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Abstract

This thesis focuses on memory and the representation of space in the medial
temporal lobe, their interaction and their temporal structure.

Chapter 1 briefly introduces the topic, with emphasis on the open ques-
tions that the subsequent chapters aim to address.

Chapter 2 is dedicated to the issue of spatial memory in the medial en-
torhinal cortex. It investigates the possibility to store multiple independent
maps in a recurrent network of grid cells, from a theoretical perspective. This
work was conducted in collaboration with Remi Monasson, Alexis Dubreuil
and Sophie Rosay and is published in [1].

Chapter 3 focuses on the problem of the dynamical update of the repre-
sentation of space during navigation. It presents the results of the analysis
of electrophysiological data, previously collected by Charlotte Boccara [2],
investigating the encoding of self-movement signals (speed and angular ve-
locity of the head) in the parahippocampal region of rats.

Chapter 4 addresses the problem of the temporal dynamics of memory
retrieval, again from a computational point of view. A continuous attrac-
tor network model is presented, endowed with a mechanism that makes it
able to retrieve continuous temporal sequences. The dynamical behaviour
of the system is investigated with analytical calculations and numerical sim-
ulations, and the storage capacity for dynamical memories is computed.

Finally, chapter 5 discusses the meaning and the scope of the results
presented, and highlights possible future directions.
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Chapter 1

Introduction

The medial temporal lobe (MTL) is a system of brain structures specific to
the mammalian brain. It originated from the reorganization of the medial
pallium, the medial part of the upper surface of each cerebral hemisphere of
therapsids, when mammalians diverged from other early reptilian lineages,
around three hundred million years ago [3]. The detachment of the most
medial portion, and its loss of continuity with the rest of the cortex at the
hippocampal sulcus, generated the hippocampus of modern-day mammals.
A new population of granule cells, comprising the Dentate Gyrus, emerged
between the Ammon’s horn region, that retained the distinctly cortical pyra-
midal cells, and the surrounding neocortical regions [4]. These regions, the
entorhinal, perirhinal and parahippocampal cortices, complete the structure
of the medial temporal lobe.

Inputs are funneled to the hippocampus through the adjacent cortices,
from virtually all neocortical association areas [6]. The Amigdala, as well
as the cholinergic an other regulatory systems, provide additional input.
Therefore, the medial temporal lobe acts as a hub for multimodal informa-
tion coming from neocortical areas, and projects back into most of the areas
from which it receives input.

Its recent appearance an its peculiar position in the cortical hierarchy
suggest the involvement of MTL in advanced cognitive functions. MTL is
indeed well known to play a role in the formation, consolidation and retrieval
of memories, in the representation of time, space, and other contextual in-
formation and in many other cognitive functions.

In this thesis we investigate key aspects of the role of the medial temporal
lobe in episodic and spatial memory, from a computational point of view. In
this chapter we will briefly review the role of MTL in memory (section 1.1)
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Figure 1.1: Anatomy of MTL. (a) The location of MTL and its connections
with neocortical association areas in primates and rodents, adapted from
Dickerson & Eichenbaum [5]. (b) Anatomy and connectivity of the hip-
pocampus, adapted from Kamran Diba (https://sites.lsa.umich.edu/diba-
lab/neural-circuits-of-the-hippocampus/)

and space (section 1.2), some of the most influential quantitative theories
of its function (section 1.3) and its dynamic nature (section 1.4). Finally,
in section 1.5 we will summarize some open questions that motivate and
introduce the original work presented in the rest of the thesis.

1.1 Memory in the medial temporal lobe

The involvement of the medial temporal lobe in memory has been known
for more than a century. It was already in the last decades of the nineteenth
century that the physiologists Sanger Brown and Edward Schafer observed
that the ablation of MTL in monkeys resulted in memory deficits [7]. At
the turn of the century, the Russian psychiatrist Vladimir Bekterev reported
MTL softening in a dead patient who had shown a profound amnesia [5],
and the work of neurologists and psychiatrists like Sergei Korsakoff and
Alois Alzheimer showed the dramatic effects that neurodegenerative diseases
involving MTL can have on cognition, and memory in particular.

In the second part of the last century, the role of the medial temporal lobe
in memory became subject to extensive investigation. In a series of seminal
studies on the case of their patient Henri Molaison (H.M.), the neurosurgeon
William Scoville and the neuropsychologist Brenda Milner showed the strik-
ing effects that hippocampal removal had on specific components of memory
[8],[9]. A first distinction was made between declarative memory, related to
the explicit and conscious recall, and implicit (or procedural) memory, com-
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prising, for example, motor learning and priming effects [10]. Subsequent
neuropsychological research, as well as neuroimaging and lesion studies in
animals, have shown that the hippocampus is crucial for the encoding of
new declarative memories, while procedural memory is largely independent
from MTL [11],[12].

More debated is the role of the hippocampus in memory retrieval, in par-
ticular of old memories. The nature and the extent of retrograde amnesia
(RA) that follows hippocampal damage is still unclear. In some instances
hippocampal-related RA is graded, with older memories being affected less
than recent ones. This was, for example, the case of patient H.M., and is at
the core of the theory of system consolidation [13], often referred to as the
standard model of memory for its popularity. In this view, the hippocampus
is crucial only for the retrieval of new memories. Over time, and through
the interaction between the hippocampus and the neocortex, memories are
transferred to the latter. These consolidated memories do not depend on
the hippocampus for their subsequent retrieval (Fig.1.2a). On the other
hand, there is evidence to suggest that an intact hippocampus is needed for
the retrieval of memories rich in autobiographical and contextual informa-
tion, no matter the age of the memory [14]. The so called “multiple trace
theory” [15] aims to conceptualize this phenomenon. According to the the-
ory, schematized in 1.2b, the hippocampus stores distinct aspects of each
new memory, including contextual information, in largely non-overlapping
cell assemblies. Neocortical memory traces of similar memories are instead
largely, but not completely, overlapping. Hippocampal memories are highly
episodic, rich in spatial and temporal details, and can be retrieved only with
proper functionality of the hippocampus. Neocortical memories are instead
semantic, and largely context free. Their formation, but not their retrieval,
depends on the hippocampus.
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Figure 1.2: A schematic illustration of different theories on the role of
hippocampus in memory, adapted from Nadel and Moscovitch [14]. (a)
The standard system consolidation theory conjectures that the hippocam-
pal complex is essential in the acquisition phase (left). After a consolida-
tion period, in which information is consolidated in neocortex, the retrieval
becomes independent of the hippocampus (right). (b) Multiple traces the-
ory assumes that different memories are represented by largely orthogonal
hippocampal assemblies, and partially overlapping neocortical pupulations.
The hippocampus retains its role in the retrieval of memory rich in contex-
tual information, independently of the age of the memories.

Despite their differences, these two qualitative theories agree on the cru-
cial role that MTL has in the construction and – at least short term – storage
of episodic memories. An attempt to quantify the memory capacity of the
hippocampal region, and its information processing machinery dates back
to David Marr [16], and was refined in the work of McNaughton and Morris
[17] and Treves and Rolls [18]. The peculiar anatomical structure of the hip-
pocampal circuit allowed a comparison of its different structures to different
memory association circuits (Fig.1.3).
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Figure 1.3: Different circuits for memory association (a) A simple autoas-
sociative network, that performs pattern completion: when cued with a
partial or corrupted version of a previously learned stimulus, reconstructs
the full pattern. (b) An heteroassociator can build an association between
a cue (green arrows) and a target (blue arrows) (c) A recurrent autoasso-
ciator can associate the input to a population to its output. These kind
of network can self-sustain activity through reverberation in the recurrent
connections. Figure courtesy of Oleksandra Soldatkina and Francesca Sch
önsberg, adapted from McNaughton et al. [17].

For example, the extensive recurrent connectivity of the CA3 region
makes it suitable to work as an autoassociative memory able to retrieve
stored patterns from partial cues provided by the entorhinal’s perforant path
inputs. The encoding of the memories is thought to be heavily dependent
on the Dentate Gyrus and the Mossy Fibers that it projects onto CA3.
The sparse and powerful input provided by the Dentate Gyrus would be
needed in the encoding phase to separate similar inputs in non-overlapping
memories.

A large class of neural network models, attractor neural networks, have
been used to provide a quantification of the properties of this circuitry. We
will examine some important features of these models in section 1.3, but first
we will briefly review another fundamental function of the medial temporal
lobe: the representation of space.
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1.2 Space in the medial temporal lobe

Space is an important component of episodic memory, and its representation
is a key role of MTL. Since the discovery of place cells by O’Keefe and
Dostorovsky [19], many different functional classes of cells involved in the
representation of space have been discovered in rodents(Fig 1.4). Place
cells and grid cells [20] respond when the rat is in certain locations in the
experimental environment (typically simple boxes, in the order of a square
meter in size). Border cells [21] are active in the vicinity of boundaries or
obstacles. The response of these cell classes is allocentric, i.e. is anchored
to one or many places in the environment and not to the position of the
animal relative to the locations they are encoding. Equally important for
navigation is the representation of direction by Head Direction (HD) cells
[22], that preferentially fire when the head of the animal faces a certain
direction and are found in several brain areas, with particular abundance
in parasubiculum and EC. These populations show a varied and complex
phenomenology whose description extends beyond the purpose of this section
and is a very active field of research.

The MTL is also involved in the representation of self-movement. The
self-movement coding, theorized by attractor network models [23], was ex-
perimentally observed in a class of cells that respond to the speed at which
the animal is moving [24]. Speed cells firing rate is proportional to the in-
stantaneous speed of the animal, an interesting difference from the firing
field coding that static representations of space and orientation adopt. In
chapter 3, we report a similar phenomenology for the coding of angular head
velocity in the parahippocampal region, as well as a more general form of
speed coding than previously observed.
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(a) (b) (c)

(d) (e)

Figure 1.4: Spatially selective cells in MTL. a Place cells (b) Grid cells,
adapted from Moser et al. [25] (c) Border cells, adapted from Solstad et
al. [21] (d) Head direction cell (in blue the average firing rate, in orange
the frequency of occurence of a certain direction during the trial) (e) Speed
cells, adapted from Kropff et al. [24].

MTL does not build a representation of space online, instantaneously
during navigation, but relies heavily on spatial memory. The Morris water
maze experiment [26] shows how damaging the hippocampus impairs the
memorization of relevant locations. The memory property of the hippocam-
pal place cells is apparent in the phenomenon called remapping [27]. In its
most extreme version, global remapping, place cells acquire, change or loose
their preferred firing location when the animal is in different environments.
This change happens in a seemingly random fashion and independently from
one cell to the other. When the animal is re-exposed to a previously seen
environment, the place code is restored, showing a memory for space whose
capacity is as large as experimentally probed [28].

Grid cells are believed to be very different in this respect. What is known
of their response to different environments is summarized in chapter 2, where
the theoretical possibility of global remapping in grid cell population is ad-
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dressed.
The allocentric and memory properties of spatial coding led to the idea

that MTL encodes space through cognitive maps. The central aspects of
this theory, as well as the computational models it underlies, are the focus
of the next section.

1.3 Cognitive maps and attractor neural networks

Cognitive maps were introduced by the psychologist Edward Tolman in 1948
[29], as a conceptual framework for the results of several experiments on
the spatial behaviour of rats. Tolman hypothesized that the navigation of
rodents – and humans – is based on spatial cognitive maps, i.e. global repre-
sentations of the environment, rather than on simple associations. O’Keefe
and Nadel [30] later interpreted the place cell system as the neural basis of
cognitive maps. The cognitive map theory reconciles the memory-centric
and space-centric narratives on the function of MTL, and offers a foothold
for quantitative analysis.

A widely studied class of models, attractor neural networks (ANNs), are
often used for the modeling of the neural mechanisms underlying cognitive
maps. First introduced by Hopfield in 1982 [31], these networks can store
many memories in their synaptic connectivity, and are able to perform cued
retrieval. The stored memories are in fact attractive configurations for the
network dynamics, and the configuration more similar to the initial – cued
– configuration will be reached spontaneously. Amit, Gutfreund and Som-
polinsky [32] developed the mathematical framework necessary for the study
of these models and the quantification of properties such as the memory ca-
pacity or the stability of the attractive points. To describe spatial cognitive
maps, ANNs have been extended to encode attractive low dimensional man-
ifolds [33],[34],[35]. Ring attractors, with a connectivity that is short-range
excitatory and long-range inhibitory have been used to describe populations
of HD cells. A similar profile, in two dimensions, is at the core of the ANNs
description of grid cells [36],[37].

Place cells require one step further: in order to encode several cognitive
maps, and to account for global remapping, it is crucial for the system to be
endowed with a reasonable storage capacity. The calculation of the storage
capacity for network models of place cells was carried out by Battaglia &
Treves [38] and Monasson & Rosay [39]; both analyses found a large capacity
for continuous attractors, providing quantitative support to the idea that the
hippocampus stores many independent spatial representations.
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Evidence of neural dynamics compatible with continuous attractors has
been recently found in grid cell and head direction cell populations [40],[41]
, whose collective activity has been shown to lie on a low dimensional sub-
space. Another hallmark of attractor dynamics, the abrupt switch between
different stable configurations, has been investigated with a ”teleportation”
experiment [42]. The authors observed a switch in the neural representa-
tion of hippocampal place cells when the light conditions of the environment
where suddenly changed to simulate an instantaneous change of room. In-
terestingly, around the ”teleportation” time, CA3 place cells did not show
a gradual transition between the two representations but a rapid, bi-stable
flickering, as would be expected from the presence of two competing attrac-
tors.

It is worth noting that in these models cognitive maps are usually re-
garded as static. However, the activity of cells is in continuous motion on
several temporal scales, both in active behaviour and during sleep. In the
next section we focus on this dynamics, an important feature that we will
incorporate in an attractor neural network model in chapter 4.

1.4 Memory dynamics in MTL

During both behavior and sleep, the activity of cell ensembles in the hip-
pocampus and the surrounding areas is highly dynamic. One example is
given by the phenomenon of phase precession, first reported by O’Keefe and
Recce in 1993 [43]. During active exploration, the hippocampal formation
of rodents shows a prominent modulation of its activity in the 8-12 Hz fre-
quency range, called theta rhythm. As the rat runs across the receptive
field of a place cell, the spiking of the cell progressively shits towards earlier
phases in the theta cycle. From the point of view of the active population,
this produces a cycle-long swipe across cells with place fields around the
location of the animal (see Fig. 1.5).
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(a) (b)

Figure 1.5: Dynamic sequences in the hippocambus (a) A scheme of the
phase precession phenomenon, adapted from Drieu & Zugaro [44]. During a
theta cycle, a sequence of place cells is activated, centered around the current
location of the animal. (b) A scheme of hippocampal replay, adapted from
Olafsdottir et al. [45]. Top row: place and time of activation of place cells
during run activity. Bottom row: time compressed sequential activation of
the same cells during sleep or restful wake, in the same (forward) or reverse
(backward) order as in behaviour.

Sequential activation, on a shorter temporal scale, has also been ob-
served during inactivity, in a phenomenon referred to as replay. In 1994,
Wilson and McNaughton [46] observed reactivation of sequences of place
cells in the rat hippocampus during slow wave sleep: cells with nearby fir-
ing fields showed a tendency to be reactivated together, producing a replay
of recent trajectories. Neural replay takes place during sharp wave ripples,
fast oscillations of the hippocampal local field potential that are particu-
larly abundant during sleep and restful wakefulness [47],[48]. Indeed, replay
has been observed not only during sleep [49],[50], but also during inter-trial
rest periods [51],[52], and during still periods in navigational tasks [53],[54].
A temporally structured activation takes place also before the exposure to
an environment [55], a phenomenon known as preplay, and a recent study
showed that this dynamical feature emerges very early during development,
preceding the appearance of theta rhythm [56].

Both phase precession and replay/preplay have been hypothesized to
play several roles in cognition, from inference and planning to memory con-
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solidation [44],[45]. Independently of their still debated function, phase
precession and replay are a striking demonstration that neural activity is
unwilling to sit still. Its motion is, however, disciplined: neural trajectories
are constrained to lie on low dimensional manifolds in activity space, that
guide sequential activation and are – at least to some degree – shaped by
experience. In chapter 4 we address the problem of dynamic memory with
an ANN model that goes beyond the standard equilibrium formulation, and
is able to store and retrieve dynamical memories. In the next section we call
the attention of the reader to some open questions that already appeared in
this brief introduction, concerning the role of the medial temporal lobe in
space and memory, and how and where we address them in the rest of this
thesis.

1.5 Open questions and thesis structure

The rest of this thesis addresses several aspects of hippocampal and parahip-
pocampal coding, with a mix of theoretical modeling and experimental in-
vestigation.

Chapter 2 tackles the problem of spatial memory in the medial entorhi-
nal cortex (MEC). MEC grid cells are different from hippocampal place cells
not only in the number of firing fields, but also in the way they remap in
different environments. A seminal study on grid cell remapping [57] showed
that the spatial relationship between pair of grid cells are preserved when
the environment is changed. This, together with the discovery of the orga-
nization of grid cells in modules with different spatial scales [58] reinforced
the idea that MEC encodes a single, low dimensional spatial map, whose
principal role is position or distance encoding and path integration [23].

We summarize some recent results and theoretical arguments that chal-
lenge the “universal map” view: environment-dependent distortion, the cod-
ing of non-spatial features, different maps for different behavioural contexts
and the problem of curvature.

The problem of multiple grid maps is addressed from a theoretical per-
spective: are there computational constraints that make it impossible for
a population of grid cells to encode multiple maps? The storage capacity
is found to be large enough to store tens, maybe hundreds of independent
maps in a biologically realistic regime.

We then discuss the reason behind this high capacity, for which our
models yield complementary insights, and the possible role of multiple maps
in cognition.
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Figure 1.6: A pictorial illustration of the problem of multiple grid maps.
The retrieval of one grid map (left) is represented. The activity, coherently
organized in the first map, looks like random noise from the point of view
of the other maps stored in the network (two in this case, on the center and
right).

In chapter 3 we investigate how the representation of space built in the
parahippocampal cortices can integrate self-movement, in order to update
the represented position and direction.

As briefly mentioned in section 1.2, ANN models of the representation
of space require the presence of self-movement signals in order to update the
represented position and orientation during navigation, and in particular for
performing path integration [23]. Speed cells in MEC provide this signal in
the case of position, but in the case of orientation, no similar mechanism
has yet been found in the parahippocampal cortices.

Analyzing electrophysiological recordings of single neurons from the me-
dial entorhinal cortex, the presubiculum and the parasubiculum of freely
moving rats, we find a population of cells whose firing activity is modulated
by the instantaneous angular velocity of the head. We also show that lin-
ear speed cells are widely distributed in the parahippocampal circuit, with
percentages in pre and parasubiculum similar to the one in MEC.

We then study the conjunction of this self-motion cells with grid and
HD cells, and we find a rich phenomenology of conjunctive coding, compat-
ible with the idea that different coding properties are assigned to different
cell populations independently one from the other: they do not cluster and
they do not segregate. This result challenges the idea of a rigid connec-
tivity structure that many of the current models of spatial representation
prescribe.

Finally, we show that the coding of speed and angular head velocity is,
at the single cell level, independent from the theta rhythm. We discuss the
meaning of these results in the framework of current theories and hypotheses
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on the role of MTL in spatial coding.

Figure 1.7: A pictorial illustration of the update of the represented position.
The represented position at time t (left) shifts rightward at t+ 1 (right) by
the action of an external speed signal (center).

In chapter 4 we address the problem of dynamical memories. The mem-
ory capacity of attractor neural networks, either discrete or continuous, is
usually calculated with tools borrowed from equilibrium statistical physics,
and therefore assume symmetric connections and static memories. Move-
ment along a continuous attractor has instead been studied in the context
of a single spatial map as a response to a velocity signal [33],[37],[36].

We develop an attractor network model suited to describe the dynamic
retrieval of many memories, in a way reminiscent of hippocampal replay.
We incorporate an asymmetric component in the synaptic connectivity, that
produces a rigid shift along the retrieved manifold, and develop an analytical
framework for the study of the features of this dynamical retrieval.

Analytical results and numerical simulations show that this mechanism
is robust to the details of its implementation, and yields a storage capacity
that is on the same order of the one for static attractors. For networks
with diluted connectivity, the capacity decreases monotonically but grad-
ually with the strength of the asymmetry. In densely connected networks,
instead, moderate values of asymmetry can enhance the capacity, that shows
a maximum for finite values of the asymmetry strength.

We discuss the implications of this work concerning the role of symme-
try and asymmetry in synaptic connectivity, the role of temporal dynamics
in memory and possible future direction in the use of out-of-equilibrium
systems in the description of memory.
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Figure 1.8: Pictorial representation of dynamic retrieval. The encoded po-
sition in the retrieved map (left) shifts spontaneously in time by the effect
of asymmetric connectivity. Again, the population activity looks like noise
from the point of view of two non-retrieved maps (center and right).

Finally, chapter 5 is dedicated to a general discussion of the results and
models presented and their meaning in the context of the current state of
neuroscientific research, and highlights open directions for future investiga-
tion.
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Chapter 2

Can grid cell ensembles
represent multiple spaces?

Grid cells appear to comprise an essential component of the cognitive rep-
resentation of space in rodents [20] and in other species, e.g. bats [59]. In
chapter 1 we mentioned how a study of the activity of grid cells in multiple
environments [57] has shown that while the grid expressed by each neuron
varies across environments in its spatial phase and orientation, between neu-
rons the co-activity relations are largely preserved, at least for those recorded
nearby in the tissue, with the same tetrode. In other words, the grids of
different cells undergo a coherent rigid movement when a new environment
is explored, as illustrated schematically in Fig.2.1 (a) and (b). The subse-
quent discovery of quasi-discrete modules [58] indicates that these relations
are maintained at the local network level, presumably by recurrent collat-
eral connections among grid cells. This finding has led to the hypothesis
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that local ensembles of grid cells comprise each a single continuous attractor
network, expressing a “universal”, two-dimensional map, which encodes the
metric of space independently of the environmental context.

There is a crucial difference with the context-dependent spatial represen-
tations provided by hippocampal place cells, which display global remapping
[60] even between very similar rooms, in particular in the CA3 field [28]: cells
which were silent acquire one or more place fields, others lose theirs, and
the fields that seem to have been maintained typically are in a different lo-
cation (Fig.2.1B). Global remapping has motivated the conceptual model of
multiple charts [34], in contrast with early and later models of continuous
attractor grid cell networks, which envisage a single chart [37],[36],[61]. The
dominant overall view, then, holds that the hippocampus encodes multi-
ple, uncorrelated, context-dependent cognitive maps, while the grid system
provides metric information that is independent of the environment.

Recent evidence of context-dependent distortions in the grid pattern
have begun to question the view that the collective map expressed by a grid
module is universal, that is, that it applies to any environment. Stensola
et al. [62] have shown that, when rats explore large environments, a single
grid can exhibit multiple orientations, likely due to anchoring effects to
the closest wall, which in any case amount to distortions of the hexagonal
pattern. These effects have been analyzed extensively in a more recent study
[63]. Krupic et al. [64], [65] have shown that the grid pattern deviates from
perfect hexagonality, with both global and local distortions, in response to
environmental features such as the geometry of the walls. Finally, a couple
of recent studies [66],[67] have shown that the presence of salient features
such as goals or rewards affect the entorhinal map, changing field locations
and inducing remapping in other space selective cells. These observations,
moreover, refer solely to the position of the peaks of activity, i.e. the place
fields of each cell, and do not take into account the fact that they vary
reliably in height, independently across peaks, from one environment to the
other [68]. Should we still regard grid cells as a sort of stack of millimeter
paper, providing a universal metric for space?

In addition, recent studies conducted in both rodents and humans sug-
gest that regular grids may not “measure” only physical space. Aronov and
colleagues [69] find that both place cells and grid cells, in rats, are involved
in the representation of a non-spatial but continuous, one-dimensional vari-
able, such as the frequency of a sound. An fMRI study by Constantinescu
et al. [70] shows an hexagonal modulation of the BOLD signal in human
Entorhinal Cortex, and elsewhere, in a task that requires subjects to “navi-
gate” the 2D space spanned by the varying leg and neck lengths of a drawing
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of a bird. The representation of abstract or conceptual spaces, which could
in principle be topologically and geometrically complex, would require of the
grid cell system a flexibility that can hardly be reconciled with the universal
grid hypothesis.

In a most interesting study [71], a subset of grid units were depolarized
in transgenic mice, leading to what appears to be global remapping in the
hippocampus. What is so striking is that the manipulation induces extensive
changes, up and down, in the peak firing rates of the different fields of indi-
vidual grid units, but not in their position. This elaborates the observation
in [57], and suggests that what might be universal in the grid representation
expressed by an ensemble of units, if anything, are the relative positions of
the fields, whereas their peak firing rates are variable (Fig.2.1C).

On the other hand, a strict hexagonal periodicity of the field positions
of individual units is only possible in flat 2D environments. The adapta-
tion model of grid formation [72] predicts instead, on surfaces with constant
positive or negative Gaussian curvature, and appropriate radius, the emer-
gence of grids with e.g. pentagonal [73] or heptagonal [74] symmetry. In
all other cases, including ecologically plausible natural environments, non-
flat surfaces have varying curvature, making strictly periodic grids dubious,
and rigid phase coherence most unlikely. But then, what happens to the
universality of the grid in natural environments?

To address these issues we aim to answer a first fundamental question:
is it at all possible to conceive of multiple, hence non-universal, ideal grid
representations expressed in the same local network, when the animal is
placed in distinct, even if flat, environments? In other words, would the
storage capacity of a recurrent network of grid cells be above unity, so that
multiple continuous attractors can coexist, encoded in the same synaptic ef-
ficacies? We pose this question within two alternative mathematical models,
both accepting the idealized assumptions which underlie the universal map
hypothesis, that is, of strict periodicity and equal peak rates, depicted in
Fig.2.1D, but allowing for several uncorrelated grid representations. Under
these assumptions, we analyze an ensemble of grid cells as a Continuous
Attractor Neural Network, extending the frameworks developed in [38], [39]
and [75] for the description of place cells. We emphasize that the storage
capacity we are interested in quantifies the number of different, independent
charts (or collective maps) that the network can store, and not the spatial
resolution (which may be referred to as information capacity, i.e. the num-
ber of different positions that can be decoded from the ensemble activity),
as considered for example in [76] and [77].
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Figure 2.1: Types of change in grid cell activity in mEC (bottom) con-
current with global remapping in the CA3 field of the hippocampus (top).
The universal grid map model, idealized from [57] allows only for a coher-
ent translation (and possibly a rotation) into a new map B, when changing
environment. Under a manipulation which does not entail changing environ-
ment, the individual fields of each unit have been observed to independently
vary their peak rates, keeping their relative position ([71], new map C). We
assess the hypothesis that the same network may also express other maps,
such as map D, with a complete re-positioning of the grids of different units.
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2.1 Two complementary network models

We model the grid cell population as an ensemble of units interacting through
recurrent connections, whose structure defines which activity states are ro-
bust – the dynamical attractors. We assume, however, that a separate pro-
cess, based e.g. on adaptation [72], has determined the emergence of a
periodic grid, independently for each unit, during familiarization with each
of p distinct environments; meanwhile, recurrent connections are shaped by
a Hebbian learning process, such that neurons that happen to have nearby
fields tend to fire together, strengthening their connections, while neurons
with fields far apart remain weakly connected.

The connection strength Jij is therefore taken to be a sum of contri-
butions from the exploration of p environments, with each contribution,
once averaged across many trajectories, a function of the relative position
of the fields in that environment. Exploiting the simplifying assumption
that each grid is strictly periodic, we can focus on the elementary repetitive
tile, which has only one field per unit and is, in the mathematical formu-
lation, connected by “periodic boundary conditions” to adjacent tiles. The
assumption of periodic boundary conditions is motivated by the remarkable
regularity of the arrangement of the fields observed in the original experi-
ments, and by the model being meant to describe interactions within a grid
module, in which all cells share the same spacing and orientation.

The contribution to the connection strength between two units i and j is
then reduced to a function of their field centers ~xπi and ~xπj on the elementary
tile in environment π

Jij =

p∑
π=1

K(~xπi , ~x
π
j ) (2.1)

where we refer to K(·) as the “interaction kernel”. The field peaks, or centers
~xi of N units are taken to be randomly and uniformly distributed over the
elementary tile.

Our analysis focuses on two different models of neurons (binary and
threshold-linear) and two types of attractor symmetry (square and hexago-
nal), which stem from the tile shape or the interaction kernel. Both neuron
models allow, from complementary angles, a full statistical analysis, lead-
ing to otherwise inaccessible results. The storage capacity turns out to
depend more on how interference reverberates through loops (expressed by
the parameter ψ, see below) than on the type of units; and interference, in
the densely coded and densely connected regime, affects square much more
than hexagonal grids.
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2.1.1 Binary units

The first model we consider is an extension of the model proposed by Monas-
son & Rosay [39] for the modeling of place cells in CA3. Here the activity of
neurons is described by binary variables, such that the pattern of activity of
a network of N units is a vertex {σ} ∈ {0, 1}N . For the binary model, the
kernel K(i, j) between units i and j relative to one environment is taken to
be a step function of the distance between their field centers

K(·) =
1

N
Θ(dc − |~xi − ~xj |) (2.2)

where Θ(x)=1 for x > 0 and 0 otherwise – note that the distance |~xi − ~xj |
is along the shortest path, considering the periodic boundary conditions.

The periodic structure of the attractor depends on the shape of the
rhomboid unitary tile in which the field center ~xi of each unit is located.
The lattice symmetry is specified by the angle θ between its two primitive
vectors. θ = 60° corresponds to the standard case of hexagonal grids, while
θ = 90° describes a square grid pattern. These two cases and the resulting
interaction kernel are depicted in Fig.2.2 (a) and (b).

The cut-off distance dc sets the number of non-zero connections each
unit receives from the storage of a given environment, denoted by wN :
dc =

√
(w/π) sin θ. This measure of connectivity within one environment

should not be confused with the global connectivity taking into account all
environments, C = (N − 1)(1− (1− w)p) ∼ N for large p.

The dynamics of the network is governed by the energy function:

EJ [{σ}] = −
∑
i<j

Jijσiσj (2.3)

and constrained by the requirement that at any time a fixed fraction f of
units be in the active state, i.e.

∑
i σi = fN . We call f the coding level,

or sparsity of the representation. This constraint is taken to reflect some
form of global inhibition. Later we shall focus only, given w, on the optimal
coding level in terms of storage capacity, hence on a specific value f∗(w),
which turns out to be a monotonic function of w (see Fig.2.3). This model
then allows an explicit focus on the dependence of the storage capacity
on the width of the kernel and on the resulting optimal sparsity of the
representation.

2.1.2 Threshold-linear units

We extend our analysis to firing-rate units, whose activity is described by
a continuous positive value corresponding to their instantaneous firing rate.
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This second model allows us to capture the graded nature of neural activity,
which is salient when it represents space, which is itself continuous. The ac-
tivity of the network is given by a configuration {Vi} ∈ (R+)N , and each unit
integrates the inputs it receives through a threshold-linear transfer function
[78]

Vi =

{
g(hi − h0) if hi ≥ h0

0 if hi ≤ h0

(2.4)

where g (the linear gain) and h0 (the activation threshold) are global pa-
rameters of the network, and the “local field” hi is a real-valued variable
summarizing the input influence on unit i from the rest of the network,
which we take to come from a random but fixed set of C among the N − 1
other units, as well as from external sources.

The interaction kernel K(·) is given by the special sum-of-cosines form

K(·) =
1

C

d∑
l=1

(cos[φl(~xi)− φl(~xj)] + 1) (2.5)

which had been considered as a toy case by [38], before the discovery of grid
cells. The field center of each unit on the elementary tile is expressed by
a set of angles φl(~x). We shall see that d = 2 and d = 3 are equally valid
choices on the plane, as well as d = 1, which leads to “band” solutions (see
below).

This model therefore allows decoupling the form of the kernel, which is
extended, with interactions among units far away on the elementary tile (and
the resulting coding level is correspondingly non sparse) from the connec-
tivity, which can be made arbitrarily sparse if C/N → 0. As a superposition
of d cosine functions, the kernel can also be conveniently written as a sum
of dot products. The +1 term is added to enforce excitatory connections.

While not circularly symmetric like the radial kernel used in the binary
model, this cosine kernel allows for the analytical study of periodic patterns
that are spread out on the plane, with a large fraction of the units active
at any given time. The solutions for the hexagonal kernel (Fig.2.2(d)), in
particular, given by three cosine functions at a 60°angle from one another,
have been considered as a reasonable model for experimentally observed
grid cells. In the figure, the hexagonal elementary tile extends in the range
x = ±1/2 and y = ±1/

√
3, and the three angles span the directions φ1 =

2πx, φ2,3 = π(x±
√

3y). The square kernel is obtained for d = 2 and the two
cosines at 90°from each other (Fig.2.2 (c)). Note that, as with the binary
model, N units are concentrated on an elementary tile that in the hexagonal
case is

√
3/2 of the area of the square case.
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Figure 2.2: Interaction kernels for the binary (a,b) and rate (c,d) models.
The white lines show the elementary tile of each lattice.

An energy function would look similar to the one in Eq. [2.3], but now
expressed in terms of the continuous variables {V }. When C < N − 1 and
connections are not symmetric, the energy formalism does not apply but we
can still analyze the model (see below and in appendix A.2), and again we
take global inhibition, which can now also act through a modulation of the
common gain g, to depend on the average activity of the network and to be
such as to optimize storage capacity.

2.2 Storage capacity

Both models can store a single population map, as in the bottom panels of
Fig.2.1A,B, and the equations for such a map admit periodic bump solutions
that reproduce the shape of the kernel (as well as potentially other solutions,
e.g. stripes, to be discussed later). We are interested however in their
capacity to store several distinct maps, as in Fig.2.1A and D, and in the
possibility to calculate such storage capacity analytically, in the mean field
approximation.

The general strategy involves formulating and resolving a set of self con-
sistent equations relating the activity of the units in the network. When
the model admits an energy function, these are the saddle point equations
derived from the computation of the “free energy” of the system with the
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replica trick, which allows to take into account the statistics of the field
centers in each environment. Without an energy function, e.g. when the
connections are sparse and not symmetric, equivalent equations can be de-
rived through the so-called Self Consistent Signal-to-Noise Analysis [79].

The solutions to these equations, that describe the activity in one map,
disappear sharply at a critical value αc of the storage load α = (p/C), which
measures the ratio of the number of maps to the number of connections to
each unit. αc then gives the maximum number of maps that the network
can store and retrieve or express, normalized by the connectivity. We have
developed a novel method to assess whether below αc these solutions are
indeed stable and prevail on others (Fig. 2.6 and 2.7). The details of these
methods, that build on [39] and [75] for the binary model and on [78] and
[38] for the rate model, can be found in appendix A.4.

We focus, in the calculation of the storage capacity, on so-called “bump
states”, in which activity is localized along each of the two dimensions of the
elementary tile (anywhere on the tile, given the translation invariance of the
interaction kernel). Other solutions however exist, as discussed in section
2.3.

2.2.1 Binary units

The statistical analysis of the minima of the free energy leads to the patterns
of activity {σ} that are likely to be observed given the connectivity. More
precisely, we have derived self-consistent equations for the average activity
ρ(~x) = 〈σi〉 of unit i having its grid field centered in ~x (in the elementary
tile):

ρ(~x) =

∫
dz

e−z
2/(2α r)

√
2π α r

Θ[µ(~x) + z + λ] , (2.6)

where

µ(~x) =

∫
d~y K(~x, ~y) ρ(~y) (2.7)

is the signal input received by the unit through the interactions correspond-
ing to the environment in which the bump is localized, say, π = 1, and z
is the noisy, Gaussian input due to the interference from the other environ-
ments, say, π = 2, ..., p, see Eq. (2.1). The variance α r of these Gaussian
inputs is, in turn, self consistently derived from the knowledge of the activ-
ity profile ρ, see appendix A.1. The uniform (inhibitory) input λ enforces
the constraint

∫
d~xρ(~x) = f . We consider here the limit case of neurons

responding deterministically to their inputs, although the analysis extends
naturally to stochastic noise.
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We calculate, from the saddle point equations, the storage capacity
αc(w, f) as the maximal value of the load α for which a bump-like solution to
Eq. [2.6] exists. Then, for a given value of w, we find the coding level f∗(w)
that maximizes the storage capacity. Over a broad range 0 ≤ w ≤ 0.5 the
optimal f∗ turns out to be approximately half the value of w (see Fig.2.3).

That the optimal value for the coding level is proportional to w can be
understood intuitively by considering the spatial profile of the signal µ(~x):
if too few cells are allowed to be active, the connections to the cells that are
forced to be silent, within the connectivity range of the active cells, will be
frustrated. On the other hand, if too many cells are active, those outside
the connectivity range will contribute more to the noise than to the signal.

The optimal storage capacity is plotted in Fig.2.4, for the square and
hexagonal grids as a function of w. At low w the two values are similar, but
when w increases their trends diverge leading to substantially higher capac-
ity value in the hexagonal case, of order 10−2 for w ' 0.5. This value would
definitely allow, in a real cortical network with order thousands (or tens
of thousands) of neurons, the storage and retrieval of multiple independent
grid maps.

Again considering the spatial profiles of the signal µ(~x) allows to gain
intuition about this divergence. At very low w, i.e. short range interactions,
what happens in other tiles can be neglected, and the two grids behave sim-
ilarly. When the range is wider, the location of the fields in the immediately
neighbouring tiles starts to be relevant. In the square case, there are four
first neighbours, contributing to excite silent neurons in-between the fields.
For an hexagonal arrangement of the fields, there are six neighbouring tiles
that each contribute relatively less excitation in-between fields. Intuitively
this last geometrical arrangement makes the structure more rigid and re-
duces the influence of the noise due to the storage of other charts.
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Figure 2.3: Optimal coding level for the binary model.
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Figure 2.4: Storage capacity as a function of w for square and hexagonal
grids in the binary model, given an optimal coding level f ' w/2.
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2.2.2 Threshold-linear units

In this model the coding level and the connectivity range are both fixed
by the shape of K(·). The mean field approach can be however extended
to the case of arbitrary values of the connectivity density C/N , with the
Self-Consistent Signal-to-Noise Analysis [79]. The storage capacity is given
by the α for which the solution to the equation

µ̄2 − d
[
1 +

C

N

(
(2− ψ)ψ

(1− ψ)2

)]
α r = 0 (2.8)

disappears. In fact, the disappearance of the solution only gives an upper
bound on αc, as one has to check its stability as well. The details of the
derivation and the expression of the average signal µ̄ and of the interference
noise r are reported in appendix A.2.

We plot such critical value for square and hexagonal grids with the re-
spective kernels, as a function of the inverse density N/C, in Fig.2.5 (full
curves, blue and red). In the fully connected regime we find a result, corrob-
orated also by computer simulations, similar to the one obtained with the
binary model, with however a huge difference in capacity between square
and hexagonal grids, and a value ∼ 10−2 only for the latter. Moreover, it
turns out that for the square kernel the stripe or band solutions of the next
section are the global minima, and the square solutions are only marginally
stable. In all cases the capacity increases as the connectivity density de-
creases, reaching an asymptotic value as N/C →∞.

The quantitative results for hexagonal grids has implications consistent
with those of the binary model: it suggests that, again, a network of grid
cells, for which a plausible number of synapses per neuron may be in the
order of thousands, and with a connectivity, say, of order C/N ' 0.1, would
have the capacity to encode perhaps a hundred different environments.

2.2.3 Sparsity and noise reverberation

The binary model shows that the difference in capacity between hexagonal
and square grids results from the effective interactions among the fields in
different tiles, as it emerges only with wide kernels and dense coding. When
both are sparse, hexagonal and square grids are roughly equivalent. The
w → 0 limit can be worked out analytically and αc → 0 in both cases, but
only after having reached a maximum around αc ' 0.02 for quite sparse
codes, w ' 0.03 and f ' 0.015.

Sparse coding is known to suppress noise reverberation (leading to small
ψ), but remarkably this relatively large capacity is approximately preserved
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for hexagonal grids with dense coding, w ' 0.5 and f ' 0.25, illustrating
the efficiency with which this compact arrangement minimizes interference.

The threshold-linear model affords complementary insight, again on how
the hexagonal/square capacity difference depends on the units active in each
attractor reverberating their activity. Mathematically, this is expressed ex-
plicitly by the dependence of Eq.2.8 on the order parameter ψ, which quan-
tifies the amount of reverberation through the loops in the networks. The
physical meaning of ψ can be inferred from the expression derived in ap-
pendix A.2 and A.3:

ψ = g′
T0

d
f. (2.9)

The factor g′T0/d is in fact the typical noise T0/d amplified by the renor-
malized gain g′ and multiplied by the average fraction of active units, the
f parameter as in the binary model. ψ is then the one-step loop term in
the reverberation of the noise; its effect on the capacity is illustrated by
the dashed line in Fig.2.5, in which such contribution is factored out. For
densely connected networks, storage capacity would massively increase and
relative differences would decrease without noise reverberation.

The optimal capacity for the hexagonal kernel is then (mainly) the result
of a reduced reverberation of the noise, due to the shape of the activity
distribution of its attractors: the average fraction of active units (f ∼ 0.46)
in the attractive state of the hexagonal kernel model is considerably lower
than the same fraction in the square kernel, where it would be f ∼ 0.79 for
the square grids, and is only somewhat reduced to f ∼ 0.68 for the stripes,
which replace them as the stable solutions for this kernel.
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Figure 2.5: Storage capacity in the threshold-linear model as a function of
the inverse connectivity density N/C, on a log-log scale. Full lines give αc
for the three different interaction kernels (bands in green, square grids in red
and hexagonal grids in blue). Dashed lines indicate what the capacity would
be without noise reverberation. The crosses on the left show the capacity
obtained with numerical simulations for a fully connected network.

2.3 Band solutions

In the previous analysis, we focused on “bump” states, in which activity
is localized in a grid pattern. Another possibility are partially localized
solutions: “band” states, where activity is localized along a single direction
in the elementary tile, and extends along a stripe in the orthogonal direction.

In the binary model, these band states can be oriented along an edge
of the tile (Fig.2.6(b,f)), or along the diagonal of the tile (Fig.2.6(c,g)),
or in a discrete multiplicity of other orientations. Individual units “fire”
along stripes of the same orientation, with relative offsets. We can study
the properties of some of these band states in the w − f parameter space,
to find that they are particularly favored in regions of high coding level.
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Given the connectivity range set by w, bump states are the global minima
of the free energy for low f , and one of the band states (which one depends
on θ) becomes the minimum for higher f . For example, for both square
and hexagonal grids, at small connectivity range w = 0.1, band states have
lower free energy than the bump state for coding levels beyond 0.35, while
for the larger connectivity range w = 0.5, this happens for coding levels
beyond 0.4. This is intuitive, since for sufficiently large f a band state has
a shorter boundary between active and quiescent units than a bump, and it
is the length of the boundary that raises the free energy above its minimum
value. Moreover, we can study how these different states are separated by
computing the size of the free-energy barrier to cross to go from one state to
another. The method to compute this barrier is sketched in Fig.2.7(c) and
explained in more details in appendix D. In Fig.2.7(d) we show the size of
the barriers to cross to go from a “bump” state to “band” states.

On the range of coding levels where these two kinds of states co-exist,
the “bump” state is always more robust for an hexagonal grid compared to
a square grid, as shown by the higher barrier size in an hexagonal grid (blue
curve, from Bump to Band Edge or Band Diag. state) compared to square
grid (full red curve, from Bump to Band Edge state).

A different behaviour is observed in the threshold-linear network. In this
case, the rigid symmetry imposed by the 3-cosine interaction kernel makes
the bump pattern a global minimum. In the 2-cosine case, instead, band
state are stable solutions, corresponding to a macroscopic overlap with only
one of the two cosines. We can describe bands also with a 1D interaction
kernel, with a single cosine, and compare the storage capacity for band
patterns with the one for square and hexagonal grids. In Fig.2.5, the green
line shows the capacity for band patterns as a function of the connectivity.

For a densely connected network, it is above that for square grids, and the
barrier methods indicates that these are only marginally stable to collapsing
into stripes. This is in line with the reduction of the capacity from one to
two dimensions shown in [38]. Interestingly, as soon as the emergence of a
third cosine is allowed the capacity is instead enhanced, surpassing the 1D
kernel except for very low values of connectivity density.
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Figure 2.6: Different solutions to the saddle point equations in the binary
model. Bumps (a,e) are stable at low f (f=0.2 in the figure). Edge-oriented
and diagonal bands are stable solutions for the θ = 60° tile at higher f (e.g.
f=0.4, f,g), but only the former (b) are stable for θ = 90°.̇ Uniform solutions
(d,h) are always unstable below the critical capacity.
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Figure 2.7: Bump and band states in the binary model. Free-energies of
the bump and band states for hexagonal grids (a) and square grids (b). (c)
Free-energy barriers are given by the difference in free-energies between an
unstable mixed-state (band edge + bump shown here) and a metastable
state (bump state shown here). (d) Size of the free-energy barriers to cross
to go from the bump state to band states. w = 0.1, α→ 0.

2.4 Discussion

Our results indicate that, given appropriate conditions, a neural population
with recurrent connectivity can effectively store and retrieve many hexag-
onally periodic continuous attractors. This possibility suggests that a reg-
ular grid code may not be restricted to represent only physical space; it
could also express continuous abstract relations between arbitrary features,
at least if they can be mapped to a two-dimensional space. This would
however require a system flexible enough to store and retrieve uncorrelated
grid representations. Our results show that this flexibility does not need,
in principle, separate neural populations for separate representations, but
can be achieved by a single local ensemble, provided it can learn effectively
orthogonal representations.
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Given the recent observation of non-spatial coding – a consistently tuned
response to the “position” along a 1D non-spatial variable, sound frequency,
during a sound manipulation task – by neurons that qualify as grid cells in
a 2D spatial exploration task [69], it would be interesting to know whether a
similar selectivity can be observed for a 2D non-spatial variable, as suggested
by indirect observations of hexagonal modulation [70].

Several important questions are left open for future investigation. First
of all, if global remapping is possible within a grid cell population, why has
it not been observed experimentally? Possibly, a remapping capacity of grid
cells may have been hidden by the fact that multiple mappings were only
studied in simple, empty, flat environments — and then they turned out to
be the same, modulo translations [57].

The hypothesis of a universal grid, that shifts without deformation across
an environment and from one environment to the other, faces severe difficul-
ties as soon as curvature is taken into consideration. In curved environments,
rigid translations are not possible, and the geodesic transformations that
partially substitute for them do not leave field-to-field relations unchanged,
making a universal grid a priori impossible. Nevertheless, natural environ-
ments show a wide range of both positive and negative curvature, which
does not seem to pose any problem to the navigational skills of rodents, or
of other species. It is then conceivable that the apparent universality of the
grid pattern comes from the experimental restriction to flat environments,
which all belong to the same, rather special, class of two dimensional spaces
with zero curvature, and that a richer grid behavior is required in order to
code for position in more general spaces.

The emergence of grid representations in curved environments has been
investigated with a model based on single cell adaptation [73][74], which
illustrates the emergence of different regular patterns for distinct ranges of
curvature. Estimating the storage capacity of recurrent networks expressing
curved grids, however, poses some challenges. Since shifting the grid pat-
tern along a curved surface moves individual fields by a different amount,
the relationships between grid units cannot be reduced to the relationships
between a single pair of their fields. Long-range translational coherence be-
comes impossible. Curved grids can be only partially coherent, and whether
this partial coherence is sufficient to build stable attractors is an open prob-
lem [80].

A second open problem is the ability of a network encoding multiple
charts to support path integration, since the noise introduced by other charts
is likely to introduce discontinuities in the dynamics shifting the activity
bump, impacting the accuracy of the integrator. It has recently been sug-
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gested [81] that interactions between different grid modules (each encoding
a single chart or coherent ensemble of maps) can enhance the robustness to
noise during path integration. The possibility that this result generalizes to
modules encoding multiple charts, and the analysis of the capacity deriv-
ing from interactions between modules, are beyond the scope of the present
work, but deserve future investigation.

Finally, a third issue concerns the learning dynamics that sculpts the
grid attractors. What is the mechanism that leads to the attractors of
the recurrent network? Does a single grid dominate it, in the case of flat
environments? Can self-organization be unleashed by the interplay between
the neural populations of mEC, including non-grid units, and hippocampal
place cells, aided by the dentate gyrus [82]? Including the hippocampus may
be needed also to understand the distortion of the grid pattern, reported in
several experimental studies [58][62][64], that by disrupting long-range order
also weakens coherence.

At the system level, a finite storage capacity for the grid cell network
implies the possibility that medial Entorhinal Cortex, or any other area in
the brain [70] that is observed to include grid-like units, can serve context
memory. This would turn upside down the widely shared notion that mem-
ory for the specific spatial features of each environment is only available
downstream, in the hippocampus, and conceptually reunite medial Entorhi-
nal Cortex with other regions of the mammalian temporal lobe, known to
be dedicated to their own flavour of memory function [83].

Moreover, the possibility of multiple uncorrelated continuous attractors
in flat environments, combined with the discovery of transitions between
(highly correlated) states in which the grid is the same but the peak fir-
ing rate of each field is different [71], and with a new understanding of the
disorder and frustration inherently associated to the grid representation of
curved environment [80], puts to rest the rigid order which had appeared
as the most salient character of the newly discovered grid cells. It suggests
instead a sort of spin glass at intermediate temperature, i.e., that in order
to code densely and efficiently for position on (many) continuous manifolds,
grid cells have to be equipped with the flexibility and the ability to compro-
mise characteristic of self-organized disordered system.
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Chapter 3

Angular and linear speed
cells in the parahippocampal
circuits

As we briefly summarized in chapter 1, one of the roles of the hippocampal
region seems to be the integration of multimodal information (coming from
a variety of sensory and associative cortices, as well as deeper structures)
to build a dynamic memory representation of an environment or an event
[84] [85]. The accurate update of this representation, in response to changes
in external stimuli or through the integration of self movements, is of great
importance for successful navigation, as well as for other cognitive processes.
In the context of spatial cognition, information integration is implemented
in interconnected subareas of the hippocampal region through neurons cod-
ing for specific instantaneous navigational features such as position (place
cells and grid cells) [19][20], direction (head direction cells) [86], and bound-
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aries (border cells) [21]. The accurate updating of spatial representation is
thought to depend crucially on self-motion signals and their integration with
both positional and directional information [23],[87]. Despite their impor-
tant role, where and how self-motion signals are integrated remains largely
elusive.

The existence of neurons whose firing rate is modulated by running speed
has been reported in the CA1 region of the hippocampus and in the me-
dial entorhinal cortex (MEC) in conjunction with positional information
or as an (apparently) self-standing code. [24][88]. In addition, speed has
been reported to influence oscillatory activity recorded in the hippocam-
pal field potential where the theta power seems correlated to locomotory
activity [89],[90]. In contrast, angular velocity coding has not been estab-
lished yet in principal neurons of the hippocampal region: most reports come
from recordings of deeper structures (e.g. lateral mammillary nuclei, dorsal
tegmental nucleus) linked to the processing of vestibular information [91],
[92].

Nevertheless, many models of spatial cognition assume the existence of a
continuous attractor network (CAN) in which neurons coding for instanta-
neous navigational correlates – such as position and direction – are connected
by a population of cells conjunctively coding for position, direction and self-
motion [23],[33],[36]. These conjunctive cells are hypothesised to mediate
the shift of activity from position at time t to the next position at time t+1
(see Fig.3.1). They have been referred to as an ”hidden layer”, a term that
hints at the fact that the existence of cells presenting such complex conjunc-
tion of coding is hypothetical. Support to the CAN models was recently
provided by investigations of the Drosophila melanogaster central complex
which exposed the existence of a ring of head direction cells whose activity
is modulated by angular velocity [93],[94]. How much a rigid structure of
this kind is common in species beyond arthropods, and how it could flexibly
support high level cognitive behaviour, is however an open question.

To understand the circuit mechanism by which spatial representations
can be updated in mammals, in this work we analyze the activity of 1436
principal neurons in all layers of three interconnected subareas of the parahip-
pocampal region of rats (MEC: 396 cells; presubiculum: 605 cells; para-
subiculum: 435 cells), recorded by Boccara et al. [2] in a previous study.
The recordings where performed during ten minutes long free foraging ses-
sions in open environments, and allow to study the effects of self-motion sig-
nals on the firing of individual neurons. We specifically investigate whether
parahippocampal neurons could respond to both linear and angular self-
motion signals. Our study reveals the existence of parahippocampal neu-
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rons coding for speed and angular head velocity, as well as a rich structure
of cells coding conjunctively for direction, position and self-motion. Consid-
ering that linear and angular speed are respectively the derivative in time
of position and direction, we speculate that our results may uncover a more
general algorithm for the updating of any type of information.

3.1 Angular velocity coding in the parahippocam-
pal region

First, we ask whether parahippocampal neurons respond to an angular head
velocity (AHV) signal, i.e. the derivative of head direction in time. To that
end, we compute, for each cell, an angular velocity score as the Pearson
product moment correlation between the instantaneous value of angular ve-
locity and the firing rate of the cell across the recording session (appendix
B, [24]). We define cells as AHV modulated when their score is greater than
the 99th percentile of the shuffled distribution. This method leads us to
classify a total of 246 cells as angular head velocity (AHV) cells, amounting
to about one sixth of all parahippocampal cells (MEC: 16.9%; Prs: 17%;
PaS: 17.2%, Fig. 3.1 and C.1). AHV modulation is uniformly distributed
across all layers of each region (Fig. C.2), a part from the remarkable ab-
sence of AHV cells in MEC LII. The reason for this absence, that we find to
be concomitant with the absence of head direction coding (see below), will
be addressed in the discussion.

39



Figure 3.1: Angular velocity cell in the parahippocampal cortex
(a) Whole rat brain, with partially removed left hemisphere to enable a mid-
sagittal view of the right hemisphere and outlines of hippocampal formation
(yellow), presubiculum (blue), parasubiculum (pink) and MEC (green). (b)
Schematics ring attractor depicting the updating of head direction code from
time t (left) to time t+1 (right) following angular movement (middle). The
outer layer of head direction (HD) cells is connected to a “hidden” inner
layer of conjunctive HD-by-AHV cells. The colour represents neural acti-
vation from maximum (red) to minimum (blue). (c) Proportions of AHV
cells within MEC (top), PaS (middle) and PrS (bottom). The shaded ar-
eas represent the intersection between AHV-CCW & AHV-BiDir (darker
shade) or between AHV-CW & AHV-BiDir (lighter shade). Upper right
corner boxes: representative Nissl stained sagittal section showing example
recorded track for each area. (d) Distribution of unidirectional (left) and
bidirectional (right) AHV scores across MEC (top), PaS (middle) and PrS
(bottom) cell population comparing observed (coloured curve) and shuffled
data (grey bars). Dashed lines represent 99 percentile thresholds for CCW-
and CW-AHV (left) and Bidir-AHV (right).
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As per our definition, AHV cells are neurons whose firing rate is pos-
itively modulated by angular velocity, meaning that these cells are more
active when the animal is turning its head. About half of the AHV cells
have their activity modulated solely when the animal had its head turning
in one direction, either clockwise (CW) or counterclockwise (CCW). The
firing rate CW (CCW) cells shows a positive (negative) correlation with the
instantaneous value of angular head velocity (Fig.3.2 and 3.3a). The other
half of the AHV cells are bidirectional (BiDir) and modulated by angular
motion in both directions – their score was calculated by correlating their fir-
ing rate with the absolute value of the angular head velocity– (MEC: 26.8%
CW, 31.0% CCW, 58.2% BiDir; Prs: 25.9% CW, 23.1% CCW, 64.4% BiDir;
PaS: 32.0% CW, 30.0% CCW, 52.0% BiDir, Fig. 3.1 and C.1, note that
the percentages do not sum up to 100%, since unidirectional and bidirec-
tional populations can overlap). All layers of each region presented similar
proportions of CW, CCW and bidirectional AHV cells (Fig. C.2). AHV
modulation is stable in time across all regions and we observe no change in
modulation intensity (AHV score) while comparing successive half-sessions
(Pearson correlation ρ=0.52, p < 0.001, Fig. 3.3b).

In order to further characterize how angular velocity is encoded in the
parahippocampal region, we fit the rate-response to AHV tuning curve of
modulated neurons with either a linear or a sigmoid function (see appendix
B). The majority of AHV cells (68 %) are better described by a linear fit,
the remaining third by a sigmoid fit (Fig.C.3). The steepness of the sigmoid
is usually low (Fig. C.3): for most AHV cells the rate depends quasi-linearly
on the angular head velocity value.

Given that our scoring method pre-suppose that a neuron firing rate
responds quasi-linearly to AHV, we analyse all recorded cells with two ad-
ditional scoring methods that do not depend on such assumption. These
methods would allow us, for example, to flag cells responding to a specific
speed band. The first additional score is inspired by a method commonly
used to characterized spatial modulation [95]: the score of each cell is ob-
tained by computing the information per spike that each neuron conveys
about the running speed or AHV. The second additional method we use to
qualify AHV modulation is a generalized linear model (GLM) approach to
calculate a neuron firing profile as a function of velocity values [88]. We label
cells as AHV-modulated when the fitted velocity function is a better pre-
dictor of the cell activity than a null model with constant firing profile (see
appendix B and Fig. C.4). While these approaches reveal a fraction of AHV-
modulated cells not captured by linear scoring method (and vice-versa), the
cell populations yielded by the three methods are significantly overlapping
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(Binomial test, p < 0.001, Fig. C.4). Most AHV cells solely picked up by
the spatial information and GLM methods are anti-correlated with angular
velocity – their activity is maximal when the animal is not turning its head.
Nevertheless, given that both the fitting and the additional analyses show
a dominance of linear (or quasi-linear) behaviour among the selected AHV
cells, we will use the correlation method for all further analysis.
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Figure 3.2: Example AHV cells in MEC (top), PaS (middle) and PrS (bot-
tom) showing firing rate as a function of angular velocity (in rad/s), score in
upper right corner. From left to right: CW-AHV (dark pink), CCW-AHV
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Figure 3.3: (a) Comparison between z-scored firing rate of an example AHV
cell (pink curve) and instantaneous angular head velocity (black curve). (b)
Correlation between the AHV score calculated in the first and second half
of the recording session.

3.2 Parahippocampal neurons upstream of the en-
torhinal cortex code for linear speed

Once we established that angular velocity coding is widely spread across sev-
eral parahippocampal area, we test whether linear speed coding also extends
beyond the medial entorhinal cortex (MEC). To that end, we determine the
speed score of each cell as a Pearson product moment correlation between
the instantaneous value of rectilinear speed and the firing rate of the cells
across the recording session, in a fashion similar to what we do in the case
of angular head velocity and to what has been done in previous studies on
speed cells [24]. With this method we classify a total of 277 speed cells.
Our results show an uniform presence of speed cells in all the layers of the
MEC, in similar proportions to what was previously reported [24] (MEC all:
16.7%, LII: 23.9%, LIII: 18.7%, LV: 12.7% and LVI: 13.7%; Fig 3.4, C.1 and
C.2). In addition, we observe that rectilinear speed signals can be found
upstream of the MEC, in about one fifth of both PrS and PaS cells (Prs:
20.6%; PaS: 19,8%, Fig. 3.4, 3.5 and C.1).

43



0.00

0.05

0.10

0.15

0.20

P
ro

p
o

rt
io

n
s

MEC PaS PrS

F
re

q
u

e
n

c
y
 d

e
n

s
it

y
 (

a
.u

.)

0

8

12

4

F
re

q
u

e
n

c
y
 d

e
n

s
it

y
 (

a
.u

.)

0

8

12

4

F
re

q
u

e
n

c
y
 d

e
n

s
it

y
 (

a
.u

.)

0

8

4

-0.4 -0.2 0.0 0.40.2

MEC

-0.4 -0.2 0.0 0.40.2 -0.4 -0.2 0.0 0.40.2

speed score (a.u)speed score (a.u) speed score (a.u)

PaS PrS

t t+1

a

b c

Figure 3.4: Speed cells proportions across the parahippocampal cortex. (a)
Schematics of the update of the encoded position in a linear attractor, from
position t (left) to position t+1 (right) following movement (middle). The
outer layer of conjunctive grid-by-HD cells is connected to a “hidden” in-
ner layer of conjunctive grid-by-HD-by-speed cells. The colour represents
neural activation from maximum (red) to minimum (blue). (b) Proportions
of speed cells in MEC, PaS and PrS. (c) Distribution of speed scores in
MEC, PaS and PrS. The observed (red line) and shuffle data (grey bars) are
compared, dashed lines represent the 99-percentile threshold for each region.

Speed cells are uniformly distributed across all layers in each area (Fig
C.2). As for AHV cells, speed cells are stable across time (Fig. 3.6).

We next explore whether all speed cells were responding similarly to in-
crease in rectilinear motion regardless of their anatomical location. Given
that speed is a derivative of position in time while AHV is a derivative of
head-direction in time, we are particularly interested in modulation prin-
ciples that could apply to both populations. To that end, we perform the
same tuning curve fitting analyses previously performed on AHV cells. As
for AHV neurons, we observe both linear and sigmoid tuning curves. Yet
in contrast with the AHV population, the sigmoidal fit is slightly more pre-
dominant (56%). This result seems to be due to a saturation effect at high
speeds, probably related to the low sampling in that speed band (Fig. C.3).
Again, the low steepness of the observed sigmoids (Fig. C.3) allows to qual-
ify the dependence of the firing rate on linear speed as close to linear.

Also in this case, we further analyze speed modulation with the same
two methods (a spatial information score and a GLM approach) used for
AHV cells. The population of speed cells we detect with these methods sig-
nificantly overlaps with those obtained with our correlation scoring method
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(binomial test, p-value < 0.001; Fig. C.4).
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Figure 3.5: Examples of speed cells tuning curves in MEC (a), PaS (b) and
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Figure 3.6: (a) Comparison between z-scored firing rate of an example speed
cell (red curve) and instantaneous linear speed (black curve). (b) Correla-
tion between the speed score calculated in the first and second half of the
recording session.

3.3 Conjunctive coding of primary (place, direc-
tion) and self-motion signals

We proceed to investigate to which degree self-motion signals are co-existing
in conjunction with other types of coding at the unit level: this interaction
has an important role in many theories of spatial cognition, and in continu-
ous attractor models in particular. We compute the grid and head direction
(HD) scores of each recorded unit, and label as significantly modulated cells
whose score exceed the 99th percentile of the score distribution calculated
on shuffled data (appendix B). With this analysis we find that the majority
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(80.4%) of AHV cells code for at least one other feature (HD: 55.2%; grid:
13.4%; grid-by-HD: 5.6%; rectilinear speed: 33.7%, Fig.3.7). These percent-
ages are similar to the percentages observed in the general population (HD:
53.3%; grid: 17.8%; grid-by-HD: 7.7%, rectilinear speed: 19.2%).

A similar distribution of conjunctive coding is observed among speed
cells (HD: 35.4%; grid: 18.7%; grid-by-HD: 3.2%; AHV: 29.9%, Fig. 3.8.
We observe all possible types of conjunction of code including AHV-by-HD
(the hidden layer of directional CAN models) and grid-by-HD-by-speed (the
hidden layers of positional CAN models). We do not observe any significant
difference in the distribution of conjunctive coding across layers of each area,
a part from MEC LII, in which both HD cells and AHV cells are absent (Fig.
C.2).

The scores (grid, HD, AHV and linear speed score) are independent from
each other and we do not observe any significant correlation between them,
with the exception of a small correlation between speed and bidirectional
AHV scores (Pearson r= 0.29, p-value < 0.001) and a small anti-correlation
between speed and HD scores (Pearson r=- 0.14, p-value <0.001).

It is important to observe that the observed distribution of mixed se-
lectivity is compatible with a simple hypothesis of independent assignment
of each of the coding properties in the general population: cells coding for
different behavioural features neither segregate, nor cluster together. This
is very different from what would be expected by models requiring a precise
wiring between different sub-populations. The implications of this fact will
be discussed below.

In order to grasp whether self-motion properties (i.e. speed, AHV) are
encoded in a similar fashion to instantaneous properties (i.e. position, di-
rection), we compare the firing properties of each class of neurons. We
observe that cells coding for self-motion signals exhibit higher average firing
rate than cells coding for position or direction (t-test, p-value < 0.001, Fig.
C.6). They also show a shorter average inter-spike interval (t-test, p-value <
0.001, Fig. C.6) and a larger peak firing (defined as the fifth quintile of the
rate distribution, t-test, p-value < 0.001, Fig. C.6). These differences could
be explained by the fact that the monotonic firing profile used to encode
motion signals is less sparse than the receptive field coding of grid and HD
cells which are largely silent outside their firing field.
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Figure 3.7: Conjunctive coding between HD, grid and AHV cells. (a) In-
tersection between angular head velocity (AHV), grid and head direction
(HD) cells. The bar on the left shows the proportions of cells qualifying as
grid (yellow), HD (blue) and grid x HD (green) cells in the total popula-
tion. In grey are cells neither coding for HD nor grid. The bar on the right
(pink contour) shows the same distribution among cells qualifying as AHV
cells. (b) Scatter plots showing the intersection between grid, HD and AHV
scores. Plot on the left: unidirectional – UniDir – AHV: i.e. CCW-AHV
and CW-AHV. Plot on the right: bidirectional – BiDir– AHV. The colour
code is the same as in (a). A pink contour denotes a modulation by AHV.
Dotted lines represent region-averaged classification thresholds, computed
to guide the visualization. (c) Examples of the four different kinds of AHV
modulated cells, colour coded as in (a). From left to right: AHV tuning
curve, HD polar plot, spatial firing rate map, spatial autocorrelogram.
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Figure 3.8: Conjuntive coding between HD, grid and speed cells. (a) Same
as in Fig 3.7, for speed cells. The red contour bar represents percentages of
principal cells within the speed cell population. (b) Scatter plots showing
the intersection between grid, HD and AHV scores. A red contour denotes
a modulation by speed. (c) Examples of the four different kinds of speed
modulated cells, colour coded as in (b).

a

Figure 3.9: Intersection between angular head velocity and speed cells (a)
Percentages of cells in the whole population. Pink: cells coding only for
AHV; Red: cells coding only for speed; Purple: cells coding for speed and
AHV ; Grey: cells neither coding for AHV nor speed. (b) Scatter plots of
AHV and speed scores in the population. Plot on the left: unidirectional
– UniDir – AHV: i.e CCW-AHV and CW-AHV. Plot on the right: bidi-
rectional – BiDir – AHV. Colour code as in (a). Dotted lines represent
region-averaged classification thresholds. (c) Examples of two kinds of con-
junctive AHV X speed cells. Plots show the firing rate as a function of the
angular velocity (pink) or speed (red). Left panel: speed x UniDir-AHV
cell. Right panel: speed x BiDir-AHV cell.
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3.4 Self-motion coding is independent of theta mod-
ulation

The theta rhythm of the local field potential has historically been strongly
associated to running speed, and plays a crucial role in many theory of
hippocampal function and models of spatial cognition. We therefore inves-
tigate whether AHV and speed cells have their activity modulated by theta
rhythm. Following previously published work [2], we define a cell as theta-
modulated when the mean spectral power around the peak in the 5-11 Hz
range is at least fivefold greater than the average spectral power in the 0-125
Hz range (see appendix B). We observe that only around 40% of the AHV
and the speed cells pass these criteria for theta modulation, while many of
the remaining cells are not showing any modulation by theta (Fig. 3.10).
The proportion of theta modulated cells within AHV/speed cells is compa-
rable to the proportion observed in the general population (Fig. 3.12).

There is no significant correlation between AHV score and theta score, or
between speed score and theta score (Fig.3.11, Pearson correlation, p-value
> 0.05). Conjunctive coding for grid or head direction does not influence
the proportions of velocity cells that are theta modulated (Fig. 3.12). Theta
modulation is uniformly distributed across all layers of each area except for
MEC LII, that shows more theta modulation, and MEC LVI, that shows less
(Fig. C.7, t-test, pval < 0.01). The proportion of velocity cells theta modu-
lated in each layer does not differ from what is expected based on the theta
modulation observed in the general population except from MEC LVI speed
cells, that showed less theta modulation than expected (Fig. C.7, t-test,
pval < 0.05). Together, these results suggest that the code for self-motion
in the parahippocampal region is largely independent of theta modulation
at the single cell level.
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Figure 3.10: Speed and AHV coding is independent of theta (a) Frequency
of unidirectional AHV cells (first row), bidirectional AHV cells (second row)
and speed cells (third row) within the population of derivative cells (speed
+ all AHV). Dashed bars represent the fraction of theta modulated cells.(b-
c-d) Examples of theta modulated (bottom row of each section) and non-
modulated (top row each section) derivative cells. (b) Tuning curves: firing
rate as a function of the angular velocity or speed. (c) Time autocorrelogram
of the firing rate of the cell. (d) Power spectrum. First column: power in
the range 0-20 Hz; second column: full spectrum (0-200 Hz)
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Figure 3.11: Speed/AHV scores and theta scores are uncorrelated. Scatter
plots of theta scores versus unidirectional AHV (a), bidirectional AHV (b)
and speed (c) scores. Cells are color coded according to their label. Black:
theta modulated; red/pink:speed/AHV modulated; grey: not modulated.
Dashed lines represent classification thresholds.

Figure 3.12: Proportion of theta modulated cells in different populations.
(a) Distribution of speed cells (red), AHV cells (pink,), grid cells (yellow),
HD cells (blue) and unclassified cells (grey) in the whole population. Dashed
bars represent the proportion of theta modulated cells. (f) Frequency of
theta modulated cells among speed cells (left, red background) and AHV
cells (right, pink background). Cells are divided by type: “pure speed” (red),
“pure AHV” (pink), conjunctive grid x speed (yellow left), conjunctive grid
x AHV (yellow right), conjunctive HD x speed (blue left) and conjunctive
HD x AHV (blue right).
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3.5 Discussion

In this study we revealed the existence of parahippocampal principal neurons
whose activity is modulated by both angular and linear self-motion signals.
Extensive mapping of the parahippocampal region showed that this pop-
ulation is spread homogeneously across all layers of several interconnected
areas upstream of the hippocampal formation: the medial entorhinal cortex
(MEC), the presubiculum (PrS) and the parasubiculum (PaS). We observe
that some neurons modulated by self-motion signals seemed to only respond
to either angular head velocity or linear speed. Yet, the majority of the
recorded neurons modulated by self-motion signals are also concomitantly
responding to spatial or directional information. Such integration at the
unit level may be a crucial mechanism underlying the generation and the
updating of the representation of position (place and grid cells) and direction
(head direction cells) in the hippocampal/parahippocampal circuits.

We show that both angular and linear self-motion signals are encoded
in a different manner with respect to static instantaneous navigational cor-
relates – such as position or head direction. Head direction, grid, and place
cells tend to be active only when an individual is either in a specific posi-
tion or with its head in a specific direction. In contrast, only a negligible
proportion of self-motion modulated neurons responded preferentially for
a given speed or angular velocity. The vast majority saw their firing rate
linearly (or quasi-linearly) ramp up proportionally to the correlate. This
difference might be the hallmark of a general strategy for the neural coding
of scalar quantities – speed and angular velocity in this case – as opposed
to neural activity manifolds used to encode position and direction. In addi-
tion, self-motion modulated neurons generally showed a much higher firing
activity with respect to neurons coding for instantaneous navigational cor-
relates. Given the similarity between the responses to speed and angular
head velocity signals, we hypothesize that this code for self-motion might
be an just an instance of a more general sensitivity of the parahippocampal
formation to the variation in time of behaviourally relevant quantities.

Before our study, angular head velocity (AHV) cells had been mainly
characterized upstream of the hippocampal circuits, in the deeper structures
linked to the processing of vestibular information (e.g. lateral mammillary
nuclei, dorsal tegmental nucleus, thalamic nuclei and striatum) [91], [92],
[96]. Some example of AHV modulation was reported in the retrosplenial
cortex [97],[98] and has been linked to the accurate processing of visual
inputs in the primary visual cortex [99]. In addition, angular head velocity
was shown to influence the preferred orientation of some presubicular head
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direction cells and to modulate the firing rate of a small fractions of fast
spiking presubicular interneurons [100].

We observed cells modulated by angular head velocity in the presubicu-
lum, the parasubiculum and the MEC. We hypothesised that such signals
were not reported in previous studies either because of a restricted scope in
analyses or because recordings were often clustered in the most dorsolateral
part of the presubiculum, at the border of the retrosplenial cortex. Instead,
the recordings analyzed here come from a much larger population, spread
out across the medio-lateral and antero-posterior axis. Nevertheless, it is
worth noting that these recordings do not show any topographic organisa-
tion of self-motion modulation.

Since the discovery of grid cells, many have attempted to understand how
such a strikingly regular signal could be generated by individual neurons. A
speed code is central to most of this theoretical work and a break-through
was the characterization of speed cells and speed modulation in the MEC
[24]. Interestingly, recent experimental work has demonstrated that grid
cells activity is dependent on the integrity of the speed signal [101]. Likewise,
the stability in head direction coding seems dependent on angular head ve-
locity (AHV) signal [102] and vestibular inputs [92]. Therefore, self-motion
signal could be similarly involved in the generation and the maintenance of
both position and direction signals. It is interesting to note that in MEC
LII, where there is virtually no HD signal, we find no sensitivity to AHV,
arguing for the importance of a local coexistence of the two types of signals
for the correct functioning of the spatial code.

The results presented here offer experimental evidence for the existence
of a mechanism for the integration of speed and angular velocity signals
that could subserve the update of the representation of space and orienta-
tion. The fact that we observe cells that code conjunctively for “static”
and self-motion correlates could be taken, at first sight, as an experimen-
tal confirmation of the existence of the “hidden layer” of conjunctive cells
hypothesized to provide the update mechanism required by continuous at-
tractor network models. However, our results challenge theories assuming
very specific architectures, that would require, for example, all speed and
AHV cells to be conjunctively coding for position and head direction. In-
deed, we observe that scores (i.e. grid, HD, AHV and linear speed score)
show no correlation and the observed percentages of conjunctive cells are
compatible with a scenario of independent assignment of coding properties.
It is important that future theoretical work account for this independence.
One exception to this observation is the dual absence of AHV and HD cells in
MEC LII, suggesting that AHV signal is locally represented in concomitance
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with the primary signal it serves to update. This leads us to hypothesize
that the neural circuitry needed for the representation and the updating
may coexist not only at the level of the brain area, but also locally within
a layer. Interventional studies will be necessary to test how the conjunctive
coding of static and self-motion signals is involved in the updating of the
cognitive map.

Historically, running speed has been reported to show a strong corre-
lation with the amplitude of theta oscillations recorded in the local field
potential of freely behaving rodents [89],[90]. Likewise, many place and grid
cells exhibit a strong modulation of their firing rate following those theta
oscillations, either in a phase-locked or in a phase-precessing manner. Based
on these evidence, many models have assumed that theta oscillations were
inherent to the generation of the grid signal. Among them, the oscillatory
interference-based models of grid cells assumed a velocity input to the grid
network composed of speed and movement direction [103],[104]. Here we
show that only 40% of our speed cells and AHV cells show a strong modu-
lation by theta. This decoupling between speed/velocity signals and theta
may be surprising for some. However, the role of theta in spatial coding
had already been recently challenged by two new type of evidence. First, no
theta oscillation had been recorded in the hippocampal local field potentials
of bats who do exhibit both place and grid coding [59]. Second, the mod-
ulation of the septal oscillatory activity has no consequence on grid signal
maintenance [105], therefore suggesting that non-theta septal correlates –
such as attention – were involved in the grid cell signal disruption observed
after septal inactivation.

In conclusion, the study presented here provides evidence of a widespread
parahippocampal network involved in linear and angular speed coding that
could have a crucial role in the updating of spatial cognitive maps. We
hypothesize that derivative algorithms may have a generalized role in the
updating of any type of information. Further studies, with either targeted
inactivation of neurons or testing of non-spatial correlates will be necessary
to establish whether one of the main roles of the parahippocampal region is
to ensure the accurate updating of the hippocampal representation.
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Chapter 4

Continuous attractors for
dynamic memories

We have seen in chapter 1 that neural activity in the hippocampus tends
to organize in temporally structured sequences. These sequences emerges
early during development [56], and have been hypothesized to be crucial for
memory consolidation [106] and retrieval [107], as well as for route planning
[54].

The fact that sequential activity can be present before the exposure to
the environment [55],[56] suggests that their dynamical nature is not specific
to a role in spatial cognition, but is inherent to hippocampal operation in
general. Moreover, in a recent study Stella et al. [108] showed that the
retrieved positions during slow wave sleep are not always replaying expe-
rienced trajectories, but are compatible with a random walk on the low
dimensional manifold that represents the previously explored environment.
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This suggests that what is essential are not the sequences themselves, but
the tendency to produce them: neural activity tends to move, constrained to
abstract low-dimensional manifolds, which can then be recycled to represent
spatial environments, and possibly non-spatial ones as well.

However, the activity is not constrained to a single subspace: replay
in sleep can reflect multiple environments [109],[110], the content of awake
replay reflects both the current and previous environments [107], and during
behaviour fast hippocampal sequences appear to switch between possible
future trajectories [111]. Further evidence comes from a recent study with
human participants learning novel word pair associations [112]. The study
shows that the same, pair-dependent neural sequences are played during the
encoding and the retrieval phase.

A similar phenomenology – a dynamic activity on low dimensional man-
ifolds – is present in memory schemata, cognitive frameworks that constrain
and organize our mental activity [113], and have been shown to have a rep-
resentation in the medial temporal lobe [114]. When we retrieve a schema,
our memory follows a spontaneous flow that is guided by the boundaries of
the schema.

Mechanistic models of memory usually neglect the dynamic component,
treating memories as static objects, either discrete [32] or continuous [38],[39].
The production of sequences of discrete memories can be implemented with
a heteroassociative component [115], usually dependent on the time integral
of the instantaneous activity, that brings the network out of equilibrium
and to the next step in the sequence. A similar effect can be obtained
with an adaptation mechanism [116], with the difference that in this case
the transitions are not imposed, but driven by the correlations between the
memories in a so-called latching dynamics [117],[118]. In the case of contin-
uous attractor networks, movement is induced by mechanisms that integrate
an external velocity input and make use of asymmetric synaptic strengths
[33],[37],[36]. In the simplest instantiation, the system is not a memory in
the proper sense: the activity is constrained on a single attractive manifold.

Here we propose a continuous attractor network model able to store and
retrieve multiple independent manifolds in a dynamical way. The model
relies on a map-dependent asymmetric component in the connectivity, that
produces a robust shift of the activity on the retrieved manifold. This con-
nectivity profile is thought to be the result of a learning phase in which the
mechanism of spike timing dependent plasticity (STDP) [119] produces the
asymmetry. Crucially, the asymmetry is not treated here as a “pathological”
feature, assumed to level out in the limit of long learning, but as a defining
trait of the stored memories. The balance between two components – one
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symmetric and trajectory-averaged, the other asymmetric and trajectory-
dependent – is explicit in the formulation of the model, and allows to study
their effects on memory storage.

In what follows we develop an analytical framework that allows to derive
the dependence of important features of the dynamics, such as the shift speed
and the asymmetry of the activity cluster, as a function of the relevant
parameters of the model. We show with numerical simulations that the
behaviour of the model is robust with respect to the details of the model,
depending weakly on the shape of the interactions. Finally, we estimate the
storage capacity for dynamical memories and we find it to be of the same
order of the capacity for static continuous attractors, and even higher in
some regimes.

4.1 The model

The model we consider is a continuous attractor neural network, with an
additional anti-symmetric component in the connectivity strength. We con-
sider a population of N neurons, with recurrent connectivity described by
an interaction matrix Jij , whose entries represent the strength of the inter-
action between neuron i and j. The activation function of the neurons is
threshold-linear, i.e. the output Vi of neuron i, given the input hi, is

Vi = [hi]
+ = g(hi − h0)θ(hi − h0) (4.1)

where θ is the Heaviside step function and the gain g and threshold h0

are global parameters of the network. The variables Vi are positive and
continuous, and thought to represent the firing rates of the units.

The dynamic evolution of the network is regulated by the equations:

τ
∂Vi
∂t

+ Vi =

∑
j 6=i

JijVj + b

(
1

N

∑
i

Vi

)
− h0

+

(4.2)

The first term on the right hand side represent the excitatory inputs provided
to neuron i from the rest of the network through recurrent connections. b(.)
is a global inhibition term that, together with h0 and g, regulates the average
activity and the sparsity of the network [78]. For the purpose of this work,
the global inhibition term b can be reabsorbed in h0, and will no longer be
explicitly written.

A recurrent network of this kind can encode continuous maps in its con-
nectivity matrix. In a basic model expressing static continuous attractors,
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each neuron is assigned a preferential firing location xi in the stimulus space,
and the strength of the interaction between pairs of neuron is a decreasing,
symmetric function of the distance between their preferred firing locations

Jij ∼ KS(xi − xj). (4.3)

This formula is assumed to come from a time-averaged Hebbian plasticity
rule: neurons with nearby firing fields will fire concurrently and strengthen
their connections, while far apart firing fields will produce weak interactions.
The symmetry of the function K, usually called interaction kernel, ensures
that the network reaches a static equilibrium, where the activity of the
neurons represents a certain position in the map and, if not pushed, remains
still.

4.1.1 The shift mechanism

The assumption of symmetric interactions neglects any temporal structure in
the learning phase. In the case of the learning of a spatial map, for example,
the order in which recruited neurons fire along a trajectory may produce an
asymmetry in the interactions as a consequence of a phenomenon called
Spike Timing Dependent Plasticity [119], that requires the postsynaptic
neuron to fire after the presynaptic one in order to strengthen the synapse.
This phenomenon can be accounted for in the definition of the interaction
kernel. Any asymmetric kernel can be decomposed in two contributions:

K(xi − xj) = KS(xi − xj) + γKA(xi − xj) (4.4)

where KS is the usual symmetric component and KA is an anti-symmetric
function (KA(xi − xj) = −KA(xj − xi)). The parameter γ regulates the
relative strength of the two components. KA generates a flow of activity
along the direction of asymmetry: neuron i activates neuron j that, instead
of reciprocating, will activate neurons downstream in the asymmetric direc-
tion. Mechanisms of this kind have been shown to produce a shift of the
activity bump, without its disruption [33],[36],[37]. This effect is illustrated
in Fig.4.1, and its quantitative properties are analyzed in detail in the next
section.

4.1.2 Storing multiple dynamic memories

A network with the connectivity structure described in Eq. 4.4 has a single
dynamical attractor. In order to model the autoassociative memory proper-
ties of the hippocampus, we want the system to be able to store and retrieve
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multiple manifolds, each with its own temporal structure. We construct an
interaction matrix Jij that is the sum of the contributions from p different,
independent memories:

Jij =
1

N

p∑
µ=1

K(xµi − x
µ
j ) (4.5)

Here each xµi represent the preferred firing location of neuron i in the man-
ifold representing memory µ, and K, given by eq. 4.4, contains a symmet-
ric and anti-symmetric component for each memory. The dynamic of this
network, for low memory loads α = p/N , evolves in two phases: a fast
convergence to the retrieved manifold, and then a rigid movement along it,
that replicates its temporal structure. The same activity, if projected on
the other, unretrieved manifolds, appears as random noise. When the mem-
ory load α is increased above a certain value αc, a phase transition occurs,
and the network is not able to retrieve any memory, falling instead into a
disordered state.

The value of αc, the storage capacity of the network, is estimated in
section 4.3 and shown to be large enough to allow a network of biologically
plausible size to store hundreds of different dynamical memories. Its depen-
dence on the asymmetry parameter γ shows a non-trivial behaviour that
depends crucially on the density of the connectivity on the network.

Before considering the multiple maps case, in the next section we present
a quantitative study of the dynamics of the network in the case of a single
map.

4.2 Dynamic retrieval

The presence of an asymmetry in the connection strengths prevents the
system to reach a stationary equilibrium. Instead, it generates a steady flow
of activity in the direction of the asymmetry. This flow is illustrated in
Fig. 4.1, obtained with numerical simulation of a network encoding a one,
two or three dimensional map respectively. Note that the bump of activity
translates without disruption, producing a steady flow in the asymmetric
direction.
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t1 t2 t3

(a) (b) (c)

Figure 4.1: Dynamic retrieval in different dimensions. Three snapshots of
the network activity at three different times (t1, t2 and t3) are shown for
a system encoding a one dimensional (a), two dimensional (b) and three
dimensional manifold (c). In (c), activity is color-coded (blue represents
low activity, red high activity, silent neurons are not plotted for better read-
ability). In all cases the anti-symmetric component is oriented along the x
axis.

The dynamic behaviour of the system and its features can be described
analytically with a generalization of the framework developed by Battaglia
& Treves [38]. For this purpose, is easier to formulate the problem in the
continuous limit, and describe the population activity by its profile V (x) on
the attractive manifold parametrized by the coordinate x, and the dynamical
evolution as a discrete step map, equivalent to Eq. 4.2.

V (x, t+ 1) = g[h(x, t)]+ (4.6)

h(x, t) =

∫ ∞
−∞

dx′K(x− x′)V (x′, t)− h0 (4.7)

The requirement of a rigid shift of population activity is then imposed
by setting the activity at time t + 1 to be equal at the activity at time t,
but translated by an amount ∆x, proportional to the speed of the shift. In
this way we find the equation:

V (x+ ∆x) = g

[∫ ∞
−∞

dx′K(x− x′)V (x′)− h0

]+

(4.8)

That we can rewrite, as:

V (x+ ∆x) =

{
g
∫

Ω dx
′K(x− x′)V (x′)− h0, if x ∈ Ω

0 otherwise
(4.9)

60



where Ω is a compact domain for which there exist a solution of Eq. 4.8 that
is zero at the boundary. This allows to exploit the fact that our threshold-
linear system is, indeed, linear in the region in which V (x) > 0.

Equation 4.9 is valid in general, but we will focus here, to derive an
analytical solution, on the one dimensional case and on an exponential kernel
in the form

K(x− x′) = e−|x−x
′| + γsign(x− x′)e−|x−x′| (4.10)

Differentiating twice Eq. 4.9, we obtain the differential equation

V ′′(x+ ∆x) = V (x+ ∆x) + 2gV (x) + 2gγV ′(x) + gθ (4.11)

This is a second order linear ODE, with constant coefficients. The presence
of the shift term ∆x inside the unknown function makes the equation non-
trivial to solve. To solve the equation, we proceed in the following way:
first, we look for a particular solution, that is easily found in the constant
function

Vc =
gθ

1− 2g
(4.12)

Then, we consider the associated homogeneous equation, and look for a
solution in the form V (x) = ekx. Where k is a solution of the characteristic
equation C(k) = 0, with

C(k) = k2ek∆x + 2gγk + 2g − ek∆x. (4.13)

This trascendental equation has to be solved graphically in the complex
domain, as shown in Fig. 4.2.
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Figure 4.2: Analytic solution of equation (4.11).The top row shows the
graphical procedure to find the complex zeros of the characteristic C(k)
given in (4.13), for three different value of γ. Black and red lines show the
zeros of the real and imaginary part of C(k) respectively. Their intersections
are the complex solutions to C(k) = 0. The blue line represent the sparsity
constraint ki = kSi . The bottom row shows the corresponding solution
shapes.

For each value of γ and ∆x, the equation shows a pair of complex con-
jugate solutions

k∗1,2(γ,∆x) = kr(γ,∆x)± iki(γ,∆x) (4.14)

The general solution of the equation will therefore have the form

V (x) =

{
Cekrx cos(kix) + gθ

1−2g if −R ≤ x ≤ R
0 if −R > x or x > R

(4.15)

In the limit case γ = 0, ∆x = 0 (Fig. 4.2, first column), the solutions
are pure imaginary (kr = 0), and we recover the solution of the symmetric
case studied in [38]. From Eq.4.15 we can see that the absolute value of
ki is related to the width of the bump, and therefore to the sparsity of the
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solution, by the relation

R =
π

2ki
(4.16)

We focus here on the case in which R is kept constant when γ changes,
i.e. the case in which the network is constrained to operate at a certain
sparsity. This constraint is enforced by requiring that the zeros of 4.13 lie in
the subspace ki = kSi , i.e. we have the same sparsity of the solution kSi of the
symmetric case. This imposes a relation between γ and both ∆x (related
to speed of the shift) and kr (related to the asymmetry of the shape of the
solution). These relationships are shown in Fig. 4.3. The similarity between
this two relationships can be understood intuitively by thinking that, for a
fixed kernel shape, the larger the asymmetry of the solution, the more the
bump with be translated by the evolution Eq. 4.8.

(a) (b)

Figure 4.3: Dependence of speed and shape on γ. (a) ∆x = −vτ as a
function of gamma. (b) Deviation of the position of the maximum of the
bump from zero. This quantity is related to the value of the real part kr of
the solution of the characteristic equation by the relation xmax = arctan(kr),
and is one way to quantify the asymmetry in the bump shape produced by
increasing γ. Note that the scale is logarithmic in γ.

The analytical results are presented here for a specific choice of the ker-
nel, but the qualitative behaviour of the model is extremely general. In
fact, numerical simulations show that a shifting bump can be obtained with
a wide variety of interaction kernels, without any relationship required, for
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example, between the symmetric and anti-symmetric components. Some
examples are illustrated in Fig. 4.4.

t1 t2 t3

(a)

t1 t2 t3

(b)

t1 t2 t3

(c)

Figure 4.4: Different interaction kernels produce similar behaviour. Three
examples of dynamics with the same symmetric component and three dif-
ferent anti-symmetric components. Top row: shape of the anti-symmetric
component KA. Bottom row: three snapshots of the retrieval dynamics
for the corresponding KA. (a) Gaussian derivative . (b) Sinusoidal. (c)
Anti-symmetric step function (θ∗ = θ(d)θ(1− d)− θ(−d)θ(d− 1)).

Despite the robustness of the general features of the behaviour, the shape
of the interaction kernel affects the details of the dynamics. Two parameters
are particularly important: the relative strength γ between the symmetric
and anti-symmetric components, and the characteristic length ξ of the anti-
symmetric component. Their effect on the dynamics are shown in Fig. 4.5.
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(a) (b) (c)

Figure 4.5: Effect of the kernel strength γ and its width ξ, in the case
of exponential kernel K(d) = e−|d| + γsign(d)e−|d|/ξ .(a) Shift speed (e)
Maximum value of the activity bump and (e) Skewness of the activity bump.

Taken together, these results show that the model can implement a dy-
namic memory system, whose dynamics is constrained to a memorized at-
tractive manifold and moves along it at constant speed without disruption.
This behaviour depends weakly on the details of the connectivity kernel and
can be implemented with a rather general type of asymmetric connections.
However, in order to effectively work as a memory, the model has to be able
to store and retrieve multiple different manifolds. The problem of storage
capacity is addressed in the next section.

4.3 Storage capacity for dynamic continuous at-
tractors

A network with the connectivity profile described in section 4.1.2 is able
to store and retrieve multiple dynamic maps. The retrieval process, as in
the single map case, unfolds in two phases: a fast transient in which the
dynamics converges to one of the stored manifolds, and a subsequent stable
shift. The second phase is illustrated in Fig. 4.6, obtained with numerical
simulations.
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(a) (b)

Figure 4.6: Dynamic retrieval in the presence of multiple memories in one
dimension (a) and two dimensions (b). Each row represents a snapshot of
the dynamics at a point in time. The activity is projected on each of the
three attractors stored in the network. In both cases, the first attractor
is retrireved, and the activity organizes in a coherent bump that shifts in
time. The same activity, projected onto the two non-retrieved maps looks
like incoherent noise ((a) and (b), second and third columns).

The number of maps that can be stored and retrieved in this way is
typically a fraction of the size of the network. Its magnitude, the storage
capacity of the system, is crucial to determine if it can effectively operate
as a memory.

To estimate the storage capacity for dynamic continuous attractors, we
proceed along two complementary paths. For a fully connected network,
where the analytical tools developed for equilibrium systems are not ap-
plicable, we take advantage of the fact that numerical simulations can be
effective for the estimation of the capacity, since the number of connections
per neuron C (the relevant parameters in the definition of the storage capac-
ity αc = p/C) scales as the number of neurons. For a highly diluted system,
on the other hand, the number of neurons is much larger than C, making
the simulation of the system very difficult in practice. We then resort to an
analytical formulation based on a signal to noise analysis [38], that exploits
the vanishing correlation between inputs of different neurons in a highly
diluted network, and does not require symmetry in the connectivity.
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In both cases we study the dependence of the capacity on two important
parameters: the map sparsity, i.e. the ratio between the width of the con-
nectivity kernel (fixed to one without loss of generality) and the size L of
the stored manifolds, and the asymmetry strength γ. We present the ana-
lytic solution for the diluted case in the next section, showing that a simple
approximation yields a remarkably accurate estimation of the capacity and
allows to decouple the effects of map sparsity and asymmetry. The capacity
is found to be monotonically but gently decreasing with both sparsity and
asymmetry.

In section 4.3.2 we present the numerical results for the fully connected
network. In this case, the presence of asymmetry can enhance the storage
capacity, that is found to be maximal for finite values of γ and of map
sparsity.

4.3.1 Analytical calculation of αc in the highly diluted limit

We consider here the highly diluted limit, the case in which the number of
connections per neuron C is much smaller than the total number of neurons
N (C/N → 0), and a number of maps α = p/C is stored. This scaling
makes the system extremely hard to simulate, but allows us to exploit its
tree-like structure and the vanishing correlations between inputs to different
neurons, and to study the network with a signal-to-noise approach that does
not require its connectivity to be symmetric.

This approach, illustrated in details in [38], involves writing the local
field hi as the sum of two contributions: a signal term, due to the retrieved
– “condensed” – map, and a noise term consisting of the sum of the con-
tributions of the other, “uncondensed” maps. In the diluted regime these
contributions are independent and can be summarized by a Gaussian term
ρz, where z is a random variable with zero mean and unit variance. In the
continuous limit, assuming that map µ = 1 is retrieved we can write:

h(x1) = g

∫
L
dx1′K(x1 − x1′)V (x1′) + ρz (4.17)

The noise will have variance:

ρ2 = αyL2〈〈K2(x− x′)〉〉 (4.18)

Where L is the size of the map, 〈〈K2(x− x′)〉〉 is the spatial variance of the
kernel and

y =
1

N

∑
i

V 2
i (4.19)
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is the average square activity.
We can write the fixed point equation for the average activity profile

m1(x), incorporating the dynamic shift with an argument similar to the one
made for the single map case:

m1(x+ ∆x) = g

∫ +

Dz(h(x)− h0) (4.20)

Where Dz = (e−z
2/2/
√

2π)dz and
∫ +

f(x)dx =
∫
f(x)θ(x)dx. The average

square activity y, entering the noise term, reads

y =
g2

L

∫
dx

∫ +

Dz(h(x)− h0)2 (4.21)

Introducing the rescaled variables

w =
−h0

ρ
(4.22)

v(x) =
m1(x)

ρ
(4.23)

And the functions

N (x) = xΦ(x) + σ(x) (4.24)

M(x) = (1 + x2)Φ(x) + xσ(x) (4.25)

where Φ(x) and σ(x) are the Gaussian cumulative and the Gaussian prob-
ability mass function respectively, we can rewrite the fixed-point equation
as

v(x+ ∆x) = gN
(∫

dx′K(x− x′)v(x′) + w

)
(4.26)

y = ρ2g2

∫
dx

L
M
(∫

dx′K(x− x′)v(x′) + w

)
(4.27)

Substituting Eq.4.27 in the expression for the noise variance 4.18 we
obtain

1

α
= g2L

〈〈
K2
〉〉 ∫

dxM
(∫

dx′K(x− x′)v(x′) + w

)
(4.28)

If we are able to solve Eq. 4.26 for the rescaled activity profile v(x), we
can use Eq. 4.28 to calculate α. We can then maximize α with respect to
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g and w: this yields the maximal value αc for which retrieval solutions can
be found.

These equations are valid in general, but here we focus on the one di-
mensional case and the exponential kernel of Eq. 4.10. In this case we have

〈〈K2(x− x′)〉〉 = (1 + γ2)〈〈K2
S(x− x′)〉〉. (4.29)

where KS(x− x′) = e−|x−x
′| is the symmetric component of the kernel. Eq.

4.26 can be transformed it into a non-linear, delayed differential equation,
that we can solve numerically. This solution procedure is illustrated in
appendix D.1. Plugging the obtained form of v(x) into Eq. 4.28 we can
calculate the capacity. The dependence of the capacity on γ is shown, for
L = 60 in Fig. 4.7.

We can see from the full dots in the figure that the contribution of
the integral in Eq.4.28 is remarkably constant in γ. This is due to the
fact that the distortions of the bump shape induced by the presence of the
asymmetry have a negligible effect on the average square activity y, whose
value is dominated by the dependence on γ of the spatial variance of the
kernel (Eq.4.18).

This allows us to approximate the the value of the integral in Eq. 4.28
with its value in the γ = 0 case. We can then calculate the capacity as a
function of γ and L by solving the symmetric case for different Ls, and then
incorporating the dependence on γ given by the kernel variance:

αc(L, γ) ∼ αc(L, 0)/(1 + γ2) (4.30)

The result is shown in Fig 4.8.
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Figure 4.7: Dependence of the storage capacity on γ, for L = 60. The
crosses show the full solution of Eq. 4.26 and 4.28. The dashed line is
obtained by taking the value of the capacity α(0) obtained with full solution
at γ = 0, and multiplying it by the scaling of the kernel variance (1 + γ2).
Full dots show the value of capacity obtained with the full solution and the
contribution of the kernel variance factored out.
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Figure 4.8: Dependence of the storage capacity on γ and 1/L (represented
as log10(1/L)).

With this approximate decoupling we see that, for sparse maps and small
values of the asymmetry, the capacity scales as

αc ∼ −
1

ln (1/L)(1 + γ2)
(4.31)

The scaling with 1/L is the same found by Battaglia & Treves [38] in the
analysis of the symmetric case, as expected: for γ = 0 the two models are
equivalent. The presence of asymmetry decreases the capacity, but does
not have a catastrophic effect: the decrease is continuous and scales with
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a power of γ. There is therefore a large range of values of asymmetry and
map sparsity in which a large number of dynamic map can be stored and
retrieved. We will see in the next section how this picture changes in a fully
connected network, in which the asymmetry can enhance the capacity.

4.3.2 Numerical estimation of αc for a fully connected net-
work

To estimate the storage capacity for a fully connected network, we proceed
with numerical simulations. For a network of fixed size N , and for given γ, L
and number of maps p, we run a number of dynamics D, letting the network
evolve from a random initial configuration. We consider a simulation to have
performed a successful retrieval if the global overlap

mµ =
1

N2

∑
i 6=j

ViVjKS(xµi − x
µ
j ) (4.32)

that quantifies the coherence of the activity with map µ, is large for one map
µ∗ (at least 95% of the overlap value obtained in the case of a single map)
and low in all others maps µ 6= µ∗. We then define the retrieval probability
as pr = Dr/D, where Dr is the number of observed retrievals.

We repeat the process varying the storage load, i.e. the number of stored
manifolds p. As p is increased, the system reaches a transition point, at
which the retrieval probability rapidly goes to zero. This transition is illus-
trated, for various values of γ, in Fig. 4.9.
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Figure 4.9: Retrieval - no retrieval phase transition for different values of
γ. Obtained from simulations with N = 1000, D = 10 and L = 10. The
non-monotonic dependence of the capacity from γ can be appreciated here:
the transition point moves towards the right with increasing γ up to γ ∼ 1,
then back to the left.

The number of maps pc at which the probability reaches zero defines as
the storage capacity αc(γ, L) = pc(γ, L)/N . Repeating this procedure for a
range of values of γ and L, we obtain the plots shown in Fig. 4.10, for net-
works encoding one dimensional and two dimensional dynamical memories.
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(a) (b)

Figure 4.10: Storage capacity as a function of map sparsity 1/L and asym-
metry strength γ, for (a) one dimensional dynamic continuous attractors,
(b) two dimensional dynamic continuous attractors.

The first thing that can be noticed is that, also in the fully connected
case, the network can store a large number of maps, for a wide range of γ
and L. A network with size in the order of ten thousand neurons could store
from tens up to hundreds of dynamical memories.

The capacity for one dimensional attractors is higher than the one for
their two dimensional counterparts. This is in line with what was found for
symmetric networks [38].

Finally, we see that the peak of the capacity is found not only for inter-
mediate values of map sparsity – again in line with what is known from the
symmetric case – but also for intermediate values of the coefficient γ. This
shows that moderate values of asymmetry can be beneficial for the storage
of multiple continuous attractors, a non-trivial phenomenon that may be
crucial for the memory capacity of biological networks.
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4.4 Discussion

The results presented here show how a continuous attractor neural network
with memory-dependent asymmetric components in the connectivity can
function as a dynamic memory. Our model is simple enough to be treated
analytically, robustly produces dynamic retrieval for a large range of the
relevant parameters and shows a storage capacity that is comparable to –
and in some cases higher than – the capacity for static continuous attractors.

The analytical solution of the single attractor case shows that the in-
teraction between the strength of the asymmetry and the velocity of the
shift can be modulated by global features of the network activity such as
its sparsity. This makes the network able to retrieve at different velocities
in different regimes, without necessarily requiring short term synaptic mod-
ifications. The insensibility of the general features of the dynamics to the
fine details of the shape of the interactions suggests that this mechanism
could robustly emerge from learning or self organization processes in the
presence of noise. The analysis of the storage capacity shows that the asym-
metry does not heavily impair memory performance, and that, in densely
connected networks, out of equilibrium effects can be beneficial for memory.

The storage capacity of out of equilibrium continuous attractors has
been calculated, in a different scenario, by Zhong et al. [120]. The authors
considered the case of an external signal driving the activity bump along
the attractor, in a network of binary neurons, and proceeded to calculate
the storage capacity with several assumptions that allowed to model the
interference of multiple maps as thermal noise. Interestingly, their main
result is broadly compatible with what we show here: in the highly diluted
regime the velocity of the external signal has a mild – detrimental – effect
on the capacity. This hints that out of equilibrium effects could show some
form of universality across different network models and implementations of
the shift mechanism.

The possibility of dynamic retrieval makes attractor models suitable for
the description and the quantification of complex memory phenomena such
as hippocampal replay. The model we propose suggests that tendency of the
activity to move in the neural population is a natural feature of networks
with asymmetric connectivity, when the asymmetry is organized along a
direction in a low dimensional manifold, and that static memories could be
the exception rather than the rule. Indeed, Mehta et al. [121] have shown
that place fields become more asymmetric in the course of spatial learning,
demonstrating that the idea that symmetry emerges from an averaging of
trajectory-dependent effects [122] does not always hold true. The model we
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presented can be useful for the quantification of the effects that symmetry
and asymmetry in the interactions have on the acquisition, retention and
retrieval of memory.

Another interesting potential use of dynamic continuous attractors is
the description of memory schemata. This will require further steps, such
as an account of the interaction between hippocampus and neocortex, and a
mechanism for the transition between different dynamical memories. Nev-
ertheless, the idea of dynamic retrieval of continuous manifold and the inte-
gration of the model presented here with effective models of cortical memory
networks [123] open promising perspectives.

Our model can describe continuous attractors with more than one di-
mension; however, it is worth nothing that in the cases analysed here the
asymmetry is constant along a single direction in each attractor. This can
describe the situation in which the temporal evolution of the memory is
structured along a certain dimension, and free to diffuse, without energy
costs, in the remaining ones. The description of several one-dimensional
trajectories, embedded in a two dimensional or three dimensional space and
possibly intersecting, would instead require a position-dependent asymmet-
ric component: this is an interesting direction that will be pursued in future
work.

Finally, the full analytical description of a densely connected, asymmetric
attractor network is a challenge that remains open, and can yield valuable
insights on the workings of the neural circuits underlying memory.
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Chapter 5

Conclusions

The work presented in this thesis aims to provide some novel ideas, quantita-
tive analyses and experimental evidence on the role of the hippocampus and
the surrounding cortices in the coding of space, time and memory. The re-
sults presented try to shed some light on open problems and suggest possible
directions for future investigation.

The theoretical analysis presented in chapter 2 shows how grid coding
is optimal for the storage of many memory in the dense regime. The two
models considered allow us to investigate the effect of both the density of
the activity (the number of active neurons in each memory) and the den-
sity of the connectivity (the number of connections per neuron). In both
cases, hexagonal symmetry allows for the storage of a far greater number
of independent memories than the simple square symmetry, when density
increases. This is due to non-trivial effects of the hexagonal shape on the
reverberation of noise through the loops of the networks, in the rate neuron
model, and to the larger metastability of the hexagonal grid pattern, in the
binary case.

The optimality of grids suggests that this kind of code could have a
broader role than a metric for space during navigation. Indeed some evi-
dence of grid-like coding has been found in regions beyond MTL [124], and
grid cells seem to be involved also in the representation of abstract spaces
[70][69][125]. The fact that the capacity for independent grid maps is largely
above unity in a biologically plausible network suggests that grid represen-
tations can be useful for memory, a theoretical argument that challenges the
standard view of the grid map as universal. This memory capacity is not
exploited in the representation of simple, flat environments [57], but could
be useful when the metric spaces represented differ more significantly. Boc-

77



cara et al. [66] and Butler et al. [67] have recently shown that grid patterns
are deformed by the presence of salient features in the environment, and the
first study shows some evidence of the presence of two distinct grid maps,
one in the presence and one in the absence of rewards. A large number of
independent grid representations could be of use for the encoding of abstract
or cognitive spaces: there is no a priori reason to assume that spaces with
possibly very different proprieties should share the same, universal repre-
sentation.

Moreover, the universality of the grid representation is incompatible with
curved surfaces, rarely encountered by laboratory animals, but very common
in the natural environments of rodents [126]. Curved environments do not
only challenge the universal grid hypothesis, but pose interesting questions
for the theory of attractor neural networks: the representation of curved
manifolds in a continuous attractor network is challenged by the impossibil-
ity of a full coherence between the representations [80]. The development
of a computational description of a memory for curved environments is an
interesting open perspective for future theoretical investigation. On the ex-
perimental side, the study of the effects of curvature on the grid pattern can
probe interesting features of spatial memory in naturalistic settings.

The analysis of electrophysiological recordings presented in chapter 3
addresses the problem of the update of the spatial representation. The con-
struction of multimodal representations of space has to be accompanied by
a mechanism to integrate the variation of the encoded parameters. In the
framework of attractor network theory, this mechanism has been hypothe-
sized to be constituted by layers of cells sensitive simultaneously to the static
correlate and its variation [23], appropriately connected to the population
responsible for the encoding of the positional/orientational information. In-
dependently of attractor network theories, the nature and extent to which
self-motion information is represented in the parahippocampal cortices is a
matter of open investigation.

Our analysis reveals that cells coding for linear speed, previously discov-
ered in MEC and CA1, are also present in similar quantity in the pre and
parasubiculum. This code for linear speed is complemented by a code for
angular head velocity, which is also spread across these areas. These results
suggest that the parahippocampal region could have a more general role in
the representation of “derivative signals”, i.e. variations of behaviourally
relevant quantities. Further investigation is required to establish the depen-
dence of successful navigation on an intact population of speed and angular
head velocity cells, as well as to clarify the role of these populations in the
encoding of the variation of non-spatial signals.
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The analysis of the overlap of speed and angular velocity cells with
“static” populations (grid and head direction cells) shows a rich structure of
conjunctive coding. The lack of correlation between different scores, and the
magnitude of the overlap between different cell populations suggests the ab-
sence of a precise, finely tuned structure. The scenario is indeed compatible
with the idea of independent assignment of the different coding properties:
the number of cells that find themselves to be sensitive to both head direc-
tion and angular velocity – for example – is the one that would be expected
if these two labels where distributed among the population independently
one from the other. This fact opens interesting challenges for mechanis-
tic models, that will have to account for this flexibility in the distribution
of coding properties in their description of connectivity architectures. To-
gether with the theoretical arguments presented in chapter 2, these results
challenge the view of a parahippocampal region whose role is rigidly estab-
lished by pre-wired, genetically determined neural circuits. They suggest,
instead, the predominance of flexible, self-organizing mechanisms, able to
shape with some freedom the firing properties and the interactions between
neurons in response to the behavioural context.

An interesting feature of “derivative” coding is the monotone dependence
of the firing rate on the value of the correlate (speed of angular velocity),
that is strikingly different from the place-like coding found in both grid and
head direction cells. We speculate that this could be related to the nature
of the quantity being represented: derivative signals are scalar quantities,
and have their range effectively bounded by the fact that position and direc-
tion cannot change too suddenly. Quantities of this kind can be effectively
represented by simple proportionality of the firing rate. On the other hand,
multidimensional and potentially unbounded quantities require a different
representation, in which a preferred location in the space is represented by
each cell. We hypothesize that this difference in the nature of coding is also
at the origin of the differences between the average firing of “static” and
“derivative” cells: lower the former as the result of a place-like, sparse cod-
ing, higher the latter, proportional to signals that are almost always strong
during locomotive behaviour.

Finally, our analysis shows that speed and angular velocity coding are
independent from the theta rhythm. This can have important implications
for theories of spatial cognition. It could suggest, for example, that the
strong correlation between speed and theta power and frequency does not
reflect a causal relationship, but could be driven by external factors. Addi-
tional investigation is required to clarify this aspect, that remains for now
nothing more than speculation.
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In chapter 4 we addressed the problem of the temporal structure of
memories. The model we propose shows that the temporal structure of a
continuously varying stimulus can be incorporated in a continuous attractor
network with the simple mechanism of asymmetric synaptic connections.
The model can robustly retrieve dynamical continuous attractors and its
behaviour is largely independent of the precise shape of the synaptic inter-
actions. This robustness is important if one thinks that these interactions,
encoding memories of past events, should be the result of a learning pro-
cess that is subject, in general, to a large amount of noise. Importantly,
dynamic retrieval is not limited to a single manifold: the network is able
to perform cued retrieval in the presence of multiple dynamic memories en-
coded in its connectivity. This does not impair the correct unfolding of the
temporal structure of the retrieved memory up to a certain number of stored
memories, that defines the storage capacity of the system. The calculation
of the storage capacity for dynamic continuous attractors shows that, for
sparsely connected network, the capacity is high enough for the storage of
hundreds of dynamic maps, and degrades gently with the strength of the
asymmetric component. Interestingly, in densely connected networks, nu-
merical simulations show that moderate values of the asymmetry can even
enhance the capacity, a non-trivial effect whose analytical understanding is
an important open direction. These results together suggest that asymmetry
in the synaptic connectivity could be crucial for memory function, allowing
the encoding of the temporal structure of memories and even improving the
storage capacity.

The dynamical retrieval of the model generalizes, in the framework of
attractor networks, the idea of cognitive maps, incorporating a temporal
organization in the low-dimensional manifold encoding the structure of the
memory. This feature is reminiscent of the idea of memory schemata – con-
structs that can guide and constrain our mental activity when we reminisce
about the past or imagine future or fictional scenarios. The use of dynamic
attractor networks for the study of memory schemata would require the in-
tegration of a mechanism describing the interaction between MTL and other
cortical areas, and a way to model transition between dynamical memories,
and is an interesting direction for future studies.
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Appendix A

Appendices to chapter 2

A.1 Mean field equations: Binary Model

The free-energy can be written, in the large N limit, in terms of macroscopic
quantities:

F =
αβ

2
r(f − q)− α

β
Ω(q, β) +

∫
µ(~x)ρ(~x) (A.1)

−1

2

∫
d~xd~y ρ(~x)K(|~x− ~y|)ρ(~y)

− 1

β

∫
d~x

∫
Dz ln[1 + eβz

√
αr+βµ(~x)]

where β is an inverse temperature or noise level, and the function Ω(q, β) is
given by

Ω(q, β) = 2
N∑

k1=1

N∑
k2=1

{
β(q − f2)

1/λk1,k2 − β(f − q)
(A.2)

− ln [1− λk1,k2β(f − q)]


+

N∑
k=1

{
β(q − f2)

1/λ0,k − β(f − q)
− ln [1− λ0,kβ(f − q)]

+
β(q − f2)

1/λk,0 − β(f − q)
− ln [1− λk,0β(f − q)]

}
.
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The order parameters minimizing the free energy functional are the average
activity ρ(~x) (see main text) and

q =

∫
d~x

∫
Dz
[
1 + e−βz

√
αr−βµ(~x)

]−2
(A.3)

r = 4(q − f2)
N∑

k1=1

N∑
k2=1

[
1

λk1,k2
− β(f − q)

]−2

+ 2(q − f2)

N∑
k=1

{[
1

λ0,k
− β(f − q)

]−2

+

[
1

λk,0
− β(f − q)

]−2
}

(A.4)

where λ enforces the constraint
∫
d~xρ(~x) = f and λk1,k2 are the eigenvalues

of the kernel K and are given by

λk1,k2 = w
J1(2
√
zk1,k2)

√
zk1,k2

(A.5)

zk1,k2 = wπ

(
k2

1 +

(
k2 − k1 cos θ

sin θ

)2
)

where J1 is the Bessel function of the first kind of order 1.

In the text we focus on the limit of vanishing stochastic noise β →∞, and
the term β(q− f), which remains finite in such limit, can be identified with
the parameter ψ of the threshold-linear model, quantifying the reverberation
through the loops of the network of the quenched noise, which is due to the
interference of the other maps.

A.2 Mean field equations: Threshold-linear Model

When an energy functions can be defined (with full or in any case symmetric
connectivity) the thermodynamics of the system is dominated by the minima
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of the free energy density

F = −T
〈〈∫

Dz ln Tr(h, h2)

〉〉
− 1

2

∑
σ,l

|mσ,l|2 (A.6)

−B(m)−
∑
σ,l

(mσ,l)2 +mB′(m)− r0y0 + r1y1

+
αd

2β

(
ln[1− T0β(y0 − y1)]− βy1

1− T0β(y0 − y1)

)
where we have maintained a notation consistent with [78] and [38], for

example

Tr(h, h2) = k +

(
πg′

2β

)1/2

exp

(
βg′

2
(h0 − h)2

)
{

1 +

[
βg′

2

1/2

(h0 − h)

]}
(A.7)

h =
∑
σl

mlσ · ηlσ +B′(m) (A.8)

−z
√

(−2Tor1)

h2 = r1 − r0 (A.9)

1/g′ = 1/g − 2h2 (A.10)

Dz =
1√
2π
e−z

2/2dz, (A.11)

while 〈〈·〉〉 denotes an average over the quenched noise (the field centers in all
other stored maps, distinct from the one which is currently expressed); and
B(x), together with the gain g, can be used to constrain the mean activity
and the sparsity of the activity pattern [78], analogous to the parameter λ
in the binary model.
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The minima are given, in the limit T → 0, by the saddle point equations

mlσ = g′
〈〈
ηlσ
∫
h>Th

Dz(h− Th)

〉〉
(A.12)

m = g′
〈〈∫

h>Th
Dz(h− Th)

〉〉
(A.13)

y0 = g′2
〈〈∫

h>Th
Dz(h− Th)2

〉〉
(A.14)

r0 =
αT0

2

1− T0β(y0 − 2y1)/d

(1− T0β(y0 − y1)/d)2 (A.15)

y1 = g′2
〈〈∫

h>Th
Dz(h− Th)2

〉〉
(A.16)

−T0g
′
〈〈∫

h>Th
Dz

〉〉
r1 =

αT0

2d

T0βy1

(1− T0β(y0 − y1)/d)2 . (A.17)

Introducing the variables

ρ2 =
αT 2

0 y0

d(1− ψ)2
(A.18)

ψ = g′
T0

d

〈〈∫ +

Dz

〉〉
(A.19)

we can write the free energy as a function of macroscopic quantities

F = −g
′

2

〈〈∫
h>Th

Dz(h− Th)2

〉〉
+
∑
σl

(mlσ)2

2

+mb(m)−B(m) +
T0ρ

2ψd

2
(A.20)

with now

g′ =
1

1
g −

αT0
1−ψ

. (A.21)

To calculate the storage capacity, we focus on the case in which a single
environment is retrieved by the network,

m1l > 0
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mπl = 0, ∀ π 6= 1,

although the analysis can be extended to the retrieval of bump states that
are localized in multiple environments. Without loss of generality, we assume
therefore that environment π = 1 is retrieved. With this assumption, and
introducing the two signal-to-noise ratios

vl =
ml

ρ
(A.22)

w =
b(m)− Th

ρ
(A.23)

that represent respectively the environment specific component of the signal
and the uniform background inhibition acting on each unit, the saddle point
equations can then be reduced to a system of two equations in two variables

E1(v, w) = A2
1(v, w)− dαA3(v, w) = 0 (A.24)

E2(v, w) = A1(v, w)

(
d

gT0
−A2(v, w)

)
− dαA2(v, w) = 0 (A.25)

where A1(w, v), A2(w, v) and A3(w, v) are the averages:

A1(w, v) =
1

v2T0

〈〈∑
l

vl · ηl

∫ +

Dz

(
w +

∑
l

vl · ηl − z

)〉〉

−
〈〈∫ +

Dz

〉〉
(A.26)

A2(w, v) =
1

v2T0

〈〈∑
l

vl · ηl

∫ +

Dz

(
w +

∑
l

vl · ηl − z

)〉〉
(A.27)

A3(w, v) =

〈〈∫ +

Dz

(
w +

∑
l

vl · ηl − z

)2〉〉
(A.28)

Solutions to equations (A.24) and (A.25) give the minima of the free en-
ergy that correspond to the retrieval of one of the stored environments.
E1(v, w) = 0 describes a closed curve in the w−v plane, and these solutions
are the intersections with E2(v, w) = 0, which depends on the gain g.

As the storage load α = p/C increases, this closed curve shrinks and
eventually disappears. The value α = αc at which the curve vanishes marks
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a phase transition: for α > αc retrieval solutions do not exist. The storage
capacity αc can therefore be calculated by finding the vanishing point of
E1 = 0, and in this way one automatically selects the optimal value of the
gain g, which therefore

A.3 Finite connectivity and noise reverberation

Equations A.24 and A.25 can be extended to arbitrary value of connectivity
density C/N following the self-consistent signal-to-noise analysis developed
in [79]. This gives

E1 = A2
2 −

(
1 +

C

N

(
(2− ψ)ψ

(1− ψ)2

))
dαA3 = 0 (A.29)

E2 =

(
d

gT0
− dα Cψ

N(1− ψ)

)
−A2 = 0 (A.30)

These equations interpolate, as the free parameter C/N varies, between the
two limiting cases of a fully connected network (C/N = 1) and the extremely
diluted case (C/N → 0) studied in [127]. We see that the reverberation
factor ψ enters in the equation for the storage capacity as a correction on
the loopless equation A2

2−dαA3 = 0, modulated by the connectivity density
C/N , and that the lower the ψ, the higher the storage capacity.

For the fully connected network this correction gives

ψ

1− ψ
=

N∑
k=1

ψk (A.31)

which is the sum over all the k-loops contributions to the reverberation of
the noise.

Note, finally, that for ease of comparison with the binary model we have
written in the main text

µ̄ = A2

r = A3. (A.32)

A.4 Free-energy barriers in the binary model

Free-energy values for the different metastable states are calculated using
(A.4) after order parameters have been computed by solving the saddle-
point equations. These equations are solved iteratively, starting from an
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initial condition for order parameters, and iterating the values of the order
parameters until convergence to fixed values. The free-energy values of the
different metastable states are obtained by initializing ρ(~x) as ρBp(~x) for
Bump States (Fig.2.6(a,e)) and ρBaE(~x) for Band Edge states (Fig.2.6(b,f))
or ρBaD(~x) for Band Diagonal states (Fig.2.6(c,g)). In order to estimate
the size of the barrier that must be jumped over in order to go from one
state X to another state Y , we proceed as follows. The activity profile
is initialized as ρk=0,z(~x) = zρX(~x) + (1 − z)ρX(~x), with z chosen such
that ρk→+∞,z(~x) = ρX(~x) and ρk→+∞,z−ε(~x) = ρY (~x) for ε � z. When
solving equations from such an initial condition, the network state goes
close to a saddle-point lying at the boundary between the two basins of
attraction associated to states X and Y , before sliding into state X as
shown in Fig.2.7(c). The size of the barrier is then given by the difference
between the free-energy of the saddle-point and that of the meta-stable state
X.
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Appendix B

Methods for Chapter 3

B.1 Estimation of the behavioural correlates

Position
The position of the animal was estimated from the coordinates of two LEDs
on the head of the animal. The X and Y coordinates of the both the LEDs
where smoothed with a Gaussian filter with a 250 ms standard deviation,
chosen to match the smoothing performed on the firing rate (see below),
and the average between the two LED positions was used as the position of
the animal.

Head Direction
HD was calculated as the angle between the line connecting the small LED
to the big one and the x axis. HD is expressed in radians, 0 meaning that
the rat head is lined to the x-axis, facing right.

Linear speed and angular head velocity
Speed was calculated as the modulus of the vector difference between the
position at time t and the position at time t+1. Angular head velocity was
calculated as the signed difference between the head direction at time t and
the head direction at time t+1. The absolute value of the angular head
velocity was used for the scoring of bidirectional angular head velocity cells
(see below). No further smoothing was applied.
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B.2 Firing rate calculation

Instantaneous firing rate was obtained dividing the whole session in bins of
20 ms, coinciding with the frames of the tracking cameras. The spike count
in each time bin was then calculated and divided by the temporal width to
obtain the rate. The rate profile was smoothed with a 250 ms wide Gaussian
filter.

B.3 Speed filtering

The analysis on speed and angular velocity was performed on movement
periods, defined as the ones in which the animal speed was >2 cm/s. A
speed filter was applied on the time series of each correlate, discarding the
time points for which the instantaneous speed was below 2 cm/s, that were
excluded in the subsequent analysis.

B.4 Rate maps and tuning curves

Spatial rate maps
The histograms for spike count and time spent in each location were con-
structed using equally spaced bins of 2-cm linear size. Each bin of the rate
map was obtained as the ratio between spike count and time spent, smoothed
with a Gaussian filter with standard deviation of 4 cm.

Directional rate maps
The histograms for spike count and time spent facing each direction were
constructed using equally spaced bins of size 6 degrees. Each bin of the
rate map was obtained as the ratio between spike count and time spent,
smoothed with a Gaussian filter with standard deviation of 6 degrees.

Speed and angular velocity tuning curves
For tuning curve construction, the correlate was divided in equally spaced
bins. For speed, 20 bins spanned the range between 2- and 50-cm/s (bin
width 2.4 cm/s), for angular velocity the range -3-, +3-rad/s was again di-
vided into 20 bins (bin width 0.15 rad/s). The firing rate in each bin was
calculated as the average of the instantaneous firing rate values falling in
the each given bin. A Gaussian smoothing window with standard deviation
0.15 rad/s for angular velocity and 2.4 cm/s for speed was applied.
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B.5 Shuffling

Chance-level statistics was calculated for a given variable W through a shuf-
fling procedure. For each repetition, the firing rate time series was time
shifted of a random interval of at least 30 seconds, with the end of the trial
wrapped to the beginning. This procedure was repeated 100 times for each
cell, and the shuffled score for variable W was calculated for each instance to
compose the chance level statistics. For cell classification, all shuffled data
from the same region were pooled together and the 99th percentile of the
distribution was used as a classification criterion.

B.6 Measure used for cell type classification

Speed Score
The speed score was defined as the Pearson product-moment correlation be-
tween the cell’s instantaneous firing rate and the instantaneous speed of the
animal, across the whole recording session. This yields a score ranging from
-1 to +1.

Unidirectional angular velocity score
The unidirectional angular velocity score was defined as the Pearson product-
moment correlation between the cell’s instantaneous firing rate and the
instantaneous angular velocity of the animal. Positive values of angular
velocity correspond to clockwise head movement. Cells that had a score
greater than the 99th percentile of the shuffled distribution were classified
as clockwise modulated (CW), while cells whose score was lower than the
1st percentile were classified as counterclockwise modulated (CCW): they
significantly code for head movement in the counterclockwise direction. CW
and CCW populations are mutually exclusive by construction.

Bidirectional angular velocity score
The unidirectional angular velocity score was defined as the Pearson product-
moment correlation between the cell’s instantaneous firing rate and the ab-
solute value of the instantaneous angular velocity of the animal. Cells in
this population increase their firing rate in response to head movement re-
gardless of the direction.

Mean vector length (head-direction score)
The mean vector length score is calculated from the head-direction tuning
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map of a given cell as the sum: ∣∣∣∣∣
∑
λie

iθi∑
λi

∣∣∣∣∣
Where θi is the orientation in radians associated with bin i and λi is the
firing rate in the bin. The sums run over all N directional bins, and the mod-
ulus of the resulting complex number is taken. Head direction was binned
in bins of 6 degrees, and smoothed with a Gaussian filter with a standard
deviation of 6 degrees.

Grid score
The grid score was calculated from the spatial autocorrelogram of a given
cell. After exclusion of the centre of the autocorrelogram, the Pearson cor-
relation of the autocorrelogram rotated by 30,60,90, 120 and 15 degrees (+-
3 degrees offsets) was considered. Only bins closer to the centre than an
outer radius s were included in the calculation of the correlation. Given
s, the grid score was defined as the difference between the average of the
maximum correlations around 60 and 120 degrees (+- 3 degrees offsets) and
the average of the minimum correlations around 30,90 and 150 degrees (+-
3 degrees offsets). The final grid score of the cell was then defined as the
maximum grid score over values of s ranging from twenty to forty bins, com-
puted at intervals of one bin.

Theta index
Theta modulation of individual cells was estimated from the frequency power
spectrum of the spike-train autocorrelation histogram of the cell. A cell was
defined to be theta modulated if the mean power in a 2 Hz window centred
in the peak in the 5- to 11-Hz frequency range was at least fivefold greater
than the mean spectral power in the 0- to 125-Hz range.

B.7 Estimation of the significance of overlaps be-
tween cell populations

The observed overlaps between cell populations were compared to the ones
that would result from the statistical null hypothesis of independent random
assignment with a two-sided binomial test. The probability of observing an
overlap of size k between two populations of sizes Na and Nb, independently
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drawn from a total number of cell N is given by:

p(k) =
N !

k!(N − k)!
pkab(1− pab)N−k

Where pab = papb and pa = Na/N, pb = Nb/N .

B.8 Information analysis

The information per spike conveyed by each cell about the correlate of in-
terest (speed or angular head velocity) was calculated using the formula:

I =
1

λ

∑
i

λipi log2(
λi
λ

)

Where i is the index of the correlate bin, pi is the probability of observing
the correlate in bin i (i.e. the normalized occupancy), λi is the average
firing rate of the cell in bin i, and is the average firing rate of the cell.
Speed was divided in 2 cm/s bins in the range 2-50 cm/s (as in all analysis,
stillness periods where excluded), while angular head velocity was divided
in 0.5 rad/s bins, in the range (-5,5) rad/s. Cells were considered to carry
significant information about the correlate if the observed information rate
exceeded the 99th percentile threshold of the null distribution obtained by
shuffling the cell firing rate values (1000 shuffles per cell).

B.9 GLM analysis

We analyzed the effect of each correlate (speed and angular head velocity)
with a linear-nonlinear Poisson spiking GLM model. This model assumes
that the firing rate of the cell depends on the value of the correlate as

r(t) = exp(
∑
i

X(t)Ti wi)/dt

where Xi(t) is a one-hot vector (i.e. a vector with only one non-null ele-
ment) indexing which value the correlate is taking at time t, and wi are the
coefficients of a linear filter quantifying the contribution of each value of the
correlate to the firing rate of the cells. The model is fitted using the python
module statsmodel.api, which finds the set of parameters wi maximising the
log-likelihood of the observed spikes, subject to an elastic-net regularization
constraint. To perform the fitting procedure, the speed values have been
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binned in 10 bins in the range 2-50 cm/s, and the angular velocity values
divided in 10 bins in the range -3-3 rad/s. Cells were considered significantly
modulated by a correlate if the log-likelihood of the best fit was significantly
larger than the value obtained with only the average firing rate as a predic-
tor. Significance was estimated with a 10–fold bootstrapping procedure to
extract the confidence interval of the observed log-likelihood.

B.10 Tuning curve fitting

Two different functional forms were fitted and compared to the tuning curve
of modulated cells. A linear model

r = ax+ b

And a sigmoid model

r =
1

1 + e−a(x−b)

were x is the value of the correlate (speed or angular head velocity) and
r is the average firing rate of the cell at that value of x. Tuning curves
were rescaled by their maximum value, in order to match the two model by
number of parameters. The R2 fitting scores were then compared for each
cells. Cells with a linear R2 greater than the sigmoid R2 were classified as
linear, and vice versa.
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Appendix C

Supplementary figures for
Chapter 3
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Figure C.1: Extended examples of speed and Angular head velocity cells
(a) Schematic representation of three type of angular head velocity (AHV) movement and linear
speed, from left to right: counterclockwise (CCW, dark pink), clockwise (CW, light pink), bidirec-
tional (BiDir, purple) and linear speed (red). 30 additional examples of self-motion cells: 6 AHV
and 4 speed cells in each region; medial entorhinal cortex (b), parasubiculum (c) and presubicu-
lum (d). The firing rate is represented as a function of angular velocity (in rad/s) or speed (in
cm/s). AHV or speed scores are reported in the upper right corner. Cell ID are reported in the
upper left corner. From left to right: CCW-AHV (dark pink), CW-AHV (light pink), BiDir-AHV
(purple) and speed (red, last two columns). Note that the high values of the rate of cell 37 suggest
that it may be an interneuron.
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Figure C.2: Distribution of angular head velocity and linear speed modula-
tion across parahippocampal layer
Proportion of speed (red) and AHV cells (CW light pink, CCW dark pink, BiDir purple) across
layers. Shaded areas represent overlap between CW (CCW) and BiDir cells. (a) Proportions in
medial entorhinal cortex: MEC LII (speed: 20.0%; AHV CW: 0%; AHV CCW: 0%, AHV BiDir:
0%) , MEC LIII (speed: 19.8%; AHV CW: 7.1%; AHV CCW: 3.8%, AHV BiDir: 12.8%), MEC LV
(speed: 11.8%; AHV CW: 2.9%; AHV CCW: 4.4%; AHV BiDir: 13.2%) and LVI (speed: 13.5%;
AHV CW: 3.7%; AHV CCW: 9%; AHV BiDir: 7.5%). Stars denote the significant absence of
AHV cells in MEC LII (t-test, p-value < 0.001). (b) Proportions in the parasubiculum: superfi-
cial layers (speed: 16.1%; AHV CW: 6.0%; AHV CCW: 4%; AHV BiDir: 9.6%) and deep layers
(speed: 25.3%; AHV CW: 4.7.9%; AHV CCW: 6.86%; AHV BiDir: 7.9%). (c) Proportions in the
presubiculum: superficial layers (speed: 14.5%; AHV CW: 3.9%; AHV CCW: 3.1%; AHV BiDir:
9.3%) and deep layers (speed: 24%; AHV CW: 4.7%; AHV CCW: 4.5%; AHV BiDir: 12.2%).
Stars denote the significant difference in speed cells between superficial and deep layers both in
PrS and PaS (t-test, ** p-value <0.01 and * p-value < 0.05 respectively).
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Figure C.3: Linear and sigmoidal fit in angular head velocity (AHV) and
speed modulated cells
(a) Schematic representation of the behavioural correlate modulating the rate. From left to right:
AHV CCW (dark pink), AHV CW (light pink), AHV BiDir (purple), linear speed (red). (b)
Examples of tuning curves of cells in MEC (top row), PaS (middle row) and PrS (bottom row),
columns colour coded and arranged as in (a). Solid lines represent the average firing rate at a
given value of AHV (speed) across the recording session, shaded areas represent the standard
error of the mean and dotted line the best linear (sigmoidal) fit. Cell scores are reported on the
top right corner and cell ID in the top left corner. (c) Proportion of linear and sigmoidal cell in
the total population. From left to right: AHV CCW (Linear: 79.4%; Sigmoidal: 20.6%), AHV
CW (Linear: 65.2%; Sigmoidal: 34.8%), AHV BiDir (Linear: 64.1%; Sigmoidal: 35.9%), speed
(Linear: 42.6%; Sigmoidal: 56.3%). Note that the sigmoidal fits are often quasi-linear.
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Figure C.4: Comparison between scoring methods: correlation vs. GLM
(a) Schematics of the correlation method. The session-wide Pearson correlation between the firing
rate of the cell (red) and the angular head velocity (black) is computed. Two examples of high
(left, top) and low (left, bottom) correlations are illustrated. Significance is calculated with a
shuffling procedure (right) in which the firing rate is shifted in time of a random amount, 100
times for each cell and a shuffled score is calculated. Shuffled scores of all cells in the same region
are pooled together to obtain a null distribution of score. Cells are labelled as AHV modulated
if their score exceed the 99th percentile of the null distribution (rightmost part). (b) Schematics
of the generalized linear model (GLM) method. First the weights β of the GLM model are
optimized with a maximum likelihood procedure (left). The value βi corresponding to the bin
i of the instantaneous angular head velocity determines the value µi of the instantaneous firing
rate through an exponential link function. The value µi is the average of the Poisson distribution
giving the probability P (n|µi) to observe a certain number of spikes n in the time interval dt
at which the AHV signal is sampled (20 ms in our case). This distribution is used to generate,
through a Poisson spiking process, a train of spikes to be compared with the ones experimentally
observed. The weights are adjusted to maximize the similarity across the whole session. The
cell is labelled as modulated if the likelihood of the optimized model is significantly larger than
the null model with constant β fixed at the average firing rate of the cell (right) (c) Intersection
between correlation and GLM modulated cells in MEC (GLM modulated AHV cells: 21.7%, n=86;
correlation modulated AHV cells: 16.9%, n=67; intersection: 9.6%, n=38 — GLM modulated
speed cells: 38.1%, n=151; correlation modulated speed cells: 16.7%, n=66; intersection: 12.6%,
n=50), parasubiculum (GLM modulated AHV cells: 19.3%, n=84; correlation modulated AHV
cells: 17.2%, n=75; intersection: 6.9%, n=30 — GLM modulated speed cells: 32.4%, n=141;
correlation modulated speed cells: 19.8%, n=86; intersection: 14.9%, n=65 ), and presubiculum
(GLM modulated AHV cells: 21.6%, n=131; correlation modulated AHV cells: 17.2%, n=104;
intersection: 8.4%, n=51 — GLM modulated speed cells: 36%, n=218; correlation modulated
speed cells: 20.7%, n=125; intersection: 16.4%, n=99). The intersection between correlation
modulated and GLM modulated cells is in each case significantly larger than expected by chance
(binomial test, p-value < 0.001).



Figure C.5: Distribution across area and layers of conjunctive coding
(a–b) Proportions of grid (yellow), HD (blue), grid x HD (green) cells in the whole layer population
(left bar, black outline), within the AHV cell population (central bar, pink outline) and within
speed cell population (right bar, red outline). Grey bars represent cells that are neither coding
for grid nor HD. Pink bars in the AHV population histograms represents AHV cells that are
neither coding for grid nor HD. Red bars in the speed population histograms represents speed
cells that are neither coding for grid nor HD. Stars denote a significant change in proportions of a
specific type of conjunctive cells within either the AHV or the speed population from what would
be expected from the layer proportions within the general population. All proportions were as
expected, except for an underrepresentation of speed X HD in MEC L III and in deep Prs (t-test,
p-value < 0.01). MEC (a): MEC layer II (grid: 28.6%; HD: 2%; grid x HD: 0%), layer III (grid:
35.9%; HD: 44.9%; grid x HD: 18.6%), layer V (grid: 16.2%; HD: 85.3%; grid x HD: 13.2%), and
layer VI (grid: 11.3%; HD: 61.7%; grid x HD: 3.7%). PrS (b, left): PrS superficial layers (grid:
11%; HD: 48.5%; grid x HD: 5.3%), and PrS deep layers (grid: 17.2%; HD: 51.6%; grid x HD:
4.5%). PaS (b, right): PaS superficial layers grid: (14.5%; HD: 51.4%; grid x HD: 6%), PaS
deep layers (grid:20%; HD: 64.2%; grid x HD: 12.6%). Note the quasi-absence of HD and AHV
cells in MEC LII. (c) Pink and red bars here represent the whole population of AHV (pink) and
speed (red) cells in a given layer. Note that those are different populations than in (a–b). Purple
bars represent cells whose activity is conjunctively modulated by speed and by AHV. From left
to right: MEC layer II (AHV: 0%, speed: 20%, AHV x speed: 0%), MEC layer III (AHV: 20.5%,
speed: 19.9%, AHV x speed: 5.8%), MEC layer V (AHV: 19.1%, speed: 11.8%, AHV x speed:
4.4%), MEC layer VI (AHV: 16.5%, speed: 13.5%, AHV x speed: 6.8%), PrS superficial layers
(AHV: 14.1%, speed: 14.5%, AHV x speed: 3.9%), PrS deep layers (AHV: 19.1%, speed: 24.3%,
AHV x speed: 8.5%), PaS superficial layers (AHV: 16.9%, speed: 16.1%, AHV x speed: 4%) and
PaS deep layers (AHV: 17.4%, speed: 25.3%, AHV x speed: 5.8%).
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Figure C.6: Self-motion and static correlates have different firing properties
Comparison of firing properties between cells coding for self-motion (speed and AHV cells: orange
bars) and static (HD and grid cells: blue bars) correlates. Vertical dashed lines indicate median
values. (a) Distribution of the average firing rates of cells coding for motion and static signals
(bin width: 0.5Hz). Median average rate for motion cells: 2.86 Hz (orange dashed line). Median
average rate for static cells: 1.52 Hz (blue dashed line). (b) Distribution of the peak firing rates
calculated as the 5th percentile of the firing rate distribution of each cell (bin width: 1Hz). Median
peak rate for motion cells: 4.51 Hz (orange dashed line). Median peak rate for static cells: 1.99 Hz
(blue dashed line). (c) Distribution of the average inter-spike interval (bin width: 0.1s). Median
average inter-spike interval for motion cells: 0.71 s (orange dashed line). Median average inter-
spike interval for static cells: 1.13 Hz (blue dashed line). Note that motion cells show a larger
average and peak firing rate, as well as a lower average inter spike interval. This difference may
be related to the nature of the coding: static cells use “place like”, sparse coding, while motion
cells have a monotonic, dense response profile.
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Figure C.7: Distribution of theta modulation by layer
Dashed bars represent proportions of theta modulated cells for each category of cells considered.
Cells were considered theta modulated when their mean power in a 2 Hz window centred in the
peak in the 5- to 11-Hz frequency range was at least fivefold greater than the mean spectral power
in the 0- to 125-Hz range. (a) Percentages of theta modulated cells in the whole population
(white dashed bars). From left to right: MEC LII (74.3%), MEC LIII (58.3%), MEC LV (63.2%),
MEC LVI (29.3%), PrS superficial layers (29.9%), PrS deep layers (32.8%), PaS superficial layers
(42.2%) and PaS deep layers (56.8%). Stars denote a significant difference in proportion of theta
modulated cell in the layer considered, compared to the average theta modulation across all layers
(t-test, ** p-value <0.01). (b) Percentages of theta modulated cells in the AHV population (pink
dashed bars). From left to right: MEC LII (0%), MEC LIII (43.8%), MEC LV (69.2%), MEC LVI
(13.6%), PrS superficial layers (31.3%), PrS deep layers (40.2%), PaS superficial layers (35.7%)
and PaS deep layers (45.5%). Stars denote a significant difference in proportion of AHV theta
modulated cell from what would be expected given the average theta modulation in that specific
layer (t-test, * p-value <0.05). (c) Percentages of theta modulated cells in the speed population
(red dashed bars). From left to right: MEC LII (71.4%), MEC LIII (51.6%), MEC LV (50%),
MEC LVI (27.8%), PrS superficial layers (42.4%), PaS deep layers (34.7%), PaS superficial layers
(35%) and PaS deep layers (50%).



Appendix D

Appendices to chapter 4

D.1 Solution of the equation for the activity pro-
file in the case of many maps

We illustrate here the procedure for the numerical solution of the equation
4.26:

v(x+ ∆x) = gN
(∫

dx′K(x− x′)v(x′) + w

)
(D.1)

We consider the one dimensional case and the exponential kernel

K(x− x′) = e−|x−x
′| − γsign(x− x′)e−|x−x′| (D.2)

First, following [38] we rewrite it with the transformation

u(x) = N−1

(
v(x)

g

)
(D.3)

obtaining

u(x+ ∆x) = g

∫
dx′K(x− x′)N (u(x′)) + w (D.4)

We then transform this integral equation in a differential one, by differ-
entiating twice. We obtain

u′′(x+ ∆x) + 2gγΦ(u(x))u′(x) + 2gN (u(x))− u(x+ ∆x) + w = 0 (D.5)

where we used the fact that N ′(x) = Φ(x). Eq.D.5 is a second order,
nonlinear delayed differential equation. To solve it, it is not sufficient to
impose an initial condition on a single point for the solution and the first
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derivative (i.e. something like u(x0) = u0, u
′(x0) = u′0): we have to specify

the value of the function and its derivative in an interval [x0, x0 + ∆x].
To do so, we reason that, if we want a bump solution, u(x) has to be

finite in for x → ±∞ and cannot diverge. We then require the function to
be constant (u(x) = u0, u′(x) = 0) before a certain value x0, whose value
can be set arbitrarily without loss of generality.

The value u0, at γ = 0 and ∆x = 0 determines the shape of u(x), as
shown by the numerical solution presented in Fig. D.1 for u0 < u∗ the
solution will diverge for x → ∞, for u0 > u∗ it will oscillate. We are then
left with a single value u0(g, w) = u∗(g, w) for which the solution has the
required form.
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Figure D.1: Solutions to Eq.D.5 for g = 1, w = −1.8, γ = 0, ∆x = 0.

Then, keeping u0 fixed, we can repeat a similar procedure to find ∆x
for different values of γ. Also in this case, the solution either diverges or
oscillates a part from a single value ∆x∗, for which the solution has the
desired shape (see Fig.D.2). This eliminates the arbitrariness in the choice
of ∆x since it imposes, for given g and w, a relation ∆x = ∆x∗(γ).
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Figure D.2: Solutions to Eq.D.5 for g = 1, w = −1.8, γ = 0.2.
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We can then find the shape of the bump u(x) for given values of g,w
and γ, from which we can obtain the profile v(x) = gN (u(x)) that we need
for the calculation of the storage capacity. Some examples of the obtained
profiles, for different values of γ, are shown in Fig. D.3.
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Figure D.3: Activity profile v(x), obtained for the same g = 0.7 and w =
−1.3 at different values of γ.
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[44] Céline Drieu and Michaël Zugaro. Hippocampal sequences during ex-
ploration: Mechanisms and functions. Frontiers in cellular neuro-
science, 13:232, 2019.
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[47] György Buzsáki, Cornelius H Vanderwolf, et al. Cellular bases of hip-
pocampal eeg in the behaving rat. Brain Research Reviews, 6(2):139–
171, 1983.

[48] Gyorgy Buzsaki, Zsolt Horvath, Ronald Urioste, Jamille Hetke, and
Kensall Wise. High-frequency network oscillation in the hippocampus.
Science, 256(5059):1025–1027, 1992.

[49] William E Skaggs and Bruce L McNaughton. Replay of neuronal firing
sequences in rat hippocampus during sleep following spatial experi-
ence. Science, 271(5257):1870–1873, 1996.
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