulders over the surface. We estimate the av-58

erage boulder lifetime by comparing the boulder density around craters for which an age59

estimate is available (Schmedemann et al., 2014; Kneissl et al., 2014; Ruesch et al., 2014),60

and assess the Basilevsky et al. (2015) prediction that meter-sized boulders on Vesta live61

roughly 30 times shorter than on the Moon. We also determined the SFD of boulder pop-62

ulations of individual craters and that of the global population. Vesta is a very large as-63

teroid, and on its surface we found boulders with a size of hundreds of meters, larger than64

those found on other asteroids, with the exception of Ceres (Schulzeck et al., 2018). Such65

huge objects are also rare on Earth (Bruno & Ruban, 2017), and we will therefore ex-66
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plore a relatively unknown part of the boulder SFD. The official geological term for ter-67

restrial particles larger than a few meters is “megaclast”. According to Bruno and Ruban68

(2017), our Vesta megaclasts classify as megablocks (10 < d < 100 m) and superblocks69

(d > 100 m). In this paper we will continue to refer to all Vesta megaclasts as “boul-70

ders”, for convenience. We compare the Vesta boulder SFD with that of other small bod-71

ies. This is made challenging by the fact that different fitting methods have been used72

in the literature to fit the power law, only one of which, the maximum likelihood (ML)73

method, is statistically correct (Clauset et al., 2009). We therefore carefully assess pub-74

lished exponents, and in some cases reanalyze the original data using the ML method.75

In this paper we only discuss boulders on small bodies. We do not discuss boul-76

ders on Earth and Mars, which are often formed and weathered by forces other than those77

imposed by the space environment (tectonic, aeolian, biological) (Pajola et al., 2017).78

Neither do we consider boulders on comets, as they are not thought to result from im-79

pacts but rather from processes like sublimation, activity outbursts, and the associated80

uplifting and re-deposition (Pajola et al., 2015).81

2 Methodology82

2.1 Boulder mapping83

Boulders on Vesta can only be distinguished in framing camera images from the84

Low Altitude Mapping Orbit (lamo), which were acquired between 13 December 201185

and 30 April 2012 at an altitude of 180 km (Russell et al., 2007). The framing camera86

is a narrow-angle camera with a field-of-view of 5.5◦×5.5◦ (Sierks et al., 2011). lamo87

images have the highest resolution of all images acquired at Vesta. Most lamo images88

have a spatial resolution between 17 and 22 m, although south of latitude −45◦ the res-89

olution is a little lower (Roatsch et al., 2013). When we talk about “pixels” in this pa-90

per, we always refer to lamo pixels. We selected 53 lamo images that we used in our91

analysis (at least one for each crater with boulders), and determined their average spa-92

tial resolution as 20±2 meter per pixel. In this paper, we therefore adopt a typical lamo93

image resolution of 20 m per pixel. We are confident that we could reliably identify a94

boulder for a size of at least 3 pixels (60 m) using the method described below, although95

we mapped suspected boulders smaller than that. However, we cannot assume our count96

is complete with the 3 pixels criterion, if only because of the measurement uncertainty.97

A criterion of 4 pixels (80 m) is more likely to ensure near-completeness (Pajola et al.,98

2016). The photometric angles at the center of the 53 images are plotted as a function99

of latitude in Fig. 1. The illumination and observation conditions during lamo were rel-100

atively constant. The average photometric angles at the center of the images are: inci-101

dence ι = 57◦±10◦, emission ε = 9◦±4◦, and phase α = 54◦±8◦. The incidence and102

phase angles become relatively large only towards the mid-latitudes in the northern hemi-103

sphere (+50◦), which were partly in the shadow. This means that the majority of boul-104

ders were observed under similar conditions.105

The second author reviewed the entire lamo data set and identified, measured, and106

mapped all boulders using the J-Vesta GIS program, which is a version of jmars (https://107

jmars.mars.asu.edu/) (Christensen et al., 2009). The first author reviewed these re-108

sults for accuracy and completeness. The location of boulders (and craters) is defined109

in the Claudia coordinate system (Russell et al., 2012). Boulders were identified as pos-110

itive relief features in projected images at a zoom level of 1024 pixels per degree. The111

native lamo resolution is ∼ 200 pixels per degree, so this represents a zoom factor of112

about 5. The boulder size was determined using the J-Vesta crater measuring tool, which113

draws a circle around the boulder fitted to 3 points that are selected by the user on the114

visible boulder outline. The vast majority of boulders that we mapped were too small115

to clearly distinguish the shape, and we therefore chose the circle as a reasonable approx-116

imation. The first author also mapped boulders for a single crater using the same method117
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to confirm that the measurement uncertainty is about a single pixel. While mapping,118

there were several challenges to overcome. The limited accuracy of pointing information119

for lamo images leads to mismatches between projected images. We used small craters120

inside and outside the crater as tie points to align the projected images to the Vesta back-121

ground mosaic, and to align images relative to each other. J-Vesta allows shifting the122

projected image relative to the background in the horizontal and the vertical direction,123

but rotation is not possible. All this leads to uncertainty in the location of boulders on124

the order of 500 m. In addition, unusually bright inner walls of fresh craters could ap-125

pear saturated, making it impossible to recognize any feature on their surface, due to126

a limitation in J-Vesta with image brightness scaling. Generally, on crater walls it was127

difficult to distinguish genuine boulders from rocky outcrops, which are prevalent just128

below the rim. When in doubt, we did not include such features in our sample. It was129

also difficult to decide whether a large mound was a degraded boulder or had always been130

simply a pile of rubble. The north pole of Vesta was in the shadow at the time of lamo131

(December 2011 to April 2012). Therefore counts of boulders around craters are incom-132

plete north of latitude +30◦, and it was not possible to identify boulders north of +60◦.133

2.2 Size-frequency distribution134

Boulder SFDs are often displayed in cumulative format, following the recommen-135

dation by the Crater Analysis Techniques Working Group (1979) for crater SFDs to be136

plotted in both the cumulative and differential format. For the latter, the Working Group137

recommended a relative distribution known as the R-plot. In this paper, we display the138

boulder SFD in both cumulative and differential format, but choose the incremental (binned,139

histogram) version for the latter (Colwell, 1993). Figure 2 illustrates both formats for140

a simulated boulder population.141

The cumulative format has become especially popular in the literature (perhaps142

because of its remarkable ability to convert even the noisiest data into a smooth down-143

ward curve), and figures in differential format are often omitted from boulder (and crater)144

counting papers. Several unfortunate practices associated with the cumulative distribu-145

tion have become established in the literature. The first is binning. The Crater Anal-146

ysis Techniques Working Group (1979) wrote that the “collection, manipulation, and dis-147

play of unbinned data is more time consuming than for binned data”. This may have148

been true in 1979, but is no longer the case. Binning of a cumulative distribution is not149

merely unnecessary, but represents a loss of information. Also, bins that have the same150

value as their neighbor on the right are often not displayed. Their omission skews the151

appearance of the distribution and affects how we perceive the goodness-of-fit of a model152

curve. Another statistically suspect practice is the association of Poisson (square-root)153

error bars with the bins. Such error bars are valid for single bins when considered in iso-154

lation, but in a plot of the cumulative distribution they do not serve their usual purpose155

of indicating the uncertainty of the data: Regardless of the size of its bar, the number156

in a bin can neither be lower than its neighbor on the right nor higher than its neigh-157

bor on the left. Therefore, we do not bin the cumulative distribution in this paper. The158

differential distribution is always binned in practice, where the bin width can be chosen159

as constant on a linear or logarithmic scale. Poisson error bars associated with the bins160

are statistically meaningful and will give the correct impression of how well the data agree161

with a particular model curve. Empty bins, however, present a problem. SFD plots are162

invariably shown on a log-log scale, and empty bins cannot be displayed, which skews163

the appearance of the distribution. Moreover, empty bins cannot be included when fit-164

ting models (such as a power law) to the logarithm of the data, introducing bias.165
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2.3 Power law fitting166

The cumulative distribution of boulders on Solar System bodies is generally assumed167

to follow a power law. The number of boulders with a size larger than d is:168

N(> d) = Ntot

(
d

dmin

)α
, (1)

with α < 0 the power law exponent and Ntot the total number of boulders larger than169

dmin. Hartmann (1969) showed that the exponent of a cumulative distribution of a quan-170

tity that follows a power law is identical to that of the associated incremental differen-171

tial distribution with a constant bin size on a logarithmic scale. Colwell (1993) added172

that this is only true if the logarithmic bins are chosen wide enough. If the bin size of173

the incremental differential distribution is constant on a linear scale, then the exponent174

differs by unity from that of the cumulative distribution. Historically, the power law ex-175

ponent was estimated by fitting a line to the cumulative distribution plotted on a log-176

log scale, either by eye or by means of a least-squares algorithm. There are two prob-177

lems associated with this practice. First, the differential distribution may clearly show178

that a certain quantity does not follow a power law, but the associated cumulative dis-179

tribution may still give the impression that it does. Second, the uncertainty of the power180

law exponent cannot be reliably retrieved by means of simple linear regression because181

of the ill-defined errors associated with the cumulative bins. Uncertainties given for ex-182

ponents derived from a conventional fit to the cumulative distribution are underestimated183

(Clauset et al., 2009). A statistically sound way to estimate the power law exponent from184

the SFD is the maximum likelihood (ML) method (Newman, 2005; Clauset et al., 2009).185

In the ML method, the power law exponent is calculated directly from the boulder size186

measurements, and is therefore independent of how the data are displayed (cumulative,187

differential, binning). The ML estimate for the power law exponent (α < 0) is:188

α̂ = −N

(
N∑
i=1

ln
di
dmin

)−1
, (2)

with di the size of boulder i and N the total number of boulders with a size larger than189

dmin. The standard error of α̂ is190

σ = −α̂/
√
N (3)

plus higher order terms, which we ignore in this paper. We note that the cumulative power191

law exponent alpha (αS < 0) in Eq. 2 relates to the scaling parameter alpha (αC >192

0) in Clauset et al. (2009) as αS = 1 − αC. The estimator in Eq. 2 is unbiased only193

for sufficiently large sample size; Clauset et al. (2009) suggest N > 50. Clauset et al.194

(2009) also provide details to a statistical test that evaluates whether a power law is an195

appropriate model for the data. The test randomly generates a large number of synthetic196

data sets according to the best-fit power law model (specified by α̂ and dmin), and cal-197

culates for each the so-called Kolmogorov-Smirnov statistic, which is a measure of how198

well the synthetic data agree with the model. A p-value, defined as the fraction of syn-199

thetic data sets that have a larger statistic than the real data set, quantifies how well200

the power law performs. The authors adopt p < 0.1 to mean rejection of the power law201

model.202

An example of a fit with the ML method is shown in Fig. 2A. In this paper, we gen-203

erally display the power law associated with a ML-derived exponent in plots of both the204

cumulative and differential distributions. Displaying it in the latter format requires an205

additional step of performing a conventional fit to the differential distribution to esti-206

mate the intercept in addition to the exponent. In case the individual boulder sizes are207

not available, the ML method cannot be applied. If binned boulder numbers as a func-208

tion of size are available, fitting a power law to the incremental differential distribution209

in a log-log plot by means of a least-squares algorithm is preferred over fitting a power210

law to the cumulative distribution. Still, one must choose an appropriate bin size and211

–5–

©2020 American Geophysical Union. All rights reserved. 



manuscript submitted to Earth and Space Science

the necessary exclusion of empty bins (the logarithm of zero is undefined) introduces bias,212

as we will quantify below. One could resolve the problem of empty bins by fitting the213

power law to the data on a linear scale, but this gives unduly weight to bins with larger214

numbers towards smaller boulder sizes, which runs counter to the purpose of the power215

law (describing identical behavior over a wide range of scales). An example of a power216

law fit to the differential distribution is shown in Fig. 2B.217

2.4 Monte Carlo simulations218

To investigate the statistical power of the different methods to retrieve the power219

law exponent (ML and differential fit) and to uncover any associated bias, we simulate220

the process by randomly generating power law distributions. Fitting a power law to the221

cumulative distribution is such poor practice that we do not evaluate the method here.222

The continuous power law probability distribution is also known as the Pareto distribu-223

tion (Newman, 2005). To simulate a size distribution of boulders associated with impact224

craters we draw a random variate U from a uniform distribution on (0, 1) using the ran-225

domu routine in IDL with an undefined seed. Then the boulder diameter226

d = dminU
1/α (4)

follows a Pareto distribution, with α the power law index (associated with the cumula-227

tive distribution function, with α < 0) and dmin the minimum boulder diameter. We228

start our investigation by generating 150 boulder populations with the number of boul-229

ders in each chosen randomly in the logarithmic interval (10, 1000). For each population,230

the number of boulders served as input to Eq. 4 to generate a SFD that obeys a power231

law with a (cumulative) exponent of −4.0. Then we estimate the power law exponent232

of each simulated population by means of two alternative methods: the ML method and233

a conventional (least-squares) power law fit to the differential distribution in log-log for-234

mat. The ML method estimates the power law exponent straight from the boulder counts,235

but when fitting the differential distribution one must make several choices. For prac-236

tical purposes we adopt the parameters used in this paper to represent Vesta: a mini-237

mum boulder size of dmin = 80 m and a constant bin width of 0.07 on a logarithmic238

scale. This corresponds to β = 100.07 − 1 = 0.17 and meets the bin width criterion of239

Colwell (1993), so that the derived exponent should be the same as that of the cumu-240

lative distribution. We exclude any filled bins beyond the first empty one from the fit,241

which introduces bias in the estimated exponents, especially for small boulder popula-242

tions (simply excluding empty bins from the fit introduces a different bias). Fitting was243

performed using the Levenberg-Marquardt algorithm with constrained search spaces for244

the model parameters (Moré, 1978; Markwardt, 2009). The Poisson errors on the log-245

arithm of the binned counts are asymmetric, and we pass the logarithm of the upper er-246

ror to the fitting routine.247

The results of the simulation are shown in Figs. 2C and D. For both methods, a248

large number of boulders is required to reliably estimate the power law exponent. But249

even for 1000 boulders the estimated exponent may differ from the true value (−4.0) by250

up to 0.3, simply by chance. For 100 boulders the estimate exponent is typically off by251

unity. Below 100 boulders the estimated exponent may rapidly diverge from the true value.252

For more than 200 boulders, the two methods give similar results. For smaller numbers,253

however, the estimated exponents are not distributed symmetrically around the true value.254

For the ML method this is the bias indicated by Clauset et al. (2009). It appears to be255

negative, but the situation is more complicated than Fig. 2C suggests. The median ex-256

ponent is actually −4.0, meaning that exponents smaller and larger than −4 are found257

in roughly equal numbers. However, compared to the true value, the estimated exponent258

can be much more negative (down to −9) than less negative (up to −2). This is reflected259

in the mean of the exponents in the figure, which is −4.2. For the method of fitting the260

differential distribution (Fig. 2D) the median and mean of the exponents are −3.6 and261

−3.5, respectively. This positive bias results from the aforementioned exclusion of empty262
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bins, and affects boulder populations of all sizes. Therefore, the differential fit method263

is less accurate than the ML method.264

We find that the derived power law exponent for populations with a small num-265

ber of boulders is always biased, but more so for the differential fit method than for the266

ML method. For the latter, we recommend a population size of at least 100 boulders for267

which the size is accurately known (at least 4 image pixels). Here we are more conser-268

vative than Clauset et al. (2009), who recommended a minimum sample size of 50. For269

larger boulder numbers, the estimated exponent generally differs from the true value by270

less than unity. But even with 1000 boulders, we can still expect differences of up to 0.3.271

This is important to keep in mind, for example, when we consult Hartmann (1969) for272

the interpretation of the power law exponent. The author provided a list of exponents273

associated with fragmented rocks created by different geological processes with an ac-274

curacy of two decimal numbers. We verified that an accuracy of 0.01 for the exponent275

is only derived from populations of at least a million fragments of known size.276

2.5 Weibull distribution277

Although the power law enjoys widespread use as a model for the boulder SFD,278

it does not always fit the data well. Several authors used exponential functions to fit the279

SFD of boulders on Mars (M. Golombek & Rapp, 1997; M. P. Golombek et al., 2003;280

Pajola et al., 2017), and Pajola et al. (2019) found the Weibull distribution to fit the SFD281

of boulders around a lunar crater better than a power law. Exponential functions can282

be considered as variations of the Weibull distribution, so it is worth considering the lat-283

ter as a viable alternative to the power law.284

The Weibull distribution was initially derived empirically, and is often used to de-285

scribe the particle distribution resulting from grinding experiments (Rosin & Rammler,286

1933). Seeking to describe such a distribution, Brown (1989) developed a theory of se-287

quential fragmentation. He defined the particle distribution as288

n(m) = C

∫ ∞
m

n(m′)f(m′ → m) dm′, (5)

where n(m) is the number of particles per unit mass of mass between m and m+dm.289

The function f describes the mass distribution that results when a single fragment of290

mass m′ > m breaks into smaller, lighter pieces, and takes the form of a power law:291

f(m′ → m) =

(
m

m1

)γ
, (6)

with exponent −1 < γ < 0 and m1 a scaling factor related to the average mass in the292

distribution n(m). The mass on the right hand side of Eq. 6 is m and not m′. Brown293

and Wohletz (1995) showed that a power law follows naturally from a single-event frag-294

mentation that leads to a branching tree of cracks that have a fractal character. The spac-295

ing of the cracks is described by the fractal dimension Df = −3γ. The solution of Eq. 5296

is a Weibull distribution:297

n(m) =
NT

m1

(
m

m1

)γ
exp

[
− (m/m1)γ+1

γ + 1

]
, (7)

with Weibull shape parameter γ + 1. The cumulative form of Eq. 7 is given by:298

N(> m) = NT exp

[
− (m/m1)γ+1

γ + 1

]
, (8)

For use in this paper, we convert Eq. 8 to an expression for the cumulative number den-299

sity as a function of particle diameter d:300

N(> d) = NT exp

[
− (d/d1)3(γ+1)

γ + 1

]
, (9)
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using m/m1 = (d/d1)3, with d1 a size scaling constant. The Weibull shape parameter301

in Eq. 9 is 3(γ+1). In practice, we only include boulders larger than a certain size in302

the analysis. That means that we are dealing with a left-truncated Weibull distribution303

with the cumulative form (Wingo, 1989):304

N(> d) = N exp[−α(dβi − d
β
min)], (10)

where N is the number of boulders larger than dmin. Often used to define the Weibull305

distribution are the scale parameter λ = α−1/β and shape parameter k = β = 3(γ +306

1). We estimate α and β from the boulder sizes di > dmin using the ML method. To307

maximize the log-likelihood function, these two equations must be satisfied:308

α =
N∑

(dβi − d
β
min)

N

β
+
∑

ln di −N
∑

(dβi ln di − dβmin ln dmin)∑
(dβi − d

β
min)

= 0. (11)

We find β̂ from a simple grid search, and α̂ by inserting β̂. The Weibull distribution is309

also discussed by Clauset et al. (2009) as the “stretched exponential” distribution.310

3 Results311

3.1 General statistics312

Boulders on Vesta come in many shapes and sizes. In total, we identified 6577 boul-313

ders on the surface of Vesta with a diameter larger than 3 image pixels (60 m), of which314

2318 were larger than 4 pixels (80 m). We found that all boulders are associated with315

impact craters, whose diameter we indicate with D. The details of all craters with at least316

one boulder larger than 4 pixels (n = 69) are listed in Table 1. Examples of Vesta boul-317

der morphology are shown in Fig. 3, which also illustrates one of the challenging aspects318

of boulder identification: Boulders change shape over time. Young craters have boulders319

that are easily recognized with their well-defined shadows. Old craters have only few boul-320

ders, most of which are large and rather look like mounds, with diffuse shadows. For such321

craters it is likely that the more numerous small boulders have simply degraded beyond322

recognition. We will discuss the craters in Fig. 3 in more detail in Sec. 3.3.323

We summarize the general statistics of the global boulder population in Fig. 4. The324

number of boulders per crater clearly depends on crater size (Fig. 4A). The correlation325

is not very tight because the number also depends on crater age. The size of the largest326

boulder of a crater (diameter L) depends on the crater size too (Fig. 4B). In contrast327

to the number of boulders, the size of the largest boulder does not necessarily depend328

on age, as boulders may disintegrate in place to form equally-sized mounds (Fig. 3). Be-329

ing a single measurement, the largest boulder size is a poor statistic, but is nevertheless330

often used to characterize boulder populations. The largest boulder we identified on Vesta331

is around 400 m large and located on the floor of Marcia crater. The inset in Fig. 4B shows332

the challenges of assigning a unique size to large boulders, which often have an irregu-333

lar shape. In the figure we simply assumed a 1 pixel measurement uncertainty, but the334

actual uncertainty increases with boulder size. Boulders of such huge size are unknown335

on Earth, but their identification on Vesta is unambiguous. S. W. Lee et al. (1986) pro-336

vided a plot of the size of the largest boulder on the Moon and the Martian moons Deimos337

and Phobos. The Vesta largest boulder distribution agrees well with theirs where our338

crater size ranges overlap (3 < D < 10 km). In Fig. 4B we also compare our distri-339

bution with the relation provided by P. Lee et al. (1996) (L = 0.25D0.7 with L and D340

in m) and with the empirical range established by Moore (1971) for a selection of lunar341

and terrestrial craters (L = 0.011/3KD2/3 with K ranging from 0.5 to 1.5). The for-342

mer relation represents more or less the upper limit of the latter range. We find that the343
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largest boulders of the smaller craters (D < 10 km) agree well with the P. Lee et al.344

(1996) relation, whereas the largest boulders of the larger craters (D > 10 km) agree345

better with the Moore (1971) range. But our total population of largest boulders does346

not agree with either relation. How uncertain are our size measurements? The first au-347

thor of this paper carefully verified all largest boulders as identified by the second au-348

thor. For example, there is indeed a 220 m sized large, angular, block on the rim of the349

7.5 km sized crater Unnamed12. Of course, we cannot conclude with certainty that this350

superblock is indeed a (former) boulder ejected by the impact that created the crater.351

We also note that the second largest block around Unnamed12 is less than half the size352

of the largest, which is more in line with the aforementioned relations. Given the uncer-353

tainties in our method and the empirical relations, we conclude that the largest boul-354

der sizes on Vesta agree reasonably well with what has been observed on other small bod-355

ies.356

3.2 Spatial distribution357

In Fig. 5, we plot the distribution of all boulders on the surface of Vesta with a size358

of at least 3 pixels on an albedo map. Our map differs from the craters-with-boulders359

map of Denevi et al. (2016), because of our restriction on boulder size and their restric-360

tion on crater size (< 12 km diameter). The largest crater on Vesta with boulders, Mar-361

cia, dominates the center of the map. Even though the count of 3 pixel sized boulders362

is most likely incomplete (see Sec. 3.4.1), we nevertheless chose to display these instead363

of 4 pixel sized boulders, as there are relatively few of the latter. First we note that the364

boulder count is incomplete for craters at high latitudes in the northern hemisphere, be-365

cause their floors were mostly in the shadow during lamo. South of 50◦N, the spatial366

distribution of craters with boulders appears not to be entirely random. The albedo map367

gives the impression that boulders tend to avoid a large area of below-average albedo,368

color-coded blue, which was also noticed by Denevi et al. (2016). The dark material in369

this area may have been delivered by a large carbonaceous chondrite impactor that cre-370

ated the ancient Veneneia basin (Reddy et al., 2012; Prettyman et al., 2012; Jaumann371

et al., 2014). The ejecta of the other large basin on the south pole, Rheasilvia, are dis-372

tributed over the entire southern hemisphere (Yingst et al., 2014). Craters with boul-373

ders dot the southern hemisphere and there is no obvious north-south gradient in the374

abundance of such craters. Therefore, the scarcity of craters with boulders on dark ter-375

rain may be related to the, presumably carbonaceous, composition, or the fact that these376

are former ejecta. Boulders may form less easily here, Denevi et al. (2016) suggested that377

the regolith is thicker than average, or live shorter. These ideas can be tested by study-378

ing the boulder population of Ceres, Dawn’s next mission target, whose reflectance spec-379

trum is similar to that of carbonaceous chondrites (McCord & Gaffey, 1974). Marcia,380

which is located within the dark terrain, has abundant boulders. As the dark layer is rel-381

atively thin (Jaumann et al., 2014), the impactor that formed Marcia likely punched through382

it, and the boulders are composed of the underlying, non-dark, material.383

The distribution of boulders in and around the craters on Vesta is highly variable.384

We show the boulders distribution for a selection of craters in Fig. 6. Some craters have385

most boulders located outside the rim (Cornelia, Licinia), others have most boulders lo-386

cated inside the crater (Marcia, Vibidia). Boulders associated with craters that formed387

on a slope (Krohn et al., 2014) are concentrated on the down-slope side of the crater (An-388

tonia, Unnamed36). We plot the boulder locations in two colors: green for boulders with389

a size between 3 and 4 pixels, and red for boulders larger than 4 pixels. The figure shows390

that boulders of this size (d > 60 m) are generally found within one crater diameter391

of the rim. Rarely did we find boulders further away; in such cases the identification was392

invariably ambiguous. We expect that large boulders are found closer to the crater rim393

than smaller boulders because of the larger amount of energy required to eject them, a394

prediction confirmed for lunar craters (Bart & Melosh, 2010; Krishna & Kumar, 2016;395

Pajola et al., 2019). However, the red and green boulders in Fig. 6 are not clearly seg-396
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regated in terms of distance from the crater center. A clear correlation between boul-397

der size and distance from the crater was not found for Ceres either (Schulzeck et al.,398

2018). But it is still possible that such a correlation exists for Vesta, and that we failed399

to find it only because boulders smaller than 60 m could not be reliably identified. The400

number of boulders around each crater not only depends on the crater size, but also on401

age. We discuss the latter dependency in the following section.402

Figure 6 does not distinguish between boulders in- and outside the crater rim. We403

found little evidence for the production of boulders by physical weathering from crater404

walls. Rock falls can be triggered by thermally-induced mechanical stresses due to vary-405

ing insolation (do Amaral Vargas et al., 2013). However, we could not identify any boul-406

der tracks on the talus material that mantles many inner crater walls, in contrast to the407

Moon where boulder tracks are common (Senthil Kumar et al., 2016; Bickel et al., 2019).408

We also analyzed the distribution of boulders with respect to the local slope. The boul-409

der density is low on steep slopes, as expected, but there is no systematic increase of boul-410

der density at the foot of steep slopes, which would be expected if physical weathering411

recently produced new boulders here. This lack of evidence for the production of boul-412

ders larger than 60 m by post-impact weathering is consistent with the notion of Denevi413

et al. (2016) that boulders on Vesta are excavated from bedrock or regolith by impacts.414

As boulders on Vesta appear to be the direct result of a single geologic process, i.e. im-415

pact cratering, we do not distinguish boulders located in- and outside of craters in the416

remainder of this paper. This also resolves the complication that “inside” and “outside”417

are poorly defined for craters that formed on a slope (Krohn et al., 2014).418

3.3 Boulder lifetime419

Boulders degrade over time and eventually disappear from the surface. Two mech-420

anisms thought to be responsible for boulder decay on asteroids are collisional fragmen-421

tation by meteorite impact and thermal fatigue (Delbo et al., 2014; Basilevsky et al., 2015).422

On Vesta we expect collisional fragmentation to dominate because the consequences of423

the diurnal cycle are probably too small, mainly because of the large distance from the424

Sun (J. Molaro & Byrne, 2012; Basilevsky et al., 2015; J. L. Molaro et al., 2017). By com-425

paring the boulder abundance with a crater’s age, we can estimate the typical boulder426

survival time. Basilevsky et al. (2015) predicted that the boulder survival time on Vesta427

is much smaller than on the Moon, based on estimates of the potential impactor flux and428

the expected impact velocities. The expected boulder survival time scales with the in-429

verse of the impact energy, which scales as the impactor flux times the square of the im-430

pact velocity. The authors used all known orbits of minor bodies in the inner Solar Sys-431

tem to estimate the flux of potential boulder-destroying impactors, which are too small432

to be observed. The impactor flux predicted in this way for Vesta is about 300 times larger433

than that for the Moon. The typical impact velocity on Vesta is about a third of that434

on the Moon. So, the estimated boulder survival time on Vesta is about 9/300 = 0.03435

times that on the Moon, i.e. 30 times shorter. Age estimates derived from crater count-436

ing are available for some Vesta craters with boulders, so we can test this hypothesis.437

Two alternative chronologies exist for Vesta (Williams, Jaumann, et al., 2014): the438

model of Schmedemann et al. (2014), based on the lunar-derived crater production and439

chronology functions, and the Marchi et al. (2014); O’Brien et al. (2014) model, with crater440

production and chronology functions derived from models of asteroid belt dynamics. For441

this paper we accept the Schmedemann et al. (2014) chronology, not because we neces-442

sarily believe it is to be preferred over the other, but because more ages based on this443

model are available in the literature. Table 2 lists the estimated ages of the craters shown444

in Fig. 6, together with the areal density of their boulders. The ages span a range of 2 Ma445

to more than 300 Ma. For these craters, the Schmedemann et al. (2014) chronology yields446

lower ages than the Marchi et al. (2014); O’Brien et al. (2014) chronology (Kneissl et al.,447

2014), so the tabulated ages are conservative estimates. The tabulated areal density is448
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defined as the total number of boulders identified in and around a crater divided by the449

crater area, which is calculated as the area of a circle with the diameter for that crater.450

Figure 7 shows how the boulder density varies with crater age. Assuming that the ini-451

tial boulder density is similar for all craters, the figure confirms the expected correlation452

of density with age. The figure is for boulders with a minimum size of 3 pixels, but the453

results are similar for a minimum size of 4 pixels. Some data points in the figure are less454

reliable than others. The boulder count is incomplete for craters at high latitudes in the455

northern hemisphere, and craters whose boulder densities are consequently underesti-456

mated are Arruntia, Mamilia, and Scantia (open symbols in Fig. 7A). Crater Unnamed36457

has a much higher boulder density than expected for its age of about 250 Ma. This crater458

is an outlier for two possible reasons: First, the age estimate is based on a small num-459

ber of craters (< 50) and may not be fully reliable for the same reason that power law460

exponents derived from boulder populations of small size are not reliable. Second, it is461

not clear whether some of the larger mounds that we identified as degraded boulders were462

once truly boulders or have always been mounds of rubble, as the high abundance of sus-463

pected boulders may be related to the fact that this crater formed on a slope (Krohn et464

al., 2014). The oldest crater for which we identified boulders is Oppia, with an age of465

320±24 Ma (Schmedemann et al., 2014). We did not find boulders around Octavia crater466

(147◦E,−3◦), whose age is estimated as 390±28 Ma by Schmedemann et al. (2014) and467

280-360 Ma by Williams, Denevi, et al. (2014). Then, the maximum age of large boul-468

ders (> 60 m) appears to be around 350 Ma.469

The Vesta boulder density-age relation compares well to that for boulders on the470

Moon shown in Basilevsky et al. (2015), who wrote that after “a few million years, only471

a small fraction of meter-sized [lunar] boulders are destroyed but after several tens of mil-472

lion years ∼ 50% are destroyed, and for times of 200-300 Ma, ∼ 90 to 99% of the orig-473

inal boulder population is obliterated”. Judging from Fig. 7, this statement also perfectly474

applies to Vesta boulders, where we note that the scatter in the Vesta data is large, but475

of the same order as that in the lunar data shown in Basilevsky et al. (2015). Because476

the ages based on the Schmedemann et al. (2014) chronology are conservative estimates,477

we conclude that the boulder survival time on Vesta is at least as long as that on the478

Moon. The Basilevsky et al. (2015) prediction appears to be incorrect by more than a479

factor 30. What can explain the discrepancy? For a start we will assume that Vesta boul-480

ders are not more resistant to degradation than lunar boulders given their similar com-481

position, and that both available Vesta chronologies do not dramatically overestimate482

the crater ages. The impact velocities seem to be uncontroversial, as O’Brien and Sykes483

(2011) arrive at similar values as Basilevsky et al. (2015). The meteorite flux as estimated484

by Basilevsky et al. (2015) from asteroid orbits as published by the Minor Planet Cen-485

ter is very similar for Vesta and Ceres, and about 300 times larger than on the Moon.486

In a similar exercise, O’Brien and Sykes (2011) find the impact probability for Ceres to487

be about 25% higher than for Vesta because of the former’s more central location in the488

main asteroid belt, but do not provide an impact probability for the Moon. Then the489

most likely reason for the discrepancy is probably the difference in scale. The lunar boul-490

ders considered by Basilevsky et al. (2015) are typically less than 10 m in size, whereas491

our Vesta boulders are sized between 60 and 400 m. The implication is that the flux of492

impactors that can destroy 10 m sized boulders on Vesta is about 30 times larger than493

the flux of impactors that can destroy 100 m sized boulders.494

3.4 Size-frequency distribution495

3.4.1 Vesta496

First, we pool all boulders counted on the surface of Vesta to find the (cumulative)497

power law exponent of the global boulder population. Figure 8 shows the SFD, both in498

cumulative and differential representation. At the top of the differential plot we show499

the implications of a 1 pixel measurement error on a logarithmic scale. We chose a log-500
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arithmic bin size of 0.07 with the boulder size in meters, ensuring that the size is on the501

order of the measurement error at the larger end of the scale. As the error is larger than502

the bin size at the smaller end of the scale, we can expect boulders to spill over into ad-503

jacent bins merely by chance. We recognize the characteristic downturn (“roll-over”) of504

the distributions towards smaller diameters, caused by the limited spatial resolution and505

the measurement error.506

We fit two power laws to the data with the ML method, one with the minimum507

boulder size (dmin) fixed, and the other with dmin estimated by the ML algorithm. When508

fixing dmin to 4 pixels (80 m), we find a power law exponent of α = −4.7 ± 0.1 (n =509

2319, black line in Fig. 8). By extrapolating this power law to smaller diameters we find510

that the number of boulders with a diameter of around 3 pixels may be severely under-511

estimated; the observed number in the 3 pixel bin is about 3000, but the extrapolated,512

expected number is more like 7000. The counts for boulders larger than 4 pixels are prob-513

ably close to complete. We note that the counts at the largest diameters do not match514

well with the power law, both in the cumulative and differential representation. Alter-515

natively, when we let the ML algorithm choose the minimum boulder size, we find dmin =516

87 m and a slightly steeper power law with α = −4.8±0.1 (n = 1575, red line in Fig. 8).517

The minimum boulder size is close to our earlier estimate of 80 m, confirming that 4 pix-518

els is a reasonable lower limit for the size. But also this power law does not match the519

counts at large diameters. In fact, the statistical test provided by Clauset et al. (2009)520

indicates that neither power law in Fig. 8 is a good model for the data (p = 0 and 0.02,521

respectively).522

We also estimated the power law exponent for each crater individually for craters523

with at least 6 boulders with a diameter larger than dmin = 80 m. Plotting these ex-524

ponents as a function of number of boulders in the population in Fig. 9, we find a strong525

negative bias for smaller populations, which we expected from the generic simulation in526

Fig. 2. We also include three simulations in Fig. 9 that use the observed population sizes527

and adopt the best-fit power law exponent for the global boulder population (α = −4.7,528

dmin fixed). When we compare the simulations with the observations we notice two things:529

First, the observed exponents of craters with small boulder populations are typically more530

negative than in the simulations. Second, the power law exponent of the crater with the531

largest number of boulders, Marcia, is far from −4.7, even though the simulated “Mar-532

cia’s” invariably have exponents close to −4.7. This suggests that Marcia’s actual ex-533

ponent significantly differs from that of the global boulder population. We can already534

see this in Fig. 6, where the ratio of large to small boulders in Marcia is comparatively535

high. The reason for this is not obvious. There is ample evidence for flows in- and out-536

side the crater (Williams, Denevi, et al., 2014), so perhaps small boulders were prefer-537

entially buried. It is also possible that, because of Marcia’s large size, its boulders orig-538

inate in a deeper, mechanically stronger or less fragmented layer in the interior, mak-539

ing them more resistant to degradation. When we exclude Marcia’s boulders from the540

global population, we derive an exponent of α = −5.1 ± 0.1 (dmin = 80 m, n = 1843,541

black line in Fig. 10), which means a steeper power law. The best-fit power law better542

fits the observed distributions in the 80-180 m range, although the number of large boul-543

ders still appears too low. We repeat our simulations with this revised exponent in Fig. 11.544

Now the observed exponents of craters with small numbers of boulders agree better with545

those in the simulations. This reinforces the notion that the Marcia boulder population546

is different from that of all other craters. When we let the ML algorithm estimate the547

minimum boulder size, we find dmin = 91 m and an even steeper power law with α =548

−5.4±0.2 (n = 1023, red line in Fig. 10). Still, the Clauset et al. (2009) test indicates549

that neither power law is an acceptable model for the data (p = 0 and 0.007, respec-550

tively). Then also without the Marcia boulders, there is no single power law that fits the551

global distribution over the whole size range.552
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The failure of the power law to describe the SFD leads us to the Weibull distribu-553

tion. The question is now whether to include Marcia boulders or not. If the boulder sizes554

are distributed according to a power law, then exclusion is justified, but the situation555

is not so clear if we assume a Weibull distribution. We therefore show the best-fit left-556

truncated Weibull distribution (Eq. 10) in Fig. 12, both with (A) and without (B) Mar-557

cia boulders. Again we restrict the fit to boulders of size > 4 pixels. Including all boul-558

ders, the best-fit distribution has N = 2319, α = 2.25, and β = 0.37 (scale parameter559

λ = 0.11 and shape parameter k = 0.37). Without Marcia boulders, the best-fit pa-560

rameters are N = 1843, α = 0.69 m, and β = 0.56 (scale parameter λ = 1.9 and561

shape parameter k = 0.56). The fractal dimension Df = 3 − β for the cracks in the562

rock is 2.6 and 2.4, respectively. Excluding Marcia boulders changes the Weibull param-563

eters, but does not improve the fit to the data. The Weibull distribution fits the Vesta564

SFD better than the power law. And contrary to the power law, it does not imply that565

the number of boulders with a size of 3 pixels is massively underestimated, which seems566

more reasonable. The Weibull distribution is likely also a better model for the SFD of567

individual craters. Using the Clauset et al. (2009) test with dmin = 80 m, we found that568

the power law fails to fit the SFD of all four craters with more than 100 boulders larger569

than 4 pixels (Antonia, Licinia, Marcia, and Pinaria).570

3.4.2 Other small bodies571

How does the Vesta boulder SFD compare to those of boulder populations on other572

small Solar System bodies? In the literature, the boulder SFD distribution is generally573

assumed to follow a power law. Several authors have now used the ML method to es-574

timate the power law exponent:575

25143 Itokawa. DeSouza et al. (2015) determined the exponent for the global block576

distribution of S-type asteroid Itokawa to be α = −3.6±0.3, based on a sample of about577

800 boulders from Mazrouei et al. (2014) in the size range of 7-35 m (using the equiv-578

alent spherical radius method for sizing the boulders). Michikami et al. (2019) confirmed579

this value as −3.5±0.2 in an analysis based on the same measurements. The total num-580

ber of boulders is large enough to conclude that the Itokawa power law exponent is sig-581

nificantly different from that of Vesta. However, Itokawa is different from Vesta and the582

other bodies considered in this section, in the sense that its boulders are not associated583

with particular craters, but are thought to all derive from the disruption of a parent body584

(Michikami et al., 2008; Nakamura et al., 2008).585

1 Ceres. Schulzeck et al. (2018) determined the exponent for a number of craters586

on dwarf planet Ceres and found values in the range of −6.2 to −4.4. The most reliable587

value was that obtained for Jacheongbi crater: α = −4.4 ± 0.7, with 147 boulders in588

the 162-400 m size range, which is not significantly different from the Vesta exponent.589

More negative values were determined for other craters with fewer boulders, which is con-590

sistent with the negative bias at small boulder numbers we observed in our simulations.591

We pooled all boulder counts from Schulzeck et al. (2018) (6 craters) and determined592

the power law exponent using two methods to choose dmin: (1) setting it to 4 pixels and593

(2) estimating it by means of the ML algorithm. Figure 13 show the results in the dif-594

ferential (A) and cumulative (B) representations. For (1) we find an exponent of −4.3±595

0.2 from measurements of 544 boulders in the 140-394 m size range. For (2) we deter-596

mined an exponent of −5.6±0.4 from measurements of 159 boulders in the 189-394 m597

size range. In both cases, the Clauset et al. (2009) test indicates that a power law is not598

a good model for the data. The shape of the Ceres boulder SFD is similar to that of Vesta599

in Fig. 10, and we suspect that the Weibull distribution may also be a reasonable model600

for Ceres.601

162173 Ryugu. Michikami et al. (2019) determined the exponent for the global block602

distribution of C-type asteroid Ryugu to be α = −2.65 ± 0.05, based on a sample of603
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over 3000 boulders. The authors also analyzed populations of smaller objects, like cob-604

bles and pebbles, in individual high-resolution images and found these to have smaller605

exponents (around −2). This was taken as evidence for some boulders to be buried in606

finer particles. Ryugu’s exponent for the global boulder population is significantly dif-607

ferent from that of Vesta. Like Itokawa, Ryugu’s boulders are thought to all derive from608

the disruption of a parent body.609

101955 Bennu. DellaGiustina et al. (2019) determined the exponent for the global610

block distribution of B-type asteroid Bennu to be α = −2.9 ± 0.3, based on a sample611

of about 350 boulders. Bennu’s exponent is significantly different from that of Vesta. Like612

Itokawa and Ryugu, Bennu is a suspected rubble-pile and its boulders are thought to all613

derive from the disruption of a parent body.614

Other power law exponents for boulder distributions in the literature were derived615

from conventional methods like fitting the binned cumulative distribution. We must as-616

sess these exponents in light of the results of our simulations. Those derived by fitting617

the cumulative distribution may not be directly comparable. But those derived by fit-618

ting to a differential distribution should be comparable if the number of boulders included619

in the fit is large enough (n > 100).620

4179 Toutatis. Jiang et al. (2015) analyzed the boulder distribution on bi-lobed,621

S-type asteroid Toutatis. They reported an exponent of −4.4± 0.1 for a conventional622

power law fit to the binned cumulative distribution. The roll-over of their cumulative623

distribution due to the image resolution starts around a boulder size of 25 m, which cor-624

responds to about 70 boulders of reliable size in the 25-61 m range, which may be too625

few for a reliable estimate and thus the uncertainty is almost certainly too small. The626

authors also considered the boulder populations of each lobe individually, and found two627

apparently significantly different exponents. Our simulations (Fig. 2) show that the de-628

rived exponents of populations of about 30-40 boulders may be very different simply by629

chance, both when using the ML method and fitting the differential distribution. We are630

unable to assess the situation for the method of fitting the binned cumulative distribu-631

tion, as there is no correct way of doing that, but we expect a similar degree of inaccu-632

racy. Therefore, the two exponents may not be significantly different in reality.633

21 Lutetia. Küppers et al. (2012) determined an exponent of −4 for asteroid Lute-634

tia based on a conventional power law fit to the differential distribution (the authors quoted635

a value of −5, but their bin size was constant on a linear rather than logarithmic scale).636

However, this value is essentially meaningless when considered in isolation, as their sam-637

ple comprised only 6 boulders larger than 4 osiris image pixels (240 m; compare the sim-638

ulation in Fig. 2B).639

Phobos. Thomas et al. (2000) counted boulders on the Martian moon Phobos. They640

found most to be associated with Stickney crater, although this was questioned by Basilevsky641

et al. (2014), who suggested the age of Stickney to be much larger than the survival time642

of the boulders. Thomas et al. (2000) obtained an exponent of −3.2 by fitting the cu-643

mulative distribution of all boulders they identified. We re-analyze their counts by means644

of the ML method. First, we note that the full data set of Thomas et al. consists of the645

combined counts from two images of the Mars Global Surveyor camera with different spa-646

tial resolution. Images 50103 and 55103 have a resolution of 4.0 and 1.4 m per pixel, re-647

spectively. If we want to estimate a power law exponent that is representative for global648

Phobos, combining counts from images with different resolution will skew the SFD. We649

therefore assess the two images individually. When we apply our criterion for the min-650

imum boulder size of 4 pixels, then images 50103 and 55103 have 17 and 529 boulders651

larger than 16 and 5.6 m, respectively. If we combine the two data sets and choose a min-652

imum size of 16 m, then only 21 boulders satisfy this criterion. Thus, only image 55103653

has a sufficiently large number of boulders to reliably retrieve the exponent. We show654

the SFD of boulders in image 55103 in Fig. 14. The best-fit power law has an exponent655

–14–

©2020 American Geophysical Union. All rights reserved. 



manuscript submitted to Earth and Space Science

of −3.8±0.2. However, a power law is not the correct model for the data, as confirmed656

by the ML test. This is not apparent in the cumulative representation (B), but can be657

seen in the differential representation (A), where the values in several bins are signifi-658

cantly off the best-fit power law curve. When we estimated dmin from the data (5 m),659

the derived power law exponent appeared much too small (−2.5), which is why we do660

not include this solution in Fig. 14. One constraint of the Phobos data is the discrete661

nature of the sizes (1 m accuracy), which leads to an empty bin around 2.5 m diame-662

ter in the differential distribution (containing boulders in the 2.2-2.8 m size range) and663

the occurrence of steps at small diameters in the (unbinned) cumulative distribution. It664

may also affect the occupancy rate of bins in the differential distribution at intermedi-665

ate diameters. One way to resolve this issue is to choose wider bins, but this conflicts666

with the image resolution of 1.4 m per pixel. We will accept the retrieved exponent for667

Phobos, with the caveat that a power law does not fit these data well.668

21 Eros. Thomas et al. (2001) counted boulders on the S-type asteroid Eros and669

found that most are associated with Shoemaker crater. They obtained an exponent of670

−3.2 for the global boulder population by fitting the cumulative distribution. We re-analyze671

their counts by means of the ML method. The Eros data set combines counts from a col-672

lection of images of the NEAR-Shoemaker camera, and most boulders were measured673

at spatial resolutions between 2 and 5 m per pixel (99% of the boulders were measured674

at a resolution < 5 m per pixel). We adopt a minimum boulder size of 4.5 m per pixel,675

as 90% of the boulders were measured at a higher resolution than that. There are 3347676

boulders larger than the 4 pixels criterion (18 m). We show the boulder SFD in Fig. 15.677

The best-fit power law fits the data well, as confirmed by the ML test, and has an ex-678

ponent of −3.31±0.06. Letting the ML algorithm estimate the minimum size, it found679

dmin = 16 m and the same value for the exponent (n = 4850). Because a power law680

describes the data so well, the ML exponent is close to the −3.2 found by Thomas et al.681

(2001) by fitting the cumulative distribution. Only at the largest sizes do the boulder682

numbers deviate from the power law curve. The authors remarked that the power law683

is steeper here, which we also noted for Vesta. However, as the number of boulders re-684

sponsible is small (< 20), the deviation may be due to chance. The large number of boul-685

ders ensures a small uncertainty in the exponent of the best-fit power law, and we con-686

clude that the Eros exponent is significantly different from that of Vesta.687

Moon. Cintala and McBride (1995) counted boulders at several Surveyor landing688

sites on the Moon as imaged by the Lunar Orbiter probe. Only the Surveyor VII site689

has boulders in the size range that we consider in this paper (> 10 m). The authors fit-690

ted a power law to the cumulative SFD and found an exponent of −4.0±0.1. As they691

provided a table of the numbers in the size bins, we can fit a power law to the differen-692

tial distribution instead (Fig. 16). We find an exponent of −3.6±0.1, for 628 boulders693

in the 13-80 m size range. When comparing the boulder counts in the Lunar Orbiter im-694

ages (m-sized) with counts of particles seen in Surveyor images (mm to dm-sized) per-695

formed by Shoemaker and Morris (1968), Cintala and McBride (1995) noted the smaller696

power law exponents associated with the latter (around −2). The discrepancy led them697

to suspect that the lunar particle SFD cannot be described by a single power law over698

the entire size range spanning three orders of magnitude (mm to m), and that the dis-699

tribution is steeper at larger sizes. However, Li et al. (2017) revisited this topic and fit-700

ted power laws to the cumulative SFD of boulders (m-sized) near the Surveyor landing701

sites using Lunar Reconnaissance Orbiter images. The authors found exponents in the702

range of −1.5 to −3.6, consistent with Shoemaker and Morris (1968), and suggested that,703

in fact, a single power law can describe the lunar particle SFD over the entire size range704

from mm to m. Bart and Melosh (2010) fitted power laws to the cumulative distribu-705

tion of boulders around 18 lunar craters, and found exponents in the range of −2.2 to706

−5.5, with most between −3.0 and −4.5. The size range of the involved boulder pop-707

ulations was on the order of 1-10 m for some craters and 10-100 m for others. Krishna708

and Kumar (2016) fitted power laws to the cumulative SFD of large numbers of boul-709
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ders around Censorinus crater, grouped according to sector, and found exponents in the710

range of −2.5 to −3.3, with a typical boulder size range of 2-40 m. Pajola et al. (2019)711

fitted a power law to the cumulative SFD of a large number of boulders around Linné712

crater and found an exponent of −4.0 (n = 12, 038, size range 4-30 m). At the large713

size end of the SFD, the power law predicts more boulders than were observed. This led714

the authors to fit a Weibull distribution, which matched the data better. Almost all pub-715

lished power law exponents for lunar boulders are smaller (less negative) than that for716

Vesta boulders, keeping in mind that they were estimated by fitting the cumulative SFD717

instead of ML. The −3.6 exponent from Fig. 16 seems to be typical for lunar boulders718

in the decameter size range.719

3.4.3 Synthesis720

In the previous section we evaluated, and in some cases re-analyzed, power law ex-721

ponents published for boulders on small Solar System bodies. When we adopted the power722

law to describe the SFD of all boulders on Vesta, we found an exponent that is signif-723

icantly different from that of all other bodies, with the singular exception of Ceres. What724

is the physical meaning of this difference? In the literature, the steepness of the best-725

fit power law is often interpreted in terms of degree of fragmentation (Thomas et al., 2001;726

Krishna & Kumar, 2016; Michikami et al., 2019), accompanied by a reference to Hartmann727

(1969), whose paper still seems to be the prime source of information on the meaning728

of the exponent. Hartmann (1969) found that simple fragmentation results in small ex-729

ponents (−2.1 to −2.4), whereas a hypervelocity impact results in a large exponent (−3.6),730

where he noted that such an impact resembles extensive regrinding. Laboratory impact731

experiments can provide additional insight into the meaning of the power law exponent,732

but are typically performed on scales orders of magnitude below that of the boulders we733

study. The type of experiment that is probably most relevant for planetary boulder for-734

mation involves impacts on semi-infinite surfaces. Buhl et al. (2014) reviewed the power735

law exponents derived from such experiments (Gault et al., 1963; Hörz, 1969; Fujiwara736

et al., 1977; Cintala et al., 1985). For particles up to a centimeter in size, the exponents737

were all around −2.5, regardless of the type of target material, be it sandstone, granite,738

basalt, or water ice. Additionally, Buhl et al. (2014) observed no correlation between the739

exponent and the imparted energy density (impact kinetic energy per target mass). The740

authors noted that the results are different for experiments in which the entire target741

is disrupted, but it is unclear whether these outcomes can be extrapolated to the size742

range of large boulders.743

While we found that the power law is not a satisfactory model for the Vesta and744

Ceres boulder SFDs, let us assume for the moment that it is, and compare the exponents745

with those derived for other small Solar System bodies. Table 3 lists those exponents that746

we consider most reliable, i.e. preferably derived with the ML method from populations747

of at least 100 boulders. Figure 17 displays the exponents as a function of boulder size,748

indicating for each the size range from which it was obtained. We distinguish between749

boulders formed by impact on a surface and boulders that make up the rubble-pile as-750

teroids Itokawa, Ryugu, and Bennu. Experimental evidence suggests that the SFD re-751

sulting from fragmentation of a target body is different from that resulting from an im-752

pact on a semi-infinite surface (Buhl et al., 2014). But as it is not clear whether these753

results can be extrapolated to planetary scales, we include rubble-pile bodies in the fig-754

ure. There are two data points for both Vesta and Ceres: one for a minimum boulder755

size of dmin = 4 image pixels (black symbols) and one for dmin estimated by the ML756

algorithm (red symbols). The boulders counted on Vesta and Ceres are large (> 100 m),757

and their exponents cluster around −5. Given their very different surface composition,758

the similarity of the exponents is surprising. Boulders identified on other bodies are smaller759

(10-100 m), and their exponents are smaller too, ranging from around −3 to −4. The760

exponents of the rubble-pile asteroids (Bennu, Itokawa, Ryugu) are not clearly separated761

from the others (Eros, Moon, Phobos). Figure 17 also includes several exponents for Ryugu762
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particles at small scales (< 1 m), determined from individual images (Michikami et al.,763

2019). These exponents are smaller yet, clustering around −2, consistent with exponents764

derived from laboratory impact experiments (Buhl et al., 2014) and for the lunar regolith765

(Shoemaker & Morris, 1968). The figure shows a correlation between the exponent and766

the particle (boulder) size range from which it is derived.767

Following Hartmann (1969), the large exponents of the SFDs of Vesta and Ceres768

boulders imply an extremely high degree of fragmentation. But this is difficult to un-769

derstand in light of the relatively low average impact velocities expected on their sur-770

face (Basilevsky et al., 2015). The idea that extensive regrinding experienced in a hy-771

pervelocity impact leads to a power law SFD with a large exponent (Hartmann, 1969)772

is not supported by grinding experiments, which typically result in a Weibull distribu-773

tion (Rosin & Rammler, 1933; Martin & Mills, 1977; Deb & Sen, 2013). Furthermore,774

Brown (1989) and Brown and Wohletz (1995) theorized that a power law distribution775

results from a single fragmentation event, whereas sequential fragmentation (i.e., regrind-776

ing) results in a Weibull distribution. We found that the power law is not a good model777

for the Vesta and Ceres boulder SFDs. However, the Weibull distribution satisfactorily778

fits the data. This suggests that the unusually large exponents for Vesta and Ceres should779

not be interpreted in terms of degree of fragmentation, but simply follow from the shape780

of the Weibull distribution. The dependence of the power law exponent on particle size781

range in Fig. 17 can be understood if, in general, the particle SFD on small bodies fol-782

lows a Weibull distribution over a wide range of sizes. This would provide a natural ex-783

planation for the relatively low abundance of larger boulders, which are sometimes re-784

ported as “missing” (Thomas et al., 2001; Michikami et al., 2019). The Weibull distri-785

bution has been noted before to fit the particle SFD, both at small (Martin & Mills, 1977)786

and large scales (Pajola et al., 2019). Over a narrow size range the Weibull SFD may787

masquerade as a power law. The exponent of such a “local” power law would primar-788

ily be a function of the particle size range from which it was derived, but other factors789

(composition, impact velocity) may yet play a role.790

4 Conclusions791

We identified, counted, and measured more than 10,000 boulders on the surface of792

Vesta, with sizes up to several hundred meters. We found all boulders to be associated793

with impact craters. There is little evidence for boulder production by physical weath-794

ering of crater walls, so the vast majority of boulders were created upon impact. Craters795

with boulders are distributed mostly uniformly over the surface, only seeming to avoid796

a large area of below average albedo. This area is believed to be rich in carbon, deliv-797

ered by the primitive impactor that created the ancient Veneneia basin (Reddy et al.,798

2012; Jaumann et al., 2014). It is unclear why boulders are rare here; the regolith may799

be thicker than average (Denevi et al., 2016) or the boulders live shorter. Using published800

crater ages, we established that Vesta boulders have a lifetime of about a few hundred801

million years. This time is on the same order as that estimated for meter-sized boulders802

on the Moon by Basilevsky et al. (2015), who predicted that such boulders live 30 times803

shorter on Vesta than on the Moon. One reason for the apparent disagreement may be804

that the Vesta boulders in our sample are an order of magnitude larger than the lunar805

boulders considered by the authors.806

In the literature, the SFD of planetary boulders is often fitted with a power law.807

Different methods to derive the power law exponent (slope) are used, but only the max-808

imum likelihood (ML) method is statistically sound (Clauset et al., 2009). We investi-809

gate how the number of boulders in a population affects the derived exponent, and con-810

firm that the ML method is biased at low numbers. The exponent is most reliably de-811

rived for a population size of at least 100 boulders, where we recommend adopting a min-812

imum boulder size of 4 image pixels. We derived the power law exponent for all Vesta813

craters with boulders, and find that the SFD of Marcia crater stands out as different from814
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all others. The exponent for Vesta’s global boulder population is around −5. We reviewed815

published exponents for small Solar System bodies. The use of different fitting techniques816

and limited awareness of the unreliability of small-number statistics hinder a direct com-817

parison, and we re-analyzed several data sets. The Vesta power law slope is steeper than818

typically found for other small bodies. A statistical test reveals that the power law is ac-819

tually not a good model for the Vesta SFD, but the Weibull distribution fits the data820

very well. The Weibull distribution is commonly applied to describe SFDs resulting from821

rock grinding experiments, and results from the fractal nature of the cracks propagat-822

ing in the rock interior (Brown & Wohletz, 1995). The Weibull distribution may pro-823

vide a better description of the SFD of boulders on small bodies than the power law, and824

would naturally result in a steeper SFD for the relatively large boulders of Vesta.825
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Küppers, M., Moissl, R., Vincent, J.-B., Besse, S., Hviid, S. F., Carry, B., . . .932

Wenzel, K.-P. (2012, June). Boulders on Lutetia. P&SS , 66 , 71-78. doi:933

10.1016/j.pss.2011.11.004934

Lee, P., Veverka, J., Thomas, P. C., Helfenstein, P., Belton, M. J. S., Chapman,935

C. R., . . . Head, I., James W. (1996, Mar). Ejecta Blocks on 243 Ida and on936

Other Asteroids. Icarus, 120 (1), 87-105. doi: 10.1006/icar.1996.0039937

Lee, S. W., Thomas, P., & Ververka, J. (1986, October). Phobos, Deimos, and the938

moon - Size and distribution of crater ejecta blocks. Icarus, 68 , 77-86. doi: 10939

.1016/0019-1035(86)90075-8940

Li, B., Ling, Z., Zhang, J., & Chen, J. (2017, October). Rock size-frequency dis-941

tributions analysis at lunar landing sites based on remote sensing and in-situ942

imagery. P&SS , 146 , 30-39. doi: 10.1016/j.pss.2017.08.008943

Marchi, S., Bottke, W. F., O’Brien, D. P., Schenk, P., Mottola, S., De Sanctis,944

M. C., . . . Russell, C. T. (2014, November). Small crater populations on945

Vesta. P&SS , 103 , 96-103. doi: 10.1016/j.pss.2013.05.005946

Markwardt, C. B. (2009, September). Non-linear Least-squares Fitting in IDL with947

MPFIT. In D. A. Bohlender, D. Durand, & P. Dowler (Eds.), Astronomical948

data analysis software and systems xviii (Vol. 411, p. 251).949

Martin, P. M., & Mills, A. A. (1977, Mar). Does the Lunar Regolith Follow Rosin’s950

Law? Moon, 16 (2), 215-219. doi: 10.1007/BF00596726951

Mazrouei, S., Daly, M. G., Barnouin, O. S., Ernst, C. M., & DeSouza, I. (2014,952

February). Block distributions on Itokawa. Icarus, 229 , 181-189. doi:953

10.1016/j.icarus.2013.11.010954

McCord, T. B., & Gaffey, M. J. (1974, Oct). Asteroids: Surface Composition from955

Reflection Spectroscopy. Science, 186 (4161), 352-355. doi: 10.1126/science.186956

.4161.352957

Michikami, T., Honda, C., Miyamoto, H., Hirabayashi, M., Hagermann, A., Irie, T.,958

. . . Sugita, S. (2019, Oct). Boulder size and shape distributions on asteroid959

Ryugu. Icarus, 331 , 179-191. doi: 10.1016/j.icarus.2019.05.019960

Michikami, T., Nakamura, A. M., Hirata, N., Gaskell, R. W., Nakamura, R., Honda,961

T., . . . Miyamoto, H. (2008, January). Size-frequency statistics of boulders on962

global surface of asteroid 25143 Itokawa. Earth, Planets, and Space, 60 , 13-20.963

doi: 10.1186/BF03352757964

Molaro, J., & Byrne, S. (2012, Oct). Rates of temperature change of airless land-965

scapes and implications for thermal stress weathering. Journal of Geophysical966

Research (Planets), 117 (E10), E10011. doi: 10.1029/2012JE004138967

Molaro, J. L., Byrne, S., & Le, J.-L. (2017, September). Thermally induced stresses968

in boulders on airless body surfaces, and implications for rock breakdown.969

Icarus, 294 , 247-261. doi: 10.1016/j.icarus.2017.03.008970

Moore, H. J. (1971). Large blocks around lunar craters. In Analysis of Apollo 10971

photography and visual observations (p. 26-27). NASA SP-232.972
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Schröder, S. E., Mottola, S., Keller, H. U., Raymond, C. A., & Russell, C. T. (2013,1035

September). Resolved photometry of Vesta reveals physical properties of crater1036

regolith. P&SS , 85 , 198-213. doi: 10.1016/j.pss.2013.06.0091037

Schulzeck, F., Schröder, S. E., Schmedemann, N., Stephan, K., Jaumann, R., Ray-1038

mond, C., & Russell, C. (2018). Global and local re-impact and velocity1039

regime of ballistic ejecta of boulder craters on Ceres. P&SS , 153 , 142 - 156.1040

doi: 10.1016/j.pss.2018.02.0041041

Senthil Kumar, P., Sruthi, U., Krishna, N., Lakshmi, K. J. P., Menon, R., Amitabh,1042

. . . Kiran Kumar, A. S. (2016, Feb). Recent shallow moonquake and impact-1043

triggered boulder falls on the Moon: New insights from the Schrödinger1044

basin. Journal of Geophysical Research (Planets), 121 (2), 147-179. doi:1045

10.1002/2015JE0048501046

Shoemaker, E. M., & Morris, E. C. (1968, June). Size-frequency distribution of1047

fragmental debris. In Surveyor Project Final Report. Part II. Science Results1048

(p. 86-102). Pasadena, California: Jet Propulsion Laboratory. (Technical Re-1049

port 32-1265)1050

Sierks, H., Keller, H. U., Jaumann, R., Michalik, H., Behnke, T., Bubenhagen, F.,1051

. . . Enge, R. (2011, Dec). The Dawn Framing Camera. Space Sci. Rev.,1052

163 (1-4), 263-327. doi: 10.1007/s11214-011-9745-41053

Thomas, P. C., Veverka, J., Robinson, M. S., & Murchie, S. (2001, September).1054

Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros.1055

Nature, 413 , 394-396. doi: 10.1038/350965131056

Thomas, P. C., Veverka, J., Sullivan, R., Simonelli, D. P., Malin, M. C., Caplinger,1057

M., . . . James, P. B. (2000, June). Phobos: Regolith and ejecta blocks in-1058

vestigated with Mars Orbiter Camera images. JGR, 105 , 15091-15106. doi:1059

10.1029/1999JE0012041060

Williams, D. A., Denevi, B. W., Mittlefehldt, D. W., Mest, S. C., Schenk, P. M.,1061

Yingst, R. A., . . . Raymond, C. A. (2014, December). The geology of the Mar-1062

cia quadrangle of asteroid Vesta: Assessing the effects of large, young craters.1063

Icarus, 244 , 74-88. doi: 10.1016/j.icarus.2014.01.0331064

Williams, D. A., Jaumann, R., McSween, H. Y., Marchi, S., Schmedemann, N., Ray-1065

mond, C. A., & Russell, C. T. (2014, December). The chronostratigraphy of1066

protoplanet Vesta. Icarus, 244 , 158-165. doi: 10.1016/j.icarus.2014.06.0271067

Wingo, D. R. (1989, Dec 01). The left-truncated Weibull distribution: theory and1068

computation. Statistical Papers, 30 (1), 39–48. doi: 10.1007/BF029243071069

Yingst, R. A., Mest, S. C., Berman, D. C., Garry, W. B., Williams, D. A.,1070

Buczkowski, D., . . . Schenk, P. M. (2014, November). Geologic mapping1071

of Vesta. P&SS , 103 , 2-23. doi: 10.1016/j.pss.2013.12.0141072

–22–

©2020 American Geophysical Union. All rights reserved. 



manuscript submitted to Earth and Space Science

Table 1. All craters on Vesta with at least one boulder larger than 4 pixels (d > 80 m). Crater

and boulder diameters are D and d, respectively, and α is the power law exponent of the (cumu-

lative) boulder SFD as derived with the ML method (only for craters with nd>4px > 5).

Name Longitude Latitude D dmax nd>3px nd>4px α σα
(◦E) (◦) (km) (m)

Aelia 140.7 −14.2 4.7 94 22 4
Angioletta 29.3 −40.1 18.6 129 87 14 −6.8 1.8
Antonia 200.9 −58.9 17.3 154 491 187 −5.4 0.4
Aquilia 41.1 −50.0 33.8 250 143 71 −4.0 0.5
Arruntia 71.6 +39.4 10.4 109 60 16 −8.3 2.1
Canuleia 294.5 −33.5 11.2 121 67 11 −5.8 1.8
Charito 300.5 −44.5 6.8 109 43 9 −5.3 1.8
Cornelia 225.5 −9.0 16.7 157 221 60 −5.0 0.6
Drusilla 261.2 −14.8 20.9 136 85 33 −8.5 1.5
Eusebia 204.8 −43.1 23.3 113 133 27 −6.5 1.3
Fabia 265.8 +15.6 11.9 152 259 86 −5.8 0.6
Fausta 309.7 −25.5 3.2 111 17 3
Fonteia 141.5 −53.5 21.1 166 162 56 −4.3 0.6
Galeria 228.3 −29.5 22.9 170 69 31 −3.4 0.6
Gegania 60.8 +3.9 23.8 269 30 14 −4.0 1.1
Hortensia 15.1 −46.6 29.5 218 34 16 −5.7 1.4
Justina 318.0 −34.0 7.1 193 96 23 −5.1 1.1
Lepida 306.7 +18.3 40.2 146 30 11 −4.7 1.4
Licinia 17.2 +23.6 23.6 216 280 111 −4.1 0.4
Mamilia 291.8 +48.3 35.0 142 38 22 −5.5 1.2
Marcia 190.2 +9.5 61.0 390 958 476 −3.6 0.2
Numisia 247.5 −7.7 30.0 174 136 36 −4.4 0.7
Oppia 308.9 −7.6 34.0 164 65 32 −4.3 0.8
Paculla 1.8 −64.0 19.4 172 177 59 −5.4 0.7
Pinaria 32.0 −29.2 38.0 277 315 143 −4.4 0.4
Portia 41.5 +0.9 10.9 155 17 6 −3.5 1.4
Publicia 84.4 +14.6 16.6 110 28 6 −7.9 3.2
Rubria 18.3 −7.4 10.3 113 97 19 −7.5 1.7
Rufillia 138.7 −13.0 15.5 109 25 7 −6.0 2.3
Scantia 274.6 +29.7 16.4 185 182 86 −4.2 0.5
Serena 120.6 −20.4 19.0 119 16 4
Severina 122.7 −76.3 33.4 248 182 82 −3.8 0.4
Sextilia 146.1 −39.0 19.8 234 69 25 −4.6 0.9
Sossia 286.0 −37.0 7.4 109 32 5
Teia 271.0 −3.5 6.5 144 37 10 −4.7 1.5
Tuccia 198.1 −39.7 3.3 97 52 10 −10.2 3.2
Unnamed2 74.0 +27.5 11.7 145 69 25 −4.8 1.0
Unnamed3 211.0 −24.0 11.7 120 97 22 −7.8 1.7
Unnamed4 280.2 +7.9 16.1 165 302 92 −5.5 0.6
Unnamed5 351.0 +17.6 3.9 93 47 8 −15.5 5.5
Unnamed6 348.0 −35.0 7.4 138 31 7 −4.0 1.5
Unnamed7 175.8 +33.2 22.5 104 19 6 −7.5 3.0
Unnamed8 116.0 +32.7 20.5 169 41 17 −5.6 1.4
Unnamed9 297.8 +37.6 10.4 130 16 3
Unnamed10 358.4 +15.1 10.1 107 66 13 −10.6 2.9
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Name Longitude Latitude D dmax nd>3px nd>4px α σα
(◦E) (◦) (km) (m)

Unnamed11 269.3 −73.1 6.2 97 20 7 −12.8 4.8
Unnamed12 291.8 −73.8 7.5 217 99 32 −4.4 0.8
Unnamed13 245.2 −50.3 5.8 98 50 11 −11.9 3.6
Unnamed14 307.1 −1.9 5.1 142 44 4
Unnamed15 44.8 +53.8 11.7 90 19 5
Unnamed17 340.3 +32.5 9.7 90 11 4
Unnamed18 225.2 −39.9 4.3 81 19 1
Unnamed19 22.7 +8.8 11.3 106 23 5
Unnamed20 39.9 +23.6 7.5 83 12 2
Unnamed21 129.0 −49.2 12.8 120 20 8 −5.3 1.9
Unnamed22 72.4 +11.6 5.2 85 7 3
Unnamed23 263.1 +4.6 9.3 115 17 4
Unnamed24 329.8 +0.4 9.6 122 23 7 −5.5 2.1
Unnamed26 340.8 +27.4 4.8 88 7 2
Unnamed27 18.1 −14.9 7.3 94 26 2
Unnamed28 85.4 −22.5 7.6 103 15 6 −5.5 2.3
Unnamed30 281.4 −31.8 7.3 88 25 3
Unnamed32 331.7 −6.2 7.9 120 37 12 −8.7 2.5
Unnamed33 12.7 −38.0 4.4 90 12 2
Unnamed34 159.4 −42.4 8.8 166 29 12 −4.1 1.2
Unnamed35 309.2 −48.3 7.9 105 45 9 −8.5 2.8
Unnamed36 300.4 −55.6 10.4 199 116 55 −5.1 0.7
Unnamed37 285.1 −56.3 7.2 131 88 27 −8.1 1.6
Vibidia 220.5 −27.0 7.1 163 300 91 −6.6 0.7

Table 2. Age and boulder density for craters for which an age estimate is available. Density

is defined as the number of boulders larger than 3 pixels divided by crater equivalent area. The

densities in brackets are underestimates, as the associated craters were largely in the shadow in

lamo images.

Name Age Densitya Source for age
(Ma) (km−2)

Antonia 19-23 2.1± 0.1 Schmedemann et al. (2014)
Arruntia 2-3 (0.71± 0.09) Ruesch et al. (2014)
Cornelia 9-14 1.01± 0.07 Krohn et al. (2014)
Eusebia 208-221 0.31± 0.03 Kneissl et al. (2014)
Galeria 209-241 0.17± 0.02 Kneissl et al. (2014)
Licinia 45-54 0.64± 0.04 Ruesch et al. (2014)
Mamilia 164-188 (0.039± 0.006) Ruesch et al. (2014)
Marcia 120-149 0.33± 0.01 Williams, Denevi, et al. (2014)
Oppia 309-331 0.072± 0.009 Schmedemann et al. (2014)
Rubria 14-23 1.16± 0.12 Krohn et al. (2014)
Scantia 129-149 0.86± 0.06 Ruesch et al. (2014)
Unnamed36 240-270 1.37± 0.13 Krohn et al. (2014)
Vibidia 9-11 7.6± 0.4 Kneissl et al. (2014)
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Table 3. Power law exponents determined from populations of at least 100 boulders on small

Solar System bodies. Brackets around an exponent indicate that a power law is not a good model

for the data as indicated by the ML test (unavailable for the Moon).

Body Exponent Method Source

Bennu −2.9± 0.3 ML (dmin estimated) DellaGiustina et al. (2019)
Ceres (−4.3± 0.2) ML (dmin = 4 px) This work, based on Schulzeck et al. (2018)

(−5.6± 0.4) ML (dmin estimated) ibid.
Eros −3.31± 0.06 ML (dmin = 4 px) This work, based on Thomas et al. (2001)

−3.31± 0.06 ML (dmin estimated) ibid.
Itokawa −3.6± 0.3 ML (dmin estimated) DeSouza et al. (2015)

−3.5± 0.2 ML (dmin estimated) Michikami et al. (2019)
Moon −3.6± 0.1 Fitting differential This work, based on Cintala and McBride (1995)
Phobos (−3.8± 0.2) ML (dmin = 4 px) This work, based on Thomas et al. (2000)
Ryugu −2.65± 0.05 ML (dmin estimated) Michikami et al. (2019) (global)

−2.07± 0.06 ML (dmin estimated) ibid. (local)
−2.01± 0.06 ML (dmin estimated) ibid. (local)
−1.96± 0.07 ML (dmin estimated) ibid. (local)
−1.98± 0.09 ML (dmin estimated) ibid. (local)
−1.65± 0.05 ML (dmin estimated) ibid. (local)

Vesta (−4.7± 0.1) ML (dmin = 4 px) This work
(−4.8± 0.1) ML (dmin estimated) ibid.

–25–

©2020 American Geophysical Union. All rights reserved. 



manuscript submitted to Earth and Space Science

Figure 1. Boulder viewing conditions: Photometric angles at the center of selected lamo

images.

Figure 2. Monte Carlo simulations of boulder populations, generated assuming the cumu-

lative SFD follows a power law with exponent −4. A & B: A population of 50 boulders with a

minimum size of 50 m, shown as (A) a cumulative plot with the power law exponent estimated

by the ML method and (B) a binned, differential plot with the exponent estimated by a least-

squares fit. The dashed lines are the best-fit power laws. C & D: Estimating the power law

exponents of 150 boulder populations by (C) ML and (D) fitting the differential distribution. The

populations were randomly generated in the logarithmic interval (10, 1000) for the number of

boulders. The dotted line indicates the exponent’s true value.
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Figure 3. Examples of boulder fields associated with craters younger than 25 Ma (left side)

and older than 200 Ma (right side) (ages in Table 2). North is up in all images. The illumination

direction is shown at the upper right and the image number at lower left. a. Southern (downs-

lope) inner wall of Antonia. b. NE rim of Cornelia and adjacent plateau. c. Interior of Vibidia.

d. Southern part of Eusebia. e. Northern rim of Galeria. f. Northern interior wall of Unnamed36.

Figure 4. Basic statistics of the Vesta boulder population. A. Number of boulders larger

than 4 image pixels (d > 80 m) for all craters. B. Diameter of largest boulder for these craters,

assuming a measurement error of 1 pixel. The empirical range given by Moore (1971) for selected

lunar and terrestrial craters is shown in gray. The dashed line is the relation given by P. Lee et

al. (1996). The inset shows the largest boulder identified on Vesta, located on the floor of Marcia

crater.
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Figure 5. Distribution of all boulders (black dots) identified on Vesta with a size of at least

3 pixels (d > 60 m) displayed on a normal albedo map from Schröder et al. (2013).
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Figure 6. Boulders around craters for which an age estimate is available (Table 2). Green,

small dots represent boulders with a size between 3 and 4 pixels (60 m < d < 80 m). Red, large

dots represent boulders larger than 4 pixels (d > 80 m). The image number is indicated in the

top right.
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Figure 7. The density of boulders larger than 3 pixels (d > 60 m) versus crater age (Table 2).

The error bars on the density were calculated assuming the number of boulders follows a Pois-

son distribution. The open symbols represent craters whose boulder density is underestimated

because they were largely in the shadow in lamo images.

Figure 8. The SFD of all boulders identified on Vesta, displayed both in differential (A) and

cumulative (B) format. Different size limits are indicated by vertical (dotted) lines. The dashed

lines are best-fit power laws using the ML method, with exponent indicated: The black dashed

line has dmin = 80 m (4 pixels), whereas the red dashed line has dmin = 87 m, as estimated by

the ML algorithm. The error bars at the top indicate the uncertainty in boulder size at different

diameters due to a 1 pixel measurement error.
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Figure 9. Power law exponents for all craters with a population of at least 6 boulders larger

than 4 pixels (n = 52). The observed exponents were derived by fitting a power law to the

data of each crater. The best fit power law index for the observed global boulder distribution is

α = −4.7 ± 0.1 (dashed line with gray confidence interval). The crater with the largest number

of boulders (548) is Marcia. We compare the observations to three simulations. The simulated

exponents were derived by fitting randomly generated boulder distributions, assuming a Pareto

distribution with α = −4.7 (dashed line), using the number of boulders in the population of each

crater as input.

Figure 10. The SFD of all boulders identified on Vesta, excluding those of Marcia, displayed

both in differential (A) and cumulative (B) format. Different size limits are indicated by vertical

(dotted) lines. The dashed lines are best-fit power laws using the ML method, with exponent

indicated: The black dashed line has dmin = 80 m (4 pixels), whereas the red dashed line has

dmin = 91 m, as estimated by the ML algorithm. The error bars at the top indicate the uncer-

tainty in boulder size at different diameters due to a 1 pixel measurement error.
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Figure 11. Power law exponents for all craters with a population of at least 6 boulders larger

than 4 pixels, excluding Marcia crater (n = 51). The observed exponents were derived by fitting

a power law to the data of each crater. The best fit power law index for the observed global boul-

der distribution minus Marcia is α = −5.1 ± 0.1 (dashed line with gray confidence interval). We

compare the observations to three simulations. The simulated exponents were derived by fitting

randomly generated boulder distributions, assuming a Pareto distribution with α = −5.1 (dashed

line), using the number of boulders in the population of each crater as input.

Figure 12. Left-truncated Weibull distribution for Vesta boulders larger than 4 pixels, with

(A) and without (B) Marcia boulders, displayed in cumulative format. The parameters of the

best fit distribution (red curve) are listed. The error bars at the top indicate the uncertainty in

boulder size at different diameters due to a 1 pixel measurement error.
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Figure 13. Power law exponent for Ceres boulders. A. The differential distribution of all

boulders counted on Ceres by Schulzeck et al. (2018). The black dashed line is the best-fit power

law found when adopting a minimum boulder size of 4 pixels (black vertical dotted line). The

red dashed line is the best-fit power law found with the minimum boulder size estimated by

the ML method (red vertical dotted line). B. As (A) for the cumulative distribution. The error

bars at the top indicate the uncertainty in boulder size at different diameters due to a 1 pixel

measurement error.

Figure 14. Power law exponent for Phobos boulders. A. The differential distribution of all

boulders counted on Phobos by Thomas et al. (2000) in image 55103 (resolution 1.4 m per pixel).

The black dashed line is the best-fit power law found when adopting a minimum boulder size

of 4 pixels (black vertical dotted line). B. As (A) for the cumulative distribution. The error

bars at the top indicate the uncertainty in boulder size at different diameters due to a 1 pixel

measurement error.
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Figure 15. Power law exponent for Eros boulders. A. The differential distribution of all boul-

ders counted on Eros by Thomas et al. (2001). The black dashed line is the best-fit power law

found when adopting a minimum boulder size of 4 pixels (black vertical dotted line), assuming a

resolution of 4.5 m per pixel. The red dashed line is the best-fit power law found with the min-

imum boulder size estimated by the ML method (red vertical dotted line). B. As (A) for the

cumulative distribution. The error bars at the top indicate the uncertainty in boulder size at

different diameters due to a 1 pixel measurement error.

Figure 16. Power law exponent for lunar boulders: Re-analyzing data for the Surveyor VII

site on the Moon from Cintala and McBride (1995). The vertical dotted line is the minimum

size we adopted, which is close to the quoted line pair resolution of 11 m. The dashed line is the

best-fit power law.
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Figure 17. Power law exponent for boulders on small Solar System bodies that were derived

from populations of at least 100 boulders or particles (Table 3). The horizontal error bars in-

dicate the size range over which the estimate was obtained. Open symbols are associated with

suspected rubble pile asteroids. The black and red symbols for Vesta and Ceres refer to two ways

of estimating dmin for the ML fit.
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