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Abstract: We consider the Fermi–Pasta–Ulam–Tsingou (FPUT) chain composed by
N � 1 particles and periodic boundary conditions, and endow the phase space with the
Gibbs measure at small temperature β−1. Given a fixed 1 ≤ m � N , we prove that the
first m integrals of motion of the periodic Toda chain are adiabatic invariants of FPUT
(namely they are approximately constant along the Hamiltonian flow of the FPUT) for
times of order β, for initial data in a set of large measure. We also prove that special
linear combinations of the harmonic energies are adiabatic invariants of the FPUT on
the same time scale, whereas they become adiabatic invariants for all times for the Toda
dynamics.

1. Introduction and Main Results

The FPUT chain with N particles is the system with Hamiltonian

HF (p,q) =
N−1∑

j=0

p2j
2

+
N−1∑

j=0

VF (q j+1 − q j ) , VF (x) = x2

2
− x3

6
+ b

x4

24
, (1.1)

which we consider with periodic boundary conditions qN = q0 , pN = p0 and b > 0.
We observe that any generic nearest neighborhood quartic potential can be set in the form
of VF (x) through a canonical change of coordinates. Over the last 60 years the FPUT
system has been the object of intense numerical and analytical research. Nowadays it is
well understood that the system displays, on a relatively short time scale, an integrable-
like behavior, first uncovered by Fermi, Pasta, Ulam and Tsingou [13,14] and later
interpreted in terms of closeness to a nonlinear integrable system by some authors, e.g.
the Korteweg-de Vries (KdV) equation by Zabusky and Kruskal [41], the Boussinesq
equation by Zakharov [42], and the Toda chain by Manakov first [31], and then by
Ferguson, Flaschka and McLauglin [12]. On larger time scales the system displays
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instead an ergodic behavior and approaches its micro-canonical equilibrium state (i.e.
measure), unless the energy is so low to enter a KAM-like regime [25,26,36].

In the present work we show that a family of first integrals of the Toda system
are adiabatic invariants (namely almost constant quantities) for the FPUT system. We
bound their variation for times of order β, where β is the inverse of the temperature of
the chain. Such estimates hold for a large set of initial data with respect to the Gibbs
measure of the chain and they are uniform in the number of particles, thus they persist
in the thermodynamic limit.

In the last few years, there has been a lot of activity in the problem of constructing
adiabatic invariants of nonlinear chain systems in the thermodynamic limit, see [8,9,18,
19,29,30]. In particular adiabatic invariants in measure for the FPUT chain have been
recently introduced byMaiocchi, Bambusi, Carati [29] by considering the FPUT chain a
perturbation of the linear harmonic chain. Our approach is based on the remark [12,31]
that the FPUT chain (1.1) can be regarded as a perturbation of the (nonlinear) Toda chain
[39]

HT (p,q) := 1

2

N−1∑

j=0

p2j +
N−1∑

j=0

VT (q j+1 − q j ) , VT (x) = e−x + x − 1 , (1.2)

which we consider again with periodic boundary conditions qN = q0 , pN = p0. The
equations of motion of (1.1) and (1.2) take the form

q̇ j = ∂H

∂p j
= p j , ṗ j = − ∂H

∂q j
= V ′(q j+1 − q j ) − V ′(q j − q j−1), j = 0, . . . , N − 1,

(1.3)

where H stands for HF or HT and V for VF and VT respectively.
According to the values of b in (1.1), the Toda chain is either an approximation of the
FPUT chain of third order (for b �= 1), or fourth order (for b = 1). We remark that the
Toda chain is the only nonlinear integrable FPUT-like chain [11,37].

The Toda chain admits several families of N integrals of motion in involution (e.g.
[16,24,40]). Among the various families of integrals of motion, the ones constructed by
Henon [22] and Flaschka [15] are explicit and easy to compute, being the trace of the
powers of the Lax matrix associated to the Toda chain. In the following we refer to them
simply as Toda integrals and denote them by J (k), 1 ≤ k ≤ N (see (2.12)).

As the J (k)’s are conserved along the Toda flow, and the FPUT chain is a perturbation
of the Toda one, the Toda integrals are good candidates to be adiabatic invariants when
computed along the FPUT flow. This intuition is supported by several numerical sim-
ulations, the first by Ferguson–Flaschka–McLaughlin [12] and more recently by other
authors [4,6,10,20,35]. Such simulations show that the variation of the Toda integrals
along the FPUT flow is very small on long times for initial data of small specific energy.
In particular, the numerical results in [4,6,20] suggest that such phenomenon should
persists in the thermodynamic limit and for “generic” initial conditions.

Our first result is a quantitative, analytical proof of this phenomenon. More precisely,
we fix an arbitrary m ∈ N and provided N and β sufficiently large, we bound the
variations of the first m Toda integrals computed along the flow of FPUT, for times of
order

β
(
(b− 1)2 + C1β−1

) 1
2

, (1.4)
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where C1 is a positive constant, independent of β, N . Such a bound holds for initial data
in a large set with respect to the Gibbs measure. Note that the bound (1.4) improves to

β
3
2 when b = 1, namely when the Toda chain becomes a fourth order approximation of

the FPUT chain. Such analytical time-scales are compatible with (namely smaller than)
the numerical ones determined in [4–6].

An interesting question is whether the Toda integrals J (k)’s control the normal modes
of FPUT, namely the action of the linearized chain. It turns out that this is indeed the
case: we prove that the quadratic parts J (2k)

2 (namely the Taylor polynomials of order 2)
of the integral of motions J (2k), are linear combinations of the normal modes. Namely
one has

J (2k) =
N−1∑

j=0

ĉ(k)
j E j + O((̂p, q̂)3), (1.5)

where E j is the j th normal mode (see (2.21) for its formula), (̂p, q̂) are the discrete
Hartley transform of (p,q) (see definition below in (2.18)) and ĉ(k) are real coefficients.

So we consider linear combinations of the normal modes of the form

N−1∑

j=0

ĝ j E j (1.6)

where (ĝ j ) j is the discrete Hartley transform of a vector g ∈ R
N which has only

2�m2 	 + 2 nonzero entries with m independent from N , here �m2 	 is the integer part ofm
2 . Our second result shows that linear combinations of the form (1.6), when computed
along the FPUT flow, are adiabatic invariants for the same time scale as in (1.4).

Further we also show that linear combinations of the harmonic modes as in (1.6), are
approximate invariant for the Toda dynamics (with large probability).

Examples of linear combinations (1.6) that we control are

N∑

j=1

sin2�
(
jπ

N

)
E j ,

N∑

j=1

cos2�
(
jπ

N

)
E j , ∀� = 0, . . . ,

⌊m
2

⌋
. (1.7)

These linear combinations weight in different ways low and high energy modes.
Finally we note that, in the study of the FPUT problem, one usually measures the

time the system takes to approach the equilibrium when initial conditions very far from
equilibrium are considered. On the other hand, our result indicates that, despite initial
states are sampled from a thermal distribution, nonetheless complete thermalization is
expected to be attained, in principle, over a time scale that increases with decreasing
temperature.
Our results are mainly based on two ingredients. The first one is a detailed study of the
algebraic properties of the Toda integrals. The second ingredient comes from adapting to
our case, methods of statistical mechanics developed by Carati [8] and Carati–Maiocchi
[9], and also in [18,19,29,30].
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2. Statement of Results

2.1. Toda integrals as adiabatic invariants for FPUT. We come to a precise statements
of the main results of the present paper. We consider the FPUT chain (1.1) and the Toda
chain (1.2) in the subspace

M :=
⎧
⎨

⎩(p,q) ∈ R
N × R

N :
N−1∑

j=0

q j = L ,

N−1∑

j=0

p j = 0

⎫
⎬

⎭ , (2.1)

which is invariant for the dynamics. Here L is a positive constant.
Since both HF and HT depend just on the relative distance between q j+1 and q j , it

is natural to introduce onM the variables r j ’s as

r j := q j+1 − q j , 0 ≤ j ≤ N − 1 , (2.2)

which are naturally constrained to

N−1∑

j=0

r j = 0 , (2.3)

due to the periodic boundary condition qN = q0. We observe that the change of coordi-
nates (2.2) together with the condition (2.3) is well defined on the phase space M, but
not on the whole phase space RN × R

N . In these variables the phase space M reads

M :=
⎧
⎨

⎩(p, r) ∈ R
N × R

N :
N−1∑

j=0

r j =
N−1∑

j=0

p j = 0

⎫
⎬

⎭ . (2.4)

We endow M by the Gibbs measure of HF at temperature β−1, namely we put

dμF := 1

ZF (β)
e−βHF (p,r) δ

⎛

⎝
N−1∑

j=0

r j = 0

⎞

⎠ δ

⎛

⎝
N−1∑

j=0

p j = 0

⎞

⎠ dp dr, (2.5)

where as usual ZF (β) is the partition function which normalize the measure, namely

ZF (β) :=
∫

RN×RN
e−βHF (p,r) δ

⎛

⎝
N−1∑

j=0

r j = 0

⎞

⎠ δ

⎛

⎝
N−1∑

j=0

p j = 0

⎞

⎠ dp dr. (2.6)

We remark that we can consider the measure dμF as the weak limit, as ε → 0, of the
measure

dμε = e−βHF (p,r) e
−
(∑N−1

j=0 r j /ε
)2−

(∑N−1
j=0 p j /ε

)2

(
∫
R2N e−βHF (p,r) e

−
(∑N−1

j=0 r j /ε
)2−

(∑N−1
j=0 p j /ε

)2
dp dr

) dp dr .
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Given a function f : M → C, we will use the probability (2.5) to compute its average
〈 f 〉, its L2 norm ‖ f ‖, its variance σ 2

f defined as

〈 f 〉 := E [ f ] ≡
∫

R2N
f (p, r) dμF , (2.7)

‖ f ‖2 := E
[
| f |2

]
≡
∫

R2N
| f (p, r)|2 dμF , (2.8)

σ 2
f := ‖ f − 〈 f 〉 ‖2. (2.9)

In order to state our first theorem we must introduce the Toda integrals of motion. It
is well known that the Toda chain is an integrable system [22,39]. The standard way to
prove its integrability is to put it in a Lax-pair form. The Lax form was introduced by
Flaschka in [15] and Manakov [31] and it is obtained through the change of coordinates

b j := −p j , a j := e
1
2 (q j−q j+1) ≡ e−

1
2 r j , 0 ≤ j ≤ N − 1 . (2.10)

By the geometric constraint (2.3) and the momentum conservation
∑N−1

j=0 p j = 0 (see
(2.1)), such variables are constrained by the conditions

N−1∑

j=0

b j = 0,
N−1∏

j=0

a j = 1 .

The Lax operator for the Toda chain is the periodic Jacobi matrix [40]

L(b, a) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b0 a0 0 . . . aN−1

a0 b1 a1
. . .

...

0 a1 b2
. . . 0

...
. . .

. . .
. . . aN−2

aN−1 . . . 0 aN−2 bN−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

We introduce the matrix A = L+ − L− where for a square matrix X we call X+ the
upper triangular part of X

(X+)i j =
{
Xi j , i ≤ j
0, otherwise

and in a similar way by X− the lower triangular part of X

(X−)i j =
{
Xi j , i ≥ j
0, otherwise.

A straightforward calculation shows that the Toda equations of motions (1.3) are equiv-
alent to

dL

dt
= [A, L].

It then follows that the eigenvalues of L are integrals of motion in involutions.
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In particular, the trace of powers of L ,

J (m) := 1

m
Tr
(
Lm) , ∀1 ≤ m ≤ N (2.12)

are N independent, commuting, integrals of motions in involution. Such integrals were
first introduced by Henon [22] (with a different method), and we refer to them as Toda
integrals. We give the first few of them explicitly, written in the variables (p, r):

J (1)(p) := −
N−1∑

i=0

pi , J (2)(p, r) :=
N−1∑

i=0

[
p2i
2

+ e−ri

]
,

J (3)(p, r) := −
N−1∑

i=0

[
1

3
p3i + (pi + pi+1)e

−ri

]
,

J (4)(p, r) :=
N−1∑

i=0

[
1

4
p4i + (p2i + pi pi+1 + p2i+1)e

−ri +
1

2
e−2ri + e−ri−ri+1

]
.

(2.13)

Note that J (2) coincides with the Toda Hamiltonian HT .
Our first result shows that the Toda integral J (m), computed along the Hamiltonian

flow φt
HF

of the FPUT chain, is an adiabatic invariant for long times and for a set of
initial data in a set of large Gibbs measure. Here the precise statement:

Theorem 2.1. Fix m ∈ N. There exist constants N0, β0,C0,C1 > 0 (depending on m),
such that for any N > N0, β > β0, and any δ1, δ2 > 0 one has

P
(∣∣∣J (m) ◦ φt

HF
− J (m)

∣∣∣ > δ1σJ (m)

)
≤ δ2C0 , (2.14)

for every time t fulfilling

|t | ≤ δ1
√

δ2
(
(b− 1)2 + C1β−1

)1/2 β . (2.15)

In (2.14) P stands for the probability with respect to the Gibbs measure (2.5).

We observe that the time scale (2.15) increases to β
3
2 for b = 1, namely if the Toda

chain is a fifth order approximation of the FPUT chain.

Remark 2.2. By choosing 0 < ε < 1
4 , δ1 = β−ε and δ2 = β−2ε the statement of the

above theorem becomes:

P
(∣∣∣J (m) ◦ φt

HF
− J (m)

∣∣∣ >
σJ (m)

βε

)
≤ C0

β2ε , (2.16)

for every time t fulfilling

|t | ≤ β1−2ε

(
(b− 1)2 + C1β−1

)1/2 . (2.17)
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Remark 2.3. We observe that our estimates in (2.14) and (2.15) are independent from the
number of particles N . Therefore we can claim that the result of theorem 2.1 holds true in
the thermodynamic limit, i.e. when limN→∞ 〈HF 〉

N = e > 0 where 〈HF 〉 is the average
over the Gibbs measure (2.5) of the FPUT Hamiltonian HF . The same observation
applies to Theorems 2.5 and 2.6 below.

Our Theorem 2.1 gives a quantitative, analytical proof of the adiabatic invariance of
the Toda integrals, at least for a set of initial data of large measure. It is an interesting
question whether other integrals of motion of the Toda chain are adiabatic invariants for
the FPUT chain. Natural candidates are the actions and spectral gaps.

Action-angle coordinates and the related Birkhoff coordinates (a cartesian version of
action-angle variables) were constructed analytically by Henrici and Kappeler [23,24]
for any finite N , and byBambusi and one of the author [1] uniformly in N , but in a regime
of specific energy going to 0 when N goes to infinity (thus not the thermodynamic limit).
The difficulty in dealing with these other sets of integrals is that they are not explicit
in the physical variables (p, r). As a consequence, it appears very difficult to compute
their averages with respect to the Gibbs measure of the system.

Despite these analytical challenges, recent numerical simulations by Goldfriend and
Kurchan [20] suggest that the spectral gaps of the Toda chain are adiabatic invariants
for the FPUT chain for long times also in the thermodynamic limit.

2.2. Packets of normal modes. Our second result concerns adiabatic invariance of some
special linear combination of normal modes. To state the result, we first introduce the
normal modes through the discrete Hartley transform. Such transformation, which we
denote by H, is defined as

p̂ := Hp, H j,k := 1√
N

(
cos

(
2π

jk

N

)
+ sin

(
2π

jk

N

))
, j, k = 0, . . . , N − 1

(2.18)

and one easily verifies that it fulfills

H2 = 1, Hᵀ = H. (2.19)

The Hartley transform is closely related to the classical Fourier transform F , whose
matrix elements are F j,k := 1√

N
e−i2π jk/N , as one has H = �F − �F . The advantage

of the Hartley transform is that it maps real variables into real variables, a fact which
will be useful when calculating averages of quadratic Hamiltonians (see Sect. 5.2).

A consequence of (2.18) is that the change of coordinates

R
N × R

N → R
N × R

N , (p,q) �→ (̂p, q̂) := (Hp,Hq)

is a canonical one. Due to
∑

j p j = 0,
∑

j q j = L, one has also p̂0 = 0, q̂0 = L/
√
N .

In these variables the quadratic part H2 of the Toda Hamiltonian (1.2), i.e. its Taylor
expansion of order two nearby the origin, takes the form

H2(̂p, q̂) :=
N−1∑

j=1

p̂2j + ω2
j q̂

2
j

2
, ω j := 2 sin

(
π

j

N

)
. (2.20)



818 T. Grava, A. Maspero, G. Mazzuca, A. Ponno

We observe that (2.20) is exactly the Hamiltonian of the Harmonic Oscillator chain. We
define

E j :=
p̂2j + ω2

j q̂
2
j

2
, j = 1, . . . , N − 1 , (2.21)

the j th normal mode.
To state our second result we need the following definition:

Definition 2.4 (m-admissible vector). Fix m ∈ N and m̃ := ⌊m
2

⌋
. For any N > m,

a vector x ∈ R
N is said to be m-admissible if there exits a non zero vector y =

(y0, y1, . . . , ym̃) ∈ R
m̃+1 with K−1 ≤ ∑

j |y j | ≤ K , K independent from N , such
that

xk = xN−k = yk, for 0 ≤ k ≤ m̃ and xk = 0 otherwise.

We are ready to state our second result, which shows that special linear combinations
of normal modes are adiabatic invariants for the FPUT dynamics for long times. Here
the precise statement:

Theorem 2.5. Fix m ∈ N and let g = (g0, . . . , gN−1) ∈ R
N be a m-admissible vector

(according to Definition 2.4). Define

� :=
N−1∑

j=0

ĝ j E j , (2.22)

where ĝ is the discrete Hartley transform (2.18) of g, and E j is the harmonic energy
(2.21). Then there exist N0, β0,C0,C1 > 0 (depending onm), such that for any N > N0,
β > β0, 0 < ε < 1

4 , one has

P
(∣∣� ◦ φt

HF
− �

∣∣ >
σ�

βε

)
≤ C0

β2ε , (2.23)

for every time t fulfilling

|t | ≤ β1−2ε

(
(b− 1)2 + C2β−1

)1/2 . (2.24)

Again when b = 1 the time scale improves by a factor β
1
2 .

Finally we consider the Toda dynamics generated by the Hamiltonian HT in (1.2). In
this case we endowM in (2.4) by the Gibbs measure of HT at temperature β−1, namely
we put

dμT := 1

ZT (β)
e−βHT (p,r) δ

⎛

⎝
∑

j

r j = 0

⎞

⎠ δ

⎛

⎝
∑

j

p j = 0

⎞

⎠ dp dr, (2.25)

where as usual ZT (β) is the partition function which normalize the measure, namely

ZT (β) :=
∫

RN×RN
e−βHT (p,r) δ

⎛

⎝
∑

j

r j = 0

⎞

⎠ δ

⎛

⎝
∑

j

p j = 0

⎞

⎠ dp dr. (2.26)

We prove that the quantity (2.22), computed along the Hamiltonian flow φt
HT

of the
Toda chain, is an adiabatic invariant for all times and for a large set of initial data:
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Theorem 2.6. Fix m ∈ N; let g ∈ R
N be an m-admissible vector and define � as in

(2.22). Then there exist N0, β0,C > 0 such that for any N > N0, β > β0, any δ1 > 0
one has

P
(∣∣� ◦ φt

HT
− �

∣∣ > δ1σ�

) ≤ C

δ21 β
, (2.27)

for all times.

Remark 2.7. It is easy to verify that the functions � in (2.22) are linear combinations of

N−1∑

j=0

cos

(
2�jπ

N

)
E j , � = 0, . . . ,

⌊m
2

⌋
(2.28)

(choose g� = gN−� = 1, g j = 0 otherwise). Then, using the multi-angle trigonometric
formula

cos(2nx) = (−1)nT2n(sin x), cos(2nx) = T2n(cos x),

where the Tn’s are the Chebyshev polynomial of the first kind, it follows that we can
control (1.7). Actually these functions fall under the class considered in [29].

Let us comment about the significance of Theorems 2.5 and 2.6. The study of the
dynamics of the normal modes of FPUT goes back to the pioneering numerical simu-
lations of Fermi, Pasta, Ulam and Tsingou [13]. They observed that, corresponding to
initial data with only the first normal mode excited, namely initial data with E1 �= 0
and E j = 0 ∀ j �= 1, the dynamics of the normal modes develops a recurrent behavior,
whereas their time averages 1

t

∫ t
0 E j ◦φτ

HF
dτ quickly relaxed to a sequence exponentially

localized in j . This is what is known under the name of FPUT packet of modes.
Subsequent numerical simulations have investigated the persistence of the phe-

nomenon for large N and in different regimes of specific energies [4,6,7,17,27,32]
(see also [2] for a survey of results about the FPUT dynamics).

Analytical results controlling packets of normal modes along the FPUT system are
proven in [1,3]. All these results deal with specific energies going to zero as the number
of particles go to infinity, thus they do not hold in the thermodynamic limit. Our result
controls linear combination of normal modes and holds in the thermodynamic limit.

2.3. Ideas of the proof. The starting point of our analysis is to estimate the probability
that the time evolution of an observable �(t), computed along the Hamiltonian flow of
H , slightly deviates from its initial value. In our application� is either the Toda integral
of motion or a special linear combination of the harmonic energies and H is either the
FPUT or Toda Hamiltonian. Quantitatively, Chebyshev inequality gives

P
(
|�(t) − �(0)| > λσ�(0)

)
≤ 1

λ2

σ 2
�(t)−�(0)

σ 2
�(0)

, ∀λ > 0. (2.29)

So our first task is to give an upper bound on the variance σ�(t)−�(0) and a lower bound
on the variance σ�(0). Regarding the former bound we exploit the Carati-Maiocchi
inequality [9]

σ 2
�(t)−�(0) ≤

〈
{�, H}2

〉
t2, ∀t ∈ R, (2.30)
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where {�, H}, denotes the canonical Poisson bracket

{�, H} := (∂q�)ᵀ∂pH − (∂p�)ᵀ∂qH ≡
N−1∑

i=0

∂qi �∂pi H − ∂pi �∂qi H. (2.31)

Next we fix m ∈ N, consider the m-th Toda integral J (m), and prove that the quotient

〈{J (m), HF }2
〉

σ 2
J (m)

(2.32)

scales appropriately in β (as β → ∞) and it is bounded uniformly in N (provided
N is large enough). It is quite delicate to prove that the quotient in (2.32) is bounded
uniformly in N and for the purpose we exploit the rich structure of the Toda integral of
motions.

This manuscript is organized as follows. In Sect. 3 we study the structure of the
Toda integrals. In particular we prove that for any m ∈ N fixed, and N sufficiently
large, the m-th Toda integral J (m) can be written as a sum 1

m

∑N
j=1 h

(m)
j where each

term depends only on at most m consecutive variables, moreover h(m)
j and h(m)

k have
disjoint supports if the distance between j and k is larger than m. Then we make the
crucial observation that the quadratic part of the Toda integrals J (m) are quadratic forms
in p and q generated by symmetric circulant matrices. In Sect. 3 we approximate the
Gibbs measure with the measure were all the variable are independent random variables.
and we calculate the error of our approximation. In Sect. 4 we obtain a bound on the
variance of J (m)(t) − J (m)(0) with respect to the FPUT flow and a bound of linear
combination of harmonic energies with respect to the FPUT flow and the Toda flow.
Finally in Sect. 5 we prove our main results, namely Theorems 2.1, 2.5 and 2.6. We
describe in the “Appendices” the more technical results.

3. Structure of the Toda Integrals of Motion

In this section we study the algebraic and the analytic properties of the Toda integrals
defined in (2.12). First we write them explicitly:

Theorem 3.1. For any 1 ≤ m ≤ N − 1, one has

J (m) = 1

m

N∑

j=1

h(m)
j , (3.1)

where h(m)
j := [Lm] j j is given explicitly by

h(m)
j (p, r) =

∑

(n,k)∈A(m)

(−1)|k| ρ(m)(n,k)

m̃−1∏

i=−m̃

e−ni r j+i
m̃−1∏

i=−m̃+1

pkij+i , (3.2)
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where it is understood r j ≡ r j mod N , p j ≡ p j mod N and A(m) is the set

A(m) :=
{
(n,k) ∈ N

Z

0 × N
Z

0 :
m̃−1∑

i=−m̃

(2ni + ki ) = m,

∀i ≥ 0, ni = 0 ⇒ ni+1 = ki+1 = 0,

∀i < 0, ni+1 = 0 ⇒ ni = ki = 0
}
.

(3.3)

The quantity m̃ := �m/2	, N0 = N ∪ {0} and ρ(m)(n,m) ∈ N is given by

ρ(m)(n,k) :=
(
n−1 + n0 + k0

k0

)(
n−1 + n0

n0

) m̃−1∏

i=−m̃
i �=−1

(
ni + ni+1 + ki+1 − 1

ki+1

)(
ni + ni+1 − 1

ni+1

)
. (3.4)

We give the proof of this theorem in “Appendix D”.

Remark 3.2. The structure of J (N ) is slightly different, but we will not use it here.

We now describe some properties of the Toda integrals which we will use several
times. The Hamiltonian density h(m)

j (p, r) depends on the set A(m) and the coefficient

ρ(m)(n,k) which are independent from the index j . This implies that h(m)
j is obtained

by h(m)
1 just by shifting 1 → j ; in [18,19] this property was formalized with the notion

of cyclic functions, we will lately recall it for completeness.
A second immediate property, as one sees inspecting the formulas (3.3) and (3.4), is

that there exists C (m) > 0 (depending only on m) such that

|A(m)| ≤ C (m), ρ(m)(n,k) ≤ C (m), (3.5)

namely the cardinality of the set A(m) and the values of the coefficients ρ(m)(n,k) are
independent of N .

The last elementary property, which follows from the condition 2|n| + |k| = m in
(3.3), is that

m even �⇒ h(m)
j contains only even polynomials in p,

m odd �⇒ h(m)
j contains only odd polynomials in p.

(3.6)

Now we describe three other important properties of the Toda integrals, which are
less trivial and require some preparation. Such properties are

(i) cyclicity;
(ii) uniformly bounded support;
(iii) the quadratic parts of the Toda integrals are represented by circulant matrices.

We first define each of these properties rigorously, and then we show that the Toda
integrals enjoy them.
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Cyclicity. Cyclic functions are characterized by being invariant under left and right
cyclic shift. For any � ∈ Z, and x = (x1, x2, . . . , xN ) ∈ R

N we define the cyclic shift of
order � as the map

S� : RN → R
N , (S�x) j := x( j+�)mod N . (3.7)

For example S1 and S−1 are the left respectively right shifts:

S1(x1, x2, . . . , xN ) := (x2, . . . , xN , x1), S−1(x1, x2, . . . , xN ) := (xN , x1, . . . , xN−1).

It is immediate to check that for any �, �′ ∈ Z, cyclic shifts fulfills:

S� ◦ S�′ = S�+�′ , S−1
� = S−�, S0 = 1, S�+N = S�. (3.8)

Consider now a a function H : RN×R
N → C; we shall denote by S�H : RN×R

N → C

the operator

(S�H)(p, r) := H(S�p, S�r), ∀(p, r) ∈ R
N × R

N . (3.9)

Clearly S� is a linear operator. We can now define cyclic functions:

Definition 3.3 (Cyclic functions). A function H : RN × R
N → C is called cyclic if

S1H = H .

It is clear from the definition that a cyclic function fulfills S�H = H ∀� ∈ Z.
It is easy to construct cyclic functions as follows: given a function h : RN × R

N → C

we define the new function H by

H(p, r) :=
N−1∑

�=0

(S�h)(p, r). (3.10)

H is clearly cyclic and we say that H is generated by h.

Support. Given a differentiable function F : RN × R
N → C, we define its support as

the set

supp F :=
{
� ∈ {0, . . . , N − 1} : ∂F

∂p�

≡ 0 or
∂F

∂r�
≡ 0

}
(3.11)

and its diameter as

diam (supp F) := sup
i, j∈supp F

d(i, j) + 1, (3.12)

where d is the periodic distance

d(i, j) := min (|i − j |, N − |i − j |) . (3.13)

Note that 0 ≤ d(i, j) ≤ �N/2	.
We often use the following property: if f is a function with diameter K ∈ N, and

K � N , then

d(i, j) > K �⇒ supp S j f ∩ supp Si f = ∅, (3.14)

where S j is the shift operator (3.7). With the above notation and definition we arrive to
the following elementary result.
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Lemma 3.4. Consider the Toda integral J (m) = 1
m

∑N
j=1 h

(m)
j , 1 ≤ m ≤ N in (3.1).

Then J (m) is a cyclic function generated by 1
m h

(m)
1 , namely

J (m)(p, r) = 1

m

N∑

j=1

S j−1h
(m)
1 (p, r). (3.15)

Further, each term h(m)
j has diameter at most m. In particular h(m)

j and h(m)
k have disjoint

supports provided d( j, k) > m.

Circulant symmetric matrices. We begin recalling the definition of circulant matrices
(see e.g. [21, Chap. 3]).

Definition 3.5 (Circulant matrix). An N × N matrix A is said to be circulant if there
exists a vector a = (a j )

N−1
j=0 ∈ R

N such that

A j,k = a( j−k)mod N .

We will say that A is represented by the vector a.

In particular circulant matrices have all the form

A =

⎡

⎢⎢⎢⎢⎢⎣

a0 aN−1 . . . a2 a1
a1 a0 aN−1 a2
... a1 a0

. . .
...

aN−2
. . .

. . . aN−1
aN−1 aN−2 . . . a1 a0

⎤

⎥⎥⎥⎥⎥⎦

where each row is the right shift of the row above.
Moreover, A is circulant symmetric if and only if its representing vector a is even,

i.e. one has

ak = aN−k , ∀k. (3.16)

One of themost remarkable property of circulantmatrices is that they are all diagonalized
by the discrete Fourier transform (see e.g. [21, Chap. 3]). We show now that circulant
symmetric matrices are diagonalized by the Hartley transform:

Lemma 3.6. Let A be a circulant symmetric matrix represented by the vector a ∈ R
N .

Then

HAH−1 = √
N diag{̂a j : 0 ≤ j ≤ N − 1}, (3.17)

where â = Ha.

Proof. First remark that a circulant matrix acts on a vector x ∈ R
N as a periodic discrete

convolution,

Ax = a � x, (a � x) j :=
N−1∑

k=0

a j−k xk, 0 ≤ j ≤ N − 1, (3.18)
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where it is understood a� ≡ a�mod N . As the Hartley transform of a discrete convolution
is given by

[H(a � x)]k =
√
N

2

(
(̂ak + âN−k )̂xk + (̂ak − âN−k )̂xN−k)

)
,

we obtain (3.17), using that the Hartley transformmaps even vectors (see (3.16)) in even
vectors. ��

Our interest in circulant matrices comes from the following fact: quadratic cyclic
functions are represented by circulant matrices. More precisely consider a quadratic
function of the form

Q(p, r) = 1

2
pᵀAp +

1

2
rᵀBr + pᵀCr, (3.19)

where A, B,C are N × N matrices. Then one has

Q is cyclic ⇐⇒ A, B,C are circulant . (3.20)

This result, which is well known (see e.g. [21]), follows from the fact that Q cyclic is
equivalent to A, B,C commuting with the left cyclic shift S1, and that the set of matrices
which commute with S1 coincides with the set of circulant matrices.

We conclude this section collecting some properties of Toda integrals. Denote by
J (m)
2 the Taylor polynomial of order 2 of J (m) at zero; being a quadratic, symmetric,

cyclic function, it is represented by circulant symmetric matrices. We have the following
lemma.

Lemma 3.7. Let us consider the Toda integral

J (m)(p, r) = 1

m

N∑

j=1

S j−1h
(m)
1 (p, r).

Then h(m)
1 (p,q) has the following Taylor expansion at p = r = 0:

h(m)
1 (p, r) = ϕ

(m)
0 + ϕ

(m)
1 (p, r) + ϕ

(m)
2 (p, r) + ϕ

(m)
≥3 (p, r) (3.21)

where each ϕ
(m)
k (p, r) is a homogeneous polynomial of degree k = 0, 1, 2 in p and r

of diameter m and coefficients independent from N. The reminder ϕ
(m)
≥3 (p, r) takes the

form

ϕ
(m)
≥3 (p, r) :=

∑

(k,n)∈A(m)

|k|≥3

(−1)|k|ρ(m)(n, k) pk
(
1− nᵀr +

1

2
(nᵀr)2 +

(nᵀr)3

2

∫ 1

0
e−snᵀr (1− s)2 ds

)
,

(3.22)

withA(m) andρ(m) defined in (3.3) and (3.4) respectively.Moreover theTaylor expansion
of J (m)(p, r) at p = r = 0 takes the form

J (m)(p, r) = J (m)
0 + J (m)

2 (p, r) + J (m)
≥3 (p, r), (3.23)

where
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– J (m)
0 =

{
c ∈ R, m even
0 , m odd .

– J (m)
2 (p, r) is a cyclic function of the form

J (m)
2 (p, r) =

{
pᵀA(m)p + rᵀA(m)r, m even
pᵀB(m)r, m odd

(3.24)

with A(m), B(m) circulant, symmetric N × N matrices; their representing vectors
a(m), b(m) are m-admissible (according to Definition 2.4) and

a(m)
k = a(m)

N−k > 0, b(m)
k = b(m)

N−k > 0, ∀0 ≤ k ≤ m̃ :=
⌊m
2

⌋
. (3.25)

– The reminder J (m)
≥3 is a cyclic function generated by

ϕ
(m)
≥3
m .

The proof is postponed to “Appendix A”. We conclude this section giving the definition
of m-admissible functions and we prove a lemma that characterizes them in terms of
{J (l)

2 }Nl=1.

Definition 3.8. G1,G2 : RN × R
N → R

N are called m-admissible functions of the
first and second kind respectively if there exists a m-admissible vector g ∈ R

N such
that

G1 :=
N−1∑

j,l=0

gl p jr j+l , G2 :=
N−1∑

j,l=0

gl
(
p j p j+l + r j r j+l

)
. (3.26)

Remark 3.9. From Definition 3.8 and (3.20) one can deduce that both G1 and G2 can be
represented with circulant and symmetric matrices. Indeed we have that G1 = pᵀG1r
where (G1) jk = g( j−k)mod N and similarly for G2.

An immediate, but very useful, corollary of Lemma 3.7, is the fact that the quadratic
parts of Toda integrals are a basis of the vector space of m-admissible functions.

Lemma 3.10. Fix m ∈ N and let G1 and G2 be m-admissible functions of the first and
second kind defined by a m-admissible vector g ∈ R

N . Then there are two unique
sequences {c j }m̃j=0, {d j }m̃j=0, withmax j |c j |, max j |d j | independent from N, such that:

G1 =
m̃∑

l=0

cl J
(2l+1)
2 , G2 =

m̃∑

l=0

dl J
(2l+2)
2 , (3.27)

where J (m)
2 is the quadratic part (3.24) of the Toda integrals J (m) in (3.1).

Proof. We will prove the statement just for functions of the first kind. The proof for
functions of the second kind can be obtained in a similar way. Let J (2l+1)

2 = pᵀB(2l+1)r
where the circulantmatrix B(2l+1) is represented by the vectorb(2l+1) and letG1 = pᵀG1r
where (G1) jk = g( j−k)mod N . Then

G1 =
m̃∑

l=0

cl B
(2l+1) �⇒ gk =

m̃∑

l=0

b(2l+1)
k cl .

From Lemma 3.7 the matrix B = [b(2l+1)
k ]m̃k,l=0 is upper triangular and the diagonal

elements are always different from 0 (see in particular formula (3.25)). This implies that
the above linear system is uniquely solvable for (c0, . . . , cm̃). ��
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4. Averaging and Covariance

In this section we collect some properties of the Gibbs measure dμF in (2.5). The
first property is the invariance with respect to the shift operator. Namely for a function
f : RN × R

N → R; we have that
〈
S j f

〉 = 〈 f 〉 , ∀ j = 0, . . . , N − 1 , (4.1)

which follows from the fact that (S j )∗dμF = dμF .
It is in general not possible to compute exactly the average of a function with respect

to the Gibbs measure dμF in (2.5). This is mostly due to the fact that the variables
p0, . . . , pN−1 and r0, . . . , rN−1 are not independent with respect to the measure dμF ,
being constrained by the conditions

∑
i ri =

∑
i pi = 0.

We will therefore proceed as in [29], by considering a new measure dμF,θ on the
extended phase space according to which all variables are independent. We will be able
to compute averages and correlations with respect to this measure, and estimate the error
derived by this approximation.

For any θ ∈ R, we define the measure dμF,θ on the extended space RN × R
N by

dμF,θ := 1

ZF,θ (β)
e−βHF (p,r) e−θ

∑N−1
j=0 r j dp dr, (4.2)

where we define ZF,θ (β) as the normalizing constant of dμF,θ . We denote the expecta-
tion of a function f with respect to dμF,θ by 〈 f 〉θ . We also denote by

‖ f ‖2θ :=
∫

R2N
| f (p, r)|2 dμF,θ .

If ‖ f ‖θ < ∞ we say that f ∈ L2(dμF,θ ).

The measure dμF,θ depends on the parameter θ ∈ R and we fix it in such a way that
∫

R

r e−θr−βVF (r) dr = 0. (4.3)

Following [29], it is not difficult to prove that there exists β0 > 0 and a compact set
I ⊂ R such that for any β > β0, there exists θ = θ(β) ∈ I for which (4.3) holds true.
We remark that (4.3) is equivalent to require that

〈
r j
〉
θ
= 0 for j = 0, . . . , N − 1 and

as a consequence
〈∑N−1

j=0 r j
〉

θ
= 0. We observe that

〈∑N−1
j=0 r j

〉
= 0 with respect to the

measure dμF .
The main reason for introducing the measure dμF,θ is that it approximates averages

with respect to dμF as the following result shows.

Lemma 4.1. Fix β̃ > 0 and let f : RN × R
N → R have support of size K (according

to Definition 3.11) and finite second order moment with respect to dμF,θ , uniformly for
all β > β̃. Then there exist positive constants C, N0 and β0 such that for all N > N0,
β > max{β0, β̃} one has

∣∣〈 f 〉 − 〈 f 〉θ
∣∣ ≤ C

K

N

√〈
f 2
〉
θ
− 〈 f 〉2θ . (4.4)
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The above lemma is an extension to the periodic case of a result from [29], and we
shall prove it in “Appendix C”. As an example of applications of Lemma 4.1, we give a
bound to correlations functions.

Lemma 4.2. Fix K ∈ N. Let f, g : RN × R
N → C such that :

1. f, g and f g ∈ L2(dμF,θ ),
2. the supports of f and g have size at most K ∈ N.

Then there exist C, N0, β0 > 0 such that for all N > N0, β > β0

|〈 f g〉 − 〈 f 〉 〈g〉| ≤ 2‖ f ‖θ ‖g‖θ +
CK

N

(
‖ f ‖θ ‖g‖θ + ‖ f g‖θ

)
. (4.5)

Moreover, if f and g have disjoint supports, then

|〈 f g〉 − 〈 f 〉 〈g〉| ≤ CK

N

(
‖ f ‖θ ‖g‖θ + ‖ f g‖θ

)
. (4.6)

Proof. We substitute the measure dμF with dμF,θ and then we control the error by
using Lemma 4.1. With this idea, we write

〈 f g〉 − 〈 f 〉 〈g〉 = 〈 f g〉 − 〈 f g〉θ (4.7)

+ 〈 f g〉θ − 〈 f 〉θ 〈g〉θ (4.8)

+ 〈 f 〉θ 〈g〉θ − 〈 f 〉 〈g〉 , (4.9)

and estimate the different terms. We will often use the inequality
∣∣〈 f 〉θ

∣∣ ≤ ‖ f ‖θ , (4.10)

valid for any function f ∈ L2(dμF,θ ).
Estimate of (4.7): By Lemma 4.1, and the assumption that f g depends on at most 2K
variables,

∣∣〈 f g〉 − 〈 f g〉θ
∣∣ ≤ C

2K

N

√〈
( f g)2

〉
θ
− 〈 f g〉2θ ≤ C ′K

N
‖ f g‖θ .

Estimate of (4.8): By Cauchy-Schwartz and (4.10) we have
∣∣〈 f g〉θ − 〈 f 〉θ 〈g〉θ

∣∣ ≤ 2‖ f ‖θ‖g‖θ . (4.11)

Estimate of (4.9): We decompose further

〈 f 〉θ 〈g〉θ − 〈 f 〉 〈g〉 = 〈g〉θ
(〈 f 〉θ − 〈 f 〉) + (〈g〉θ − 〈g〉) 〈 f 〉θ

+
(〈g〉θ − 〈g〉) (〈 f 〉 − 〈 f 〉θ

)
,

again by Lemma 4.1 and (4.10) we obtain

∣∣〈 f 〉θ 〈g〉θ − 〈 f 〉 〈g〉∣∣ ≤ C
K

N
‖g‖θ‖ f ‖θ .

Combining the three bounds above and redefining C = max{C,C ′} one obtains (4.5).
To prove (4.6) it is sufficient to observe that if f and g have disjoint supports, then
〈 f g〉θ = 〈 f 〉θ 〈g〉θ and consequently (4.8) is equal to zero. ��
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In order to make Lemma 4.2 effective we need to show how to compute averages
according to the measure (4.2).

Lemma 4.3. There exists β0 > 0 such that for any β > β0, the following holds true.
For any fixed multi-index k, l,n, s ∈ N

N
0 and d, d ′ ∈ {0, 1, 2}, there are two constants

C (1)
k,l ∈ R and C (2)

k,l > 0 such that

C (1)
k,l

β
|k|+|l|

2

≤
〈
pk rl

(∫ 1

0
e−ξnᵀr(1− ξ)2dξ

)d (∫ 1

0
e−ξsᵀr(1− ξ)3dξ

)d ′〉

θ

≤ C (2)
k,l

β
|k|+|l|

2

where pk =∏N
j=1 p

k j
j and rl =∏N

j=1 r
l j
j . Moreover:

(i) if ki is odd for some i then C (1)
k,l = C (2)

k,l = 0;

(ii) if ki , li are even for all i then C (1)
k,l > 0.

The lemma is proved in “Appendix B”.

Remark 4.4. Actually all the results of this section hold true (with different constants)
also when we endowM with the Gibbs measure of the Toda chain in (2.25) and we use
as approximating measure

dμT,θ := 1

ZT,θ (β)
e−βHT (p,r) e−θ

∑N−1
j=0 r j dp dr; (4.12)

here θ is selected in such a way that
∫

R

r e−θr−βVT (r) dr = 0. (4.13)

We show in “Appendix B” that it is always possible to choose θ to fulfill (4.13) (see
Lemma B.1) and we also prove Lemma 4.3 for Toda. In “Appendix C” we prove Lemma
4.1 for the Toda chain.

5. Bounds on the Variance

In this sectionwe prove upper and lower bounds on the variance of the quantities relevant
to prove our main theorems.

5.1. Upper bounds on the variance of J (m) along the flow of FPUT. In this subsection
we only consider the case M endowed by the FPUT Gibbs measure. We denote by
J (m)(t) := J (m) ◦ φt

HF
the Toda integral computed along the Hamiltonian flow φt

HF
of

the FPUT Hamiltonian. The aim is to prove the following result:

Proposition 5.1. Fix m ∈ N. There exist N0, β0,C0,C1 > 0 such that for any N > N0,
β > β0, one has

σ 2
J (m)(t)−J (m)(0) ≤ C0N

(
(b− 1)2

β4 +
C1

β5

)
t2, ∀t ∈ R. (5.1)
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Proof. As explained in the introduction, applying formula (2.30) we get

σ 2
J (m)(t)−J (m)(0) ≤

〈
{J (m), HF }2

〉
t2, ∀t ∈ R. (5.2)

Therefore we need to bound
〈{J (m), HF }2

〉
. For the purpose we rewrite this term in a

more convenient form. Since 〈·〉 is an invariant measure with respect to the Hamiltonian
flow of HF , one has

〈
{J (m), HF }

〉
= 0. (5.3)

Furthermore, since J (m) is an integral of motion of the Toda Hamiltonian HT , we have
{
J (m), HT

}
= 0. (5.4)

We apply identities (5.3) and (5.4) to write
〈{

J (m), HF

}2〉 =
〈{

J (m), HF − HT

}2〉−
〈
{J (m), HF − HT }

〉2
. (5.5)

The above expression enables us to exploit the fact that the FPUT system is a fourth
order perturbation of the Toda chain. To proceed with the proof we need the following
technical result. ��
Lemma 5.2. One has

{J (m), HF − HT } =
N∑

j=1

H (m)
j , (5.6)

where the functions H (m)
j fulfill

(i) H (m)
j = S j−1H

(m)
1 ∀ j , moreover the diameter of the support of H (m)

j is at most m;
(ii) there exist N0, β0,C,C ′ > 0 such that for any N > N0,β > β0, any i, j = 1, . . . , N,

the following estimates hold true:

‖H (m)
j ‖θ ≤ C

(
(b− 1)2

β4 +
C ′

β5

)1/2

, ‖H (m)
i H (m)

j ‖θ ≤ C

(
(b− 1)4

β8 +
C ′

β10

)1/2

.

(5.7)

The proof of the lemma is postponed at the end of the subsection.
We are now ready to finish the proof of Proposition 5.1. Substituting (5.6) in (5.5) we
obtain

〈{
J (m), HF

}2〉 =
N∑

j,i=1

[〈
H (m)
i H (m)

j

〉
−
〈
H (m)
i

〉 〈
H (m)

j

〉]
. (5.8)

Therefore estimating
〈{
J (m), HF

}2〉
is equivalent to estimate the correlations between

H (m)
i and H (m)

j . Exploiting Lemma 4.2 and observing that if d(i, j) > m then H (m)
i

and H (m)
j have disjoint supports (see Lemma 5.2 (i) and (3.14)), we get that there are
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positive constants that for convenience we still call C and C ′, such that ∀N , β large
enough

∣∣∣
〈
H (m)
i H (m)

j

〉
−
〈
H (m)
i

〉 〈
H (m)

j

〉∣∣∣ ≤ C

(
(b− 1)2

β4 +
C ′

β5

)
, ∀i, j, (5.9)

∣∣∣
〈
H (m)
i H (m)

j

〉
−
〈
H (m)
i

〉 〈
H (m)

j

〉∣∣∣ ≤ C

N

(
(b− 1)2

β4 +
C ′

β5

)
, ∀i, j : d(i, j) > m .

(5.10)

From (5.8) we split the sum in two terms:
〈{

J (m), HF

}2〉 =
∑

d(i, j)≤m

[〈
H (m)
i H (m)

j

〉
−
〈
H (m)
i

〉 〈
H (m)

j

〉]

+
∑

d(i, j)>m

[〈
H (m)
i H (m)

j

〉
−
〈
H (m)
i

〉 〈
H (m)

j

〉]
.

We now apply estimates (5.9), (5.10) to get
〈{

J (m), HF

}2〉 ≤ NC

(
(b− 1)2

β4 +
C ′

β5

)
+ N 2 C̃

N

(
(b− 1)2

β4 +
C ′

β5

)

≤ NC1

(
(b− 1)2

β4 +
C2

β5

)
(5.11)

for some positive constants C1 and C2. ��

5.1.1. Proof of Lemma 5.2 We start by writing the Poisson bracket {J (m), HF − HT } in
an explicit form. First we observe that for any 1 ≤ m < N one has from (2.12)

∂ J (m)

∂p j−1
= 1

m

∂Tr (Lm)

∂p j−1
= Tr

(
Lm−1 ∂L

∂p j−1

)
= −[Lm−1] j, j = −h(m−1)

j , (5.12)

for all j = 1, . . . , N . In the above relation h(m−1)
j is the generating function of them−1

Toda integral defined in (3.2).
Next we observe that

HF (p,q) − HT (p,q) =
N−1∑

j=0

R(q j+1 − q j ),

R(x) := x2

2
− x3

6
+ b

x4

24
− (e−x − 1 + x). (5.13)

This implies also that

{
J (m), HF − HT

}
=

N∑

j=1

h(m−1)
j (p,q)

(
R′(r j−2) − R′(r j−1)

)

=
N∑

j=1

(h(m−1)
j (p,q) − h(m−1)

j (0, 0))
(
R′(r j−2) − R′(r j−1)

)
(5.14)
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where, to obtain the second identity, we are using that h(m−1)
j (0, 0) is by (3.15) and (3.21)

a constant independent from j and the second term in the last relation is a telescopic
sum. Define

H (m)
j :=

(
h(m−1)
j (p, r) − h(m−1)

j (0, 0)
) (

R′(r j−2) − R′(r j−1)
)
, j = 1, . . . , N ;

(5.15)

then item (i) of Lemma 5.2 follows because clearly H (m)
j = S j−1H

(m)
1 . Furthermore,

since h(m−1)
j has diameter bounded by m − 1, the same property applies to H (m)

j .
To prove item (i i) we start by expanding R′(r j−1) − R′(r j ) in Taylor series with

integral remainder. Since

R′(x) = (b− 1)

6
x3 +

x4

6

∫ 1

0
e−ξ x (1− ξ)3dξ ,

we get that

R′(r j−2) − R′(r j−1) = (b− 1)

6
S j−1ψ3(r) +

1

6
S j−1ψ4(r) , (5.16)

where explicitly

ψ3(r) := r3N−1 − r30 , (5.17)

ψ4(r) := r4N−1

∫ 1

0
e−ξrN−1(1− ξ)3dξ − r40

∫ 1

0
e−ξr0(1− ξ)3dξ . (5.18)

Combining (3.21) with (5.16) we rewrite H (m)
j in (5.15) in the form

H (m)
j = S j−1

6

(
(ϕ

(m)
1 + ϕ

(m)
2 + ϕ

(m)
≥3 )

(
(b− 1)ψ3 + ψ4

))
,

where ϕ
(m)
j , j = 0, 1, 2, are defined in (3.21). Thus the squared L2 norm of Hj is given

by (we suppress the superscript to simplify the notation)

‖Hj‖2θ = 1

36
(b− 1)2

( 2∑

�,�′=1

〈
ψ2
3 ϕ� ϕ�′

〉

θ
+
〈
ψ2
3ϕ≥3

(
ϕ≥3 + 2ϕ1 + 2ϕ2

)〉

θ

)
(5.19)

+
b− 1

18

( 2∑

�,�′=1

〈ψ3ψ4 ϕ� ϕ�′ 〉θ +
〈
ψ3ψ4ϕ≥3

(
ϕ≥3 + 2ϕ1 + 2ϕ2

)〉
θ

)
(5.20)

+
1

36

2∑

�,�′=1

〈
ψ2
4 ϕ� ϕ�′

〉

θ
+

1

36

〈
ψ2
4 ϕ≥3

(
ϕ≥3 + 2ϕ1 + 2ϕ2

)〉

θ
. (5.21)

Consider now the terms in (5.19); by (3.24), (3.22) and (5.17), we know that each element
is a linear combinations of functions of the form

pk rl
(∫ 1

0
e−ξnᵀr(1− ξ)2dξ

)d (∫ 1

0
e−ξsᵀr(1− ξ)3dξ

)d ′

, (5.22)
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with |k| + |l| ≥ 6 + � + �′ ≥ 8, d, d ′ ∈ {0, 1, 2}. The number of these functions and
their coefficients are independent from N (see Lemma 3.7). By Lemma 4.3 it follows
that there exists a constant C > 0, depending only on m, such that

|r.h.s. of (5.19)| ≤ C (b− 1)2 β−4. (5.23)

Analogously, line (5.20) is a linear combination of functions of the form (5.22) with
|k| + |l| ≥ 9, d, d ′ ∈ {0, 1, 2}. Applying Lemma 4.3 we get the estimate

|(5.20)| ≤ C ′ |b− 1|β−9/2 (5.24)

for some constant C ′ > 0. In a similar way the expression (5.21) is a linear combination
of functions of the form (5.22) with |k| + |l| ≥ 10, d, d ′ ∈ {0, 1, 2}. Applying Lemma
4.3 we get the estimate

|(5.21)| ≤ C ′′ β−5 , (5.25)

for some constantC ′′ > 0. Combining (5.23), (5.24) and (5.25) we obtain estimate (5.7)
for ‖Hj‖θ . The estimate for ‖H (m)

i H (m)
j ‖θ can be proved in an analogous way. ��

5.2. Lower bounds on the variance ofm-admissible functions. Fromnowonwe consider
M endowed with either the FPUT or the Toda Gibbs measure; the following result holds
in both cases.

Proposition 5.3. Fix m ∈ N, let G be an m-admissible function of the first or second
kind (see Definition 3.8). There exist N0, β0,C > 0 such that for any N > N0, β > β0,
one has

σ 2
G =

〈
G2
〉
− 〈G〉2 ≥ C

N

β2 . (5.26)

Proof. We first prove (5.26) when G = G1 = pᵀG1r where G1 is a circulant, symmetric
matrix represented by the m-admissible vector a ∈ R

N . We now make the change of
coordinates (p, r) = (Hp̂, Ĥr) which diagonalizes the matrix G1 (see (3.17)), getting

G1(̂p, r̂) = √
N

N−1∑

j=0

ĝ j p̂ j r̂ j .

So we have just to compute

σ 2
G1

= N

〈
N−1∑

i, j=0

ĝ j ĝi p̂ j p̂i r̂i r̂ j

〉
− N

⎛

⎝
〈
N−1∑

j=0

ĝ j p̂ j r̂ j

〉⎞

⎠
2

(5.27)

= N
N−1∑

i, j=0

ĝ j ĝi
〈
p̂ j p̂i

〉 〈
r̂i r̂ j

〉− N

⎛

⎝
N−1∑

j=0

ĝ j
〈
p̂ j
〉 〈
r̂ j
〉
⎞

⎠
2

,

where we used that p̂k, r̂ j are random variables independent from each other.
We notice that p̂1, p̂2, . . . , p̂N−1 are i.i.d. Gaussian random variable with variance

β−1, p̂0 = 0 (see (2.1)), so that we have
〈
p̂ j
〉 = 0 and

〈
p̂ j p̂i

〉 = δi, j
β

i, j = 1, . . . , N −1
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(remark that this holds true both for the FPUT and Toda’s potentials as the p-variables
have the same distributions).
As a consequence, (5.27) becomes:

σ 2
G1

= N

β

N−1∑

j=1

ĝ2j

〈
r̂2j

〉
= 1

β

〈
r̂ᵀHG2

1Ĥr
〉
= 1

β

〈
rᵀG2

1r
〉
. (5.28)

Since G1 is circulant symmetric matrix so is G2
1 and its representing vector is d := g � g.

Next we remark that the identity

〈(∑N−1
j=0 r j

)2〉 = 0 implies

〈
r jri

〉 = − 1

N − 1

〈
r20

〉
, ∀i �= j .

Applying this property to (5.28) we get

σ 2
G1

= 1

β

N−1∑

j,l=0

dl
〈
r jr j+l

〉 = N

β

〈
r20

〉
d0 +

1

β

N−1∑

j,l
l �=0

dl
〈
r j r j+l

〉

= 1

β

〈
r20

〉
⎛

⎝Nd0 − N

N − 1

N∑

l �=0

dl

⎞

⎠ . (5.29)

By Lemmas 4.1 and 4.3 we have that, for N sufficiently large,
〈
r20
〉 ≥ cβ−1. Finally,

since the vectors g,d are m-admissible and 2m-admissible respectively we have that

d0 = (g � g)0 =
m̃∑

j=0

g2j ≥ cm,

N−1∑

l �=0

dl =
2m̃∑

l �=0

dl ≤ Cm, (5.30)

for some constants cm > 0 and Cm > 0. Plugging (5.30) into (5.29) we obtain (5.26)
for the case of m-admissible functions of the first kind.

For the case of admissible functions of the second kind, one hasG2 = pᵀG2p+rᵀG2r
with G2 circulant, symmetric and represented by an m-admissible vector. Since p and r
are independent random variables one gets

σG2 = σpᵀG2p+rᵀG2r = σpᵀG2p + σrᵀG2r ≥ σpᵀG2p.

Then arguing as in the previous case one gets (5.26). ��
By applying Proposition 5.3 to the quantity J (m)

2 that is an m-admissible function of the
first or second kind depending on the parity of m, we obtain the following result.

Corollary 5.4. The quadratic part J (m)
2 of the Taylor expansion of the Toda integral

J (m) near (p, r) = (0, 0) satisfies

σ 2
J (m)
2

≥ C
N

β2 , (5.31)

for some constant C > 0.
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In a similar way we obtain a lower bound on the reminder J (m)
≥3 of the Taylor expansion

of the Toda integral J (m) near p = 0 and r = 0.

Lemma 5.5. Fix m ∈ N. There exist N0, β0,C > 0 such that for any N > N0, β > β0,
one has

σ 2
J (m)
≥3

≤ C
N

β3 . (5.32)

Proof. Recall from Lemma 3.7 that J (m)
≥3 is a cyclic function generated by h̃(m)

1 :=
1
mϕ

(m)
≥3 . Thus, denoting h(m)

j := S j−1h̃
(m)
1 , we have J (m)

≥3 =∑N
j=1 h̃

(m)
j and its variance

is given by

σ 2
J≥3m

=
N∑

i, j=1

〈
h̃(m)
i h̃(m)

j

〉
−
〈
h̃(m)
i

〉 〈
h̃(m)
j

〉
. (5.33)

We can bound the correlations in (5.33) exploiting Lemma 4.2, provide we estimate
first the L2(dμF,θ ) and L2(dμT,θ ) norms of h̃(m)

i and h̃(m)
i h̃(m)

j . Proceeding with the

same arguments as in Lemma 5.2, one proves that there exists C̃ > 0 such that for any
N > N0, β > β0,

‖h̃(m)
i ‖θ ≤ C̃β−3/2, ‖h̃(m)

i h̃(m)
j ‖θ ≤ C̃β−3. (5.34)

By Lemma 3.7, the function h̃(m)
1 has diameter at mostm, so in particular if d(i, j) > m,

the functions h̃(m)
i and h̃(m)

j have disjoint supports (recall (3.14)).
We are now in position to apply Lemma 4.2 and obtain

∣∣∣
〈
h̃(m)
i h̃(m)

j

〉
−
〈
h̃(m)
i

〉 〈
h̃(m)
j

〉∣∣∣ ≤ C ′

β3 , ∀i, j (5.35)

∣∣∣
〈
h̃(m)
i h̃(m)

j

〉
−
〈
h̃(m)
i

〉 〈
h̃(m)
j

〉∣∣∣ ≤ C ′

Nβ3 , ∀i, j : d(i, j) > m, (5.36)

for some constant C ′ > 0. Thus we split the variance in (5.33) in two parts

σ 2
J (m)
≥3

=
∑

d(i, j)≤m

〈
h̃(m)
i h̃(m)

j

〉
−
〈
h̃(m)
i

〉 〈
h̃(m)
j

〉
+

∑

d(i, j)>m

〈
h̃(m)
i h̃(m)

j

〉
−
〈
h̃(m)
i

〉 〈
h̃(m)
j

〉

and apply estimates (5.35), (5.36) to get (5.32). ��
Combining Corollary 5.4 and Lemma 5.5 we arrive to the following crucial proposition.

Proposition 5.6. Fix m ∈ N. There exist N0, β0,C > 0 such that for any N > N0,
β > β0, one has

σ 2
J (m) ≥ C

N

β2 . (5.37)

Proof. By Lemma 3.7, we write J (m) = J (m)
0 + J (m)

2 + J (m)
≥3 with J (m)

0 constant. By
Corollary 5.4 and Lemma 5.5 we deduce that for N and β large enough,

σJ (m) = σ
J (m)
2 +J (m)

≥3
≥ σ

J (m)
2

− σ
J (m)
≥3

≥
√
N

β

(√
C ′ −

√
C ′′
β

)
,

which leads immediately to the claimed estimate (5.37). ��
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6. Proof of the Main Results

In this section we give the proofs of the main theorems of our paper.

6.1. Proof of Theorem 2.1. The proof is a straightforward application of Proposition 5.1
and 5.6. Having fixed m ∈ N, we apply (2.29) with � = J (m) and λ = δ1 to get

P
( ∣∣∣J (m)(t) − J (m)(0)

∣∣∣ ≥ δ1σJ (m)(0)

)
≤ C0

( |b− 1|2
β2 +

C1

β3

)
t2

δ21
(6.1)

from which one deduces the the statement of Theorem 2.1.

6.2. Proof of Theorem 2.5 and Theorem 2.6. The proofs of Theorems 2.5 and 2.6 are
quite similar and we develop them at the same time. As in the proof of Theorem 2.1, the
first step is to use Chebyshev inequality to bound

P (|�(t) − �| > λσ�) ≤ 1

λ2

σ 2
�(t)−�

σ 2
�

, (6.2)

where the time evolution is intended with respect to the FPUT flow φt
F or the Toda flow

φt
T . Accordingly, the probability is calculated with respect to the FPUT Gibbs measure

(2.5) or the Toda Gibbs measure (2.25).
Next we observe that the quantity� :=∑N−1

j=1 ĝ j E j defined in (2.22) can be written
in the form

�(p, r) =
N−1∑

j=1

ĝ j E j = 1

2
√
N

N−1∑

j,l=0

gl
(
p j p j+l + r jr j+l

) = 1

2
√
N
G2(p, r), (6.3)

where g ∈ R
N is a m-admissible vector and G2(p, r) is a m-admissible function of the

second kind, as in Definition 3.8. As the inequality (2.29) is scaling invariant, proving
(6.2) is equivalent to obtain that

P
(|G2(t) − G2| > λσG2

) ≤ 1

λ2

σ 2
G2(t)−G2

σ 2
G2

. (6.4)

Applying Proposition 5.3 we can estimate σ 2
G2

. We are then left to give an upper bound

to σ 2
G2(t)−G2

. By Lemma 3.10, there exists a unique sequence {c j }m̃−1
j=0 , with max j |c j |

independent from N , such that G2(p, r) = ∑m̃−1
l=0 cl J

(2l+2)
2 , where J (2l+2)

2 are defined
in (3.24). Hence we bound

σG2(t)−G2(0) ≤
m̃−1∑

l=0

|cl | σJ (2l+2)
2 (t)−J (2l+2)

2 (0)
.

Next we interpolate J (2l)
2 with the integrals J (2l) and exploit the fact that they are

adiabatic invariants for the FPUT flow and integrals of motion for the Toda flow. More
precisely

σ
J (2l)
2 (t)−J (2l)

2 (0)
≤ σ

J (2l)
2 (t)−J (2l)(t)

+ σ
J (2l)(0)−J (2l)

2 (0)
(6.5)
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+ σJ (2l)(t)−J (2l)(0). (6.6)

By the invariance of the two measures with respect to their corresponding flow and
Lemma 5.5, we get both for FPUT and Toda the estimate

σ
J (2l)
2 (t)−J (2l)(t)

= σ
J (2l)
2 (0)−J (2l)(0)

= σ
J (2l)
≥3

≤
√
C̃1N

β3 , (6.7)

for some constant C̃1 > 0 and for β > β0 and N > N0. As (6.6) is zero for the Toda
flow (being J (2l)(t) constant along the flow), we get

σ 2
G2◦φt

T−G2
≤ C1N

β3 , (6.8)

for some constant C1 > 0 and for β > β0 and N > N0. Combing Proposition 5.3 with
(6.8) we conclude that

P
(∣∣G2 ◦ φt

T − G2
∣∣ > δ1σG2

) ≤ C1

δ21β
, ∀δ1 > 0, (6.9)

namely we have concluded the proof of Theorem 2.6.
We are left to estimate (6.6) for FPUT, but this is exactly the quantity bounded in

Proposition 5.1. We conclude that

σ 2
G2◦φt

F−G2
≤ C1N

β3 + C3N

( |b− 1|2
β4 +

C2

β5

)
t2, (6.10)

for some constant C j > 0, j = 1, 2, 3 and for β > β0 and N > N0.
Combing Proposition 5.3 with (6.10) we obtain

P
(∣∣G2 ◦ φt

F − G2
∣∣ > λσG2

) ≤ C1

λ2β
+
C3

λ2

( |b− 1|2
β2 +

C2

β3

)
t2. (6.11)

Choosing λ = β−ε with 0 < ε < 1
4 , (6.11) is equivalent to

P
(∣∣G2 ◦ φt

F − G2
∣∣ >

σG2

βε

)
≤ C1

β2ε , (6.12)

for some redefine constant C1 > 0 and for every time t fulfilling (2.24).
We have thus concluded the proof of Theorem 2.5.
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A. Proof of Lemma 3.7

In order to prove Lemma 3.7 we describe more specifically the Toda integrals and
characterize their quadratic parts. Equation (3.15) follows by the explicit expression of
h(m)
j in (3.2), as the coefficients ρ(m)(n,k) do not depend on the index j . We recall that

h(m)
1 takes the form

h(m)
1 (p, r) =

∑

(k,n)∈A(m)

(−1)|k|ρ(m)(n,k)pke−nᵀr ,

with

supp k, supp n ⊆ Bd
m̃(0) := { j : d(0, j) ≤ m̃}, |k| + 2|n| = m.

In particular it is clear that h(m)
1 has diameter 2m̃ ≤ m.

Now we Taylor expand around r = 0 the exponential with integral remainder:

e−nᵀr = 1− nᵀr +
1

2
(nᵀr)2 +

(nᵀr)3

2

∫ 1

0
e−snᵀr (1− s)2 ds

and we substitute it in h(m)
1 , obtaining an expansion of the form:

h(m)
1 (p, r) =

∑

(k,n)∈A(m)

(−1)|k|ρ(m)(n,k)

pk
(
1− nᵀr +

1

2
(nᵀr)2 +

(nᵀr)3

2

∫ 1

0
e−snᵀr (1− s)2 ds

)
.

We can rewrite the above expression in the form

h(m)
1 (p, r) = ϕ

(m)
0 + ϕ

(m)
1 (p, r) + ϕ

(m)
2 (p, r) + ϕ

(m)
≥3 (p, r) ,

where ϕ
(m)
� , � = 0, 1, 2, are the Taylor polynomials at (p, r) = (0, 0). Their explicit

expressions read

ϕ
(m)
0 =

∑

(0,n)∈A(m)

ρ(m)(n, 0) , ϕ
(m)
1 = −

∑

(0,n)∈A(m)

ρ(m)(n, 0)nᵀr −
∑

(k,n)∈A(m)

|k|=1

ρ(m)(n,k)pk,

ϕ
(m)
2 =

∑

(0,n)∈A(m)

ρ(m)(n, 0)
(nᵀr)2

2
+

∑

(k,n)∈A(m)

|k|=1

ρ(m)(n,k)pknᵀr +
∑

(k,n)∈A(m)

|k|=2

ρ(m)(n,k)pk.

http://creativecommons.org/licenses/by/4.0/
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We deduce from these explicit formulas that ifm is odd then ϕ
(m)
0 ≡ 0 as well as the first

sum defining ϕ
(m)
1 and the first and last one defining ϕ

(m)
2 . Indeed the sums are carried

on an empty set. If m is even the second sum defining ϕ
(m)
1 and the second one defining

ϕ
(m)
2 are zero for the same reason. Concerning ϕ

(m)
≥3 , it has a zero of order greater than

3 in the variables (p, r), and it has the form

ϕ
(m)
≥3 (p, r) :=

∑

(k,n)∈A(m)

|k|≥3

(−1)|k|ρ(m)(n,k)

pk
(
1− nᵀr +

1

2
(nᵀr)2 +

(nᵀr)3

2

∫ 1

0
e−snᵀr (1− s)2 ds

)
.

These, together with the explicit formula of ρ(m)(n,k), prove (3.21).
It is easy to see that defining

J (m)
0 := 1

m

N−1∑

j=0

S jϕ
(m)
0 , J (m)

1 := 1

m

N−1∑

j=0

S jϕ
(m)
1 ,

J (m)
2 := 1

m

N−1∑

j=0

S jϕ
(m)
2 , J (m)

≥3 := 1

m

N−1∑

j=0

S jϕ
(m)
≥3 ,

we immediately get that

J (m) = J (m)
0 + J (m)

1 + J (m)
2 + J (m)

≥3 .

Clearly J (m)
0 it is a constant that is zero for m odd; moreover thanks to the boundary

condition (2.4) and the linearity of J (m)
1 we have that J (m)

1 = 0. Further, J (m)
≥3 is clearly

a cyclic function. In order to get (3.24) and (3.25) for J (m)
2 we have to split the proof in

two different cases.

Casem odd. In this case thanks to the property of ϕ
(m)
2 , the definition of J (m)

2 and (3.20)
we get that there exists a cyclic and symmetric matrix B(m) such that:

J (m)
2 = pᵀB(m)r.

Moreover since the diam(k), diam(n) defining ϕ
(m)
2 are at most m̃ (see Remark 3.4) we

have that the vector b(m) representing the matrix B(m) is m-admissible and from (3.4)
we have that b(m)

j = b(m)
N− j are positive integers for all j = 0, . . . , m̃.

Casem even. As before there exist twomatrices A(m), D(m) represented bym-admissible
vectors such that:

J (m)
2 = pᵀA(m)p + rᵀD(m)r , a(m)

k = a(m)
N−k ∈ N , d(m)

k = d(m)
N−k ∈ N , 0 ≤ k ≤ m̃.

We have just to prove that the two matrices are equal; to do this we exploit the involution
property of the Toda integrals. Indeed we know that

{
J ( j), J (k)

} = 0, for any j, k. It
follows easily that also their quadratic parts must commute:

{
J (k)
2 , J ( j)

2

}
= 0, ∀ k, j. (A.1)
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To compute explicitly the Poisson bracket we change coordinates via the Hartley trans-
form (2.18) getting that:

J (m)
2 = √

N
N−1∑

j=1

â j p̂
2
j + d̂ j r̂

2
j =

√
N

N−1∑

j=1

â j p̂
2
j + d̂ jω

2
j q̂

2
j ,

J (2)
2 = 1

2

∑

j

p̂2j + ω2
j q̂

2
j ,

where ω j = 2 sin
(
π

j
N

)
. As the Hartley transform is a symplectic map, by (A.1) we

get

0 =
{
J (2)
2 , J (m)

2

}
= √

N
N−1∑

j=1

ω2
j

(
â j − d̂ j

)
p̂ j q̂ j , (A.2)

which implies that â j = d̂ j for all j �= 0. To prove that also â0 = d̂0 we come back to
the original variables getting that:

a(m)
j = 1√

N
â0 +

1√
N

N−1∑

k=1

â j

(
cos

(
2π

jk

N

)
+ sin

(
2π

jk

N

))
,

d(m)
j = 1√

N
d̂0 +

1√
N

N−1∑

k=1

â j

(
cos

(
2π

jk

N

)
+ sin

(
2π

jk

N

))
,

∀ j. (A.3)

This means that a(m)
j − d(m)

j = â0−d̂0√
N

for all j = 0, . . . , N − 1. Since a(m),d(m) are

m-admissible it follows that a(m)
m̃+1 = d(m)

m̃+1 = 0 so that

â0 − d̂0√
N

= a(m)
m̃+1 − d(m)

m̃+1 = 0,

which proves the statement.

B. Proof of Lemma 4.3

We prove the lemma for both the FPUT and Toda measure.
First of all we observe that for d, v = 2, 3:

1

4d
∏

j∈Suppn
min

(
e−dn j r j , 1

)
≤
(∫ 1

0
e−ξnᵀr(1− ξ)vdξ

)d

≤ 1

3d
∏

j∈Suppn
max

(
e−dn j r j , 1

)
. (B.1)

This means that we have actually to prove that for any fixed multi-index k, l,n ∈ N
N
0

there exist two constants C (1)
k,l ∈ R and C (2)

k,l > 0 such that:

〈
pkrl

∏

j∈Suppn
min

(
e−n j r j , 1

)
〉

θ

≥ C (1)
k,lβ

− |k|+|l|
2 , (B.2)



840 T. Grava, A. Maspero, G. Mazzuca, A. Ponno

〈
pkrl

∏

j∈Suppn
max

(
e−n j r j , 1

)
〉

θ

≤ C (2)
k,lβ

− |k|+|l|
2 . (B.3)

Moreover since for the two measures dμF,θ , dμT,θ all p and r are independent random
variables and moreover the p j are independent and normally distributed according to
N (0, β−1), it follows

〈
pkrl

∏

j∈Suppn
min

(
e−n j r j , 1

)
〉

θ

=
〈
pk
〉

θ

〈
rl

∏

j∈Suppn
min

(
e−n j r j , 1

)
〉

θ

(B.4)

〈
pkrl

∏

j∈Suppn
max

(
e−n j r j , 1

)
〉

θ

=
〈
pk
〉

θ

〈
rl

∏

j∈Suppn
max

(
e−n j r j , 1

)
〉

θ

(B.5)

where

〈
pk
〉

θ
=
〈
∏

i

pkii

〉

θ

=

⎧
⎪⎨

⎪⎩

∏

i

(ki − 1)!!
β

ki
2

, ki all even

0, some ki odd

(B.6)

Here k!! denotes the double factorial. Instead the distribution of the r j is different for
the two measures, so we need to calculate it separately for the FPUT and Toda chain.

FPUT chain. Let’s start considering
〈
rl min

(
e−nr , 1

)〉
θ
:

〈
rl min

(
e−nr , 1

)〉

θ
=
∫
R− rl e

−θr−β
(
r2
2 + r3

3 + r4
4

)

dr +
∫
R+ rl e−nr e

−θr−β
(
r2
2 + r3

3 + r4
4

)

dr
∫
R
e
−θr−β

(
r2
2 + r3

3 + r4
4

)

dr

= β− l
2

∫
R− rl e

− θ√
β
r−

(
r2
2 + r3

3
√

β
+ r4
4β

)

dr +
∫
R+ rl e

− n√
β
r
e
− θ√

β
r−

(
r2
2 + r3

3
√

β
+ r4
4β

)

dr
∫
R
e
− θ√

β
r−

(
r2
2 + r3

3
√

β
+ r4
4β

)

dr

≥ β− l
2

∫
R− rl e

− θ√
β
r−

(
r2
2 + r3

3
√

β
+ r4
4β

)

dr
∫
R
e
− θ√

β
r−

(
r2
2 + r3

3
√

β
+ r4
4β

)

dr

.

(B.7)

Since for β large enough θ(β) is uniformly bounded, it follows that there is a positive
constant Cl such that:

〈
rl min

(
e−nr , 1

)〉

θ
≥ (−1)l

Cl

β
l
2

. (B.8)

We notice that if l is even then the right end side of (B.8) is positive. The proof for〈
rl max

(
e−nr , 1

)〉
θ
follows in the same way so we get the claim for the FPUT chain. ��
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Toda chain. For the Toda chain the computation is a little bit more involved, so we
prefer to split it in different parts.

Lemma B.1. Consider the measure 4.2, then there exists a β0 > 0 such that for all
β > β0 there exists θ ≡ θ(β) ∈ [1/3, 2] such that

〈
rkj

〉

θ
=
⎧
⎨

⎩

0 k = 1

O
(

1

β
k
2

)
k �= 1

. (B.9)

Proof. First we prove that, for any β large enough, we can chose θ(β) in a compact
interval I such that

〈
r j
〉
θ
= 0. We notice that:

〈
rk
〉

θ
= (−1)k

∂kθ

∫
R
e−(θ+β)r−βe−r

dr
∫
R
e−(θ+β)r−βe−r dr

(e−r=x)= (−1)k
∂kθ

∫
R+ xθ+β−1e−βxdx∫

R+ xθ+β−1e−βxdx
= (−1)k

∂kθ
�(β+θ)

βθ

�(β+θ)

βθ

, (B.10)

where �(z) is the usual Gamma function and we used the following equality:

∫ ∞

0
t z−1e−xtdt = �(z)

xz
.

In the case k = 1 one obtains

〈r〉θ = log(β) − �′(θ + β)

�(θ + β)
. (B.11)

Introducing the digamma function ψ(z) = �′(z)
�(z) [28] and using the inequality

log x − 1

x
≤ ψ(x) ≤ log x − 1

2x
, ∀x > 0,

it is easy to show that there exists β0 > 0 such that ∀β > β0 one has

ψ

(
1

3
+ β

)
≤ log

(
1

3
+ β

)
− 1

2(1/3 + β)
≤ logβ

and

ψ(2 + β) ≥ log(2 + β) − 1

2 + β
≥ logβ.

Since x �→ ψ(x) is continuous on (1,+∞), by the intermediate value theorem there
exists θ(β) ∈ [1/3, 2] fulfilling ψ(θ + β) = logβ which implies by (B.11) that

〈
r j
〉
θ
= log(β) − �′(θ + β)

�(θ + β)
= 0. (B.12)
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We will prove the remaining part of the claim by induction; (B.10) leads in the case
k = 2 to:

〈
r2
〉

θ
= βθ

�(θ + β)
∂θ

(
�′(θ + β) − ln(β)�(θ + β)

βθ

)

= βθ

�(θ + β)
∂θ

(
βθ

�(θ + β)
(ψ(θ + β) − ln(β))

)

= 〈
r j
〉
θ
(ψ(θ + β) − ln(β)) + ψ(1)(θ + β)

= ψ(1)(θ + β),

(B.13)

where ψ(s) is the sth polygamma function defined as ψ(s)(z) := ∂sψ(z)

∂zs
. For x ∈ R it

has the following expansion as x → +∞ :

ψ(s)(x) ∼ (−1)s+1
∞∑

k=0

(k + s − 1)!
k!

Bk

xk+s
, s ≥ 1 , (B.14)

where Bk are the Bernoulli number of the second kind. Therefore
〈
r2
〉

θ
= ψ(1)(θ + β)

β>β0= O
(
1

β

)
.

So the first inductive step is proved. Next suppose the statement true for k and let us
prove it for k + 1.

〈
rk+1

〉

θ
= (−1)k+1

βθ

�(θ + β)
∂kθ

(
�′(θ + β) − ln(β)�(θ + β)

βθ

)

= (−1)k+1
βθ

�(θ + β)
∂kθ

(
βθ

�(θ + β)
(ψ(θ + β) − ln(β))

)

= (−1)k+1
βθ

�(θ + β)
∂kθ

(
βθ

�(θ + β)

)
(ψ(θ + β) − ln(β))

+ (−1)k+1
βθ

�(θ + β)

k∑

n=1

(
k

n

)
∂k−n
θ

(
βθ

�(θ + β)

)
∂nθ ψ(θ + β)

= 0 +
k∑

n=1

(
k

n

)
(−1)n+1

〈
rk−n

〉

θ
∂nθ ψ(θ + β) = O

(
1

β
k
2

)
,

(B.15)

where we used (B.12) and (B.14). ��
We are now ready to prove the last part of Lemma 4.3 for the Toda chain:

〈
rl max(1, e−nr )

〉

θ
=
∫
R+ rle−(θ+β)r−βe−r

dr +
∫
R− rle−(θ+β−n)r−βe−r

dr
∫
R
e−θr−βe−r dr

≤
∫
R+ rle−(θ+β)r−βe−r

dr
∫
R
e−(θ+β)r−βe−r dr

.

(B.16)

The last integral can be estimated in the same way as in the previous lemma, moreover
the lower bound follows in the same way, so we get the claim also for the Toda chain. ��
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C. Measure Approximation

In this section we show how to approximate the measure dμ, in which the variables
are constrained, with the measure dμθ , where all variables are independent. The proof
follows the construction of [29] (where it is done for Dirichlet boundary conditions)
which applies both to the Gibbs measure of FPUT (2.5) and Toda (2.25). To simplify
the construction we consider a general potential V : R → R and make the following
assumptions:

(V1) There exist β0 > 0 and a compact interval I ⊂ R such that for any β > β0, there
exists θ ≡ θ(β) ∈ I such that

∫

R

r e−θr−βV (r) dr = 0. (C.1)

(V2) There exist β0,C1,C2 > 0 such that for any β > β0, with θ = θ(β) of (V1), one
has

C1
βk/2 <

∫

R

|r |k e−θr−βV (r) dr <
C2

βk/2 , k = 0, . . . , 4. (C.2)

In particular the moments up to order 4 are finite.
(V3) There exists β0 > 0 such that ∀β > β0, with θ = θ(β) of (V1), one has

inf
r∈R

|θr + βV (r)| > −∞, (C.3)

namely the function r �→ θr + βV (r) is bounded from below.

Both the FPUT potential VF (x) and the Toda potential VT (x) satisfy the assumptions
(V1)–(V3) by the results of “Appendix B”.
We define the constraint measure dμV on the restricted phase space M as

dμV := 1

ZV (β)
e−β

∑N
j=1

p2j
2 e−β

∑N
j=1 V (r j ) δ

⎛

⎝
∑

j

r j = 0

⎞

⎠ δ

⎛

⎝
∑

j

p j = 0

⎞

⎠ dp dr,

(C.4)

and the unconstrained measure dμV
θ on the extended phase space RN × R

N as

dμV
θ := 1

ZV,θ (β)
e−β

∑N
j=1 p2j /2 e−β

∑N
j=1 V (r j ) e−θ

∑N
j=1 r j dp dr; (C.5)

as usual ZV (β) and ZV,θ (β) are the normalizing constants of dμV , dμV
θ respectively.

We denote the expectation of f with respect to the measure dμV as 〈 f 〉V , and with
respect to the measure dμV

θ as 〈 f 〉V,θ .

We also denote by ‖ f ‖V,θ :=
〈
f 2
〉1/2
V,θ

the L2 norm of f with respect to the measure

dμV
θ .
The main result is the following one:

Theorem C.1. Assume that (V1)–(V3) hold true. Fix K ∈ N and assume that f : RN ×
R

N → R have support of size K (according to definition 3.11) and finite second order
moment with respect to dμV

θ . Then there exist C, N0 and β0 such that for all N > N0,
β > β0 one has

∣∣〈 f 〉V − 〈 f 〉V,θ

∣∣ ≤ C
K

N

√〈
f 2
〉
V,θ

− 〈 f 〉2V,θ . (C.6)
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C.1. Proof of Theorem C.1. Introduce the structure function

�N (x) :=
∫

x1+...+xN=x

e−β
∑N

j=1 V (x j ) dx1 . . . dxN , ∀x ∈ R. (C.7)

The important remark is that �N (x) is N -times the convolution of the function e−βV (x)

with itself thus it is the density function of the sum of N iid random variables distributed
as e−βV (x).

Next, for θ ∈ R, we define the conjugate distribution

U (θ)
N (x) := 1

(zθ (β))N
e−θx �N (x), zθ (β) :=

∫

R

e−βV (x)−θx dx, (C.8)

As before, we remark that U (θ)
N (x) it is N -times the convolution of the function

e−βV (x)−θx with itself thus it is the density function of the sum of N iid random variables
{Y (θ)

n (β)}1≤n≤N distributed as

Y (θ)
n (β) ∼ Y (θ) := 1

zθ (β)
e−βV (x)−θx dx, (C.9)

moreover thanks to (C.1) we know that
〈
Y (θ)

〉 = 0.

The central limit theorem says that the rescaled random variable
1

σ
√
N

N∑

n=1

Y (θ)
n (β)

converges in distribution to a normalN (0, 1). We want to apply a more refined version
of this result, called local central limit theorem, which describes the asymptotic of this
convergence.

In particular we will use a local central theorem whose proof can be found in [34,
Theorem VII.15]; to state it, we first define the functions

qν(x) := 1√
2π

e−
x2
2
∑

B(ν)

H j+2s(x)
ν∏

d=1

1

kd !
(

γd+2

(d + 2)! σ d+2

)kd
(C.10)

where H j is the j-th Hermite polynomial, γd is the d-th cumulant1 of Y (θ)
n (β), and B(ν)

is the set of all non-negative integer solutions k1, . . . , kν of the equalities k1 +2k2 + · · ·+
νkν = ν, and s = k1 + k2 + · · · + kν .

Theorem C.2. (Local central limit) Let {Xn} be a sequence of iid variables such that

(i) For any 1 ≤ n ≤ N, one has E [Xn] = 0.
(ii) There exists k ≥ 3 such thatE

[|Xn|k
]

< +∞ for all n. Moreover σ 2 := E
[
X2
n

]
> 0.

(iii) The random variable 1
σ
√
N

∑N
n=1 Xn has a bounded density pN (x).

Then there exists C > 0 such that

sup
x

∣∣∣∣∣pN (x) − 1√
2π

e−
x2
2 +

k−2∑

ν=1

qν(x)

N ν/2

∣∣∣∣∣ ≤
C

N (k−2)/2
, (C.11)

where the qν’s are defined in (C.10).

1 We recall that γd =∑
C(d) d!(−1)m1+...+md−1 (m1 + . . . + md − 1)!∏d

l=1
α
ml
l

ml !(l!)ml where αl is the lth

moment of the random variable and C(d) is the set of all non-negative integer solution of
∑

l lml = d.
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Applying this theorem in case Xn = Y (θ)
n (β) , one gets the following result:

Corollary C.3. Assume (V1)–(V3). There exist N0, β0,C > 0 such that for all N ≥ N0,
β > β0 one has

∣∣∣∣∣U
(θ)
N (x) − 1√

2πσ 2N
exp

(
− x2

2σ 2N

)
+

2∑

ν=1

qν(x/σ
√
N )

N (ν+1)/2σ

∣∣∣∣∣ ≤
C

N 3/2σ
. (C.12)

Proof. We verify that the assumptions of Theorem C.2 are met in case Xn = Y (θ)
n (β).

Item (i) and (i i) hold true thanks to assumptions (V1) and (V2), in particular (i i) is

true with k = 4. To verify (i i i), we note that
1

σ
√
N

N∑

n=1

Y (θ)
n (β) has density given

by σ
√
N U (θ)

N (σ
√
Nx). This last function is N -times the convolution of gθ (r) :=

e−θr−βV (r). By assumption (V3), gθ ∈ L∞(R) and by (V2) it belongs also to L1(R). So
Young’s convolution inequality implies that σ

√
N U (θ)

N (σ
√
Nx) is bounded uniformly

in x , hence (i i i) of Theorem C.2 is verified.
We apply Theorem C.2 with pN (x) = σ

√
N U (θ)

N (σ
√
Nx), then rescale the variable x

to get (C.12). ��
We study also the structure function

�̃N (ξ) :=
∫

ξ1+...+ξN=ξ

e−
β
2

∑N
j=1 ξ2j dξ1 . . . dξN .

and the normalized distribution

ŨN (ξ) := 1

(̃zθ (β))N
�̃N (ξ), z̃θ (β) :=

∫

R

e−
β
2 ξ2 dξ. (C.13)

We have the following result:

Lemma C.4. For any N ≥ 1, any β > 0, one has

ŨN (ξ) =
√

β

2πN
exp

(
−βξ2

2N

)
. (C.14)

Proof. The function ŨN is the N -times convolution of Gaussian functions of the form

g(ξ) :=
√

β
2π e−

β
2 ξ2 . Since convolution of Gaussians is a Gaussian whose variance is

the sum of the variances, (C.13) follows. ��
We can finally prove Theorem C.1:

Proof of Theorem C.1. The proof follows closely [29]. We assume that f is supported
on 1, . . . , K , the other cases being analogous. Using that

ZV (β) = �N (0) �̃N (0),

and denoting p̃ := (p1, . . . , pK ) and r̃ := (r1, . . . , rK ), we write

〈 f (̃p, r̃)〉V =
∫

RK×RK

f (̃p, r̃)
�N−K

(
−∑K

j=1 r j
)

�N (0)

�̃N−K

(
−∑K

j=1 pk
)

�̃N (0)
dμ̃
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where dμ̃ := exp

(
−β

∑K
j=1

p2j
2 − β

∑K
j=1 V (r j )

)
d p̃d̃r . As, by (C.8) and (C.13),

�N−K (x)

�N (0)
= U (θ)

N−K (x)

U (θ)
N (0)

eθx

(zθ (β))K
,

�̃N−K (ξ)

�̃N (0)
= Ũ (θ)

N−K (ξ)

Ũ (θ)
N (0)

1

(̃zθ (β))K
,

we write the difference 〈 f 〉V − 〈 f 〉V,θ as

〈 f 〉V − 〈 f 〉V,θ =
∫

RK×RK

f (̃p, r̃)
e−θ

∑K
j=1 r j

(zθ (β))K (̃zθ (β))K
U(θ)(̃p, r̃) dμ̃

where

U(θ)(̃p, r̃) :=
U (θ)

N−K

(
−∑K

j=1 r j
)

U (θ)
N (0)

Ũ (θ)
N−K

(
−∑K

j=1 p j

)

Ũ (θ)
N (0)

− 1.

Now we use that

∫

RK×RK

e−θ
∑K

j=1 r j

(zθ (β))K (̃zθ (β))K
U(θ)(̃p, r̃) dμ̃ = 〈1〉V − 〈1〉V,θ = 0

so that we can write the difference 〈 f 〉V − 〈 f 〉V,θ as

〈 f 〉V − 〈 f 〉V,θ =
∫

RK×RK

(
f (̃p, r̃) − 〈 f 〉V,θ

) e−θ
∑K

j=1 r j

(zθ (β))K (̃zθ (β))K
U(θ)(̃p, r̃) dμ̃

Using Cauchy-Schwartz we obtain that
∣∣〈 f 〉V − 〈 f 〉V,θ

∣∣ ≤ ‖ f − 〈 f 〉V,θ ‖V,θ ‖U(θ)‖V,θ ,

so in order to prove (C.6) we are left to show that uniformly in N and β one has

‖U(θ)‖V,θ ≤ C
K

N
. (C.15)

Using (C.12) and (C.14), we have that
∣∣∣∣∣
U (θ)

N−K (x)

U (θ)
N (0)

Ũ (θ)
N−K (ξ)

Ũ (θ)
N (0)

− 1

∣∣∣∣∣

≤ C

(∣∣∣∣∣e
− x2

2σ2(N−K )
− βξ2

2(N−K ) − 1

∣∣∣∣∣ +
N

(N − K )3/2
q1

(
x

σ
√
N − K

)
+

K

N − K

)

Next we use that |e−a2−b2 − 1| ≤ a2 + b2, the explicit expression

q1(x) = 1√
2π

e−
x2
2 (x3 − 3x)

γ3

6 σ 3 ,
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the estimate
γ3

6 σ 3 ≤ C for some C independent of β (which follows by (C.2) as in our

case γ3 ≤ Cβ−3/2), to obtain that there exists C > 0 such that ∀N ≥ N0, ∀β ≥ β0,

∣∣∣∣∣
U (θ)

N−K (x)

U (θ)
N (0)

Ũ (θ)
N−K (ξ)

Ũ (θ)
N (0)

− 1

∣∣∣∣∣ ≤
C

N

(
K + βξ2 +

x

σ
+
x2

σ 2 +
x3

σ 3N

)
.

Substituting x ≡ −∑K
j=1 r j , ξ ≡ −∑K

j=1 p j , and computing the L2 norm (with respect

to dμV
θ ) of the terms in the r.h.s. of the last formula give the claimed estimate (C.15). ��

D. Proof of Theorem 3.1

In this “Appendix” we prove Theorem 3.1. From the structure of the matrix Lax matrix
L in (2.11), we immediately get

[Lm] j j (a,b) = S j−1
([Lm]11(a,b)

)
,

where S j is the shift defined in (3.7), thus we have to prove formula (3.2) just for the
case j = 1.

To accomplish this result we need to introduce the notion of super Motzkin path
and super Motzkin polynomial, that generalize the notion of Motzkin path and Motzkin
polynomial [33,38].

Definition D.1. A super Motzkin path p of size m is a path in the integer plane N0 × Z

from (0, 0) to (m, 0) where the permitted steps from (0, 0) are: the step up (1, 1), the
step down (1,−1) and the horizontal step (1, 0). A similar definition applies to all other
vertices of the path.

The set of all super Motzkin paths of size m will be denoted by sMm .
In order to introduce the super Motzkin polynomial associated to these paths we have
to define their weight. This is done in the following way: to each up step that occurs at
height k, i.e. it joins the points (l, k) and (l + 1, k + 1), we associate the weight ak , to a
down step that joins the points (l, k) and (l + 1, k − 1) we associate the weight ak−1, to
each horizontal step from (l, k) to (l +1, k) we associate the weight bk . Since k ∈ Z, the
index of ak and bk are understoodmodulus N . At this point we can define the total weight
w(p) of a super Motzkin path p to be the product of weights of its individual steps. So it
is amonomial in the commuting variables (b, a) = (b−m̃, . . . , bm̃, a−m̃, . . . , am̃), where
m̃ = �m/2	. We remark that the total weight do not characterize uniquely the path. We
are now ready to give the definition of Motzkin polynomial:

Definition D.2. The super Motzkin polynomial sPm(a,b) is the sum of all weight of
the elements of sMm :

sPm(a,b) =
∑

p∈sMm

w(p) . (D.1)

We are now ready to relate the Toda integrals to the super Motzkin polynomial
sPm(a,b).
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Proposition D.3. Given the Lax matrix L in (2.11) then:
[
Lm]

1,1 (a,b) = sPm(a,b) (D.2)

where the super Motzkin polynomial sPm(a,b) is defined in (D.1) and a j ≡
a j mod N , b j ≡ b j mod N .

Proof. In general we have that:
[
Lm]

1,1 =
∑

j∈Nm−1

L1, j1L j1, j2 . . . L jm−1,1. (D.3)

To every element of the sum we associate the path with vertices

(0, 0), (1, j̃1 − 1, ), (2, j̃2 − 1), . . . , (�, j̃� − 1), . . . , (m − 1, j̃m−1 − 1), (m, 0)

where

j̃k =
{
jk if jk < m̃
jk − N if jk ≥ m̃.

This is a super Motzkin path pj and we can associate the weight w(pj) as in the descrip-
tion above therefore we have

L1, j1L j1, j2 . . . L jm−1,1 = w(pj).

This is clearly a bijection. The sum of the weights of all possible super Motzkin paths,
is defined to be the super Motzkin polynomial sPm(a,b) and thus we get the claim. ��

Proceeding as in [33, Proposition 1], we are able to prove the following result, which
together with Proposition D.3 proves Theorem 3.1:

Proposition D.4. The super Motzkin polynomial of size m is given explicitly as

sPm(a,b) =
∑

(n,k)∈A(m)

ρ(n,k)

m̃∏

i=−m̃

a2nii bkii (D.4)

where A(m) is the set

A(m) :=
{
(n,k) ∈ N

m
0 × N

m
0 :

m̃∑

i=−m̃

(2ni + ki ) = m,

∀i ≥ 0, ni = 0 ⇒ ni+1 = ki+1 = 0,

∀i < 0, ni+1 = 0 ⇒ ni = ki = 0
}

, (D.5)

where m̃ = �m/2	 and ρ(m)(n,m) ∈ N is given by

ρ(m)(n,k) :=
(
n−1 + n0 + k0

k0

)(
n−1 + n0

n0

) m̃∏

i=−m̃
i �=−1(

ni + ni+1 + ki+1 − 1

ki+1

)(
ni + ni+1 − 1

ni+1

)
. (D.6)
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Proof. For a give super Motzkin path p starting at (0, 0) and finishing at (0,m) let ki
be the number of horizontal steps at height i and let ni be the number of step up from
height i to i +1. We remark the number ni of step up from height i to i +1 is equal to the
number of step down from i + 1 to i . We define the vectors k = (k−m̃, k−m̃+1, . . . , km̃)

and n = (n−m̃, n−m̃+1, . . . , nm̃) and we associate the product

m̃∏

i=−m̃

a2nii bkii .

Next we need to sum over all possible super Motzkin path p of length m connecting
(0, 0) to (0,m). Since the number of steps up is equal to the number of steps down, one
necessarily have

m̃∑

i=−m̃

(2ni + ki ) = m .

Furthermore since the path is connected it follows that it is not possible to have a vertex
at height i + 1 without have a vertex at height i > 0 and the other way round if i < 0.
Therefore one has

∀i ≥ 0, ni = 0 ⇒ ni+1 = ki+1 = 0,

∀i < 0, ni+1 = 0 ⇒ ni = ki = 0 .

This proves the definition of the set A(m) in (D.5). The final step of the proof is to
count the number of paths associated to the vectors k = (k−m̃, k−m̃+1, . . . , km̃) and
n = (n−m̃, n−m̃+1, . . . , nm̃). We want to show that this number is equal to ρ(m)(n,k).
A horizontal step at height i can occur just after a step up to height i , another horizontal

step at height i , or a step down to height i . This leaves a total of ni+ni+1 different positions
at which a horizontal step at height i can occur. Since we have ki of horizontal steps, the
number of different configurationswith these step counts is the number ofways to choose
ki elements from a set of cardinality ni +ni+1 with repetitions allowed, i.e.

(ni+ni+1+ki−1
ki

)
.

The number of different configurations with ni steps at height i and ni+1 at height i +1
is given by the number of multi-sets of cardinality ni+1 taken from a set of cardinality
ni and this number is equal to

(ni+ni+1−1
ni+1

)
.

For the horizontal steps at height 0, they can also occur at the beginning of the path, this
increase the number of possible positions by 1, so the number of these configurations
with these steps counts is

(n0+n−1+k0
k0

)
. In this way we have obtained the coefficient

ρ(m)(n,k). ��
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