Virtualization of the DLR Turbine Test Facility NG-Turb

<u>Next Generation Turbine Test Facility (NG-Turb)</u>

Figure 1: Turbine test facility NG-Turb

Topics and characteristics:

- Aerodynamic investigations of high-, intermediate- or low-pressure turbines
- Simulation of cooling (realistic density ratio)
- Application of combustor simulators (combustorturbine interaction)
- Closed circuit (Independent variation of Machand Reynolds-number)
- 650 temperature measuring points and 600 pressure tappings are possible
- More than a kilometer of piping
- Flow circuit with three main paths (hot and cold path, compressor bypass) • More than 12 auxiliary units (Cooling air, drier, cooler, heater, etc.)

Main performance data:

- Gear compressor (3 stages, pressure ratio ≤ 14 , mass flow ≤ 10 kg/s)
- One or two-shaft turbine configurations up to $2\frac{1}{2}$ stages
- Turbine inlet pressure ≤ 195 kPa
- Turbine inlet temperature \leq 540 K
- Turbine shaft power $\leq 1,800 / 1,000 \text{ kW}$ (1st / 2nd shaft)
- Turbine speed \leq 8,000 / 13,000 RPM (1st / 2nd shaft)
- Turbine tip diameter \leq 900 mm
- Cooling air supply: (≤ 450 kPa, ≤ 2 kg/s) ⇒ Feasibility of parameter combinations needs to be pre-checked

Abstraction

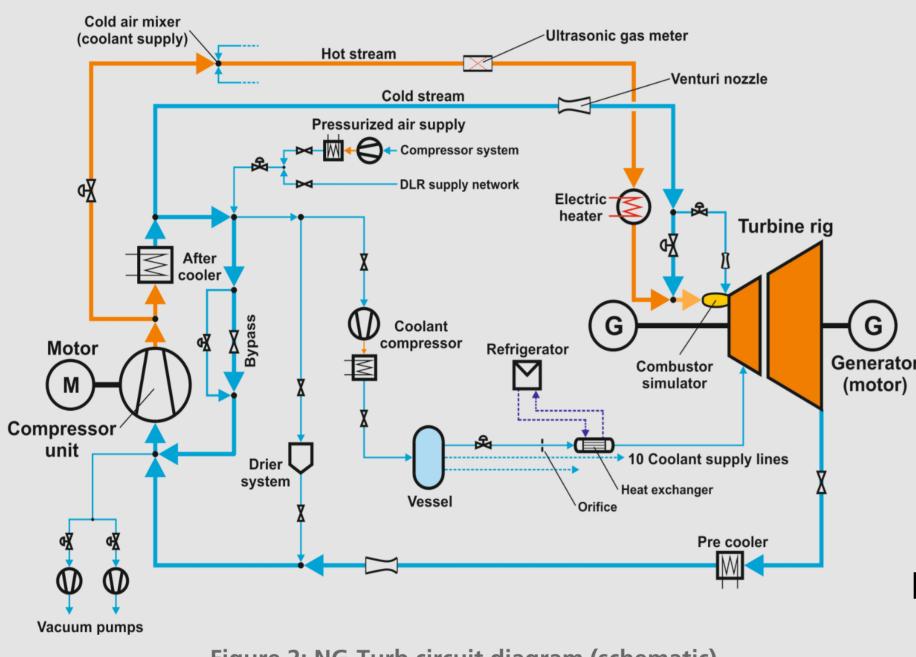
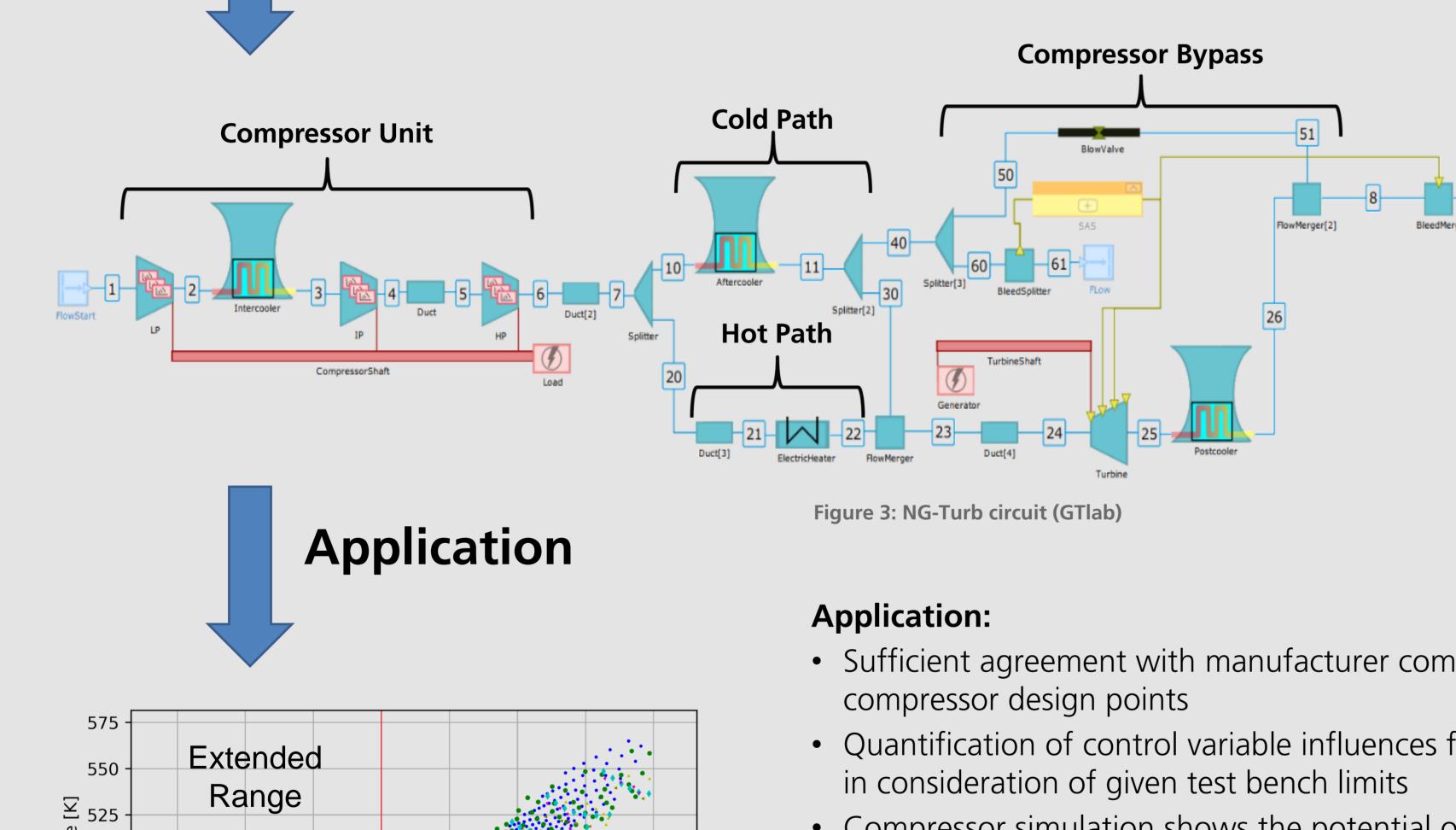


Figure 2: NG-Turb circuit diagram (schematic)


Why is a virtual representation needed?

- Prediction of operating states and feasible operation conditions for future rig tests
- Optimization of the operational performance:
 - Reduce power and auxiliary media consumption
 - Improve process stability
 - Increase testing time
 - Reduce operating cost
- Assessment of cycle modifications, for instance, how is it possible to:
 - \succ Reduce the compressor outlet temperature?
 - \succ Reach lower turbine pressure ratios?
 - > Optimize the use of water cooler and electric heater?

Approach via the <u>Gas Turbine Laboratory</u> (GTlab)

Interactive environment for preliminary design and simulation of aero engines and stationary gas turbines

- DLR in-house developed plugin-based software framework with GUI
- Platform independent
- High modularity for the extension of different functionalities
- Central data model as a basis for the exchange of input and output data •
- Initial developed for open cycle simulations \Rightarrow Adaption for closed circuit are now integrated

Virtualization:

- Digital representations of the thermodynamic behavior for the main components (Fig. 3)
 - > Compressor
 - ➢ Water cooler
 - Electric heater
 - > Different valves and piping elements
- Thermodynamic synthesis of the performance components and adaption of the existing models for steady state simulations
- Sufficient agreement with manufacturer component calculations and measurement data at
- Quantification of control variable influences for certain operating points through parameter studies
- Compressor simulation shows the potential of lower spool speeds to reach needed lower outlet temperatures and turbine pressure ratios (Fig. 4) \Rightarrow Leads to realized implementation
- Comparison with real compressor measurement data shows deviations at off-design conditions \Rightarrow Create compressor maps based on continually growing measurement data

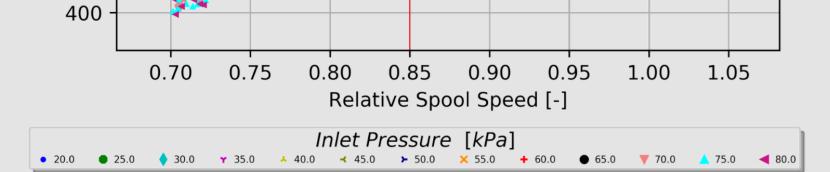


Figure 4: Simulation of the compressor unit with extended spool speed range

Outlook:

- Completing the compressor map generation
- Validate simulations to further measurement data
- Implement transient calculation methods (facility heating up and cooling down)
- Increase the level of details in the simulations

500 atr

E 475

000 Outlet

425

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 945541. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

Contact:

Institute of Propulsion Technology Franz-Xaver König Franz-Xaver.Koenig@dlr.de +49 551 709-2168 dlr.de/at

NG-Turb

Virtualization of the NG-Turb Institute of Propulsion Technology Björn Schneider bjoern.schneider@dlr.de +49 2203 601-2642 dlr.de/at