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Abstract

Myographic sensor matrices in the field of human-machine interfaces are often poorly developed

and not pushing the limits in terms of a high spatial resolution. Many studies use sensor

matrices as a tool to access myographic data for intention prediction algorithms regardless of

the human anatomy and used sensor principles. The necessity for more sophisticated sensor

matrices in the field of myographic human-machine interfaces is essential, and the community

already called out for new sensor solutions. This work follows the neuromechanics of the

human and designs customized sensor principles to acquire the occurring phenomena. Three

low-cost sensor modalities (Electromyography, Mechanomyography, and Force Myography)

were developed in a miniaturized size and tested in a pre-evaluation study. All three sensors

comprise the characteristic myographic information of its modality. Based on the pre-evaluated

sensors, a sensor matrix with 32 exchangeable and high-density sensor modules was designed.

The sensor matrix can be applied around the human limbs and takes the human anatomy

into account. A data transmission protocol was customized for interfacing the sensor matrix

to the periphery with reduced wiring. The designed sensor matrix offers high-density and

multimodal myographic information for the field of human-machine interfaces. Especially

the fields of prosthetics and telepresence can benefit from the higher spatial resolution of the

sensor matrix.
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1 Introduction

In our daily life, we face many situations where we interact with a variety of machines to

manipulate our environment to reach our goal. The interactions between the user and the

machine are diverse, like pushing the button of an electronic toothbrush compared to the

concurrent and proportional control of a car. The electric toothbrush has an easy on-off

switch, and the car has a proportional steering wheel, brake, and accelerator. Due to the high

amount of various interactions, the research field of human-machine interfaces has a crucial

role in our digital era to simplify our daily life. Current human-machine interfaces are limited

in their control, and demand the end effectors to manipulate buttons, wheels, or similar

mechanical transducer. Some interfaces use binary signals, which makes them inaccurate in

many tasks, due to its non-proportional output. These limitations demonstrate that there is a

need to understand the human’s intention further. It can be proposed that with obtaining the

user’s intention before he manipulates the environment, a higher output can be achieved. The

emerging market of human-machine interfaces and especially interfaces based on biological

signals, was proved with Facebook’s (Menlo Park, CA, USA) acquisition of CTR-Labs (New

York, NY, USA) in September 2019 for a non-confirmed price of 500 million to 1 billion US$ [1].

The Institute of Robotics and Mechatronics from the German Aerospace Center researches

in this field to provide new interfaces to achieve a more dexterous control for robots. The

research is closely linked to the adaptive bio-interface research group but conducted in the

group of terrestrial robotic assistance. Based on an earlier research collaboration with Prof.

Dr. Risto Kõivas team, a force myographic sensor matrix (wristband) was developed, which

produced promising results [2, 3]. However, the wristband has some drawbacks, which should

be solved. The modules of the wristbands were used in multimodal sensor approaches, but the

sensor modalities were locally separated from each other, which made it difficult to compare

their effectiveness. Thus, a sensor matrix should be designed, which provides a higher spatial

resolution of multiple myographic modalities and solve the later discussed drawbacks of the

current system.

This thesis strongly focuses on the underlying basics and provides neuromechanical insight

into possible myographic modalities and their origins and phenomena. The design process is

iterative from chapter to chapter and uses decisions and principles from earlier chapters to

base the decisions on solid ground. The main focus is on myographic solutions and the used
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sensors to obtain these.

The work is structured into ten chapters and shows the developing objectives of this work.

The background provides insight into the field of human-machine interfaces, shortly introduces

the origin of intentions and sets requirements for the design process of the work, based on the

target group and used intention prediction method. The chapter explains why human-machine

interfaces on the basis of myographic information are nowadays superior. The objective

and design principles are stated in chapter 3, and the following work refers back to these.

The bigger picture of the muscle physiology and architecture at the sample recording site of

the human forearm is explained to derive myographic sensor principles. Literature research

was conducted to introduce possible myographic solutions and to pick the most promising

modalities for a low cost and high-density sensor matrix. The sensor solutions are introduced

in chapter 6, and a small pre-evaluation was conducted in chapter 7 to proof the concept of

the designed sensors. Chapter 8 merges the sensor modalities to a sensor module and treats

the necessary electronic components for data acquisition. Finally, chapter 9 designs a sensor

matrix on the basis of the myographic information of the sensor modules. Drawbacks of the

current system are discussed and solutions proposed. Chapter 10 gives an overview of the

covered topics, and decisions are interpreted.
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2 Background

2.1 Human-Machine Interface

The interface between a human and a machine should expand human capabilities. The system

behind a HMI contains all necessary components to exchange information, as shown in figure

2.1. The data flow is bidirectional to enable the user to control the machine and receive

its feedback. Human factors research states that the human output consists of intentional

and non-intentional signals, where non-intentional behavior is a type of human error [4].

Non-intentional components of the signal are treated as noise and should be suppressed, while

intentional signals are required for distinct actions.

Figure 2.1: Components of a Human-Machine Interface by MacKenzie (1995) [5]

Intentional signals are classified into biological signals and non-biological signals or implicit

and explicit intention [6, 7]. Non-biological signals are recorded with an external tool like a

mouse, keyboard, or switch. Biological signals represent physiological time-series data, which

mostly result in non-biological signals [8]. E.g., the intention to manipulate a switch can be

recorded as a biological signal in between the brain and the end-effector movement or at the

manipulated switch.

Biological signals are divided into the six general transducer types from table 2.1 [9]. These

approaches represent the bigger picture to detect biological signals of the body and are applied

to myographic signal acquisition approaches in chapter 5.
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2.1 Human-Machine Interface

Table 2.1: General transduction principles from [9]

Transducer Example

Bio-acoustic Respiration rate

Bio-chemical Calcium inflow / pH distribution

Bio-electric Electromyography

Bio-mechanical Oscillations (kinematic), force (kinetic)

Bio-optical Videometry

Bio-thermal Thermal radiation

Humans utilize human-machine interfaces several times a day, and a life without them seems

impossible for the majority. They play a key role in factories and offices. In medical applica-

tions, human-machine interfaces are called assistive systems. Impaired patients can operate

these systems to reduce their impairment and increase their autonomy. Tetraplegia patients

can control wheelchairs or robotic arms by thought [10, 11, 12, 13]. Amputees can control

their prosthesis by using motor patterns in their brain, which result in a myographic activity.

However, without feedback, the control of a prosthesis does not lead to an embodiment. Thus,

bidirectional feedback was restored by transcutaneous or invasive nerve stimulation [14, 15, 16].

Antfolk et al. (2013) summarized approaches to close the loop between action and perception

to achieve the embodiment of bidirectional systems [17].

Controlling a human-machine interface can be achieved by already existing or, due to brain

plasticity, new brain activation patterns. The advantage of present patterns is apparent,

but to achieve a high dimensional dexterous control, it requires more input signals for the

interface. To restore or mirror a physiological capability, it is helpful to record a higher density

of multi-modal signals and fuse them to detect the intention of the user. Thomas Reardon,

the co-founder of CTRL-Lab (New York, NY, USA), introduced his talk in 2019 about

human-machine interfaces with the inability of the human to manipulate the environment at

a greater extent [18]. Reardon further mentioned, that their system could potentially increase

the human throughput by the factor 3-4 with the detected muscle signals [18].

In summary, the optimal human-machine interface uses multi-modal sensors to detect pure

intentional biological signals, which are present patterns in the brain. The control should

be intuitive and reproducible if the user needs to create new brain patterns. Furthermore,

human-machine interfaces should provide sensory functions to lead to the embodiment of the

system.
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2 Background

2.2 Motor Pathway

Supplemental information about the origin of intentions and how they are processed are

helpful to deduce interfacing possibilities and argue about useful methods to obtain these.

This section introduces the general motor pathway of the central nervous system. Figure 2.2

depicts the motor pathway and splits it into upper and lower motor neurons. Starting from

brain activities in the motor cortex the signal propagates through the spinal cord and the

motor nerves to the motor end-plate of the muscle.

Figure 2.2: The simplified human motor pathway - From brain activities to evoked potentials

at the motor end-plate by Waxmann (2016) [19]

Based on the sensory input, the human perceives his environment and fulfills voluntary

actions to achieve his desired goal. The action/plan to achieve the goal is called intention.

Unintentional actions are involuntary contractions like reflexes. Furthermore, unintentional

actions appear due to sensory and motor noise, which is essential for motor learning but results

in noisy signals [20, 21, 22]. At the neuronal level, the sensory input neurons in the cortex are

activated due to the afferent signals of the biological transducers, e.g., retina, skin receptors,

and others. In simplified terms, the primary stage of the associated cortex of the sensory

signal transmits their activity to higher areas where information from several inputs is merged.

Information in the brain is transmitted by electrochemical processes, i.e., a neurotransmitter or

electrical potentials which ”activate” the coupled neuron. Messages, in the form of activation,
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travel from neuron to neuron. The neuron can excite or inhibit the postsynaptic potential.

Hence, active neurons in higher brain areas are a result of well-facilitated neural pathways

which passed the activation from lower brain areas. The way the activation in neurons work

is an all-in-or-nothing reaction called ”action potential”, or colloquially ”spike”.

Neurons in the motor cortex are primarily used for motor activities by transmitting signals to

the motoneurons, which innervate the muscles. A specific pattern of active motor neurons

fulfills the linked intentional movement [23]. The active neurons in the pattern send their

motor signals through the neural pathway in the spinal cord to the lower motor neurons.

The spinal cord is part of the central nervous system and covers and protects the neural

pathway with the surrounding vertebral column. It contains motor neurons that transfer

signals through the peripheral nervous system to the muscles. Motor neurons are clustered in

muscle-specific motor pools in the motor anterior horn cell in the spinal cord [24, 25]. In addi-

tion to the activation from brain signals, the motor pool can also be activated unintentionally,

e.g., from spinal reflexes, interneurons, or higher-order inputs. A motoneuron connects to

several muscle fibers. Depending on the aimed dexterity and strength of the movement, motor

neurons with a higher or lower number of muscle fibers are activated [26]. Muscle physiology

is further explained in chapter 4.

The axons of the motor neuron leave the vertebral column at a junction close to the muscle.

The action potential channels in a nerve towards the intended muscle, innervate its muscle

fibers and cause them to contract. The compound of a motor neuron and its muscle fibers is

called a motor unit. The contraction leads to a shortening of the muscle and pulls on the

tendon, which is coupled in series. The tendon’s origin on the bone has a distance to the joint;

thus a muscle contraction results in torque around the joint.

The motor pathway offers a broad spectrum of possibilities to derive the intention of the user.

The intention detection is more accessible at a distal occasion of the motor pathway, due to a

higher spatial resolution and less cross-talk. Nevertheless, the temporal latency suffers from

distal signals, especially at the neuromuscular junction, where the motor unit action potential

(MUAP) is transduced into kinetic actions.

2.3 Target group and use case

The target group of this thesis are persons operating complex machines with a high degree

of freedom. Possible applications are aerospace missions, rescue missions in harsh environ-

ments, or rehabilitation. It can be used in teleoperations and telepresence mode. However,

human-machine interfaces (HMI) are suitable for everyone and can be applied with a variety

of biological and non-biological signals. Current research regards, among other gaming,

entertainment, and medicine. The fewer degrees of freedom, or the more generalized the task,
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the less complex the interface needs to be. The dexterity of the movement or task directly

correlates to the degrees of freedom the interface can simultaneously control.

A use case is the reduction of the impact of radiation on astronauts, caused by the number

of extra-vehicular activity. Research was made in space missions using a game controller or

complex sequential and proportional interfaces to control a robot arm to be able to manipulate

the extra-vehicular environment [27, 28]. Furthermore, research was conducted in solving

these tasks in advance and using these patterns to solve the task in space [29]. However, both

systems are limited in their input and lack dexterity and complexity, which makes them fragile

in case of errors and new situations. Using a HMI in harsh environments requires a high

degree of freedom, which is similar to space missions, except for the aeronautic constraints.

The application in rescue missions, e.g., in unstable houses, decreases the risk of accidents

with humans. While the application in space needs a highly dexterous system to decrease

the risk of unintentional errors, the application in rescue missions focuses on unexpected

situations, which were never trained by the system. Applications of a HMI for entertainment

and gaming early emerged with computers. Taken together, most of the current HMI are

based on switches or other mechanical, non-biological signals.

Research in medicine and rehabilitation seems like an exception to this trend. This field aims

to develop systems that demand less cognitive load and extend or restore human capabilities.

There is one major constraint in acquiring signals from these fields: the users are mostly

limited in their capabilities due to accidents or diseases. Thus recording bio-signals at the

forearm is not always possible, or the muscle architecture in between the users is different.

Nevertheless, the field of amputees is a major target group of this thesis and give insight

about acceptance and necessary design principles for this work.

Assistive devices are classified in standard ISO 9999:2016. Ribeiro et al. (2019) distinguish

between active and passive interfaces [30]. Passive devices for upper-limb prosthesis are yet

better in everyday tasks, shown at the Cybathlon 2016 in the ARM Challenge. However,

active prostheses are the future due to the possible control of a high degree of freedom. Biddiss

& Chau discovered that 80% of users with upper-limb absence use a prosthesis [31]. Approx-

imately 33% of these amputees use passive prosthesis [32] and 30% – 50% use myoelectric

prosthesis [33, 34]. A survey from Engdahl et al. compared the interest of the community

in four complex biosignal acquisition techniques [35]. Non-invasive myoelectric control was

interesting for 83%. The invasive techniques of targeted muscle reinnervation, peripheral nerve

interfaces, and cortical interfaces were less interesting for the community, due to the surgical

risks. Non-invasive concerns were weight, cost, durability, and difficulty of use. Most of the

studies use myoelectric approaches in their surveys. Nowadays, hybrid approaches with multi-

modal sensors are seen as a key for better data capturing [36, 37, 38]. Other concerns about

myoelectric prosthesis are the lack of dexterity, poor reliability and long reaction times [31, 39].
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This target group splits up into to field. The first field is using the sensor matrix as a tool to

manipulate machines to avoid dangerous situations. Currently, most of the human-machine

interfaces in the first field base on non-biologic signals. The second field consists of disabled

persons who want to restore lost motor functions. The field of amputees provides valuable

information about the necessary design principles to satisfy the user experience.

2.4 Intention prediction

Knowledge about intention prediction algorithms guarantees a better conceptualization of

the sensors for HMIs. As introduced in section 2.2, myographic signals lead to the original

intention of the user. Digital signal processing techniques, which mind neuromechanical

principles, create features for Machine Learning or biomechanical models. A deep learning

approach is fully independent of any digital signal processing and uses raw data.

The goal strategies of a HMI control task are proportional and simultaneous control [37, 36].

Proportional control ensures fine and precise movements, e.g., with a regression. Simultaneous

control is the ability to perform two movements together, e.g., supination and flexion. There

are two main approaches to compute the intention. The first approach follows the biological

pathway and simulates it using biomechanic models. The second approach trains a machine

learning algorithm for classification or regression. Classification models are less precise than

regression models, due to the instability in between two classes. Regression models change

their state in smaller steps and are more dexterous but lack accuracy with a bigger pool of

gestures. Due to the rapid change in technology, the applied technique in control tasks shifted

from model-based approaches to machine learning algorithms. Nevertheless, the model-based

approach is still used in research to acquire more detailed data. Nowadays, Deep Learning

techniques are pushing into the field, but they require a large dataset and generalization are

critical due to different sensor data at each user.

Model-based

The model-based signal processing approach bases on neuromechanical knowledge about the

underlying tissue and muscles. High-quality data is necessary for a model-based approach

simulation. Due to the complexity of the musculoskeletal system, the model needs parameters

like the joint angle to consider the force-length relationship. The higher the desired accuracy,

the more complex the model. In a model-based approach, the obtained signal is assigned

to a specific muscle. A high dexterity can be achieved with high-quality muscle recordings.

Famous biomechanical models to determine the muscle force are the simple Hill-Model and

Huxley-Model [40, 41]. Biological information of the distance from the tendon to the joint is

preset, based on scientific data, to calculate the torque. Torques are mainly used to describe

movements of bodies, e.g., in robotics [42]. The dynamic of the movement can be calculated
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with sensing all occurring torques.

Closely related to the mechanical calculations, an imaging electromyographic approach from

Urbanek (2016) uses cross talk to decompose the activation from deeper muscles [43]. Similar

to this, De Luca et al. (2014) and the start-up CTRL-Lab are using a motor unit decomposition

based on biomechanical properties of the motor unit action potentials (MUAP) to enhance

the accuracy of their model [44, 45]. Decomposing electromyographic signals is done by the

extraction of the neural code with motor unit spike trains and applying a machine learning

blind source separation algorithm [46]. Based on the decomposed intramuscular coordination,

a forward model can be used with the obtained high quality and specific muscle activation.

Machine learning

Machine Learning or artificial intelligence is a trending term for applying statistical methods,

which predict an outcome based on a trained/learned model. Rather than one-dimensional

amplitude-based control approaches, it uses features for pattern recognition or a complex net

to predict the intention. Bonnin (2017) divides machine learning into reinforced, super- and

unsupervised learning algorithms [47]. Supervised learning algorithms need label data to train

their model, while unsupervised learning algorithms can use the raw data. Reinforced learning

adapts its model based on non-labeled data. Unsupervised learning approaches need a large

amount of data until they outperform supervised algorithms [48, 49]. However, research in

the trending field also covers myographic activation; thus a flood of papers are published with

a variety of new approaches and models.

The most common supervised models predict gestures based on classes or with a regression.

Each model has its advantages and disadvantages in the application of upper limb prosthesis.

Regressions satisfy the proportional control paradigm but are limited in their amount of

classes. Classifiers are capable of distinguishing between many classes but need subclasses

to increase dexterity. Each approach has a variety of basic statistical methods. Prominent

classify algorithms are linear discriminant analysis, support vector machine, and k nearest

neighbor [50]. Prominent regressions are Ridge Regressions based on random Fourier features

or Gaussian process regression [51, 52].

Figure 2.3 shows an amplitude pattern of a power grasp gesture; based on these and other

features, the current signal processing and software computes the predicted intention of the

user with pattern recognition based on a Ridge Regression with random Fourier Features. It

can be seen that the most prominent pattern is the power grasp, while the smaller and less

colorful index finger pattern is less activated. The gray hand is used to train the patterns,

and the colored hand is the prediction after training. The polar plot is divided into 8 slices,

and the sensor data is plotted with a step width of 45◦.
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Figure 2.3: Snapshot from the intention prediction software with three trained patterns (rest,

power, index) and the current pattern (black) in a polar plot with 8 electrode

amplitudes. Used sensor matrix: Thalmic Lab - Myoband

In contrast to biomechanic model-based approaches, machine learning approaches do not

require specific and high-quality information about the recording site. The more information

the system acquires, the more patterns the machine learning approach possibly detects. Nev-

ertheless, when applying machine learning, it is essential to check the system for overfitting

and redundancies. High-density approaches are trending in the research of electromyographic

control interfaces, because of their amount of information [53, 54]. Furthermore, a high-density

approach is independent of the rotational alignment of the sensor due to the re-calibration

at the beginning. Further information about machine learning applications in upper-limb

prostheses are available in the review paper of Scheme et al. [55].

In summary, promising results were obtained with machine learning algorithms with features

based on biomechanical knowledge. Deep neural networks are trending in research, but are not

yet ready for application in human-machine interfaces. The decomposing algorithm based on

blind separation is the most exciting approach, but the applicability depends on the training

period to detect single motor units. A biomechanical model is challenging and not suited for

a human-machine interface. However, the design of this work is focusing on optimal data

for a pattern recognition based intention prediction, and decisions could have been different,

considering other approaches.

2.5 State of the Art

This section introduces the current commercially available state-of-the-art and cutting-the-edge

research of myographic sensor matrices, which are used as human-machine interfaces. The

general classification will be shown, and current solutions, which compete against the future

wristband will be quantified. Figure 2.4 classifies upper limb control devices concerning their
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intent interpretation, activation profile, and preprocessing. Simultaneous and proportional

control was already introduced in chapter 2.4. The multimodal preprocessing approach adds

a third dimension to the general classification of an optimal interface of Fougner et al. (2012)

[56]. Since the paper was published in 2012, the field developed new modalities and aimed for

a higher dexterity.

In contradiction to the other parameters, the commercially available state of the art in intent

interpretation changed with the company coaptengineering, which provides a classification

algorithm based on myographic features. The activation profile of commercially available

upper limb prostheses remained at the level of binary control. Multimodal preprocessing

approaches are still limited to additional sensors like inertial measurement units and lack

different myographic modalities. However, research went further by exploring the fields with

new data processing algorithms and sensor solutions. Current myographic solutions will be

further examined in chapter 5.

Figure 2.4: Classification of upper limb prostheses based on three parameters by [56]

Many research groups in the field are using existing myographic sensors and place them in a

wristband to use it as a sensor matrix. Most of the sensor matrices use single myographic

features, lack spatial resolution, and one gets the impression that they were built without

the knowledge about the determining parameters and resulting information. They may

aim for an easy solution to acquire data to apply machine-learning algorithms but ignoring

the neuromechanics of the human. In the upcoming sections, the most promising custom-

build sensor matrices are introduced, which influenced the design principles and used sensor

modalities of this work.
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Bielefeld Bracelet

The so-called Bielefeld bracelet, shown in figure 2.5, is a research project and not commercially

available. It was developed by Prof. Dr. Risto Kõiva’s team at the center of excellence -

cognitive interaction technology (CITEC) in Bielefeld and published in a paper in 2015 [57].

The bracelet uses a force sensing approach to measure myographic signals, which is explained

in chapter 5. Up to 12 sensor modules are placed at the circumference of the wristband. Each

module contains 4 x 8 ”M” shaped electrodes in a 5 mm grid. The temporal resolution is

88 frames per second while converting analog signals into 12 bit values. The research states

promising results, with applications in smaller studies [2, 3]. Results showed that the bracelet

is capable of providing further information when used with EMG, and could potentially

outperform EMG [58].

Figure 2.5: (A) Sketch of the Bielefeld Bracelet (B) Applied on the forearm from Kõiva et al.

[57]

Myoband from Thalmic Labs

The Myoband from Thalmic Labs (Canada, Ontario) was launched in 2013 and was the first

fully developed commercially available wristband for human-machine interactions based on

EMG and an IMU (see figure 2.6). It is widely used in research, even if the company stopped

the distribution in 2018 [59, 60, 61, 62]. The price was 199$ [63]. The Myoband uses eight

sensor modules with three EMG electrodes. Each module obtains one differential EMG signal

[64]. Furthermore, one board contains a 9 DOF IMU [65]. The wristband transfers the signal

via Bluetooth with a sampling rate of 200 Hz and a resolution of 8 bit [66]. The intended

business case was to provide a wristband that controls music and other entertainment devices

by gesture control. Their patents show that they worked on a multimodal approach, e.g., with

a mechanomyographic sensor [67]. The Myoband became famous because of its easy-to-use

application, its wireless data acquisition, its included battery, and a well-documented API.
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Figure 2.6: Thalmic Lab - Myoband bracelet with 8 sensor modules [68]

CTRL-Kit from CTRL-Lab

The CTRL-Kit of the New York start-up company CTRL Lab adapted the approach of

Thalmic Labs and continued the development of an EMG-based wristband for the human

intention detection. The patents from Thalmic Labs were bought in June 2019. CTRL-Lab

was acquired from Facebook Inc. (Menlo Park, CA, USA) for a sum in between $500 million

and $1 billion US$ in September 2019 [1]. Details about the wristband are available in

conference talks, articles, and on their website [69]. As shown in figure 2.7, the idea of

CTRL-Lab is to use high-density EMG signals, with 16 modules, to get a more considerable

amount of features for their machine learning algorithm. According to an article from Douglas

Fields (2018), CTRL-Lab aims to decompose the EMG-Signal [45]. The EMG sensors seem

to use a single differential amplification and are compliant with contact pressure. It is not

evident whether they use single or double differential recordings (see chapter 5.1). According

to their patents, the setup contains one or more inertial measurement units [70]. Regarding

the hardware, advantages of the CTRL-Kit compared to the Myoband, are the higher spatial

resolution and compliant electrodes, which are more comfortable to wear. CTRL-Lab aims

for the consumer/entertainment market.

Figure 2.7: CTRL-Kit with up to 16 sensor modules by CTRL-Labs[71]
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Further Research Wristbands / Related Work

Ravindra et al. (2014) compare three non-invasive human-machine interfaces for the disabled

[72]. They use a force-myographic, an electromyographic, and an ultrasonic approach, all

shaped to be applied on the human forearm. The electromyographic approach uses the

Otto-Bock 13E200 electrodes (Duderstadt, Germany), as shown in figure 2.8, in a wristband

setup. This setup was originally built with a lower spatial resolution from Castellini et al. in

2009 [73].

Figure 2.8: Otto Bock 13E200 sEMG setup by Ravindra (2014) [72]

Connan et al. (2016) adapted this approach and added force sensing resistors to the setup to

record signals with a multimodal setup [2]. Cho et al. (2016) developed a plain FSR setup,

shown in figure 2.9, to prove the feasibility of the force myographic approach to control upper

extremity prostheses [74].

Figure 2.9: Force Myographic Wristband by Cho et al. (2016) [74]

The company OT Bioelettronica SRL (Torino, Italy) builds EMG setups upon a request. The

German Aerospace Center ordered the sensor shown in figure 2.10. This sensor is capable of

measuring monopolar and bipolar signals and has a remote reference electrode. Furthermore,

it has an in-built AC (500 Hz) and DC impedance check. The resolution is 24 bit with a high-

performance biopotential amplifier ADS1298 (Texas Instruments Incorporated., Dallas, Texas,

USA). Furthermore, the chip has a lead-off detection and a programmable gain amplifier.
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Figure 2.10: Bioelletronica Electromyographic sensor with 8 modules

Acquiring data of everyday tasks, the limb is moving in the peripersonal space, and actions are

required at different postures. Due to gravity, the muscles need to exert more or less force at

different limb positions to accomplish the intentional gesture. The so-called limb-position effect

influences the predictions negatively. Fougner et al. (2011) resolved the limb position effect

with accelerometers on the arm [37]. They were able to decrease the average classification

error from 18 % to 5.0 % [37]. Krasoualis et al. (2017) added an IMU to the setup to add

information to their electromyographic signals and increased the accuracy of an upper limb

control task as well [75].

In conclusion, since the rejection of Thalmic Labs Myoband, no competitor is on the market of

myographic wristbands. However, extensive research was conducted into myographic control

for upper limb prosthetic control. Some problems are already solved, and researchers are

working on a proportional and simultaneous intention prediction. Occasionally there is just

one paper from mid-2019 trying to implement a full span of myographic sensors together

in a sensor matrix filling the gap since Thalmic Labs rejection and Facebook’s acquisition

of CTRL-Lab [76]. However, none of these wristbands provide a high spatial resolution

concerning the human’s forearm complexity.

2.6 Conclusion

The background and constraints of the design of a human-machine interface show that human-

machine interfaces on the basis of biologic signals are superior in terms of a low temporal

latency. Aiming for a perfect interface, the goal of an embodiment can be achieved with sensory

feedback. Stepping down the motor pathway demonstrates that the signal of myographic

sensors is directly linked to the intention of the brain. The periphery acts like a signal amplifier

and decomplex the signal due to reduced cross-talk from different signals. Depending on the
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target group, the human-machine interface has limitations in its application and objective.

Taking the target groups and problems from current sensors into account, this thesis aims for a

high spatial resolution to either fulfill the high robustness for amputees and the high dexterity

for teleoperations in harsh environments. The possible intention prediction algorithms impact

the design decision. While model-based approaches desperately need high-quality signals

and further information about biological parameters, machine learning algorithms use the

input features and create a model based on its settings. This thesis aims to be used with

the introduced myocontrol software in figure 2.3. Quadruple as much input parameters

could benefit a pattern recognition algorithm and thus improve the accuracy and robustness.

Nevertheless, the created features for machine learning should be based on neuromechanical

phenomena. Consequently, this thesis has the aspiration to design a human-machine interface

and further offer the signal composition of the provided signals. Despite the consensus in

research that the objectives in the field should not just focus on new and better intention

prediction algorithms, a full span of myographic signals in one sensor matrix was not designed

to the current date and is still an open field in research. The increased density of local

information could potentially benefit the prediction with a broader spectrum of non-redundant

muscle parameters. The system to be developed should take these general notes into account.

16



3 Objective

The general idea, why the design of a low-cost sensor matrix for use in human-machine

interactions on the basis of myographic control is promising, was given in the first chapter.

The approaches from other research teams influenced the workflow, first to understand the

processes in the muscle and then design the sensor matrix step by step. The workflow is

presented in figure 3.1. The design process of myographic sensors highly benefits from the

knowledge about the muscle basics. In total, this thesis aims to prove the concept of the used

sensors and provides a concept for building a sensor matrix.

Figure 3.1: Work flow of the design process for the myographic sensor matrix

Concluding the knowledge of the first chapter, the development of a muscle-machine interface

is most promising in terms of a low temporal latency and less complexity. The human has

more than 600 skeletal muscles from which we can potentially record the activation [77]. The

use of specific muscles, which are less relevant for most of the daily activities, would give the

user the possibility to use them to control machines. To achieve this, the user needs to learn

new patterns that are not intuitive but possible due to brain plasticity [78, 79]. The logical

solution is to use end-effector muscles, which limits multitasking, but enables a dexterous

control, e.g., mirroring the intended movement to a robotic arm. Thus, the sensor matrix

should be applicable to the human limbs.

The hand is an essential end-effector of the human, and most of our environmental manipu-

lations are fulfilled with it. We use the hand for accurate and subtle movements as well as

for strong and large movements. To be able to achieve the desired dexterity, the hand and

wrist consist of 27 bones and 45 muscles with at least 23 degrees of freedom at the joints [80].

Therefore, the research about upper limb myocontrol is more prominent in research, and this

work follows this idea. However, the sensor matrix should also fit other limb regions and limb

diameters without decreasing the spatial resolution.

In human-machine interactions, it is essential to provide real-time feedback to the user re-
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garding his input. Time delays lead to rejections and keep the user unsure if the machine

understands the user’s intention (see 2.3). A delay of more than 300 ms was noted as

crucial [81]. Farell et al. (2007) stated the currently acceptable controller delay in between

100− 175 ms and a delay smaller than 100 ms as their goal [82]. Linking to electroencephalo-

graphic measurements and their event-related potentials can show the satisfaction of the user

[83]. The general norms for ergonomics in human-computer interfaces are listed in ISO 9241.

The user experience is stated in ISO 9241-11 and has three main guiding criteria: effectiveness,

efficiency, and satisfaction. Thus, a design process needs to consider functional as well as

nonfunctional constraints in the development. The main scope includes medical purposes as

well as the application as a control instrument in future aerospace missions. In both cases,

the robustness is crucial for the success [84].

The thesis introduces myographic principles and establishes possible features for a digital

signal processing algorithm, which is not included in the thesis. The sensor matrix output

will consist of raw signals, which can be processed into the time domain, spike, and amplitude

parameters. This work merges all promising measurement techniques to provide more and

better features for the intention detection concerning the design principles of the following

section. The sensors are optimized for a machine learning approach, and the design would

change if aiming for a deep learning algorithm.

The ultimate goal for human-machine interfaces is to achieve the embodiment of the system.

This requires a more complex system, which can not be covered in this thesis. The thesis

solely aims to provide raw data for human intention prediction software. Nevertheless, the

system could be used in a more advanced system with an actuator and a separate feedback

device.

3.1 Design principles

The design principles are guiding through the development cycle of the sensor matrix. Deci-

sions in this work are always related to these design principles. At some point, decisions are

further explained regarding the proposed principles.
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Table 3.1: Design principles of the sensor matrix sorted by relevance and collected from [85,

58, 81, 84, 37, 38]

Nr. Design principle Explanation

1 medical technology laws ISO 13485

2 non-invasive non harming sensors

3 robustness high accuracy in different environments

4 temporal resolution record the specific frequency domain

5 spatial resolution distinguish small muscle activations

6 delay/latency shorter than 200 ms

7 low cost cheaper than current solutions

8 modular exchangeable modules

9 compact minimal size and weight

10 free positioning no fixed application

11 safety non harming

12 intuitive ease of use

13 mobile free to move in space

14 wearability use as an amputee with one hand

15 durability durable in everyday use

16 feedback embodiment / closed loop

17 comfort materials

18 calibration in-built calibration

19 in-built power no power cable

20 wireless data transfer without cable

21 resource friendly sustainable

22 good looking style
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4.1 Muscle physiology

This chapter introduces the general muscle, tendon, and tissue architecture, which is related

to myographic principles. Closing the loop from chapter 2.2, the action potential propagates

from the brain through the spinal cord towards the motor neurons, which innervate the muscle.

The human body provides three types of muscles: skeletal, cardiac, and smooth [86]. Skeletal

muscles can be contracted voluntarily and important to detect the user’s intention. The

cardiac and smooth type is controlled by the autonomic nervous system. Skeletal muscles

are located all over the body, and their main purpose is the manipulation of the environment

[87]. To fulfill all types of manipulations, skeletal muscles are divided into parallel, circular,

convergent, and pennate muscles [86]. Each of the four types is made for special applications

in the human body. Parallel and pennate muscles are the most common types at the limbs,

where the sensor matrix is applied.

Muscle:

Figure 4.1 depicts the main architecture of skeletal muscles with the example of a parallel-

fusiform muscle. The bottom picture of figure 4.1 shows the muscle fiber, which is innervated

by the central nervous system, more accurate the motor neuron, at its neuromuscular junc-

tion/innervation zone. A motor neuron is connected to several muscle fibers of the same type

and creates a motor unit [26]. The motor unit action potential (MUAP) propagates with a

mean velocity of about 4-5 m/s from the neuromuscular junction in both directions towards

the end of the muscle fiber [88, 89]. The velocity changes with induced activation and muscle

fatigue [90]. Measuring the MUAP is a way to obtain myographic information and called

electromyography.
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Figure 4.1: Skeletal muscle architecture (fusiform) by [91]

Muscle Fiber:

Muscle fibers can be classified into three groups [92, 26]. The type 1 fiber (slow twitch) is slow

but endurable. Type 2 fibers are fast twitching and further divided into two subcategories,

based on their endurance. Type 2a (fast-twitch fatigue resistant) is more enduring than

Type 2b/2x (fast-twitch fatigable). Muscles have a full set of all fiber types, but the exact

composition differs between humans and muscles based on their function, training, and other

constraints [93]. Aerobic and anaerobic training shifts the fiber spectrum towards lower,

respectively higher twitch frequencies [94, 95]. Figure 4.2 shows the time domain of sample

muscle twitches, which are mainly distributed with the introduced fiber types. The twitching

time differences are apparent and part of the mechanomyographic information.

Figure 4.2: Muscle Fiber Activation Time: Extraocular mainly fast twitch [96], Gastrocnemius

about 50% slow twitch fibers [97], Soleus about 64-100% slow twitch fibers [98]

[99]

The activation/recruitment of muscle fibers is described in the Henneman Size Principle,

shown in figure 4.3 (B) [100]. Slow-twitch fibers are recruited in any case, while fast-twitch
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fatigue fibers are just used in addition to the others, which is mainly the case for short

ballistic movements [101]. Muscles are orderly recruited to be able to achieve fine dexterous,

as well as strong movements [102]. Exhausted muscle fibers get replaced by bigger and

stronger fibers, which results in less dexterous movements with muscle fatigue. To achieve

the maximal voluntary contraction, the central nervous system recruits its full set of muscle

fibers. Recording an electromyographic signal from a muscle and using the frequency domain

gives insight into the activation rate, which leads to knowledge about the intensity of the

movement (see figure 4.3 (A)).

Figure 4.3: Left: Fiber usage and median frequency from a rats extensor digitorum longus

and soleus muscle. EDL1 (type 2B), EDL2 (type 2A), SOL (type 1) [103, 104];

Right: Hennemann’s size principle from [101]

The contractile element of the muscle (sarcomere) is shown in figure 4.4. The sarcomere

distributes in parallel and series in a muscle fiber. The evoked action potential from the

neuromuscular junction changes the polarity of the muscle cell, which results in an inflow of

calcium (Ca2+). Ca2+ is the trigger for the Cross-Bridge Cycle. The Cross-Bridge Cycle is

the mechanical twitch of the contractile element. More detailed, the myosin head couples with

ATP and snaps further along the actin towards the z-line. Each MUAP results in a twitch,

which shortens the contractile element. The accumulation of all twitches, fast and slow, leads

to the pulling force on the tendon [105, 106, 107, 108]. The lateral oscillations of the twitches

are measured with a technique called mechanomyography.
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Figure 4.4: Sarcomere translated from [109]

Figure 4.5 shows the dependency between the tension and summation of twitches over time.

A complete/fused tetanus has less amplitude oscillations and reaches its resonance frequency

[110]. When measuring muscle oscillations, biological tremors should be taken into account

[111].

Figure 4.5: Wave Summations modified from [112]

Muscle-Tendon Compound:

The muscle is connected to the tendons, which stores elastic energy with enlarging (tension).

When the muscle contracts, the tendon pulls on its origins, which has a distance to the joint

to exert a torque. The connection between the tendons and the muscle fibers are differing

between pennate and parallel muscle types. The parallel muscle has parallel fibers pulling on

the tendon, and the pennate muscle has a pennation angle that allows a higher number of

fibers in the muscle and a smaller change in length [113].

Due to the accumulation of twitches, the muscle shortens, which results in a bulging muscle,

due to its isovolumetric behavior. The muscle bulge is measured with a myographic technique

called force myography. In pennate muscles, the pennation angle is also part of the enlarging

width of the muscle [114, 115]. Hodges et al. (2003) conducted a test setup with ultrasound

and EMG measurements and discovered that the gradient of the muscle thickness decreases

at 30% MVC [113]. Hodges et al. (2003) also discovered that the dependency on muscle
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architectural parameters differs in between different muscles and does not always occur.

Nevertheless, parallel and pennante limb muscles should show a related behavior between

activation and bulge. The joint angle plays a crucial role in determining the activity, the

muscle - length relationship describes this behavior [114].

Electromechanical Delay:

The electromechanical action delay describes the latency of the musculoskeletal system before

exerting force after the motor unit potential propagated through the muscle fiber. The delay

is a major drawback in capturing intentions based on mechanic phenomenons (see figure 4.6).

The reasons are chemical, e.g., the Ca2+ inflow, and mechanical, e.g., the tendon elasticity,

constraints. This impedes the application of myographic techniques based on mechanical

information in real-time applications. Cavanagh & Komi (1979) stated the delay of the

mechanic response as in between 30 to 100 ms [116].

Figure 4.6: Electromechanical action delay and the latency of the muscle processes from [117]

Conclusion:

In summary, the work focuses on parallel and pennate skeletal muscles. The muscle fibers

are connected to a motor neuron and build a motor unit, which consists of one motor neuron

and many muscle fibers. Muscle fibers are divided into three types depending on their twitch

behavior and endurance. The twitches are accumulated and pull on the tendon. While

twitching, the muscle bulges and decreases in length. The neuromotor control processes in

the muscle are summarized as intramuscular coordination and consist of recruitment, rate

coding, and sequencing. The control processes between muscles are called intermuscular

coordination and aim to improve movement coordination by using synergies and improved

agonist-antagonist synchronization.
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4.2 Forearm anatomy

Knowing the anatomy of the role model location of the human forearm augments the knowledge

about applications of the sensor and possibilities and difficulties regarding the obtained signals.

The muscle dimensions differ interpersonally, but the principal architecture remains, as long

as no pathologic state occurs. For example, the musculus palmaris longus is absent in 12.9%

of humans [118]. The muscles in the forearm are mostly divided into extensors and flexors,

even if they also have rotational and abduction/adduction characteristics. Flexors are the

agonist for closing the fingers or bending the palm towards anterior. Extensors can open the

hand or bend the wrist posterior. Specific finger muscles in the hand are small and weak.

Consequently, finger movements are possible due to synergies of muscles or a particular muscle

innervation from forearm muscles [119]. Larger muscles are placed in the proximal forearm

and connected via tendons to the joints of the hand or wrist (see figure 4.7a).

The dexterous finger flexors are mostly located in the depth of the arm, while the stronger

wrist muscles are superficial (see figure 4.7b). The extensor muscles are better distributed

for recordings, which could lead to an enhanced prediction of opening, compared to closing

movements of the hand (see figure 4.7a and 4.7c). Moreover, it is obvious that the application

of a wristband does not always align in muscle direction, which makes it more difficult to use

a differential recording technique in a generalized setup. Nevertheless, for some locations, it

seems possible, and current research is based on this simplification. Research needs to be

conducted to show the influence of a wrongly aligned differential setup.

(a) Superficial flexor muscles; anterior (b) Deep flexor muscles; anterior

(c) Superficial externsor muscles; posterior (d) Deep extensor muscles; posterior

Figure 4.7: Left forearm anatomy from [120] annotated with modern names from [121]

Taking the cross-section image of figure 4.8 into account, it shows the difficulties of a surface

recording. Deep muscles are not directly accessible with a surface recording. Nevertheless,
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if the spatial resolution of the sensor is high enough, ten superficial muscles should be

distinguishable in the shown cross-section. No major muscle signals can be obtained above

the ulna, which makes it an interesting spot for calibrations and reference electrodes. Using

the open-source human cadaver data from the Visible Human Project of IMAIOS, different

cross-sections can be examined to theoretically evaluate promising sections [122, 123].

Figure 4.8: Cross-Section of the middle human forearm, transversal plane [124]
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To clarify the term ”Myography”, its etymology is from the ancient Greek words mys, which

means muscle and graphos, means write. Consequently, myography aims to display muscle

functions. The Merriam Webster dictionary defines a ”Myogram” as:

“A graphic representation of the phenomena (as velocity and intensity) of muscular

contractions” [125]

Myography is used for all types of muscles, including large skeletal muscles and small smooth

muscles in the blood vessels. Thus the field of myography covers voluntary and involuntary

muscle functions. A short literature review resulted in myographic applications for neuro-

muscular rehabilitation, blood vessels, and muscular functions. The latter will be further

examined. Obtaining muscle parameters is based on the six biosignal transducer types in

chapter 2.1. Since muscles are inside our bodies, there are invasive and non-invasive record-

ing methods, which brings up the necessity to clarify the law for medical technology in this field.

The current medical law states that an invasive measurement is a measurement which harms

the body in a direct or indirect way to obtain a physiologic parameter [126]. Medical

technology constraints are standardized in ISO 13485:2016 [127]. Using electricity or high-

frequency rays or waves can potentially destroy cells. Permitted tomographic techniques

should still be treated with care. The user receives more potentially damaging electricity,

rays, or waves in long term applications than in short term applications like medical screenings.

Nevertheless, the research community in the field of myocontrol explores new solutions to

improve the dexterity and acceptance of their systems [37, 36, 38]. Medical imaging techniques

like ultrasound systems are nowadays used as myographic sensors [38]. Despite new recording

types for myography, the research tends to apply multi-modal approaches to enhance their

prediction [128, 2, 58, 51]. Especially dynamic movements without laboratory conditions are

difficult to obtain and potentially require sensor fusion approaches. In everyday applications,

the muscle structure and activity obtained at the surface are changing due to the limb position

(rotation, gravity), fatigue, and others [37, 129]. Isolated myographic methods are only capable

of recording a fraction of the complexity of the task.
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Table 5.1 shows the difference between the research of the three main myographic methods.

Research in Mechanomyography (MMG) and Force Myography (FMG) is still wide open, and

many research questions are waiting to be solved. Nevertheless, it needs to be mentioned that

MMG and FMG have a variety of names, which refers to very similar principles. It shows

that the research community is not able to define a common name. Reviewing and explaining

the different names and techniques extends the thesis.

Table 5.1: Short literature review about EMG, MMG, FMG in the title, ignoring subcategories

(Scopus, 02.10.2019)

method articles first article

”Electromyography” 5960 1938

”Mechanomyography” 164 1972

”Force Myography” 37 2015

5.1 Electromyography

History:

The basis of electromyography (EMG) was first discovered by Jan Swammerdam, a dutch

anatomist in 1664 [130]. In 1771, Galvani electrically stimulated an animal muscle, which

resulted in a contraction; he described this phenomenon in his book in 1791 [131]. Adrian

(1929) invented a method to record an isolated motor unit action potential by connecting

needle electrodes to an amplifier circuit and a loudspeaker [132]. Following Adrian’s work,

the field of EMG was intensively researched. The invention of new amplifiers, which are

capable of amplifying small currents, highly benefits the EMG research until now. The field

of rehabilitation and prosthetic control further improved through surgery techniques like

targeted muscle reinnervation, which acts as a biological amplifier for the remnant neural

signals/intentions [36].

Phenomenon:

Figure 5.1 depicts the principle of EMG. The motor neuron innervates the muscle fiber at

the innervation zone/neuromuscular junction, and the chemical depolarization propagates in

both directions through the fiber towards the terminal zone. EMG measures the polariza-

tion and depolarization of the muscle cell due to propagating motor unit action potentials

(MUAP) (see chapter 4). The electrodes act as a dipole with the polarized muscle cells. The

signal at the surface consists of superimposed MUAPs. The known raw action potential

ranges between -95 mV and 50 mV, while obtained motor unit action potentials differ in

shape and amplitude [133]. Invasive EMG showed that the mean motor unit action potential
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(MUAP) amplitude is approximately 701 µV and it decreases with neurological disorders [134].

Figure 5.1: Electromyographic phenomena, modified from [135]

Skin Impedance:

Using non-invasive EMG, the effects of the human skin need to be considered. The human

skin has capacitive and resistive characteristics, which low-pass filters and damps the signal,

as seen in figure 5.2 [136]. The capacitive characteristic of the skin introduces DC and other

types of noise, which its captured like an antenna from the environment. Thus, the obtained

surface EMG signal will be very low, approximately about 10−3 − 10−4 in magnitude and

need to be amplified with rejecting common-mode noise. Merletti (2009) shows the impact of

fat tissue and EMG recording depth [137].

Figure 5.2: Electrode shapes in dependency of the electrode to fiber distance from [138, 139]

31



5.1 Electromyography

Signal composition:

Referring back to the conclusion of chapter 4, the intramuscular coordination consists of

recruitment, rate coding, and sequencing. The electromyographic signal can provide this

information with the motor unit spike train of the signal. These spikes can especially be seen

in smaller and isolated muscles, e.g., finger muscles on the finger. The signal of larger muscles

consists of superimposed MUAPs. Neighboring muscle signals at the recording site produce

noise, which is called cross-talk. In contradiction of filtering the noise, many researcher use

cross-talk to decompose the signal and deduce back to single action potentials and their

location (see chapter 2.4) [43, 44, 140].

Taking the two possible approaches of invasive and non-invasive EMG, the invasive approach

results in a higher signal to noise ratio but contradicts the design principles in chapter 3.1.

Thus, the focus will be on surface electromyography.

The EMG signal further consists of different types of noise due to: muscular characteristics,

skin impedance, perspiration, muscular tone, fatigue, Body Mass Index, movement type,

sensor hardware characteristics, and sensor positioning [141, 142, 143, 144]. Amrutha et

al. (2017) summarized the noise sources in their review and described techniques to reduce

them [141]. Many of these errors can be faced with preparations prior to the acquisition,

and others need to be filtered afterward. Filter frequencies between 10 to 500 Hz, and even

higher for invasive fine wire EMG, are mentioned in the literature [142, 145]. Some systems

use a power line notch filter to decrease the remnant 50/60 Hz power line interference [146, 142].

The digital signal processing procedure to filter noise and obtain the desired information is

described in many papers and instructions like Reaz et al. (2006) or Konrad (2011) and

ranges from amplitude, frequency, and spike analysis to wavelet, higher-order statistic, and

machine learning approaches [142, 147]. The amplitude signal and the frequency domain of

a sample EMG time series are shown in figure 5.3. Figure 5.3 (A) shows the rectified EMG

signal, which relates to the superimposed MUAPs, and thus, to the recruited motor units

and its connected muscle fibers. Figure (B) shows the frequency domain of the signal, which

relates to the rate coding of the motor unit action potentials.
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Figure 5.3: Sample EMG-Signal from [148]: (A) rectified and the envelope, (B) Power Spectral

Density

Principles:

This section introduces the general setups, other important parameters for an EMG recording

like electrode shape, size, and inter-electrode distance are covered in chapter 6.2. EMG setups

differ in their general method. Active and passive amplifying circuits are available, which

vary in their principle and closely related in the used electrode material. Passive electrodes

often use a high conductive material like Ag/Cl and transmit the analog signal via cable to an

external amplifier. Active electrodes are amplifying the signal at the origin, i.e., close to the

surface electrode. This setup prevents noise and enables a more robust signal, in which cable

movements manipulate the signal to a smaller degree. Furthermore, in an active amplification

the electrode material can have a higher impedance, which enables the usage of dry electrodes

out of stainless steel or synthetics.

Differential acquisition techniques, using two or more electrodes, reject the common-mode

noise of the signal, which means that if both electrodes measure the same signal, it will be

rejected, e.g., power line interference. Figure 5.4 depicts the major EMG setups, a newer

approach of a tripolar setup with a double differential setup can be found in De Luca (2012)

[149].
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Figure 5.4: EMG recording setups from [150]

A monopolar setup (referential) records the raw signal of the muscle with a remote reference

electrode at a bony structure, where no muscle activation can be measured, e.g., the elbow. In

a wristband approach, a reference signal could be obtained on the surface of the ulna bone (see

chapter 4). External noise, like power line interference, is also part of the reference signal and

will be suppressed by a differential amplifier with its degree of common-mode rejection, which

should be around 100 db [151]. A rejection of 100 db results in a common-mode amplification

of 100.000 times smaller than before, i.e., 1 V common-mode has a fraction of 10 µV in the

differential output signal. The effect of common-mode rejection is reduced with a different

noise magnitude due to a greater distance between the electrodes.

Bipolar recordings (single differential) measure the muscle activity with two active electrodes

on the muscle in muscle fiber alignment. The differential amplification results in reduced noise

and cross talk. Reducing the cross-talk leads to a more local signal, without the information

from deeper and neighboring muscle fibers. Figure 5.5 illustrates the differential approach of

a bipolar setup and the raw monopolar signal, with a simulation of one signal source. The

linear array setup in figure 5.4 (c) is often used to analyze the conduction velocity of the

muscle fiber and the localization of the innervation zone.
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Figure 5.5: Simulated signal of a monopolar recording (a,b) and from a single differential

recording (c,d) from [152]

Application

Monopolar recordings are used in high-density array setups with sophisticated digital signal

processing using spatial filters, higher-order statistics, or machine learning algorithms [137,

153, 154, 54]. Using these processing techniques, a high-density setup is capable of compar-

ing neighboring electrodes by merging the signal with spatial filters. Spatial filters make

the setup suitable for complex muscle architectures, i.e., the human forearm. In addition,

monopolar setups are suited to use the newest electromyographic processing technique of

signal decomposition to extrapolate the single motor units (see chapter 2.4). Nevertheless,

the most common setup for scientific modeling and medical checks is the bipolar setup. The

acquisition of a bipolar setup requires knowledge about the anatomy of the recording site to

align the electrodes in the muscle fiber direction.

Low-Cost Solutions

The ninapro database was set up to provide EMG data for the biorobotics community [155].

Pizzolato et al. (2017) acquired data for the ninapro database with six different sensor setups

from the most prominent distributors and research sensors [146]. The use case was a sensor

placement similar to a wristband to acquire data for upper limb prosthetic control tasks. The

already introduced myoband from Thalmic-Lab, which is cheaper than the high-performance

solutions from Otto Bock, Delsys, and Cometa Wave was able to compete with the more

expensive setups in terms of accuracy in a classification task with 41 hand movements.

Advantages:

The biggest advantage of electromyography compared to other myographic approaches is

the high temporal resolution due to the recording of the motor unit action potentials from

the central nervous system without measuring mechanical signals. Thus, the prediction of

muscle forces is possible in real-time and applying it to control a human-machine interface,
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e.g., a robotic hand is mainly limited to the actuators’ speed. Furthermore, electromyography

complies with the design principles, with not actively sending energy into the human body.

The digital signal processing possibilities with using electromyography as a neural interface

by decomposing the signal into single motor unit activation makes it highly promising for

future research (see chapter 2.4).

Difficulties / Open positions:

On the contrary to these advantages, electromyography has some difficulties and open research

positions. Farina et al. (2004) divided the factors that influence surface electromyography in

two groups, ”non-physiological” and ”physiological” factors [144]. The small signal amplitude

introduces all kinds of errors due to the high impact of normally neglectable smaller noise

sources. After amplifying the signal, it is more robust against cable movements and other

external influences. The application of EMG should suit the circumstances of the muscle, and

especially differential setups require knowledge about the underlying muscle architecture and

alignment. Another factor is muscle fatigue, e.g., if the subject is holding a bar for a long

period of time, the electromyographic signal amplitude decreases due to orderly recruitment

(see chapter 4). Consequently, the isolated application of electromyography in an upper limb

prosthetic control tasks is difficult for everyday tasks like holding a cup of tea [156].

Electrode-Skin Impedance

A drawback of EMG is the electrode-skin impedance change due to the electrode material,

perspiration, or other distortions. Some years ago, it was necessary to measure the skin

impedance before measurements, nowadays it is not mandatory, due to the higher input

impedance of the amplifiers [157]. Nevertheless, the voltage drop changes due to impedance

changes, and the signal will change as well. The skin impedance without skin preparations of

10− 100 kΩ at DC is a small fraction compared to the impedance of dry electrodes of around

1 MΩ at DC. The input impedance of an amplifier is nowadays 100 − 10000 GΩ (INA333

(Texas Instruments Incorporated., Dallas, Texas, USA), AD8224 (Analog Devices, Norwood,

MA, USA)). Using EMG electrodes the drift in long term applications should be monitored,

unless it can be assured, that the difference between the electrode, skin and the amplifier

impedance is neglectable and guarantees consistency [158].

Conclusion:

In conclusion, electromyography has a major advantage in its high temporal resolution, but

the small amplitude is very sensitive to electromagnetic interference and electrochemical

reactions at the electrode interface. Nevertheless, the application of electromyography in a

real-time control system seems mandatory at this time. High-density grids and decomposition

algorithms enhance the prediction and inherit high potential for future applications [159].
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5.2 Force Myography

History:

The measurement technique of force myography (FMG) was first introduced in research from

Lucaccini (1966) with a review about the French electric Hand, which used myo-pneumatics

as their transduction principle [160]. Research for the french electric hand started during the

second world war in Berlin from Dr. Edmund Wilm [160]. Half a century later, researchers in

the team of Prof. Dr. Craelius showed that myosignals could be obtained by embedding force-

sensitive resistors (FSR), which reduced the size significantly [161, 162, 163]. This technology

was developed and is now spread into different measurement principles and general ideas. Thus,

FMG does not have a standardized name in the literature and is also mentioned as surface

muscle pressure, residual kinetic imaging, myo-kinetic, or tactile myography. The various

names are used in different applications and setups. Most of the names specifically relate to

the area of rehabilitation as residual kinetic imaging, others specify with the application of a

high-density sensor arrangement like tactile myography.

Phenomenon:

Force myography measures the pressure distribution at the recording site. The obtained

pressure appears by the shortening muscle bulge during contraction. The phenomenon results

from the shortening contractile elements of the muscle fiber and the isovolumetric constraint

of the muscle, which causes a moving muscle and increasing bulge (see chapter 4). The

change in width of a pennate and fusiform muscle is shown in figure 5.6. Hodges et al. (2003)

investigated the changes in the muscle architecture by ultrasound recordings and stated, that

the biceps brachii changed its muscle thickness significantly at 50% of the maximum voluntary

contraction (MVC) [113]. Nevertheless, Hodges et al. remarked that some muscles behave

differently, e.g., obliquus externus abdominis and medial gastrocnemius [113, 114].

Taking the muscle physiology from chapter 4 into account, it can be concluded, that the

muscle thickness is an indirect parameter of the evoked motor unit action potential and is

directly related to the isometric muscle activity in particular muscles. The muscle pressure

distribution depends on the joint angle, e.g., if the joint is already flexed, the muscle needs

to decrease its length to be able to exert a torque at the joint. More details about force

dependencies are stated in the literature covering ”muscle-length”, ”tension-length” and ”joint

angle-force” relationships [164, 165]. Thus, the phenomenon is more complex to analyze

during dynamic movements, as Rasouli et al. (2015) stated in his research [166]. Radmand

et al. (2016) demonstrated that the classification error decreased with an included position

variation in the training protocol [167].
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Figure 5.6: Muscle architecture of unipennate and fusiform sceletal muscles relaxed and

isometric contracted; modified from [115]

Signal composition:

The signal of the FMG sensor can not be directly linked to the intramuscular coordination.

However, the signal consists of the mechanical coupling of the recruitment and rate coding.

In detail, the muscle activity, joint angle, and external noise, i.e., the inertia of the sensor is

obtained. Due to its active principle, the signal is insensitive against low-level electric noise.

The FMG amplitude is robust and represents the applied pressure on the sensor.

Xiao & Menon (2019) researched about the resulting frequency ranges of the force myographic

signal and concluded that a sampling frequency of 70.84 Hz is sufficient to obtain dynamic

actions at the forearm or wrist [168]. Figure 5.7 depicts that the highest magnitudes are

found in the frequencies below 1 Hz. The literature concerning the cut off filter frequencies is

very heterogeneous and dependent on the measurement principle or classification methods.

However, the cut-off filter frequencies vary between 0 and 50 Hz, some researcher applies a

high-pass filter around 0.5 Hz, and others use a low-pass filter at 1 Hz [167, 2, 72, 3]. Reasons

for filtering were long-term signal drift due to memory effects of the sensor material, humidity

changes, skin elasticity effects, and high-frequency noise [3, 57, 2]. It should be emphasized

that these studies were using different sensor principles, and a generalized signal bandwidth

seems not feasible.
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Figure 5.7: Maximum FMG power spectral density (PSD) distributions of the forearm and

wrist [168]

Principles:

Stassi et al. (2014) reviewed the area of tactile sensing principles and created table 5.2 [169].

The presented measurement principles have advantages and disadvantages for their application

in intention detection interfaces on the basis of myographic information. Due to the design

principles of a high spatial resolution, strain gauges and piezoresistors are suited techniques

for the application in high-density human-machine interfaces. The most used principle in the

literature is the force-sensing resistor (FSR) [167, 168, 170, 171, 85]. The electrical principle

behind these sensors is a changing resistance with a deforming sensor material. Using this

principle, the sensor needs to be applied close to the skin and could cause mechanic stress,

which results in potential damage at the electrode and noise in the signal. The mechanic stress

is also the main reason against strain gauges. Weiss & Wörn (2005) developed a piezoresistive

principle which uses a conductive sensor material and two electrodes. This system does not

have wires and includes many of the advantages from table 5.2 [172]. Schürmann et al. (2011)

from the team of Risto Kõiva used the principle of Weiss & Wörn to develop a tactile sensor

module for human manipulation research [173]. Due to the inhomogeneous surface of the

muscle bulge, a high-density sensor grid results in a more detailed pressure map compared to

a FSR grid. The spatial resolution of most of the high-density piezoresistive sensors ranges

in between 4 mm2 and 6.12 mm2 [174, 175]. A recent paper by Kõiva et al. (2019) used a

modified barometer as a 2x2 mm tactile sensor with in-built digitization [176]. This approach

should be researched further in terms of an application on a narrow sensor module but was

out of scope for this thesis.
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Table 5.2: Comparison of tactile sensor principles from [169]

Application

Research was conducted comparing the accuracy between FMG and EMG with machine

learning methods. The scientists concluded, that FMG had similar results or outperformed

sEMG in controlling proportional and simultaneous motor tasks [51, 58, 2, 167, 74]. Ravindra

et al. (2014) state that the obtained myographic information from FMG differs from the

information of EMG and could benefit a sensor fusion approach, which was also stated by

other researchers [72, 36, 2, 51, 167]. Furthermore, a pilot study with one subject of Nowak et

al. (2017) showed, that FMG itself could outperform a sensor fusion approach [58].

Advantages:

The force myographic modality has advantages against the current gold standard of elec-

tromyography. First of all, a FMG sensor has less background noise and thus a more stable

signal [2, 177]. This advantage is due to the underlying phenomena and measurement principle

of the approach. Compared to EMG, a FMG sensor can also measure the muscle activity at

the tendons, which enables the possibility to record the activity of deeper hand muscles at

the wrist, where the tendon stiffness directly link to the movement. Cross talk from deeper

muscles is absent at the wrist, which makes it a good location for FMG recordings.

Another advantage is that the FMG signal decreases less than EMG signals with muscle

fatigue [2]. In an isometric task with a constant force, the muscle bulge stays constant in

its width, while the dexterous motor units get replaced by stronger units to exert the same

pulling force on the tendon. Thus, fewer motor unit action potentials can be obtained by the
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EMG sensor, which results in a smaller amplitude. Figure 5.8 shows the difference between

a FMG sensor, based on an FSR (FSR 400 Short, Interlink Electronics Inc., Camarillo, Ca,

USA), and an EMG sensor (Otto Bock, MyoBock 13E200). The effect of muscle fatigue and

noise can be clearly seen, especially in higher amplitudes, i.e., larger recruitment.

Figure 5.8: Comparison of FMG and EMG in an isometric gesture task. The FSR-Signal

stays nearly constant, the EMG signal decreases with time [2]

Furthermore, the FMG sensor is not sensitive to skin impedance changes due to perspiration

[3], but it should be taken into account, that the sensor material characteristic could vary

due to humidity changes. The capability to wear a FMG sensor on top of clothing makes its

application easier.

The total setup of a FMG sensor consists of a resistor and the sensor unit itself. Therefore, a

FMG setup needs less and cheaper components compared to EMG. The detailed components

depend on the measurement principle of the FMG and EMG Sensor and will be introduced in

chapter 6.1.

Difficulties / Open positions:

The ability to decrease the size of the sensors is a major deal in this research. Yousef et al.

(2011) & Stassi et al. (2014) described specific requirements for the design of tactile sensors for

human robots and stated a desired size of 1 mm for a fingertip sensor [169, 178]. The minimal

size of the sensor should be capable of measuring the smallest part of the musculoskeletal

system, which can be captured from the surface. Taking the width of the muscle into account,

the most narrow tissue, which can be measured from the surface, is the tendon. Thus, the
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optimal size is smaller than 5 mm, which is, self-measured, the diameter of a tendon connected

to the finger. The cross talk from deeper muscles can be faced with a high-density approach

and a machine learning algorithm that is capable of detecting the components of the signal

and state it as a different source, similar to approaches to decompose EMG Signals [44, 159,

140]. The current solution of a FMG wristband, the Bielefeld Bracelet (chapter 2.5), has

problems to capture pressure on the lateral side of the sensor. The sensor modules of the

Bielefeld bracelet are 2 cm wide and not curved; thus, the round forearm is not always in

contact with the sensor. Taking this constraint into account, we aim for a narrow sensor

module, to avoid edge effects. In conclusion, the open research task is to decrease the size of

the sensor module remarkably.

Castellini et al. (2018) summarized further critical aspects regarding FMG in his research

and stated: the movement of the sensor, the contact with the skin, noise through contact

forces, accelerations and orientations, deformations of the body, tendons [3]. Another major

drawback of FMG is its dependence on the joint angle. Knowing the joint angle would

significantly increase the knowledge about the current activation. The electromechanical delay

makes it difficult to use FMG in a real-time system. The usage of FMG in an EMG triggered

feed-forward approach could enhance the prediction after their delay, due to the robust and

consistent signal.

Conclusion:

In summary, FMG provides robust mechanical myographic information, which is less sensitive

to external noise but has systematic errors due to muscle and sensor characteristics. The

open positions need to be investigated to ensure a high myographic signal quality. Applying

biomechanical knowledge, the vital pressure signal bandwidth of the sensor is low, and higher

frequencies are not expected due to the inability of the musculosceletal system to change the

muscle width at a higher frequency. High-priority research positions concerning the Weiss &

Wörn principle are a smaller sensor size and to reject the memory effect of the foam.

5.3 Mechanomyography

History:

The basics of mechanomyography (MMG) were first discovered from Francesco Maria Grimaldi

and published post mortem in 1665 [179]. Placing his thumbs over the ear and clenching his

fists, he noticed a rumbling sound. William Hyde Wollaston (1810) further researched these

sounds and compared them with a carriage, which was pulled on a cobblestone street [180].

Using this comparison, Wollaston deduced that the mean frequency of the sound is around

24 Hz. Gordon and Holbourn (1948) were one of the first researchers using a microphone to
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obtain muscle signals [181]. They concluded that surface MMG is the mechanical counterpart

of the electrical activity of motor units using a simultaneous EMG recording [181]. Nowadays,

the field of mechanomyography covers the terms sound myography, phonomyography, acoustic

myography, and vibromyography [182, 183, 184, 185]. Some researches including force

myography into mechanomyography due to the mechanical principle of measuring contact

pressure in FMG. In general, MMG is the 2nd derivative of the FMG signal. Taken the variety

into account, the following sections are strongly related to the transduction technique, and

the shown signals slightly differ from each other, as shown in figure 5.9.

Figure 5.9: Mechanomyographic signal of a single supramaximal twitch from an air-coupled

microphone, an piezoelectric contact sensor and an accelerometer from [182, 186,

187]

Phenomenon:

The underlying biological process was unknown and heavily discussed for a long time. Oster

and Jaffe (1980) were one of the first authors who conclude that mechanomyographic muscle

sound is generated by contracting muscles [188]. More precisely, they result from lateral

oscillations of contracting muscle fibers, i.e., myofibril accelerations [189]. Due to this direct

relation, mechanomyography is capable of observing the accumulation of twitches, which result

in a wave summation and a muscle tension (see chapter 4) [190]. Figure 5.10 shows a study

from 1987 with an isolated frog muscle, in which the direct correlation from the applied force

and measured sound is shown (compare with figure 4.5). However, it does not fully reflect the

superimposed signal on the human skin above a muscle belly [182]. Beck (2005) states that

the amplitude is related to the number of active motor units [191]. According to Cescon et al.

(2008), the gross lateral movement of the central muscle region is the primary factor in the

signal [192]. The increase in fiber diameter is the second underlying factor. Thus, for a high

signal to noise ratio, an application on the belly of the targeted muscle should be aimed.
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Figure 5.10: Sound myographic wave summations of an isolated frog muscle; From left to

right: single twitch, unfused tetanus, tetanus [193]

Signal composition:

As already introduced in the previous section, the MMG amplitude shows the recruitment

of motor units and their connected twitching muscle fibers. The literature concerning the

frequency domain is heterogeneous and contradictory. Some authors claim that the spectrum

is independent of the muscle activity, and some contradict these theses [194, 195]. In the

research of Fara et al. (2013), the frequency domain enhances the accuracy of an upper

limb control task [196]. Furthermore, they conclude that the frequency domain comprises

information about muscle stiffness. In more recent studies, like Anders et al. (2019), the

mean power frequency is used as a feature for muscle fatigue determination [197].

Figure 5.11 (A) shows the Root Mean Square (RMS) amplitude and mean power frequency

of the myographic signal in dependence of the maximal torque. The RMS amplitude of

the mechanomyographic signal is related to the number of active motor units (recruitment)

[191, 194, 190]. Wang et al. (2019) characterize a linear behavior in between 20-80% torque

[194]. Bichler (2000) disclosed, that fast twitching muscle fibers have a higher fraction in

the amplitude (see figure 5.11 (B)) [198]. However, as depicted in figure 5.11 (A) above 80%

torque, the force rises due to increased motor unit firing rate.
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Figure 5.11: (A) - Circle: Amplitude, Triangle: frequency, (acoustic myography) [199]; (B) -

MMG accelerometer with torque [191]

Figure 5.12 shows the power spectral density of a mechanomyographic signal within a muscle

fatigue task. The spectral density is stated as in between 2-120 Hz, with the majority of

information between 5-50 Hz [200, 201, 191, 111]. The signal needs to be applied with a higher

high-pass filter cut-off frequency, to attenuate movement artifacts, when dynamic movements

were measured with an accelerometer.

Figure 5.12: Power spectral density of a biceps brachii muscle fatigue task, measured with an

accelerometer from [111]

Researchers notice that the muscle temperature, stiffness, mass, intramuscular pressure,

viscosity of the intracellular tissue, muscle fatigue, extracellular fluids, and the resonance

frequency can determine the signal output and the signal [202, 182, 203]. In addition, the

authors mentioned the negative impact of the physiological tremor on the signal, which is
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between 6 to 12 Hz [110, 204, 205]. The amplitude of the MMG signal rises with an increase

of the temperature [203]. Studies were made regarding the pressure, which resulted in an

amplitude increase with higher pressures [186, 206, 207].

The mechanomyographic signal to noise ratio strongly depends on the measurement principle,

while the mechanical principle stays the same [208, 209, 210, 211]. Using unidirectional

microphones as a transducer, the signal consists of sound waves that were created by skin

oscillations. They have a higher signal to noise ratio than accelerometers, which directly

measure the surface oscillations [212]. Accelerometers are more sensitive and closer to the

origin, but their noise inherits gravitational and movement accelerations. Using the results

from Posatskiy & Chau (2012), a high-pass filter should be applied to cut the lower frequencies

of an accelerometer-based measurement (≈10 Hz). However, attenuating low frequencies also

results in suppressing typical MMG bands of interest [212].

Principles:

Mechanomyography has a large variety of principles, as already shown in previous figures.

The main groups are acoustic- and vibromyography. Transducers for these techniques are

condenser microphones, piezoelectric contact sensors, accelerometers, and laser distance sensors

[191, 213]. The only commercial available sensor is a piezoresistive unidirectional measuring

acoustic sensor with gel from MyoDynamik ApS [214]. Krueger et al. (2014) reviewed the

field of mechanomyographic sensors and summarized a higher interest in accelerometer-based

sensors [215]. The research of mechanomyography is still under investigation. Newer papers

adapt to electromyographic approaches like differential MMG, fusion with a microphone and

accelerometer, or high-density MMG grids [216, 217, 192, 85]. Additionally, the proceedings

in the digital signal processing field enhanced the signal and the contained information [194].

Krueger et al. (2014) compared a microphone with an accelerometer and stated that the

RMS amplitude of a microphone was more valuable, while the accelerometer provided a more

valuable spectral density [215].

Application

Silva et al. (2004) note that their setup with three microphone sensors inside silicone may

exceed electromyographic functionality in a prosthesis control task [218]. Xie et al. (2009)

state that MMG can provide some notable advantages over sEMG [219]. Krueger et al. (2014)

concluded in their review, that MMG enriches EMG [215].

Fara et al. (2013) built a 10$ microphone MMG sensor for use in ”brain-machine” interfaces

[196]. Their microphone outperformed sEMG recordings in higher intensity contractions while

lacking performance in lower intensities [196].
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Advantages:

The mechanomyographic signal measures the myographic information, which appears be-

tween the EMG and FMG signal. Compared to the gold standard of EMG, MMG obtains

a mechanical signal which is independent of skin contact and perspiration and can be ap-

plied above clothing [220]. The accelerometer-based mechanomyographic sensors are lighter,

smaller, implemented in ICs, more sensitive, and cost-effective compared to other myographic

approaches.

Difficulties / Open positions:

MMG sensors can be tiny but still lack in its spatial resolution because of the underlying

phenomenon, which also measures propagating oscillations of neighboring muscles [196]. To

resolve spatial resolution, and it might be necessary to apply a high-density grid to distinguish

between muscle activities. Having a rigid mechanical mounting a high-density grid measure

redundant information.

Due to its mechanical characteristic, it suffers from the electromechanical delay (see chapter

4). Cabral et al. (2013) determined a delay of 23 ms after the electric signal in a study with

healthy volunteers [221, 222]. The delay after an externally evoked stimulus ranges around

2-7 ms, as a reason, Cè et al. (2015) suggest that the detachment of the cross bridges and the

elasticity of the tendon are main contributors, which are not present in an isolated externally

evoked setup (see chapter 4)[221, 182]. It should be taken into account that the delay heavily

depends on the muscle fiber composition (see figure 4.2)

The biggest drawback of acoustic myography is the size of the sensor. While accelerometers

can be tiny in size, condenser microphones should, according to Watakabe et al. (2001), have a

length of 15 mm and a diameter of 10 mm to cover the frequency range of the mechanic waves

[210]. In contradiction to these scales, Guo et al. (2017) build an upper limb control setup

with a smaller low-cost microphone, which is still larger and heavier than an accelerometer

[223]. However, microphones have a higher signal to noise ratio, and limb position changes

are not part of the signal [186].

An open position remains the feasibility of a mechanomyographic sensor on a force myographic

system based on a polymer. The force myographic signal should measure oscillations as well,

but it depends on the damping factors of the sensor material and sensitivity of the sensor

itself. Research should be conducted in comparing mechanomyographic signals and the 2nd

derivative of force myographic signals. Moreover, the sensor matrix is tightly fixed on the

arm using FMG. Thus, a contact pressure occurs, which determine the mechanomyographic

amplitude. The application of an embedded temperature sensor to reduce the impact of the

systematic error in the MMG signal needs to be investigated.
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Conclusion:

In conclusion, mechanomyography seems capable of adding further information to a setup

containing electro- and force myographic sensors. Taking the human biomechanics into

account, the frequency domain should consist of the used fiber spectrum. The basic idea

behind this hypothesis is that slow-twitch fibers exert their twitch less often compared to

fast-twitch fibers (see 4 and figure 4.2). However, the relation is not easily accessible. Due to

the variety of sensor principles with different signal compositions, it is important to consider

if the sensor fits the objectives. Aiming for a high spatial resolution of each sensor module,

a low-cost integrated circuit accelerometer could be used. Drawbacks could be down-scaled

with machine learning, an additional inertial measurement unit (IMU) for motion detection,

and a temperature sensor. Nevertheless, the applicability of an accelerometer together with

a force-myographic sensor material needs to be proven at first. Then research should be

conducted to compare mechanomyographic and force myographic signals to avoid redundancy.

5.4 Tomography

A tomographic device images its underlying structure. Using a time series of images, these

techniques can determine the movement and changes of the inner tissue. The principle

behind tomographic biosignals varies from oxygenation levels, hydrogen spins, and other

tissue-dependent characteristics like absorption and scattering. This short section introduces

approaches which could be applied in a wearable myographic setting.

Despite testing the neuromuscular activity with impedance measurements, researchers built a

tomographic setup, which sends an electric current through the arm and creates an impedance

cross-section [224, 225, 226, 227, 228]. The moving tissue, and especially the blood afflux,

changes the measured impedance. The resistivity of blood is about half of the muscle resistivity

[229]. Relying on hemodynamic changes results in a delayed signal. However, research with an

applied electric impedance tomographic sensor for use in human-machine interactions showed

promising results [227, 228]. The feasibility of a multi-modal setup of electric impedance

tomography and electromyography need to be proven.

Near-Infrared Spectroscopy uses light (spectral range: 600-1000 nm) to create an image of the

underlying hemodynamic activity in a non-invasive way [230]. Thus, the intention of the user

can be detected due to a neurovascular coupling of the hemodynamic activity. The light is

absorbed or scattered at the biologic tissue. Thus, the setup can retrieve the information about

oxidative metabolism functions, i.e., muscle oxygenation and blood volume of the targeted

muscle [231]. Current solutions are able to provide a low cost, portable, and wearable system

to acquire the muscle activity. Near-Infrared Spectroscopy is mostly used as an addition to an

EMG sensor [232, 233]. The hemodynamic response decreases the applicability in real-time
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systems. In addition, the size of Near-Infrared Spectroscopy limits its usage in high-density

approaches.

Sono- and Ultrasonomyography uses high-frequency sound waves (>20 kHz) to penetrate

the tissue [234, 235]. The analytic theory bases on wave propagation and tissue-dependent

reflections (Doppler effect) [236]. Depending on the frequency, the sound waves penetrate

in deeper areas or get reflected earlier at the tissue. As a result, the ultrasound method

can display an image of the underlying tissue, which can be further processed with image

processing methods. The application of ultrasonomyography in an upper-limb control task

was promising, but the smallest device is as big as a smartphone, which is not matching our

requirements [38, 235]. Guo et al. (2011) summarized that their sonomyographic setup is

more consistent than an electromyographic setup in the performance of a discrete tracking

task [237]. If the modality of Ultrasonomyography would shrink its setup the advantages of a

high consistency, high spatial resolution, and low temporal latency would be enormous.

In summary, tomographic approaches provide a high spatial resolution but lack characteristics

like size and weight or temporal latency. The changes in technology need to be observed to

use promising techniques when they are miniaturized.

5.5 Further techniques

To further enhance myographic systems, especially facing its difficulties, e.g., the introduced

limb position effect from chapter 2.5, additional techniques are shortly introduced. Krasoulis et

al. (2017) used a MEMS inertial measurement unit (IMU) to enhance the accuracy in an upper

limb control task [75]. An IMU consists of an accelerometer, gyroscope, and magnetometer.

The IMU added information about the position, rotation, and acceleration of the forearm

segment to the machine learning algorithm [75]. Basically, the IMU provides the necessary

information about the gravitation, which needs to be compensated by the muscles in addition

to the muscle activity for the movement itself. Nowadays IMUs with an automatic sensor

fusion are available on the market, which reduces the complexity of the computational effort

for the developer and microcontroller.

The second promising sensor is a barometer. A barometer measures the environmental pressure

and is sensitive to the altitude of the sensor. In addition to the IMU, it provides important

information about the forearm height, which will face limb position related errors. Moncada et

al. (2014) used a barometer for a movement classification task and stated enhanced accuracy

[238].

Further techniques can face the temperature dependency of the myographic approaches and

sensors for the changing electrode-skin impedance.
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5.6 Discussion

Summarizing the myographic possibilities and taking the constraints into account, the most

promising techniques are electromyography, force myography, and mechanomyography. EMG

has a major advantage in its lower latency while having a disadvantage with the small amplitude,

which is very sensitive to external noise. A real-time control system would highly profit from

embedded electromyographic sensors. The research of high-density electromyography and the

decomposition of motor units need to be observed. Force Myography has shown its potential

and robustness in many studies, but there are still many open positions where research needs

to be conducted. Embedded in a human-machine interface, the setup benefits from a reliable

and consistent force myographic signal, which is less prone to noise. Mechanomyography adds

mechanic information about the twitching muscle fibers to the signal, which differs from the

obtained information from EMG signals. Accelerometer-based sensors contain motion artifacts

but provide a signal with a small footprint on the sensor module. Promising tomographic

techniques are electric impedance tomography and ultasonomyography, but the techniques

are not mature or contradict the principles of size and weight. Additional myographic sensors

are used to detect the motion to improve the information of the main myographic methods.

Taken together EMG, FMG and MMG can be miniaturized and offer a wide spectrum of

different myographic information.
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Chapter 6 introduces the sensor principles, based on the most promising techniques from

chapter 5. It covers the conceived transducing principle and necessary components for the

circuit. The chapter starts with the force myographic sensor, which creates constraints for the

other sensors. At the end of each section, open research questions are stated, which need to

be evaluated to ensure the signal quality.

6.1 Force Myography

Background:

Shortly summarizing the outcome from the force myographic section in chapter 5.2, force

myography (FMG) is currently trending in the field and has posed promising results (see 5.2).

FMG is capable of recording mechanical myographic information with a high consistency,

which makes it a valuable asset for a human-machine interface based on electromyography.

Nevertheless, further development is necessary to be able to use it in the desired context and

to understand the determining constraints.

As already mentioned in chapter 5.2, FMG has different methods and principles. Some of

the principles and methods are shown in the research wristbands in figure 6.1. The most

promising principle is introduced in 5.2 and was developed from Weiss & Wörn (2005) [172].

The principle is applied in a setup from Kõiva et al. (2005) (see figure 6.1 (A)) [57]. The

measurement technique is cheap, robust, and has a high signal to noise ratio. The desired

force myographic sensor should shrink the current setup and obtain a higher spatial resolution.

The main parameters which can be changed to modulate the signal are the electrode geometry

and the sensor material.
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Figure 6.1: (A) Bielefeld Bracelet from [57], (B) Research Wristband from [239], (C) FSR

sensor from [2], (D) Research Wristband from [170], (E) Research Wristband from

[167]

Working principle:

Based on the principle from Weiss & Wörn (2005), Kõiva et al. (2015) invented a high density

force myographic sensor wristband [57] as shown in figure 6.1 (A). The sensor principle is based

on a sensor material, e.g., conductive foam or other conductive elastomers. Two electrodes

are placed on a printed circuit board with a small gap in between each other (see figure 6.2).

Depending on the applied force on the sensor material, the contact area between the electrode

and sensor material enlarges. The increase in contact area further depends on the roughness

and hardness of the sensor material. An enlarged contact area between the electrodes and the

sensor material results in lower contact resistance. The change in contact resistance can be

obtained with a voltage divider circuit. The circuit needs a high precision resistor and a high

precision voltage supply to not acquire noise, i.e., ripple voltage in the signal. Kõiva et al.

(2015) were able to show a nearly linear behavior of their sensor and the applied force with a

resolution of 12 bit [57] (see figure 7.3 (A)).

Weiss & Wörn (2005) model the measured resistance by decomposing it into contact related

resistance and material-dependent resistance, marked as Rs and Rv in figure 6.2 [172].

Figure 6.2: Rs contact resistance between material and electrode, Rv material resistance [172]

52



6 Sensors

Figure 6.3 shows the basic equation for the resistance of an electrical conductor. The conductors

specific resistance ρ describes its conductance. The larger the area, the lower the resistance,

the longer the distance, the higher the resistance. Based on this principle the conductors

resistance can be quantified.

Figure 6.3: Basic equation for the resistance of an electrical conductor from [240]

As shown in figure 6.4, the unstressed sensor material is minorly connected to the electrodes;

thus, it has a small summed up area of parallel resistances in total. Consequently, the

resistance is high in an unstressed condition. By applying pressure on the sensor, the rough

surface is pressed on the electrodes. Depending on the hardness of the material, the contact

area enlarges, which in turn results in a decrease of the measured resistance. Taking the sum

of the two surfaces and one material-dependent resistance, the surface resistance has a higher

impact [172]. The sensor should use a material with a homogeneous roughness and hardness,

to be able to compare future sensor results.

Figure 6.4: Stressed and unstressed sensor and the changed contact area [172]

Circuit:

A basic schematic of the sensor is shown in figure 6.5, with a linear dropout regulator and a

voltage divider. The voltage divider consists of the active sensor resistance and the passive

resistance of R1. The dimensioning of R1 depends on the resistance of the sensor and was

at first set as 10 kΩ, a higher resistance makes the sensor more sensitive but decreases the

resolution [57]. However, the desired sensor adapts the sensor material characteristics to
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increase the resolution. The power supply (VCC) passes capacitors and a linear dropout

regulator to filter ripple and noise from the power line and provide a convenient voltage. The

desired V constant is used for the sensor circuit. The divided voltage is acquired with an

analog to digital converter. It is recommended to place R1 as close as possible to the input

pin to decrease the influence of noise.

Figure 6.5: The basic circuit for the desired FMG sensor based on a filter circuit on the left

and a voltage divider on the right

Electrodes:

The preferred electrode from Kõiva et al. (2015) is ”M” shaped and based on the research of

Schürmman et al. (2011) [173]. The ”M” shape was evaluated in the paper from Schürmann

et al. (2011) and is optimized to their sensor material (foam). The evaluation was not very

consistent, due to changing properties in between the shapes, e.g., electrode sizes, gap length,

gap distance (see table 1 in [173]). Consequently, this thesis goes for a different approach and

use a circular-shaped electrode. Thus, it can be assured that the obtained phenomenon has

the same influence from all directions and is easier to model. To ease the integration into a

module, a tree-shaped electrode will be investigated, to avoid blind vias in the sensor module

PCB, which is essential to reduce design effort and production cost (figure 6.6). In future

projects, the tree electrode should be investigated with a smaller opening, to ensure high

sensitivity for pressures from the open side. These two shapes have been rapid-prototyped

with different sizes. For each type and size of the electrode, the active surface is designed to

be of equal area and gap distance (0.1 mm). Thus, we can compare the sensors against each

other.
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Figure 6.6: Designed force myographic electrodes

Research was already conducted to determine the sensitivity of the sensor, i.e., the ability to

measure subtle changes at the first contact. Schürmann et al. (2011) linked the gap-distance,

gap circumference, and the passive resistor in the voltage divider to the sensor’s sensitivity

[173].

Sensor material:

The current solution for the sensor material from Schürmann et al. (2011) uses a conductive

foam that is originally used for ESD applications (see figure 6.7). The foam is of a closed-

pore structure which means, that gas from the production of the foam is still enclosed in

micro-cavities formed by the polymer. The residual surface of the foam is rough due to the

micro-cavities. The roughness of the foam is crucial for the sensor principle, as described above.

Squeezing the foam increases the contact area with the electrodes, leading to a lower resistance.

The foam is highly prone to creep under pressure, which results in a long term signal drift [241].

Research in the German Aerospace Center resulted in a more homogenous and less creeping

sensor foil, which can be combined with an intermediate transducer material to measure the

applied pressure. The combination of a rough sensor foil and hard intermediate has both

characteristics and will be called sensor material. Figure 6.7 shows the different materials,

which vary in their resistance or purpose. A special sensor foil was developed to improve

electromyographic measurements through the material. For this purpose, the material com-

prises silver particles, which decreases the capacitive filtering effect and provide a more stable

electrode-skin (half-cell) potential [242]. Polymer electrodes are already used in the field, but

are not suited for low noise systems due to its high resistivity and prone to generate artifacts

[242].

The thickness of the sensor foil is about 30 µm, and the thickness of the intermediate material

depends on the desired hardness. The soft intermediate material with a hardness of Shore
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A 20 is 2 mm thick. The harder intermediate material is 0.88 mm thick and has a hardness

of Shore A 50. The roughness of the active sensor foil has not been measured so far but is

estimated to be much smaller than the material thickness.

Figure 6.7: Different types of foams, sensor materials and intermediates. Sample setup of an

intermediate - sensor material coupling

Open Positions:

The evaluation of the sensor should at first focus on the general proof of concept with the new

sensor material. If the sensor provides force-related information, the electrode sizes and shapes

should be tested and compared. The evaluation should compare the new material against

the current foam to show improvement. To provide a good calibration for human-machine

interfaces, the pre-applied pressure range, when worn, needs to be determined to optimize the

sensitivity of the sensor. A maximal pressure should be researched to increase the sensor’s

sensitivity in the full spectrum of expected pressures. In a future evaluation, the ”M” shaped

electrode shape should be compared against the new electrode shapes in terms of sensitivity,

measurement range, and consistency.

Summary:

In summary, the Weiss & Wörn sensor is well suited for pressure measurements, but adds the

constraint of a sensor material for the whole sensor, to avoid edge effects. Its principle is easy

and needs a small number of components while enabling a high spatial pressure distribution.

The roughness, hardness, thickness, and specific resistance of the sensor material and the

electrode size are mainly influencing the sensor output. The developed sensor material will be

pre-evaluated in chapter 7.

Nevertheless, research should be conducted with the hardness and roughness of the sensor

material, which theoretically links to the sensitivity as well.
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6.2 Electromyography

Background:

Referring back to chapter 5.1, electromyography is widely used in the field and seen as the gold

standard. Many sensor solutions with different shapes and circuits were developed. Currently,

monopolar recordings are trending in research and economy due to the advanced digital

signal processing capabilities and techniques, e.g., Delsys Tiber in figure 6.8 (A), chapter 2.4).

Nevertheless, bipolar recordings still have their raison d’être. A recent paper from Tankisi

et al. (2019) introduces new standards of instrumentation of EMG, which can be used as a

resource to understand further processes which are not mentioned in this section [157]. The

terms of active, reference and ground electrodes are contradictorily used in the field. This

thesis uses the term active electrode for both electrodes on the muscle and reference electrode

as a mostly remote electrode, which can also be placed in the middle of two active electrodes.

Figure 6.8: (A) Delsys Tiber from [243]; (B) Otto Bock 13E200 from [244]; (C) Thalmic Lab,

Myoband from [68]; (D) CTRL-Lab, CTRL-Kit from [245]

Working principle:

Taking essential design principles for electromyographic sensors into account, the sensor should

have a high spatial and temporal resolution and a high signal to noise ratio. The main

challenge of the design is to decrease the inherited noise. The common-mode rejection rate of

the sensor is crucial for obtaining a high signal to noise ratio. Using bipolar setups, the whole

system is capable of rejecting noise without a remote reference electrode (also called ground),

but reference electrodes are still used in commercially available sensor matrices to suppress

the noise level further. For example, the wristbands in figure 6.8 (C, D) have a reference

electrode between the active electrodes. This approach results in a tripolar setup but is less

beneficial than a reference electrode at a remote bony location (see. 5.1). Monopolar setups

use a remote reference electrode at a bony structure to solely obtain external noise. The

perfect setup depends on the objectives and processing methods (see 2.4). Current sensor

solutions, which influenced this work, are shown in figure 6.8. All shown solutions use an
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active circuit and amplify the signal close to the origin to avoid cables and connections prior

to the amplification.

The difference between bipolar and monopolar setups is the attenuation of cross talk from

other motor unit action potentials. Bipolar setups reduce the signal information in trade for a

clearer signal with less cross-talk. Monopolar setups are mostly used in a high-density grid to

observe single motor unit action potentials. Depending on the following intention prediction

algorithm, the setup could provide a signal which consists of the highest possible information

density. The current system uses features as input parameters, which result from the raw signal.

Merletti et al. (2011) cover more sophisticated circuits like driven right leg, virtual grounds,

and virtual references to further decrease the common-mode from external influences [150].

In this approach, the increased size of the circuit is not arguable for a more detailed signal.

Consequently, the signal needs to be digitally filtered at the power line frequency, which

is also depicted in figure 6.9. The notch filter needs to be applied even if there is a vital

electromyographic signal in this frequency domain. Some researchers mention the usefulness of

an electrode-skin impedance circuit. This option was shortly taken into account, but discarded

due to size and power constraints. Some small integrated circuit (IC) components like the

ADS1298 (Texas Instruments Incorporated., Dallas, Texas, USA) have these features in their

chips. However, newer amplifiers increased their input impedance, which makes a change in

impedance less pregnant. Nevertheless, a more sophisticated research could lead to a small

and efficient measurement circuit which could re-calibrate an automatic gain amplifier to

match the input impedance.

The magnitude of the raw input signal composition is depicted in figure 6.9. It clearly shows

the reason for ambitious noise canceling circuits in the field of electromyographic recordings.

In addition, it shows that ignoring analog filters leads to a smaller resolution and potentially

saturated values in the analog to digital converter (ADC).

Figure 6.9: Electromyographic signal characteristics. Modified to an EMG typical amplitude

and bandwith from [246]
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Circuit:

The circuit of an electromyographic sensor depends on the measurement principle (monopolar,

bipolar, tripolar) and if a remote reference electrode is used. The general principle is depicted

in figure 6.10. More advanced circuits are discussed in detail in two papers from Prof. Dr.

Merlettis group [137, 150].

Figure 6.10: General block diagram of an EMG amplifier circuit modified from [247]; A/D

Converter = ADC

The principle understanding of differential amplifiers is shown in image 6.11, which shows

that a differential signal consists of two monopolar signals. The advantage of a bipolar setup

is the higher common-mode rejection, e.g., for muscle cross-talk. The literature and patent

research showed a variety of schematics for an EMG/ECG amplification. The pre-evaluation

study will use an already built kit, e.g., the Grove - EMG Detector (seeed, Shenzhen, China)

or the SparkFun Single Lead Heart Rate Monitor - AD8232 (SparkFun Electronics, Niwot,

CO, USA). In general, integrated circuit components are always preferred due to its minimal

footprint. Furthermore, it is obligatory to match the length of the traces before amplification

to match the resistance. Some setups introduce a level-shift before entering the ADC, due to

a limitation in the ADC ability to convert negative potentials.

Figure 6.11: Differential EMG modified from [247]
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Components:

To match the design principles in chapter 3.1, a small footprint of the components is preferred,

which also ensures a higher spatial resolution, because of a possibly higher number of sensors

on one module. EMG sensors need a higher number of components compared to an FMG or

MMG sensor. The desired components and their requirements, for monopolar and bipolar

recordings, are introduced in this paragraph. A biopotential amplifier like the ADS1298

(Texas Instruments Incorporated., Dallas, Texas, USA) could be beneficial but is still large (8

x 8 mm). Using only one electromyographic recording, an AD8232 (Analog Devices, Norwood,

MA, USA) integrated circuit could be used with a 4.1 x 4.1 mm footprint size.

Amplifier:

For the acquisition of EMG signals, operational amplifiers and a compound of operational

amplifiers named instrumentation amplifier can be used. Critical parameters, which need

to be considered for the amplifier, are the input impedance, input-referred noise, and the

common-mode rejection ratio. The input impedance is set up in series with the impedance of

the electrode and skin; thus, we aim for a high input impedance to get a higher fraction of

the signal. The minimum is stated as 100 times higher than the electrode-skin impedance

[137]. The common-mode rejection is the parameter that describes the attenuation of the

common-mode of the amplifier. A common-mode rejection ratio of 100 dB should be aimed,

e.g., to be able to reduce the influence of the power line interference, which is in the range of

V, versus µV for the muscle signal (see figure 6.9) [248]. Furthermore, it is important to set

the gain appropriately to avoid saturation of the ADC or end up with a poor resolution.

Filtering:

High-pass filtering prevents the DC signal source from propagating further, and it is achieved

with a capacitor in series with the signal (see 6.12). DC signal fractions act as an offset in the

signal and could lead to a saturated ADC, filtering it increases the resolution (see figure 6.9).

High-pass filters are no longer necessary in the amplification chain if the ADC resolution and

range is large enough. Nevertheless, a digital filter is mandatory afterward. On the other

side, low-pass filters filter high-frequency signal components; this is used in achieving a small

ripple, but useless in our application. Nevertheless, the circuit needs a low-pass filter to avoid

antialiasing due to the sampling frequency of the analog to digital converter. A low-pass and

high-pass filter can be achieved using a Resistor-Capacitor element (see figure 6.12).

60



6 Sensors

Figure 6.12: High-pass and Low-pass filter circuits from [249]

Electrodes:

Electrode shapes and inter-electrode distances were widely discussed over the last decades

[250, 137]. For monopolar recordings, Merletti et al. (2010) deduced distances in an older

review and a recent paper using underlying biomechanical principles [150, 251]. The electrode

size averages the signal in space, thus a diameter of d < 3− 5 mm is suggested but can also be

reduced to 1 mm [251, 135]. To avoid aliasing, the sampling frequency in space must be small

enough to satisfy the Nyquist criterion (e < 5− 10 mm) [150, 251]. Merletti et al. (2010) and

Afsharipour et al. (2019) also propose that the signal frequency shifts with different setups

and is not comparable to other approaches.

Bipolar recordings still have larger electrode sizes (max. 10 mm), which are capable of detect-

ing deeper muscle signals. The inter-electrode distance (e) is a crucial parameter for bipolar

recordings. Smaller distances suppress the muscle cross-talk heavily, while larger distances

offer more motor unit action potentials in the signal, as seen in figure 6.13. Double-differential

(tripolar) recordings suppress noise in both longitudinal directions and isolate the signal. De

Luca et al. (2012) researched the inter-electrode distance from bipolar setups and examined a

distance of 10 mm from center to center as optimal for reduced cross-talk [149]. Smaller inter-

electrode distances are critical due to lower potentials and thus higher baseline distortion [149].
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Figure 6.13: Dependency between the inter-electrode distance and pick-up volume from [252]

Using round or rectangular electrode shapes does not make a difference for the setup; however,

it is important to use the same electrode size for bipolar setups to match the input impedance

and to obtain the same amount of peripheral information/noise [149, 253]. Compared to

standard shapes, Farina et al. (2001) brought back an older idea of round electrodes with a

reference circle (see. figure 6.14) [250]. The results were promising, but the technique was

not further developed. The positive idea of these electrodes is the shielding against cross talk

from all directions, which suites them for the high density of muscles in the human forearm

(see chapter 4). According to Merlettis principles about the inter-electrode distance (e) of

smaller than 5-10 mm, a setup containing a concentric ring electrode should be evaluated. In

the prototype in figure 6.16, the match of the electrode area is ignored. In future setups, the

area should match.

Figure 6.14: Motor unit spike trains of five different electrode principles [250]

The electrode size directly correlates with the amount of collected motor unit action potentials

[253]. Thus, one set will have smaller and one set larger electrode sizes. Larger electrode

sizes will have a higher density of information, while smaller will provide more obvious and
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easier features for a feature-based detection algorithm. In addition to research-based bipolar

setups, some state-of-the-art commercial setups were designed. A setup with a larger reference

electrode, which is adapted from Otto Bock’s 13E200, but limited in width, is shown in

figure 6.15 (4). The adaption of the Myoband in figure 6.15 (3) uses a smaller reference

electrode. A universal setup that can be used with a remote reference electrode was developed

in figure 6.15 (1). Figure 6.15 (2) follows the research of De Luca et al. (2012) with an

inter-electrode distance of 10 mm [149]. It can be used with a remote reference electrode or in

a double differential setup (tripolar). The electrode size could not be adapted to the literature

preference of 10 mm diameter and was maximized to 5 mm, due to the limited PCB width,

which aims to obtain a high spatial resolution.

Figure 6.15: Units: mm; (1) Bipolar (Double Differential) setup with a high inter-electrode

distance; (2) Bipolar (Double Differential) setup with a smaller inter-electrode

distance; (3) Bipolar (Double Differential) setup with smaller reference; (4)

Bipolar (Double Differential) setup with a larger reference

The monopolar approaches follow the research of Merletti et al. (2010) and Afsharipour et

al. (2019) [251, 150]. The first sketch in figure 6.16 uses a small inter-electrode distance of

4 mm and a small electrode size. This setup will potentially be able to track single motor

unit action potentials. The second sketch has larger electrodes to obtain more and deeper

motor unit action potentials with an inter-electrode distance of 8 mm. Both monopolar setups

require a remote reference electrode.
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Figure 6.16: Units: mm; (1) Monopolar setup with a small electrode size and a small inter-

electrode distance; (2) Monopolar setup with a larger electrode size and inter-

electrode distance; (3) Monopolar setup with a small reference ring

Sensor material:

Using a force myographic sensor, the outer sensor material should be consistent and not vary

in height. The introduced force myographic sensor in chapter 6.1 uses a sensor material that

is applied on the sensing electrodes. Thus, the electromyographic sensor should also use the

sensor material. The sensor material can also act as a protective membrane against dust

and perspiration and adds robustness to the sensor. The thesis assumes that applying silver

particles into the sensor material, enhances the recording of EMG signals, which needs to be

proven in an evaluation. The general idea is to decrease the half-cell potential. Silver-chlorid

(Ag-Cl) is used in commercially available electrodes and has a small half-cell potential; thus,

silver molecules could also be beneficial in the designed setup [254]. The sensor material should

be directly applied to the electrode surface, enabling a close and low impedance connection

compared to a loose connection.

Open positions:

Research about the electromyographic sensor resulted in a range of open positions. The

most important position is to prove the concept of recording through a sensor material. The

impedance of the setup should be measured to set the gain of the amplifier and fulfill the ratio

of a 100 times higher amplifier impedance. The signal to noise ratio should be calculated to
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determine the least significant bit of the ADC to define the necessary resolution. The future

evaluation should test the designed setups regarding their accuracy in an upper limb control

task. Furthermore, the effectiveness of a remote reference electrode for bipolar recordings

should be investigated. It is urgent to not compare the setups directly, due to different

parameters and recording techniques, just an intention detection accuracy test is capable of

providing a full comparison.

Summary:

In summary, the design covered monopolar, bipolar, and tripolar recordings, also called

referential, single differential, and double differential. The sensor consists of one or more

electrodes, an amplifier, a filtering circuit, and an analog to digital converter. The electrodes

differ in size and inter-electrode distance, depending on the goal. The amplifier should have

a high input impedance, low input-referred noise, and a high common-mode rejection ratio.

The gain of the amplifier is crucial; if set wrong, the digital signal is cut off or has a small

resolution. The filtering circuit consists of a low-pass filter and optionally a High-Pass filter

to reject DC-Noise. The last component in the circuit is the analog to digital converter,

which translates the analog signal into a digital value. In total monopolar circuits have fewer

components, but due to its application in high-density grids, the higher number of sensors

also ends up in a high number of components. In addition, monopolar signals need a remote

reference electrode, while bipolar recordings can reject noise at the recording site.

6.3 Mechanomyography

Background:

Referring back to the mechanomyographic chapter 5.3, there is a variety of different techniques

to obtain the oscillations of the muscle fiber. Acoustic myography has advantages regarding

the signal to noise ratio but is larger. The only commercially available acoustic myographic

sensor, shown in figure 6.17, is from the company MyoDynamik ApS [214]. It samples at

4 kHz, has a size of 20-mm, and is coated with acoustic gel to improve the signal quality. Other

mechanomyographic sensors like the ViBand use smartwatch accelerometers or piezoelectric

sensors (see figure 6.17) [255, 256].

65



6.3 Mechanomyography

Figure 6.17: (A) Myodynamik acoustic myographic sensor from [257], (B) Research piezoelec-

tric sensor from [256]

Due to size constraints in the setup, large components like the acoustic or piezoelectric sensor

can not be used. Thus, the focus is on accelerometer-based recordings. Promising research was

made with accelerometers, and some researchers concluded that their sensors could enhance

the signal density of an EMG system [215, 219]. For this purpose, a micro electrical mechanical

system (MEMS) will be used. The disadvantages in terms of noise should be faced with

sophisticated digital signal processing techniques and an IMU on the master module of the

sensor matrix. Further information about digital signal processing and features regarding

MMG recordings can be found in Krueger et al. (2014) [215].

Working principle:

Lateral muscle oscillations can be measured with a free-swinging body’s inertia, which slower

adapts to external accelerations. A MEMS accelerometer, as depicted in figure 6.18, consists

of fixed plates and a spring-mounted body with a known mass. The capacitance between

the fixed plates and the moving body is obtained. Depending on the distance between the

two plates, the capacitance will change. Moving the whole sensor system, the body will

accelerate, and the spring-mounted mass wants to stay in its position, based on newton’s first

law (inertia). Thus, the fixed parts are moving, while the spring-mounted mass will stay in

its position until it adapts.

Figure 6.18: Measurement principle of an accelerometer from [258]

After the muscle fiber twitch, small muscle oscillations propagate to the skin (see chapter 4).
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The sensor adapts the oscillations, which leads to a change in the capacitance of the described

sensor (see figure 6.18). The obtained signal consists of the sum of all propagating oscillations.

Advanced systems use a differential sensor setup, in which both sensors oscillate independently

of each other. Free oscillations can be guaranteed if the sensors are mechanically uncoupled.

These setups can attenuate the common-mode of the sensor with a differential amplification.

However, the already stated design principles in chapter 3.1 are leading to a printed circuit

board, where the oscillations are transferred through the sensor material and the circuit

board. Hence a differential mechanomyographic setup is not possible. Nevertheless, a massive

advantage of these sensors is the size and offer of integrated circuits (IC) on the market. Due

to the application in many fields of everyday life, manufacturers can offer small footprints

and a digital output signal for a low price. Thus, an accelerometer is using a small fraction of

the limited space on the circuit board.

Circuit:

The circuit consists of a 3 degree of freedom (DOF) accelerometer with a digital output

and a sensitivity of ± 2 g [111, 259]. Figure 6.19 depicts the functional block diagram of a

sample accelerometer (ADXL345, Analog Devices, Norwood, MA, USA). It consists of an I2C

interface, which transfers the digital value.

Figure 6.19: Sample functional block diagram of the ADXL345 accelerometer from [260]

Components:

As already introduced in the circuit, the only component for measuring mechanomyographic

signals is an integrated accelerometer circuit. To obtain valid sensor data, the supply voltage

to the IC should be consistent to avoid a noisy signal. The data lines of the integrated circuit

can use a resistor to reduce the current flowing into the input pin. Having such an all-inclusive

designed sensor, the residual constraints are a small footprint and a high resolution. The used

IC from NXP Semiconductors (Eindhoven, Netherlands) FXOS8700 is small (3 x 3 mm) and

offers a resolution of 14 bit [261].
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Open positions:

Some open questions can be devised regarding our specific setup. Are low-cost accelerometers

capable of measuring myographic signals and how much does the sensor material of the force

myographic sensor attenuate the lateral muscle oscillations.

Summary:

Accelerometers have already shown to be a good additional modality for a sensor fusion [215,

219]. The designed sensor consists of a low-cost accelerometer, which potentially offers a

mechanomyographic signal with a small footprint and a high resolution of 14 bit without

blocking an ADC channel.

6.4 Further sensors

Sensors that enhance myographic measurements were already introduced in chapter 5. Two

sensors provide promising signals and add further information about the orientation of the

arm. Both sensors are used for motion detection and provide signals related to the current

limb position. A temperature sensor can be used to compensate for systematic errors in the

signal and to observe the temperature changes for the mechanomyographic principle.

Inertial Measurement Unit:

An IMU is widely used in areas for motion detection. It uses an accelerometer and gyroscope

to predict the current position; in some circumstances, a magnetometer is additionally

used. Using a magnetometer, which is vulnerable to electromagnetic noise, can lead to false

predictions. There is a variety of IMU’s on the market. Buying a raw IMU, the development

process needs to deal with a sensor fusion approach to fusing the three components: gyroscope,

accelerometer, and magnetometer. Bosch (Gerlingen, Germany) sells a variety of IMU’s in

their sensortec department, with a broad use case. Avoiding a self-made Kalman-filter sensor

fusion, Bosch offers the BNO055, which has a sensor fusion software on board. The sensor has

a small footprint of 5.2 x 3.8 mm. As output values, the BNO055 offers Quaternion, Euler

angles, Rotation vector, Linear acceleration, Gravity, and Heading. Regarding the decreased

workload of an in-built Kalman-filer and the size, a higher price is justifiable.

Barometer:

While using an IMU is a standard nowadays, fewer people use a barometer to enhance their

motion detection algorithm. Authors who used an additional barometer for a movement

classification task were able to enhance their predictions [238]. MEMS barometers are very

sensitive nowadays and able to provide a high-resolution altitude change. The Bosch BMP085

provides a resolution of up to 10 cm. Other high-end sensors guarantee 1 cm resolution
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(HP206C, Hope Microelectronics co., Ltd, Shenzhen, China) with a larger footprint [262].

These resolutions, in addition to the IMU output, should provide a valid sensor fusion for

motion and limb position detection. The evaluation should predict the intention of the user

in a test battery with both sensors, isolated and using no sensor, to proof the concept.

Temperature sensor:

Temperature sensors can be beneficial when applying a mechanomyographic sensor. They

are available in small sizes and are sometimes integrated into an existing chip that measures

other sensor data. The temperature sensor can also correct systematic errors/drifts in sensors.

It should be beneficial for the system to use the temperature sensor in long term applications.

6.5 Discussion

The sensor fusion between FMG and EMG seems feasible and promising. The force myographic

sensor is cheap, small, and needs few components. Nevertheless, the sensor material sets a

constraint, which needs to be solved. However, the sensor material can also be used to create

a separation between the sensors and electronics and the user’s sweat. The electromyographic

sensor was carefully designed and is optimized for a feature-based machine learning approach.

The mechanomyographic sensor adds the lateral muscle oscillations to the signal with a small

integrated circuit component. It needs to be evaluated if the base sensor material of the sensor

matrix is transferring muscle cell potentials and high-frequency oscillations or if it suppresses

the muscle potentials and low-pass filters the desired oscillations. To address the difficulties

in the myographic signal recording, an inertial measurement unit, and a barometer are used

to decrease the influence of the limb position effect. The sample rate of the sensors should

use the widely applied four-time oversampling paradigm.
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This chapter pre-evaluates the designed sensors and proves the general concept without

statistical evidence. The designed force myographic sensor is measured in a standardized

machine setup to obtain its sensitivity. Afterward, all sensor modalities are tested for the

desired myographic information of one subject in a standardized test setup. The resulting

parameters are presented and compared to the introduced signals from chapter 5. Due to its

prominence, the musculus biceps brachii is recorded; thus, we can safely determine a muscle

activation. The sampling size of one subject is insufficient to conclude the real effectiveness,

but it shows if the general idea of a high-density multi-modal sensor setup with small sensors

is feasible. A full evaluation with reference systems needs to be conducted with the final

machine learning approach and compared in the resulting accuracy in an upper limb control

task. Thus, this chapter does not aim for a full evaluation against the main quality criteria

(reliability, validity, and objectivity) and is also not evaluating all setups. The goal is to

show a small sample dataset, which proves the general concept and provides suggestions for

adjustments.

7.1 Standardized myographic protocol

The goal of a standardized myographic protocol is a comparable dataset. The sensor was

placed on the muscle belly of the biceps, as researchers state it as the most prominent signal

location (see chapter 5.3). For EMG measurements, it can not be assured that the sensor is

not located on an innervation zone. The recording site was marked to re-apply it in a second

condition. The test protocol covered an isometric biceps activation. The elbow was placed on

a table, and weight discs were stored in a bag. The subject lifts the bag and withstands the

torque around the elbow with exerting a force in the biceps. A soft object was placed at the

desired elbow joint angle, and the subject was instructed to gently touch the object while

sitting upright (see figure 7.1). The elbow angle was about 45◦ flexion. The measurement

lasted for ≈ 5 seconds until the subject got a self-paced break. The obtained load levels are 5,

10, and 15 kg. The load was randomized to avoid muscle fatigue and other load-related errors

in the signal. For each load, 6 repetitions were obtained. The investigator noted the start and

stop time of each trial.
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Figure 7.1: Standardized myographic test protocol

7.2 Force Myography

The pre-evaluation of the introduced FMG sensor from chapter 6.1 is divided into two steps.

The first step pre-evaluates the pressure dependency of the sensor. The second step is a force

myographic measurement. The pre-evaluation study uses the smallest electrode to proof the

concept. The sensor material differs between the two sets, due to sensitivity.

Test setup 1:

The first test setup shows the voltage-pressure characteristics of the new designed electrodes

and sensor material, which is then used to optimize the sensor material and electrode shape

to the desired sensitivity and measurement range.

Material:

The test-setup of the force myographic sensor consists of five circular sensors with an outer

circle diameter of 1.64 mm (see figure 6.6). Two of the electrodes are connected to a small

voltage divider circuit and a DAQ (Meilhaus 1208 FS, Meilhaus Electronic GmbH, Alling,

Germany). The passive resistor has a value of 10 kΩ. The setup is shown in figure 7.2 (B).

The resolution of the DAQ is 12 bit, and the measurement range was set to ±10 V; thus, the

smallest step-width is 4.88 mV. The pressure is applied with a Zwick-Roell ZMART.PRO

BZ1-MM14450.ZW01 (ZwickRoell GmbH & Co. KG, Ulm, Germany) measurement setup,

with an indenter diameter of 10 mm. Consequently, a load of 5 N results in 0.064 MPa.

The indenter’s contact area is minorly ellipsoid to compress the material starting from the

middle to avoid edge effects. The used sensor material consists of the normal sensor foil in

combination with the hard intermediate (see figure 6.7). The tested sensor material has a

hardness of Shore A 50. The data acquisition software is written in LabVIEW (National

Instruments, Austin (TX), USA) and acquires the data with a sample rate of 10 Hz.
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Figure 7.2: FMG-Setup: (A) Zwick-Roell setup with 10 mm indenter and the fixed sensor on

the measurement table; (B) Sensor circuit with a custom made voltage divider

circuit. The sensor is fixed in a hard plastic housing

Method:

Figure 7.2 (A) depicts the setup of the Zwick-Roell. The sensor is fixed with tape on the rigid

Zwick-Roell measurement table to keep the sample in place. The traverse can freely move on

the Z-axis to apply pressure on the sensor. A force-controlled protocol is used in the setup to

control the load on the FMG sensor. The chosen test protocol is derived from DIN 53579-1,

with a repetitive triangle-shaped load profile from 0 to 5 Newton. The pressure is applied

to the sensor material with a maximum speed of 0.25 mm/s. This procedure is repeated 10

times to acquire a moderate number of samples, which can be used as a valuable guidance for

improvements on the sensor.

Data processing:

The data processing was conducted in MATLAB 2018b (The MathWorks Inc., Natick, Mas-

sachusetts, USA). The data was split into each load cycle using the recorded force data. The

cycles were divided into rising and falling edge. The rising edges are further used. The ten

trials were interpolated to fit in length. The pressure was calculated using the area of the

indenter and the desired force. The pressure is plotted as the abscissa and the analog to

digital converter value as the ordinate to create the voltage-pressure characteristic.

Results:

Figure 7.3 (A) shows the tactile sensor performance of the ”M” shaped electrode and a sensor

material based on a soft foam [57]. The sensitivity starts at 0 N, and the analog to digital

converter saturates at approx. 2 N or 0.02 MPa (based on the mentioned indenter area of 1

cm2). The acquired sensor-pressure characteristic of the designed sensor is shown in figure 7.3

(B). The sensitivity starts at 0.02 MPa, and a bending of the flank can be interpreted between

0.05 and 0.06 MPa. The resolution of the analog to digital converter was not fully used.
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Figure 7.3: (A) Characteristic curve of Kõiva et al. (2015) [57]; (B) Rising edge of 10

repetitions from 0-5 N with a 10 mm diameter indenter using a 1.64 mm electrode

and a sensor material combination of a normal sensor foil and hard intermediate

Discussion:

The results show that the sensitivity differs from the designed sensor from Kõiva et al. (2015)

[57]. Adjustments to the setup are necessary to fit into the desired measurement range,

beeing sensitive from the pre-applied pressure at the arm. The passive resistor in the voltage

divider, the conductive properties of the electrodes contact area could be adapted to ensure

a higher voltage under load, which increases the resolution of the sensor. The design idea

from chapter 6.1 proposes to change the sensor material characteristics and keep the other

constraints constant to achieve a high signal resolution (passive resistor) and spatial resolution

(electrode size). In general, the sensor shows a clear pressure dependency and is suited to be

used in a human-machine interface as a force myographic sensor. However, the sensitivity

and other parameters need to be adjusted to optimize it for the application on the human

forearm. The complete set of elastomer depended characteristics need to be examined to state

the influence of creeping under load and hysteresis. In a future trial, the sample rate and

maximum pressure need to be increased to sample a higher temporal resolution and a larger

pressure characteristic of the sensor. The full evaluation study should also take the designed

larger electrodes and different sensor materials into account to fully understand and model

the behavior of the used sensor.

Test setup 2:

The second test setup records data from the designed sensor to show its myographic informa-

tion. Furthermore, the signal will be processed to compare the frequency domain against the

MMG frequency domain. Due to the missing sensitivity of the new sensor material, the setup

changes to the rough and soft foam from figure 6.7. Thus, the pressure can not be stated;

however, it is still possible to show the myographic phenomena.
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Material:

The setup is shown in figure 7.4 and consists of the 1.64 mm ring electrodes from figure 6.6.

The rough and soft foam from figure 6.7 was fixed with isolating tape on the electrodes. The

electrodes are connected by hookup wire to the voltage divider circuit, which has a 10 kΩ

resistor in series. The signal is processed to a Meilhaus 1208FS DAQ (Meilhaus Electronic

GmbH, Alling, Germany). The data acquisition software DAQAmi from Meilhaus Electronic

GmbH was used to record the signals. The sample rate was set to 1 kHz.

Figure 7.4: FMG-Setup 2: The electrodes are placed on the wristband, and the sensor material

is fixed with tape on the electrodes

Method:

The test protocol is described in the standardized protocol section 7.1.

Data processing:

The data processing is conducted with MATLAB 2018b (The MathWorks Inc., Natick, Mas-

sachusetts, USA). The baseline shift of the signal was corrected, and the whole signal was

downsampled to 200 Hz. To calculate the RMS values, the signal was low-pass filtered with a

cut-off frequency of 99 Hz. To compare the MMG and FMG signals, the data was two times

differentiated before a band-pass filter with cut-off frequencies of 5 and 99 Hz was applied.

The mean frequency was calculated using the MATLAB inbuilt FFT-function with squaring

the double-sided power spectrum to get the power spectral density.

Results:

The Root Mean Square value in figure 7.5 rises with an increased load. The standard deviation

is small and does not span in the mean values of the other loads.
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Figure 7.5: FMG - low-pass filtered at 99 Hz; 5/10/15 kg load; 6 repetitions; 1 subject

Figure 7.6 shows the bandpass filtered FMG signal with the same setup the MMG pre-

evaluation will use in section 7.4. The mean power spectral density between the 3 loads is

similar to each other. The mean frequency shows a decreasing spectrum with increasing load.

The mean Root-Mean-Square value of the load shows the same behavior.

Figure 7.6: FMG 2nd derivative - band-pass filtered at 5-99 Hz; 5/10/15 kg load; 6 repetitions;

1 subject
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Discussion:

The RMS value shows a clear and valuable dependency on the increased load; thus, the sensor

adds myographic information to the sensor matrix if embedded. The second objective was a

comparison between the signal of MMG and the second derivation of FMG. Comparing to the

literature in chapter 5.3 it can be concluded, that the second derivation of our FMG sensor is

not suited to obtain the MMG phenomena. Thus, redundancy between the two modalities is

not excepted. For a FMG sensor, it should be taken into account that the application in a

stretchable band will act as a spectral filter in dependency of the elastic behavior of the band.

Furthermore, an increased signal could occur on the opposite sensor (180◦) of the band, which

is on the same line of action. A creeping effect of the foam is not expected in the obtained

short time activation.

7.3 Electromyography

Test setup:

The pre-evaluation of the electromyographic sensor uses the tripolar/double differential setup

to proof the concept of measuring an electromyographic signal with small electrodes and a

sensor material (sensor foil, no intermediate).

Material:

The used materials for the pre-evaluation are the prototyped tripolar printed circuit board

with 10 mm inter-electrode distance (see chapter 6.2 (B)) in figure 6.15, the normal sensor foil

and a modified SparkFun Single Lead Heart Rate Monitor - AD8232 with a gain modifying

potentiometer (Bourns 3296, Bourns Inc., Riverside, CA, USA) instead of resistor 8 (R8) in

the schematic (see [263]). The signal is transmitted in a non-shielded cable (1 mm diameter,

40 cm long) and connected to the proposed SparkFun board with a jack plug. The reference

measurement used adhesive electrodes (ECG Solid Gel Electrodes, Bio Protech Inc., Wonju si,

Korea) and passed the signal through a non-shielded cable (1.9 mm diameter, 100 cm long) to

the jack plug. The SparkFun board amplified and pre-processed the obtained potential from

the electrodes and transferred the analog signal by standard jumper cables to a Meilhaus

1208-FS DAQ (Meilhaus Electronic GmbH, Alling, Germany). The DAQ has a resolution of

12 bit and was set to a sample rate of 1 kHz. To ensure a constant electrode-skin impedance,

the sensor material needs to be tightly coupled to the electrode. The setup used isolation

tape to fix the sensor material on the electrodes. The sensor material should be isolated from

each other to avoid noise. The used materials are shown in figure 7.7.
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Figure 7.7: EMG-Setup: The reference measurement used the adhesive electrodes and the

white cable. The sensor foils were fixed on the three electrodes with isolated tape

Method:

The test protocol is described in the standardized protocol section 7.1. The reference measure-

ment was conducted first, the plain tripolar circuit board as the second and the tripolar circuit

board with sensor foil as the last setup. For the reference measurement, the adhesive electrodes

were cut to a smaller size and placed in muscle fiber alignment with an inter-electrode distance

of 2 cm. A smaller inter-electrode distance was not possible due to the size limitations of the

electrodes. The remote reference electrode was placed on the ulna bone close to the elbow joint.

Data processing:

The data processing was conducted with MATLAB 2018b (The MathWorks Inc., Natick,

Massachusetts, USA). The raw data was split into each trial and reduced to the smallest

occurring duration. The reduction cuts the beginning and end of the signal. Interpolation is

not necessary due to the stationary signal of an isometric task. The raw data was filtered

with a 3rd order band-pass filter at 20-450 Hz and a Notchfilter at 50 Hz with a q factor of

40 to suppress power line interference. The q factor was based on test-measurements. The

Root Mean Square value was generated with the rectified and filtered raw signal. The power

spectral analysis was conducted with the inbuilt FFT-function and squaring the double-sided

amplitude spectrum before normalizing.

Results:

Figure 7.8 shows the normalized Root Mean Square (RMS) value and the median frequency

in relationship of the load. The RMS is similar in the reference and plain PCB condition,

while the normal sensor foil has a different slope. In general, all three conditions are showing

a rise in RMS with an increased load. The standard deviation of the sensor foil measurement
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is wider than the deviation of the two other conditions. The mean median frequency of all

six trials shows a nearly constant behavior with an exception between 5 and 10 kg in the

plain PCB condition. The median frequency is shifted in between all conditions. However,

the standard deviation is stable in all conditions.

Figure 7.8: EMG RMS and Median Frequency: band-pass filtered at 20-450 Hz; 5/10/15 kg

load; 6 repetitions; 1 subject

Figure 7.9 shows the filtered EMG-Signal with the two noted start and end times of the task.

It can be seen, that the reference measurement has the clearest signal, while the other two

conditions have less prominent activations.

Figure 7.9: EMG Filtered Signal: band-pass filtered 20-450 Hz; 10 kg; Ref = adhesive

electrodes, -M = raw PCB, +M = PCB with sensor foil

The mean Power Spectral Density of the three conditions is shown in figure 7.10. The

frequency band was shortened, due to absent signal components after 200 Hz in all conditions.
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The spectral density of the PCB without the sensor foil shows the largest frequency domain

with powers in frequencies of up to 130 Hz. The PCB with the sensor foil shows a frequency

domain of up to 70 Hz. The power magnitude differences between the loads are visually

distinguishable.

Figure 7.10: EMG mean Power Spectral Density: Ref= adhesive electrodes, -M= without

sensor foil, +M= with sensor foil

Discussion:

At first, it is important to note that the reference setup does not allow a full comparison.

The focus is on proving the general concept. The RMS comparison shows a promising result

with which the muscle activity can be distinguished. The median frequency does not add any

further myographic information to the setup, and the effect of the median frequency on load

is also widely discussed in the literature [264]. The sensor foil shows a different slope. The

difference could be decreased with a better fixation of the sensor foil. The filtered amplitudes

and the visual signal to noise ratio add evidence to the general finding, that the designed PCB

need to be further developed. A closer electrode to skin connection with prominent electrodes

on the PCB could benefit the quality of the signal. The larger spectral density of the plain

PCB, compared to the reference measurement, shows the capability of the approach; however,

applied with the sensor foil, the density suffers from a low-pass filter effect. In all setups, the

spectral density is similar, but low-pass filtered, compared to the literature in chapter 5.1.

Thus, it can be concluded that a small sensor size can obtain electromyographic information.

The sensor foil and fixation should be further developed. Weiß & Wörn (2005) showed that

gluing the sensor on the electrode results in a nearly constant resistance [172]. It is urgent

that the electrode is tightly coupled to the skin; a flexible electrode like CTRL-Lab developed

would highly benefit the signal’s quality. An idea of how it could be solved mechanically is

shown in figure 10.2. In total, the future evaluation of electrode sizes and shapes is possible

and can be conducted after fixing the introduced aspects.
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7.4 Mechanomyography

Test setup:

The evaluation aims to prove the general concept, and there is no comparative device that

could act as a reference. Two measurements will be conducted, one without and one with the

sensor material (soft intermediate plus normal sensor foil).

Material:

The MMG test setup consists of the introduced accelerometer (FXOS8700) of chapter 6.3

with a sensitivity of ±2 g and 14 bit resolution. The integrated circuit is mounted on a

breakout board from Adafruit (New York City, NY, USA) and thus wider than the desired final

solution. The sensor was sewed in a neoprene ankle band and connected by an I2C interface

to a joy-it mega 2560 microcontroller (Simac Electronics Handel GmbH, Neukirchen-Vluyn,

Germany). The firmware was written in Arduino 1.8.9 (open-source) and is attached in 11.1.

The resolution of the sensor provides 0.0024 m/s2 as its smallest step width. The controller

sampled all three axes with 200 Hz for 5 seconds. The orthogonal axis to the muscle was

evaluated. The recorded values were raw signals with gravity distortion. The used sensor

material was the normal sensor foil and the soft intermediate from figure 6.7. The materials

are shown in figure 7.11.

Figure 7.11: MMG-Setup: The breakout board is sewed into the band. The sensor material

consists of the soft intermediate with the normal sensor foil.

Method:

The test protocol is described in the standardized protocol section 7.1. The sensor was

placed on the muscle belly of the biceps, as researchers state it as the most prominent signal

location MMG measurements (see chapter 5.3). The condition without the sensor material

was obtained first. The second condition used the sensor material.
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Data processing:

The data was acquired with the Arduino in-built serial monitor. A MATLAB 2018b (The

MathWorks Inc., Natick, Massachusetts, USA) script was used for the pre-processing. The

signal was 3rd order Butterworth band-pass filtered with cut-off frequencies at 5 and 99 Hz.

The Root-Mean Square- and mean frequency value was calculated and averaged over the

trials.

Results:

The results in figure 7.12 should be interpreted carefully, due to the sample size of one subject

with 6 repetitions each. The resulting power spectral density shows that in between the

loads, the spectrum mainly changes in its power. However, changes due to the applied sensor

material are not obvious in the upper plot and better shown in the Root Mean Square (RMS)

and Mean Frequency plot. The mean RMS and its standard deviation are higher with the

applied sensor material. The Mean Frequency shows a systematic offset with applied sensor

material. The standard deviation enlarges with an applied sensor material.

Both signals are showing a relationship between the increased load and the accelerations. The

power density of the test with sensor material is shifted compared to the test without the

sensor material. The classes 5 kg and 10 kg differ minorly, while the 15 kg load shows a clear

rise in mean frequency.

Figure 7.12: MMG Results: mean Power Spectral Density, RMS and Mean Frequency; band-

pass filtered at 5-99 Hz; 5/10/15 kg load; 6 repetitions; 1 subject. +M= applied

sensor material; -M= without sensor material
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Discussion:

The results of the measured mechanomyographic parameters are comparable with the results

in chapter 5.3. Due to the limitation that a maximal voluntary contraction was not obtained,

it can not be clearly stated, that the frequency plateau between 5 and 10 kg is showing the

signal between 0 to 40% torque from figure 5.11 (A). However, the amplitude increase and

the PSD show similarities to the literature in figure 5.11 and figure 5.12. The amplitude

changes could occur due to a different contact pressure after application. A score with RMS

and mean frequency could benefit the classification by solving its drawbacks. The reduced

mean frequency with the sensor material could show a low-pass filtering effect. However, the

increased RMS would contradict the hypothesis of a high-pass filter effect due to a compliant

intermediate material. In general, it can be concluded that mechanomyographic signals can be

acquired with low-cost sensors like the FXOS8700. The parameters RMS and mean frequency

verify a small correlation to the load, which should be further investigated in a larger study.

Taken together, the application of a mechanomyographic sensor in a low-cost sensor matrix

could be beneficial.

7.5 Conclusion

The test results showed promising results in all sensor modalities for one subject. The design

of the sensor material should adapt to the results and provide higher sensitivity. However,

the results of the foam proved the concept of force myographic information. The bare

electromyographic PCB was able to provide myographic information to frequencies of up to

≈ 150Hz and outperformed the reference measurement in this case. The fixation of the sensor

foil needs to be enhanced, and an application of the designed silver foil should be tested in a

future evaluation with a larger sample size and statistical evidence. The mechanomyographic

accelerometer was able to provide myographic information to distinguish in between the 3

loads. The future evaluation should embed the integrated circuit on a narrow PCB to also

prove the effectiveness on a smaller board size. The comparison of the 2nd derivative of the

FMG- and the MMG signal proves, that the MMG sensor is not obtaining redundant signals.

In summary, the designed sensor modalities are proving the concept, and an evidence-based

evaluation study can be conducted after adjusting the mentioned issues.
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A sensor module is an arrangement of sensors embedded on a printed circuit board (PCB)

with an interface to transfer data to a peripheral device. The central part of the module is a

microcontroller which acquires data from the sensors connected to it. A sensor module can be

used isolated or fused into a sensor matrix, which will be covered in chapter 9. Referring back

to the pre-evaluation chapter 7, all modalities offer a possible amount of information about

the current muscle activity. This chapter covers the design of a small set of different sensor

modules which can be tested in a future case study.

A human-machine interface, introduced in chapter 2.1, aims to detect the intention of the

user and predict them to control a device. To cover all target groups, the prediction should

provide real-time capability as far as possible. Taking the motor pathway into account and

the introduced electromechanical delay from chapter 4, EMG sensors are highly important to

obtain a low latency and to detect an intention without major mechanical muscle contractions,

e.g., with stroke patients. MMG and FMG sensors are delayed, but able to add further

information to the prediction and its corresponding control task (see chapter 4). Thus a

setup with a higher number of EMG sensors would be justifiable. One MMG sensor adds the

board acceleration to the acquired set of information. A second MMG sensor would provide

redundant information, due to the rigid PCB. The remaining space is filled with FMG sensors.

FMG sensors are adding highly valuable and stable high-density information to the setup,

which can be then used in a control scheme to re-adapt the first predicted movement, based

on EMG, of the module (see figure 10.1).

Based on the design principles, a sensor module setup needs to fulfill different constraints,

e.g., it should be easily exchangeable to be cost-efficient. The length of the sensor module

should be taken into account, to not face lifting effects due to a local muscle bulge. The sensor

module could be placed in a prosthetic socket or as a module in a wristband. An amputee

aims for a higher reliability, and a teleoperated task may aim for a higher dexterity. Disabled

persons may elicit a smaller degree of mechanical activation, which would decrease the signal

to noise ration for MMG and FMG sensors and make an EMG sensor highly convenient.

To solve basic questions to better understand the used techniques, this thesis proposes raw
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sensor modules for each modality and the already introduced multi-modal approach. The

raw sensor modules enable a comparison between the three different sensor modalities and

show how much accuracy each can achieve. The multi-modal approach can be used with all

sensor modalities and decreased to one or two types of sensors; thus, the significance of the

ignored sensor modality can be shown. Furthermore, the high-density grids can be clustered,

and the amount of information is decreased; thus, overfitting problems can be solved in an

algorithm. The impact of the mechanical delay can be investigated in detail with the desired

multi-modal sensor module.

This thesis evaluated a bipolar setup due to the current limitations of sensor hardware in

the German Aerospace Center for a monopolar setup. In general, the size constraints of

a monopolar setup are smaller, unless they need a valid reference electrode. However, the

development of a monopolar setup to decompose the signal should be treated as an independent

question in future research (for decomposing, see chapter 2.4).

8.1 Microcontroller

Due to expertise in the German Aerospace Center, the LPC 845 (NXP Semiconductors,

Eindhoven, Netherlands) was chosen as the controlling unit. The LPC 845 is a 32 bit

microcontroller based on ARM Cortex-M0+ Cores. The controller runs on frequencies of up

to 30 MHz. It includes two SPI controllers with SSP features and fully supports I2C-bus

specification. The LPC 845 comprises one state configurable timer and a 12-bit ADC with

12 channels. To fulfill the size constraint, the HVQFN package with 5x5x0.85 mm was

chosen. The controller is also capable of fulfilling the requirements for the upcoming trend of

machine-learning on edge devices.

8.2 Components

The most important component for a data acquisition circuit is a low noise and constant

voltage supply. The maximum noise amplitude must be lower than the smallest resolution of

the analog to digital converter. A DC-DC converter is not recommended due to the switching

nature along with a high noise ratio. A low dropout regulator is suited to provide the constant

supply voltage with two stabilization capacitors to decrease the noise.

General components for each sensor modality differ and depend on the quantity of used sensors.

EMG sensors footprint is large and needs to be shrunken to fit on the desired small printed

circuit board. An integrated circuit instrumentation amplifier could save some space, e.g.,

ADS 1298 (Texas Instruments Incorporated., Dallas, Texas, USA) or AD8233 (Analog Devices,

Norwood, MA, USA). In addition, resistors to adjust the gain of the amplifier and capacitors to

filter the signal are necessary. The smallest SMD resistors and capacitors are 0.4 x 0.2 mm in

size (SMD 01005). The force myographic setup consists of one resistor, and the mechanomyo-
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graphic setup uses an integrated circuit (FXOS8700), which both ends up in a small footprint.

An additional analog to digital converter like the ADS124S0x (Texas Instruments Incorporated.,

Dallas, Texas, USA) could add up to 12 channels with a resolution of 24 bits to our setup or an

AD7490 (Analog Devices, Norwood, MA, USA) with 16 channels and 12 bit. The ADS124S0x

and AD7490 have a package size of 5 x 5 mm, which fits on a narrow sensor module. A sample

sensor module is designed in figure 8.1 and provides one EMG, one MMG and 42 FMG sensors.

Figure 8.1: Sample sensor module components, the smallest footprints are SMD resistors;

Dimensions in mm

8.3 Setups

This section shows sample printed circuit boards and how the sensors can be distributed to

achieve a high density of sensors on a narrow board. The routing is not considered in this

thesis; however, in the proposed FMG ring sensor setup, the board needs additional layers (see

chapter 6.1). The sensor setup avoids the edge effect of a wide printed circuit board from which

the Bielefeld Bracelet suffers. The electrodes from the force- and electromyographic sensors

are located on the skin facing side and their components on the opposite side. Figure 8.2 (A)

introduces a multi-modal sensor module using a tripolar EMG-sensor and 42 FMG-sensors,

which results in 43 data channels. The maximum number of FMG-sensors on a 50 mm long

and ≈7 mm wide PCB is 71, as shown in sketch (B). A monopolar sensor module, shown

in sketch (c), could consist of 8 electrodes with an inter-electrode distance of 5 mm, and 33

FMG-sensors. To this end, an exchangeable module could consist of any desired electrode

shape and size, which would highly benefit the research about optimal sensor parameters and

sensor module compositions. The backside of the sensor consists of the described components

in the last section. The routing is challenging and may decrease the maximal number of

embedded sensors on a PCB.
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Figure 8.2: Sample sensor module setups, the design of the EMG-sensors is based on the

proposed distances in chapter 6.2

8.4 Discussion

The LPC845 microcontroller provides a 12 bit analog to digital converter with 12 channels;

thus, the controller can connect to a maximum of 12 FMG or EMG sensors until the circuit

needs an external analog to digital converter. Aiming for a high density of sensors, one or

more AD7490 could be used. An instrumentation amplifier can ensure the EMG-sensor quality

and provide a high signal to noise ratio and attenuate DC noise. The controller’s frequency of

30 MHz is sufficient for the desired tasks, and the two communication interfaces (I2C,SPI)

can be used to connect to the MMG sensor and to offer data to a master device. The small

footprint ensures the possible application on a narrow sensor module.

The small number of components for the FMG and MMG sensor modalities make them a per-

fect fit for the larger footprint of one EMG setup. The accelerometer for MMG measurements

can be reduced to one DOF, which is orthogonal to the muscle belly. A tripolar EMG recording

uses three electrodes and one ADC channel. A monopolar setup uses one electrode, a remote

reference signal, a decreased EMG-processing setup and one analog to digital converter channel.

In summary, the sensor module has a powerful microcontroller that captures data from its

analog to digital converter channels and communication interfaces. The aimed sensor matrix

can use customized sensor module setups, which are based on someone’s own design decisions.
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The research field would highly benefit from exchangeable sensor modules and would be

independent of fixed sensor setups, which may be outdated after some years. The SPI data

interface should be generalized to ensure the possibility to easily exchange a sensor module,

without the need to build up a full new setup.
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As already described in chapter 2.5, a sensor matrix is an arrangement of ”n” sensor modules.

The sensor modules provide local myographic information. A comprehensive sensor matrix

can support the intention prediction for human-machine interactions, by unraveling the muscle

activation regarding the intermuscular coordination (see chapter 4). Upcoming tasks for the

sensor matrix design are providing a circular sensor module mounting, collection of data from

each module, adding motion data, and sending of data to a peripheral computing device,

e.g., PC, Tablet. The role model location of this thesis is the human forearm. However,

extending the size of the sensor matrix can enable an application on the human thigh and

other limb regions. An adjustable sensor matrix length can be achieved by adding modules to

the setup. This approach satisfies the design principle of a modular sensor matrix. General

ideas of how to ensure the proposed objectives are introduced in the following sections. The

customized communication protocol is introduced, which ensures a data transmission with

fewer traces/cables, compared to the ”Bielefeld Bracelet”. The connection of the Bracelet is

shown in figure 2.5 (B).

9.1 Master Module

The master module is stacked on a sensor module or fixed at the outside of the sensor mounting.

It embeds the ”master” microcontroller and the communication interface to the ”slave” micro-

controllers of the modules. The master controller offers communication interfaces to peripheral

or external devices. Furthermore, the master module comprises additional sensors to detect

the motion to face the limb position effect. Due to frequent use at the German Aerospace

Center, the LPC 1857 (NXP Semiconductors, Eindhoven, Netherlands) microcontroller was

selected for this task. The LPC 1857 has a Cortex M3 core, capable of a maximum CPU

frequency of 180 MHz and offers various interfaces, e.g., 4 SPI, 4 I2C busses and two high-speed

USB-Interfaces. The footprint depends on the number of pins and can be as small as 9 x 9 mm.

Additional Sensors

As already introduced in chapter 5 and described in chapter 6.4 the additional motion tracking

sensors are an IMU and a barometer. Both are suitable for tracking the limb position. The

specs are already introduced in the mentioned chapters about the sensors, and a BNO055 and
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BMP085 were selected. The higher prices are justifiable due to the decreased workload with

an already implemented sensor fusion. Both sensors communicate with the main controller by

an I2C protocol. The temperature sensor was not selected yet and is still an open decision.

9.2 Data Transfer

The data transfer between the main controller and the sensor modules should be capable of

sending at high speed to provide real-time data. The basic Serial Peripheral Interface (SPI)

protocol was chosen due to the high data bandwidth and small protocol overhead compared

to other protocols. The SPI protocol requires four wires in total and can be operated in a bus

system together with other sensors without addressing (see figure 9.1). The protocol has a

serial clock line (SCL) to ensure synchronous data transmission, a Master-In-Slave-Out line

(MISO) to ”listen” with the master and send data from the slave device, a Master-Out-Slave-In

line (MOSI) to send data to the slave device and a chip select (CS) line which enables the

MISO line for one slave to avoid cross-talk from other slaves. Thus, a larger setup of 30

modules needs 33 SPI protocol lines. The large number of chip select lines makes the protocol

inefficient for the sensor matrix. Nevertheless, the ”Bielefeld Bracelet” used it successfully,

but it decreases the comfort and robustness of the system due to the sensitive tiny cables and

connectors [57]. Thus, the design aims for a customized SPI solution, using one chip select

line as a bus system.

Figure 9.1: Standard SPI Protocol: SCL= Serial Clock, MOSI= Master Out Slave In, MISO=

Master In Slave Out, CS= Chip Select

The general idea of the customized SPI protocol is to count the chip selects of the master

device and send data at a preset condition. The customized architecture is shown in figure 9.2.

To achieve a communication between the connected slaves and the master device, the slave

needs preset conditions at which they should send data on the MOSI line. Thus, the slaves

are introduced in a ”welcome round” in which the master assigns IDs to every slave and sends

general data, e.g., package sizes and the total number of slaves. Knowing about the quantity
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of neighbors and their package size, a slave device can trigger its CS line with an interrupt

once the previous slaves are finished with their data transmission based on past chip selects.

Figure 9.2: Customized SPI Protocol with 4 bus lines: SCL= Serial Clock, MOSI= Master

Out Slave In, MISO= Master In Slave Out, CS= Chip Select

The principal idea of the customized SPI protocol was successfully implemented in the main

loop of an LPC 1114 microcontroller. However, observing the CS line in the main loop in

which other interrupts can occur can lead to miscounting. As the consistency is essential, and

it would be hazardous for the communication if the setup fails, the thesis proposes an external

counter, which throws an interrupt once it counted the preset number of chip selects for its

chip select trigger. The external counter can be realized with a state configurable timer; this

approach was not tested yet and is an open research question.

Using a SPI protocol adds a second constraint to the system. The protocol is not built to

transfer data packages over longer distances, and a data loss could occur. Thus, the SPI

protocol will be split into two independent systems which distribute in the two directions

starting from the main controller.

The second communication protocol is used to connect the master controller with a peripheral

device, e.g., a computer or tablet. Taking the design principles into account, the sensor matrix

should aim for a wireless connection like Bluetooth or Wi-Fi. To the current state, a UART

protocol was implemented. The first prototype matrix aims for a USB protocol to set up the

system before extending the setup to a wireless protocol. The transferred data will consist of

the raw values of the sensor.

Data volume

The data volume can be calculated using the designed parameters of 32 tripolar sensor modules

with one mechanomyographic accelerometer on the back(see figure 8.2 (A)). Presupposing

that the adjustments on the EMG sensor can ensure a myographic signal acquisition of up to

500 Hz, the sensor module should sample with 2000 Hz to achieve the four-time oversampling

paradigm. The designed force myographic sensor has its vital signal in lower frequencies; thus,

a sample rate of 20 Hz is sufficient. The vital mechanomyographic signal reaches up to 100 Hz;
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thus, a sample rate of 400 Hz should be desired.

Using a 12 bit analog to digital converter for EMG and FMG signals and a 14 bit value for

the MMG signal each sensor module acquires a data volume of ≈40 kbit/s. Consequently,

using one customized SPI protocol for all 32 modules, the data volume is ≈1.28 Mbit/s, which

is in the limits of the SPI protocol of the slave microcontroller and would be out of scope for

an I2C interface [265].

9.3 Wristband/Bracelet

Taking the human forearm section and the cross-section image 4.8 into account, the human

forearm is distributed by many muscles, i.e., 15 muscles in case of the considered cross-section

image. Some of the muscles are small, and the signal might be difficult to distinguish from

others, and others are deeper in the forearm and not accessible. The approach from figure

9.3 shows the challenge in this field; the density of electrodes is not large enough to cover all

muscles of the human forearm. Thus, the design process was based on narrow sensor modules

to achieve a high-density grid around the human forearm to avoid edge effects of the rigid PCB.

Figure 9.3: Sample image of a sensor arrangement based on electromyographic sensors modified

from [84]

Having a self-measured circumference of ≈ 20-30 cm around the human forearm, the sensor

matrix could fit 28-50 sensor modules with a width of 6-7 mm. A small gap between the

PCBs can not be prevented, which reduces the number of modules to ≈ 30-35. However, the

sensor matrix can assure a high spatial resolution which was never achieved with a multimodal

wristband using active EMG recordings (see figure 9.4).

94



9 Sensor Matrix

Figure 9.4: Designed sensor matrix, based on the designed multimodal, tripolar sensor module

from chapter 8

The general idea is a modular, small and comfortable sensor wristband, which comprises

the sensor modules, the master controller, the communication bus wires, a remote reference

electrode wire, and a battery pack to comply the design principles of a wearable setup.

The pre-evaluation study was already conducted using a neoprene band as a mounting back-

plane. The principle design is shown in figure 9.4. The neoprene band length can be adjusted

with a velcro closing system. The components can be placed on the back of the printed circuit

sensor board. The communication and remote reference wires are accessible from the backside

of the neoprene band. The sensor module itself is held into the system by two elastic straps

at the lateral sides of the PCB. Changing the module is easily possible by disconnecting

the wires, slide out the old module, and slide the new module into the elastic straps. The

master module is placed at the outside of the neoprene band and senses the motion of the

user and collects the data from the sensor modules. Depending on the circumference of the

recording site, the neoprene band can comprise a different number of sensors, which can be

slid into elastic straps (see the red element in figure 9.5). Thus, one setup could be used with

a different number of modules to ensure a high spatial recording.

Figure 9.5: Designed sensor matrix with elastic straps to tight the sensor modules on the

neopren band
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9.4 Discussion

The design of a sensor matrix focuses on a high spatial resolution and aims to fulfill the proposed

principles in chapter 3.1. The used microcontroller is powerful enough to provide the data

acquisition and transmission for the sensor matrix. The additional motion detection sensors

provide an already filtered and fused signal, which can be used to train the intent prediction

algorithms with limb positions and current movement information. The bus architecture

enables a robust data transmission, even if one sensor module breaks. Nevertheless, the

controller needs to count the signals under a high computational load to avoid the break down

of the full communication protocol. Thus, a state configurable timer should be set up in the

master and slave devices to count externally of the main controller loop. The behavior of the

module needs to be investigated in a long-term evaluation.

Research needs to be conducted to explore more sensor matrix mountings to compare them in

real-life tasks. The proposed approach will be further investigated. Pitfalls in a sensor matrix

design could be the placing of the master controller and the possible long distances for the

SPI protocol. However, the general principle is feasible, and a prototype will be developed.
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The thesis proposes a low-cost sensor matrix for use in human-machine interactions on the

basis of electromyographic, mechanomyographic, and force myographic information. The

sensor matrix consists of low priced and small sensor modalities to fulfill the low cost and

high spatial resolution constraint. The data transfer protocol between the sensor modules

and the master module was designed and successfully tested in a short evaluation. The thesis

proposes a state configurable timer to achieve a more robust solution. The modulated SPI

protocol decreases the number of used data wires from 35 wires of 32 modules to 4 wires. A

neoprene band mounting is proposed with exchangeable sensor modules. Thus, the sensor

matrix is sustainable, and the modules can be adapted to personal or research preferences.

The additional motion detection sensors need to be evaluated for their additional information.

The designed sensor modules are ≈7 mm wide and 50 mm long; the width depends on the

footprints of the necessary components. The narrow width of ≈7 mm should further avoid

edge-effects of the sensor on the round limb, which was a problem with the Bielefeld Bracelet.

The length is not based on any biomechanic parameter, and the influence of local muscle bulges

on lateral sensors on the modules needs to be investigated to may adjust the width. Figure 8.2

shows sample modules on the basis of the desired sensor solutions. It is highly recommended

that the sensor module comprises electromyographic sensors to achieve real-time capability.

Based on the described forearm anatomy and electromyographic principle, a monopolar sensor

setup should be further investigated. In principle, the three proposed sensor modalities EMG,

MMG, FMG can be embedded together on the sensor module. The final components for

each sensor modality need to be chosen to prototype the sensor module in the next step of

the development process. A feedforward control scheme could be beneficial for the intention

prediction to reduce the impact of the electromechanical delay (see figure 10.1). A future

study should evaluate the sensor modalities in an upper limb control task against each other

and determine the delay.
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Figure 10.1: Control scheme to avoid a negative influence of the electromechanical delay

The pre-evaluation study proved the concept of electromyography, mechanomyography, and

force myography and showed preliminary dependencies between the obtained sensor output

and an increasing load at the biceps muscle. To proof, the concept for smaller muscles, a fully

developed sensor matrix should compete against current solutions in an upper limb control

task based on the introduced pattern recognition software in figure 2.3. The second force

myographic test setup further showed the beneficial information of a mechanomyographic

sensor in comparison to the 2nd derivation of the force myographic signal. The designed sensor

material was not sensitive enough to measure the occurring forces at the human forearm

and needs to be adjusted. Furthermore, the sensor material decreased the signal spectrum

of the electromyographic sensor, which needs to be further investigated. A mechanical so-

lution for a tight EMG skin interface is difficult, but a compliant sensor concept is shown

in figure 10.2. The spring is mounted at the backside of the sensor material and pushes the

electrode gently onto the user’s skin. The concept or a similar approach would highly benefit

the electromyographic signal. It should be taken into account that a mechanical solution

decreases the space for sensor components. In total, the pre-evaluation chapter shows the

necessary adjustments which need to be solved before conducting an evidence-based user study.

Figure 10.2: Sketch of a compliant electrode, the spring pushes the electrode towards the skin

and is compliant to ensure a force myographic measurement

The proposed sensor solutions are focusing on the established design principles and the desired
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phenomena. Each sensor modality was introduced and discussed in terms of applicability.

Open positions were stated and should be researched with the designed sensor matrix to

ensure the sensor quality in the desired parameters. The field of new sensor solutions for

the introduced phenomena should be observed to adapt the sensor modules with emerging

technologies. Especially the area of tomography would add essential information to the setup

— for instance, a smaller ultrasound device or the upcoming technique of electrical impedance

tomography.

A very promising method for monopolar recordings ist the circular electrode shape from

figure 6.14. The electrode shape shields the signal from surrounding cross-talk. The designed

tree-shaped force myographic electrode may decrease the spatial resolution but enables a

low-cost sensor solution. If the user desires a system without real-time capabilities, the

electromyographic sensor can be ignored, and the sensor matrix can be potentially worn on

top of clothes, which would enhance the user’s comfort. Using force myographic sensors,

the systematic error due to the force-length relationship needs to be considered. A possible

solution for the issue is the application of two sensor matrices, one distal and one proximal of

the joint. Thus, we can analyze the motion data of the master modules of each sensor matrix

in order to deduce the joint angle of the user.

The myographic chapter adds general information about the origin of the underlying phenomena

and the physiologic signal components. The features of machine-learning algorithms should

take the provided knowledge about physiologic information in the signal into account. In

addition, the stated open positions can be investigated with the modular sensor matrix to

speed up the research in the field of myography and human intention detection.

The muscle architecture chapter links back to the introduced motor pathway and shows the

underlying muscle physiology and processes. Thus, the reader can understand the sequence of

obtainable phenomena and can deduce new myographic solutions with one of the introduced

transducing techniques from table 2.1. Furthermore, the recording site of the human forearm

is introduced to show that a generalized approach of a sensor matrix can limit the signal

quality. The limitation is especially the case for bipolar and tripolar recordings on the arm,

which are not always in fiber alignment and thus provide a signal mixture between activations

of muscles with different mechanical effects. The chapter further propose the ulna bone as a

promising reference signal site for the monopolar EMG setup.

Table 10.1 shows the established design principles from chapter 3 and their current status. It

can be concluded, that the design concentrated on a prototype and a proof of concept for

the desired myographic modalities. Having a first sensor matrix prototype, the open research

positions should be solved. After fully understanding the determining parameters of the

sensors, the sensor matrix should adapt to the required design principles.
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Table 10.1: Design principles with their current status of the desired sensor matrix. Sorted

by relevance and collected from [85, 58, 81, 84, 37, 38]

Nr.s Design principle Status

1 medical technology laws pending

2 non-invasive skin connection

3 robustness multimodal, sensor fusion and motion sensors

4 latency still capabilities with the used controllers

5 spatial resolution very small, as small as the used ICs

6 delay/latency sensor modality and prediction dependent

7 low cost cheap modalities

8 modular sensor modules are exchangable

9 compact small components due to modalities

10 free positioning battery and wireless communication

11 safety robust case

12 intuitive pending

13 wearability pending

14 durability pending

15 feedback pending

16 comfort pending

17 calibration pending

18 in-built power pending

19 wireless pending

20 resource friendly exchangeable sensor modules

21 good looking pending

The designed non-invasive low-cost sensor matrix can be used at different recording sites at

the limb and includes amputees and non-amputees. The designed sensor matrix is potentially

a step further to replace body-powered prostheses and enable the manifestation of robotic

prostheses. The sensor modules are customized for a feature-based machine-learning algorithm.

It needs to be proven that the high spatial resolution benefits the prediction and increases

the human capabilities in an upper-limb control task. Using a control scheme to reduce the

latency due to the electromechanical delay, the sensor matrix can achieve a low latency and a

high spatial resolution with a robust prediction based on the force myographic information.

The sensor matrix offers a higher spatial resolution to the introduced sensors matrices in

chapter 2.5. The two activation related coordination types (intramuscular and intermuscular)

were proven to be apparent (see 4). The most exciting intention prediction approach is based

on neuromechanical knowledge and decomposes the signal before predicting the intention

[159]. This auspicious approach should be investigated with the introduced circular electrodes
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from Farina et al. (2001) in figure 6.14 [250] in terms of applicability in everyday tasks.
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The sensor matrix was successfully designed on the basis of a neuromechanical background,

taking the human anatomy and physiology into account. It uses biological signals as an

interface to obtain the human intention. The acquisition of myographic signals has real-time

capabilities as well as a high spatial resolution compared to motion recordings and brain signal

acquisition. The sensor matrix consists of three low-cost myographic sensors and measures

the propagating motor unit action potential (EMG), lateral oscillations of the muscle fibers

(MMG) and the isovolumetric behavior of the muscle (FMG). The EMG sensor was designed

after the newest research innovations and offers a mono- and bipolar recording. The MMG

sensor is a low-cost accelerometer with a small footprint on the board. The FMG sensor from

Kõiva et al. (2015) was redesigned with a reduced size, different shape, and determinable

sensor material. The proof of concept was conducted for all modalities, and adjustments

will be made before a user study will compare the sensor modalities against each other. The

proposed multimodal sensor matrix was designed, and the number of modules was increased

from 16 (CTRL Kit, CTRL Lab) to 30-35 with the aim to obtain a higher spatial resolution of

the forarm muscle activation. The modules are exchangeable to reduce the costs for the user

and offer a sustainabile product for the user. The thesis provides all necessary information

about the signal origin and composition for a feature-based machine-learning algorithm.

The future design process should concentrate on the introduced neuromechanical background

and investigate a sensor fusion with a nerve conduction wristband at the human wrist to

obtain subtle finger activations. Closing the loop to the first chapter about human-machine

interfaces, it is urgent to provide feedback for the user to achieve an embodiment and satisfy

the user’s independence. Regarding this, the finished sensor matrix will be adapted to fit into

a modular prosthetic socket, to especially address the field of amputees. Merging knowledge

from neuroscience studies, the possibility to use an electroencephalographic EEG cap for a

reinforcement learning approach should be evaluated. The EEG cap can provide event-related

potentials like error-related negativity or P300 to train the algorithm in a way like Kim et al.

(2017) did [83]. These future ideas would provide a complete human-machine interface with a

self-learning system based on biologic labeled datasets.
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Appendix

Figure 11.1: Functional Block Diagram SparkFun AD8232

Listing 11.1: Firmware MMG modified from [266]

1 #inc lude <Wire . h>
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2 #inc lude <Adaf ru i t Senso r . h>

3 #inc lude <Adafruit FXOS8700 . h>

4

5 /∗ Assign a unique ID to t h i s s enso r at the same time ∗/

6 Adafruit FXOS8700 accelmag = Adafruit FXOS8700 (0x8700A , 0x8700B ) ;

7

8 i n t run = 0 ;

9 i n t samplerate = 200 ;

10 i n t seconds = 5 ;

11 i n t dof = 3 ;

12 const i n t Samples = seconds ∗ samplerate ∗ dof ;

13 i n t 1 6 t Buf f e r [ 3 0 0 0 ] ;

14 unsigned long s t a r t t ime = 0 ;

15 unsigned long stopt ime = 0 ;

16

17 void setup ( void )

18 {

19 S e r i a l . begin (115200) ;

20

21 /∗ Wait f o r the S e r i a l Monitor ∗/

22 whi l e ( ! S e r i a l ) {

23 de lay (1 ) ;

24 }

25

26

27 /∗ I n i t i a l i s e the s enso r ∗/

28 i f ( ! accelmag . begin (ACCEL RANGE 2G) )

29 {

30 /∗ There was a problem de t e c t i ng the FXOS8700 . . . check your connect i ons ∗/

31 S e r i a l . p r i n t l n (”Ooops , no FXOS8700 detec ted . . . Check your wi r ing ! ” ) ;

32 whi l e (1 ) ;

33 }

34

35 }

36

37 void loop ( void )

38 {

39

40 s e n s o r s e v e n t t aevent , mevent ;

41

42 /∗ Get a new senso r event ∗/

43 accelmag . getEvent(&aevent , &mevent ) ;

44

45

46 Buf f e r [ run ] = aevent . a c c e l e r a t i o n . x ∗ 1000 ;

47 run++;

48 Buf f e r [ run ] = aevent . a c c e l e r a t i o n . y ∗ 1000 ;

49 run++;

50 Buf f e r [ run ] = aevent . a c c e l e r a t i o n . z ∗ 1000 ;

51

52 //Check i f Bu f f e r i s f u l l

53 i f ( run >= Samples )

54 {

55 stopt ime = micros ( ) ;

56 S e r i a l . p r i n t l n ( ( stopt ime − s t a r t t ime ) ) ;

57
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58 // send bu f f e r va lue s through s e r i a l i n t e r f a c e d

59 f o r ( i n t iRun = 0 ; iRun < Samples − 1 ; iRun++)

60 {

61 S e r i a l . p r i n t ( ( f l o a t ) Buf f e r [ iRun ] / 1000) ;

62 S e r i a l . p r i n t ( ” , ” ) ;

63 S e r i a l . p r i n t ( ( f l o a t ) Buf f e r [++iRun ] / 1000) ;

64 S e r i a l . p r i n t ( ” , ” ) ;

65 S e r i a l . p r i n t l n ( ( f l o a t ) Buf f e r [++iRun ] / 1000) ;

66 }

67 de lay (5000) ;

68 run = 0 ;

69 s t a r t t ime = micros ( ) ;

70

71 }

72 e l s e

73 {

74 //To ach ieve the de s i r ed samplerate , we need to sub s t r a c t the runtime o f the code o f

1859 microseconds

75 de layMicroseconds ((1000000 / samplerate ) − 1859) ;

76 run++;

77 }

78 }

79

80
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