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Abstract The use of robust design in aerodynamic shape optimization is increasing
in popularity in order to come up with configurations less sensitive to operational
conditions. However, the addition of uncertainties increases the computational cost
as both design and stochastic spaces must be explored. The objective of this work is
the development of an efficient framework for gradient-based robust design by using
an adjoint formulation and a non-intrusive surrogate-based uncertainty quantification
method. At each optimization iteration, the statistic of both the quantity of interest
and its gradients are efficiently obtained through Gaussian Processes models. The
framework is applied to the aerodynamic shape optimization of a 2D airfoil. With the
presented approach it is possible to reduce both the mean and standard deviation of
the drag compared to the deterministic optimum configuration. The robust solution
is obtained at a reduced run time that is independent of the number of design
parameters.

1 Introduction

The use of Robust Optimization in aerodynamic shape optimization is increasing in
popularity in order to come up with designs less sensitive against operational and
geometrical uncertainties [1, 2, 3, 4] . In opposition to deterministic optimization,
where the Quantity of Interest, Qol, is a single value to be optimized, in robust
optimization the Qol is a random variable. An statistic of this random variable such
as the mean, combination of mean and standard deviation or quantile is usually the
objective function.

When dealing with robust optimization involving expensive black box simula-
tions, two problems are commonly present. On the one hand, the complexity of
the optimization increases exponentially with the number of design parameters [5].
On the other hand, at each iteration of the optimization, a complete propagation of
the uncertainty is required in order to come up with an accurate estimation of the
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statistic to be minimized [3]. A possible solution to the first problem is the use of
adjoint methods [6]. Then, the gradients of the cost function with respect to all the
design parameters can be efficiently obtained at a computational cost equivalent to
the primal solution. To deal with the problem of uncertainty quantification, the use of
surrogate methods such as Gaussian Processes can prove to be efficient to represent
the stochastic space [7].

The objective of this paper is the development of a gradient-based robust design
framework using the adjoint method and surrogate models and its application to the
aerodynamic shape optimization of 2D airfoils.

2 Problem Definition

The problem at hand is the minimization of the drag coefficient Cp (the Qol) of the
RAE 2822 airfoil against operational uncertainties.

2.1 Deterministic Optimization

For reference, a traditional deterministic optimization is computed. In this case, the
aim is to find the optimum parameters X leading to the airfoil shape that minimizes
the drag coefficient at a given operational conditions A.

X* = argmin {Cp (X, A)} (1

In this case, the optimization is done at constant lift coefficient, C;, = 0.79
and constant Mach number, M = 0.734. The lift coefficient constraint is enforced
explicitly by iteratively varying the angle of attack during the drag evaluation in the
RANS solver.

2.2 Robust Optimization

When uncertainties are present, the drag coefficient becomes a random variable. In
this case, we choose to minimize a linear combination of mean, yc,, and standard
deviation o¢cp of the drag coefficient.

X* =argmin {w, uc, (X.&) +wq oc, (X, 6)} @)

The value of the weights, w,, and w, are changed in order to come up with
different configurations with more focus either on the mean, on its variability or on
both. From a different combination of weights, a Pareto front can be obtained with
the possible solutions of interest.
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2.3 Parametrization

The airfoil parametrization follows Hicks-Henne deformation functions [8] that
modify the camber of the airfoil. By modifying the airfoil camber, the thickness
distribution is kept constant to deal with structural considerations. The vertical
displacement, z; of the camber affected by the design variable X can be defined as:

_ log (0.45)
m= i+l
Nx+4

3

zi = X' sin (7x™)®  where

A total of Nx = 15 design parameters are selected. The influence of each bump
function in the camber is shown in Figure 1.
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Fig. 1 Top: Fifteen Hicks-Henne Bump Function used for the parametrization. Bottom: RAE2822
shape and camber line

2.4 Uncertainties

In the robust formulation, the Mach and lift coefficient are uncertain as they are
expected to slightly change during day to day aircraft operations. They are modeled as
symmetric beta distributions. The mean value is centered on the nominal conditions,
um = 0.734, uc, = 0.789, while the standard deviation is set to oy = 0.0045,
oc, = 0.0045. The shape parameters are the same, a1 = a2 = 5, in order to be
symmetric, resembling truncated normal distributions. The truncation allows for a
better construction of the surrogate for uncertainty quantification, and for a better
representation of the physical problem. The location 8; and scale S, parameters are
set to have the required mean u and standard deviation o .
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3 Methodology

3.1 Numerical Solver

To obtain the aerodynamic performance of the airfoil the high-fidelity DLR flow
solver TAU [9] is executed on an HPC cluster system using DLR’s FlowSimulator
Data Manager (FSDM) environment. The Reynolds Average Navier Stokes (RANS)
equations are solved using the Spalart-Allmaras turbulence model. The solution is
converged when the density residual is lower than le-8. As shown in Figure 2, the
unstructured mesh of the baseline configuration, the RAE2822 airfoil, has 29,000
grid nodes, and is quasi two-dimensional. This test case has been successfully used
in the past in similar aerodynamic shape optimization problems [3, 10]. A mesh
deformation tool developed by DLR using linear elasticity theory [11] is used to
change the geometry at any given design vector.
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Fig. 2 Zoom-in of CFD Mesh of the RAE 2822

3.2 Adjoint Method

The adjoint formulation [6] allows to efficiently solve the total derivative of the
Qol with respect to the design parameters X. This is especially useful for high
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dimensional problems and few cost functions, in which the gradients can be then
used for gradient-based optimization [12].

Given the minimization problem of the Qol (in this case the drag coefficient)
dependent on X, the design parameters, W the flow variables and Z the mesh
variables, under the constraint that the flow residual R is converged,

min {Qol(X,W,Z)} st R(X,W,Z)=0 &)

the adjoint equation can be obtained by applying the chain rule to the lagrangian
equation:

dQol _ 9Qol 9Z +AT6_R(9_Z
dX =~ 8Z X 07 0X

where the first term is the variation of the Qol w.r.t. the shape parameter keeping
the flow variables, constant. The second term is the variation of the RANS resid-
ual w.r.t. the shape parameter by keeping the flow variables constant. The adjoint
variables A can be obtained from

oR\" dQol
— ] A=- 7
() A=~ g

In TAU, the discrete adjoint equations are solved [13]. After obtaining A, it is
possible to evaluate the gradient of the Qol w.r.t. the design parameters. When dealing
with optimization at constant lift the gradients w.r.t. the Qol, the drag coefficient Cp
must be corrected [14] :

(6)

dCp
ax

(9CD 6CD oa (9CL

=22 8)
Coeci,  0X  da 9Cp 0X

The adjoint method has been validated wrt. finite differences for the baseline
configuration. Figure 3 shows the gradient of the drag coefficient at constant lift with
respect to each of the 15 design parameters for both the adjoint and forward finite
differences. Despite the small differences, mainly due to the use of forward instead
of central finite differences, the adjoint formulation is able to accurately obtain the
desired gradients, reducing the run time by 83%.

3.3 Surrogate Based Uncertainty Quantification

The main problem of uncertainty quantification is the large number of function
evaluations required to propagate the uncertainty of the input parameters (in this
case operational conditions) to the Qol (drag coefficient) at any given design, X g
[1]. To directly perform Monte Carlo Simulations is prohibitive when using CFD
solvers. A typical approach is then the use of surrogates of the stochastic space for
example, through Polynomial Chaos Expansion or Gaussian Processes.
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Fig. 3 Comparison of the gradients of the drag obtained with finite differences and the adjoint

Gaussian Processes models, GPs (also known as Kriging) have been traditionally
used in aerodynamic shape optimization as surrogate models for global optimization
[15]. However, these have been recently used as non-intrusive approach to per-
form uncertainty quantification due to its good capability to globally represent the
stochastic space [10, 16].

The main idea of UQ in Gaussian Processes is as follows: at a given configuration,
X, an initial design of experiments (DoE) sampling in the stochastic space & (in
this case random operating conditions), is evaluated in the full order model. Based
on this sampling, the GP is built. Then, a large number (Ng ) of Quasi Monte Carlo
samples can be cheaply evaluated in the surrogate to obtain the statistic, such as the
mean or standard deviation of the drag, following equation 9,

} 1 N } p N
quI(X,-)=EkZ_;QoI(Xj,§k) oo (X;) = E;[QOI(Xj’fk)_ﬂQol]z

€)
where Qol (X}, &) is obtained by prediction of the surrogate built in the stochastic
space &.

3.3.1 Statistics of the Gradients

If the deterministic gradients of the Qol with respect to the design parameters at a

given point X are also available, igf,-l __ ,the gradients of the statistics can also be
’ X &k

obtained. In this case a surrogate model needs to be built per each design parameter

X!. For example, the gradient of the mean value of the Qol with respect to a given

. i . . . v . dﬂQoI . .
design parameter X' at any given design point X, X X,-’ can be obtained from:
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1 & dQol

d/JQoI _ b ‘
Xj NK =1 Xm )Ej,(fk

dxi

(10)

dQol
dxi )?j, &
gration on the given surrogate according to the design parameter X,

The gradient of the standard deviation of the Qol respect to each design parameter

has also an analytical expression:

are obtained from direct inte-

In this case the deterministic gradients

dogol 1 & (oo o 1) (dQol duqor
- = — (X, - X; - ’_ - —|_
dxi %, Nk O-QOI(X]') kz:; (QO ( J fk) /JQOI( J)) ( dXi %5.& dxi X_,’,fk)

(11)

Then, the stochastic space can be characterized for both the Qol (Cp), that is

obtained by the primal solution of the CFD solver, and for each of the different

N, gradients of the Qol with respect to the design parameters, that are efficiently

obtained by the adjoint method. As shown in Figure 4, Nx + 1 different surrogates

are constructed, one to obtain the statistics of the primal solution and Nx to obtain
the statistics of each of the gradients.

3.3.2 Proposed Approach

To construct the surrogate, samples follow a DoE strategy following Sobol Sequences
[17]. Sobol Sequences are a low discrepancy, quasi-random sequence that use a
base of two to successively create uniform partitions of the unit interval [17]. The
sampling is normalized to the distribution of the input uncertainties, £&. As a result,
more samples will be placed along the mean than in the tails of the input distributions.
Locations that will be recalled more often when integrating the surrogate with Monte
Carlo will be more accurate than those that have less probability of being evaluated.

The Gaussian Process model consists of Universal Kriging with a Gaussian
Kernel (exponent fixed to 2). They hyperparameters of the correlation model are
tuned according to the maximization of the model likelihood through Differential
Evolution. The Surrogate-Modelling for Aero-Data Toolbox (SMARTYy) developed
by DLR is used for the initial Design of Experiments sampling and for the creation
of the Kriging surrogate [18].

To increase the accuracy of the statistics, after the DoE, an active infill criteria that
deals with sampling evenly in the stochastic space [19] is used. Gaussian Processes
provide the estimation of the surrogate error at any given point in the stochastic
space, §(€) [15]. Then, new samples are added in the location é?; where the product
of the probability distribution function of the input parameters, PDFx times the error
estimation of the error is maximized. The optimum location is found in the surrogate
through Differential Evolution.
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& = argmin {~PDFx (§) 3(9)} (12)
&

Additional samples are added until convergence on the statistics of the Qol. This
is achieved by assessing the error of the statistic that is integrated in the surrogate,
§, through the Monte Carlo evaluation in both the upper bound, Qol(&) + §(&),
and lower bound, QolI(£) — §(€), prediction given by the surrogate. From here, the
upper ,ugol and lower uLol estimation of the statistic are respectively obtained. The
difference between upper and lower bound (variability in the determination of the
statistics) is associated to the statistical error.

U L
_ Hqot T HQor

§u 5 (13)

3.4 Optimization Framework

As shown in Figure 4, the optimization framework combines the gradients obtained
by the adjoint formulation with the uncertainty quantification using GPs.

A Sequential Least Squares Programming (SQP) gradient based optimizer is
used. At any given design point, X 7, the optimizer requires both the statistic and
its gradients w.r.t. the design parameters X. Then, at each iteration, the uncertainty
quantification is performed in the stochastic space with the help of the surrogate in
order to obtain the statistic of the Qol (drag coefficient in this case). A Gaussian
Process is also built for each individual dimension in order to obtain the gradient of
the statistic of the QoI w.r.t. to the design parameters following equations 10 and 11.
For example, if the focus is in the mean value, both uqer and % are efficiently
obtained at each iteration.

This approach differs from the one in which a global surrogate such as Gradient
Enhanced Kriging [18] is built, whose values and derivates are computed by the
primal and the adjoint. In that case, the global surrogate accuracy and construction
time would be very sensitive to the number of dimensions, Nx. When dealing with
more complex problem with hundreds of dimensions, only the training time of the
global surrogate would make the approach unfeasible. The strength of the proposed
method is that decouples the dimensionality in the design space from the surrogate
accuracy, as this one is built only in the stochastic space with a reduced number of
samples. As each surrogate of the gradients is built independently for each dimension,
the training time only increases linearly with the number of design parameters.
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a) Gradient-Based Optimization b) Surrogate Based UQ c) Full order Model
Evaluation

QoI (X))

Fig. 4 Robust Design Framework using the Adjoint and Gaussian Process: a) Gradient Based
Optimization of the mean of the Qol; b) Uncertainty Quantification through Gaussian Processes of
the Cp and each of its gradients; c) Evaluation of each deterministic solution in full order model

4 Results
4.1 Deterministic Optimization

Figure 5 shows the convergence history of the gradient-based deterministic optimiza-
tion using the adjoint. The optimization starts with the initial RAE2822 configuration.
A total of 19 Iterations are required. The optimum configuration decreases the drag
coefficient by 34.9%, from to 191.3 drag counts to 124.58 drag counts. According to
the pressure coefficient distribution of Figure 6, the reduction in drag follows mainly
to the weakening of the strong normal shock wave of the original configuration.
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4.2 Uncertainty Quantification

To study the accuracy of the proposed uncertainty quantification on GPs, the deter-
ministic optimum configuration is perturbed under uncertainty. To obtain the ref-
erence statistics (mean and standard deviation) of this configuration, 10,000 Quasi
Monte Carlo Samples are evaluated in the CFD model. Based on that, it is possible
to obtain the accuracy of the statistics provided by the surrogate for a given number
of training samples required to construct them.

Figure 7 a show the convergence in the absolute error between the reference
mean and the one obtained with the surrogate built from a given number of samples,
for different infill strategies. In general, as the surrogate is built with more and
more samples, the mean value is obtained more accurately. However, when only a
DoE approach is followed, the accuracy of the surrogate is reduced. For a given
computational budget, the use of the infill is preferred. In addition, it is better to start
the infill after a good global exploration by using 10 DoE samples. Finally, an error
smaller than 0.2 drag counts is desired in order to have a stable convergence during
the optimization and provide useful results. According to this, a minimum of 12 to
15 samples are required when the active infill is valid, while if using only a DoE
strategy, the required number of samples increases to 24.

The same conclusions can be obtained for the convergence error of the standard
deviation in Figure 7 b. When dealing with higher order moments such as the standard
deviation the accuracy requirements are more challenging. In this case, the use of the
infill criteria is necessary to come up with a good accuracy of the standard deviation.
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Fig.7 Convergence history of the statistical error according to the number of samples used to build
the surrogate on: a) mean; b) standard deviation

4.3 Robust Optimization

The robust optimization is repeated six times with different weights for the mean and
standard deviation following the framework introduced in Section 3. Each optimum
configuration is obtained at a reduced computational cost, requiring from 17 to 24
iterations of the gradient-based optimizer. At each iteration, 14 to 16 CFD samples
are required to accurately obtain the statistics of the drag through the surrogate
approach. Then, a total of 200 to 400 CFD evaluations are required to obtain a
optimum robust configuration.

The Pareto-Optimal solutions in terms of mean and standard deviation of drag is
shown in Figure 8. The deterministic optimum configuration behaves poorly under
uncertainty, and has both higher mean and standard deviation than two of the robust
configurations. From an engineering point of view, the configuration with similar
weights in mean and standard deviation, (w, = 1,ws = 1.5) looks appealing. By
slightly increasing the mean value of the drag, its variability can be reduced by
half. There is a clear trade-off between configurations less sensitive to drag, and
configurations with a good average performance. Keeping in mind that the gradient
based method only guarantees local optimality, the framework is able to provide a
set of non-dominated robust solutions in which a designer can choose from. This can
only be achieved when the accuracy of the statistics (specially the standard deviation)
and its gradients is high.

The probability distributions and box plots of the stochastic drag is shown in the
violin plot Figure 9 for the different configurations. On top of each distribution, the
mean value is also highlighted in white. The deterministic solution (grey) has a mean
value of 129.6 drag counts and a standard deviation of 4.7 drag counts, while the
robust solution with focus on the mean value displaces further down the histogram
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Fig. 8 Pareto Front of standard deviation and mean of drag coefficient for optimum configurations

towards a mean value of 128.2 and standard deviation of 3.5 drag counts. However,
in both cases a large tail is present towards higher values of drag. When more
importance is placed in the standard deviation, solutions have a peaky distribution
and the tail is decreased, at an expense of a larger mean value, as previously shown
in the Pareto front.
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Fig. 9 Violin plot of drag coefficient for the configurations of interest

The different airfoil shapes are shown in Figure 10. All the optimum configurations
have an increased curvature near their leading edge compared to the baseline airfoil.
This allows for a better expansion of the flow and elimination of the strong shock



Aerodynamic Robust Optimization using the Adjoint Method and Gaussian Processes 13

wave over the upper surface. Despite small, there are some differences between the
deterministic and robust airfoils.

The robust airfoils have an increased curvature of around 60% to 70% of the
chord. This is similar to adding a "shock control bump" device, that is able to smear
stronger shock waves when the Mach and Lift randomly increase w.r.t. nominal
conditions. The curvature or "bump" is larger in the designs when variability must

be minimized.
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Fig. 10 Airfoil shapes of the configurations of interest

The standard deviation of the pressure field is shown in Figure 11 for the robust
optimum with focus on the mean (w, = 1, w, = 0, configuration A) and for the one
with strong focus on the variation, (w, = 1,w, = 10, configuration B). For each
configuration, the field has been obtained by superimposing 300 snapshots of the
flow solution computed with Monte Carlo.

CrEEEN [T T [ [ T
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Fig. 11 Standard deviation of the pressure coefficient field for Robust configurations: a) Focus on
mean; b) Focus on standard deviation
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There is a larger longitudinal variation of the shock wave along the airfoil in
configuration A, as the focus was on the mean drag and not on the standard deviation.
In addition, this variation is stronger. In this case, two shock wave patterns can be
present around 40% to 60% of the chord. Configuration B on the other hand reduces
the displacement of the shock wave and moves it further upstream, around 35% to
45% of the chord, due to the stronger curvature previously discussed. However, as
the shock wave is further upstream, the average drag increases.

5 Conclusions

A novel gradient-based robust optimization method has been presented and applied
to a test case. The combination of a CFD adjoint code with Gaussian Process can
be used to efficiently obtain the gradients of the mean and standard deviation of the
drag coeflicient with respect to the design parameters. This reduces both the number
of optimization iterations, and the samples required for uncertainty quantification.

The application to aerodynamic shape optimization shows that the deterministic
optimum, under uncertainty, behaves poorly. In order to come up with more realistic
configurations, a robust formulation is required. A multi-objective approach in which
the mean and standard deviation of the drag compete against each other is an attractive
approach for the design of robust configurations. There is a trade-off among the
configurations less sensitive to the drag, and those with a lower average drag.

This method should be preferred in optimizations when the number of design
parameters is much larger compared to the number of uncertainties. Compared to
deterministic gradient-based optimization, the addition of uncertainty increases the
computational time by a factor of 10 to 15. However, as the framework is independent
to the number of design parameters, it is readily available for the robust optimization
of more complex 3 dimensional configurations.

Under more uncertainties, the use of Gradient Enhanced Kriging, which takes the
gradients of the uncertain parameters to build the surrogate in the stochastic space,
will increase the accuracy of UQ. In the future, other robustness measures such as the
quantile will be investigated. The framework will also be applied to the optimization
of 3D wings under a large number of design parameters, where it will show its full
potential.
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