HPDA Software engineering workshop, DLR SC-HPC, 05.11.2020

Advanced git techniques

Johannes Holke

For with Git nothing shall be impossible.
- Luke 1:37

DLR

Intro

In this talk | present some advanced techniques of git that | learned during my years working with git.

| am an (expert) git user, | am not a git expert — so don’t expect me to know everything.

| will show you specific use cases, not detailed instructions.

What you need

To repeat the exercises:

1. Fork the repository https://www.qgithub.com/holke/git-advanced-workshop
2. Clone your fork
3. Follow the exercises/*/README.md

Terminal: gitk:

s3: github-advanced-techniques-holke: --all - gitk
MINGWE4:/c/Users/holk_jo - O X File Edit View Help

Update README.md
Update README.md

Update README.md

Update README.md

Add rebase pic

Update README md

Update README.md

Add exercise folders and blank README's
Edit TODO

L s & 5 8 5

changes, not checked in to index

remotes/originipractice-hooks | [AdGElGWoNGanAMAKEIEinINOOKS SUBToIGer
Added a hello world file with correct author info.

Add coding convention file

Added the pre-commit hook file

Add a script that checks for existing author information in afile.

Add a script that indents code

The final committo be cherry-picked
B Yet another commit for cherry-picking
b Another commit to be cherry-picked

¥ Change something in the code

Initial Commit to be cherry-picked

p Accidentally committed secret document.
4

g

r

J

Iy

Add TODO file
remotesioriginipractice-rebasing

Add a script that indents code

Add a Makefile to build code

Added a code example

Add hellowold fILE

Add README of random files folder
dd authaor file

35800000 8s

https://www.github.com/holke/git-advanced-workshop

Content

Cherry-picking
Interactive rebase
Reflog

Hooks

Filters

Additional worktrees
Bisect

(mild warmup)
(rewrite history)
(you can’t mess up)
(automation 1)
(automation 2)

Cherry-picking

Apply commits from other branches without merging the whole branch.

Remember:

git cherry-pick <commit>

git cherry-pick <commitA>”..<commitB>

Interactive rebase

Rewrite your history. Unleash the full power of git.

WARNING: If you force push rewritten history into branches that other people work on,

you will make enemies for life.
Only use interactive rebasing if you are certain that you are the only person

working on that branch.

Interactive rebase

Rewrite your history. Unleash the full power of git.

Remember:
git rebase -i HEAD~N

Workflow to edit a commit;

1. gitreset --soft HEAD~
2. EDIT COMMIT
3. git commit -c ORIG_HEAD

Reflog

Remember:

git reflog

Hooks

A hook is a script that is automatically executed during a git action (commit, push, etc.).
A hook can decide whether to abort this action.

Enforce coding conventions
Deny commits that do not compile

Remember:
.git/hooks/

Useful: for file in “git diff --cached --name-only"

Filter

merge (arr[], 1,

nl=m-1+ 1;
n2 =r - m;

L[nl], RIn2];
We have all been here:
'No segfault so
B; 1 < nl; i++) {
: ' ¢« L[1i] << std::endl;
arr[l + i + 1];

i << L[i] =< std::endl;

B;] < n2; j++) {

Filter

With filters, we can modify file contents on-the-fly before we commit them or check them out.
Keep your private code bites out of the repo.
- print-debugging

- comments that are not meant for others

clean: modify before git sees it
smudge: modify before i see it (rarely used)

Remember: .git/config .git/info/attributes

[filter "gitignore"] *.c filter=gitignore
clean = exercises/filter/gitignore_filter.scp * h filter=gitignore
smudge = cat *.py filter=gitignore

Worktrees

With worktrees we can make additional copies of our working directory.
- No copying of .qgit files
- git prevents you from working on the same branch twice

Why?
- Code review
- Work on multiple features
- Work on branch A while branch B compiles

Remember:

git worktree add PATH BRANCH

git worktree prune

Bisect

Binary search your history for bad commits.

Remember:

git bisect start

git bisect bad

git checkout GOOD_COMMIT

git bisect good

Mark incoming commits with git bisect good/bad
git will tell you the first bad commit

git bisect reset

Thank you for your attention

