
Advanced git techniques

Johannes Holke

For with Git nothing shall be impossible.
- Luke 1:37

HPDA Software engineering workshop, DLR SC-HPC, 05.11.2020

Intro

In this talk I present some advanced techniques of git that I learned during my years working with git.

I am an (expert) git user, I am not a git expert – so don´t expect me to know everything.

I will show you specific use cases, not detailed instructions.

What you need

To repeat the exercises:

1. Fork the repository https://www.github.com/holke/git-advanced-workshop

2. Clone your fork

3. Follow the exercises/*/README.md

Terminal: gitk:

https://www.github.com/holke/git-advanced-workshop

Content

• Cherry-picking (mild warmup)

• Interactive rebase (rewrite history)

• Reflog (you can´t mess up)

• Hooks (automation 1)

• Filters (automation 2)

• Additional worktrees

• Bisect

Cherry-picking

Remember:

git cherry-pick <commit>

git cherry-pick <commitA>^..<commitB>

Apply commits from other branches without merging the whole branch.

Interactive rebase

Rewrite your history. Unleash the full power of git.

WARNING: If you force push rewritten history into branches that other people work on,

you will make enemies for life.

Only use interactive rebasing if you are certain that you are the only person

working on that branch.

Interactive rebase

Remember:

git rebase -i HEAD~N

Workflow to edit a commit:

1. git reset --soft HEAD~

2. EDIT COMMIT

3. git commit -c ORIG_HEAD

Rewrite your history. Unleash the full power of git.

Reflog

Remember:

git reflog

Hooks

A hook is a script that is automatically executed during a git action (commit, push, etc.).

A hook can decide whether to abort this action.

Enforce coding conventions

Deny commits that do not compile

…

Remember:

.git/hooks/

Useful: for file in `git diff --cached --name-only`

Filter

We have all been here:

Filter

With filters, we can modify file contents on-the-fly before we commit them or check them out.

Keep your private code bites out of the repo.

- print-debugging

- comments that are not meant for others

clean: modify before git sees it

smudge: modify before i see it (rarely used)

Remember: .git/config .git/info/attributes

Worktrees

With worktrees we can make additional copies of our working directory.

- No copying of .git files

- git prevents you from working on the same branch twice

Why?

- Code review

- Work on multiple features

- Work on branch A while branch B compiles

- …

Remember:

git worktree add PATH BRANCH

git worktree prune

Bisect

Binary search your history for bad commits.

Remember:

git bisect start

git bisect bad

git checkout GOOD_COMMIT

git bisect good

Mark incoming commits with git bisect good/bad

git will tell you the first bad commit

git bisect reset

Thank you for your attention

