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Phase diagram of the two-dimensional
Hubbard-Holstein model
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The electron-electron and electron-phonon interactions play an important role in correlated
materials, being key features for spin, charge and pair correlations. Thus, here we investigate
their effects in strongly correlated systems by performing unbiased quantum Monte Carlo
simulations in the square lattice Hubbard-Holstein model at half-filling. We study the com-
petition and interplay between antiferromagnetism (AFM) and charge-density wave (CDW),
establishing its very rich phase diagram. In the region between AFM and CDW phases, we
have found an enhancement of superconducting pairing correlations, favouring (nonlocal)
s-wave pairs. Our study sheds light over past inconsistencies in the literature, in particular the
emergence of CDW in the pure Holstein model case.
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condensed matter, in particular when discussing properties

of conventional superconductivity (SC) and charge order-
ing!. While Bardeen, Cooper and Schrieffer used this interaction
in their seminal work to explain pairing?, Peierls took it into
account to provide a mechanism, based on Fermi surface nesting
(FSN), that leads to charge-density wave (CDW)3. Recently, the
debate about the role of the e-ph coupling has been intensified
due to the occurrence of unconventional (non Peierls-like) CDW
phases, and their competition with SC, in some classes of mate-
rials, such as transition-metal dichalcogenides*~”. Even for cup-
rates, materials known by their strong electron-electron (e-e)
interactions, recent findings provided evidence for the occurrence
of CDW in the doped region, with competing effects with SC7-10,
e.g, on doped La, ,Ba,CuO, and YBa,Cu3Og,,!1-14. These
results have suggested that the phase diagram of high-T. super-
conductors!” is far more complex than previously supposed, and
have raised issues about the relevance of the e-ph coupling for
correlated materials, rather than just e-e interactions.

From a theoretical point of view, a simplified Hamiltonian that
captures the interplay between antiferromagnetism (AFM), CDW,
and SC is the single-band Hubbard-Holstein model (HHM)!®. It
exhibits Coulomb repulsion between electrons, leading to spin
fluctuations; and also electron-ion interactions, which enhance
charge/pairing correlations. The emergence of long-range order
depends on the competition between these tendencies. This model
was vastly studied in one-dimensional systems, with well-known
phase diagrams presenting spin-density wave, bond-order-wave,
CDW, and also metallic or phase separation behavior!7-24, A
remarkable feature in 1D systems is the occurrence of a quantum
phase transition from a metallic Luther-Emery liquid phase?’ to a
CDW insulator at a finite critical e-ph coupling, in the limit case of
the pure Holstein model (U = 0), despite of the FSN2%27. By con-
trast, the properties of the HHM in two-dimensional systems are not
entirely clear, even for simple geometries, such as the square lattice.
For instance, the existence of such a metal-CDW quantum critical
point (QCP) is matter of controversies for the pure Holstein model
in 2D lattices?8-33, The scenario is much less clear in presence of a
repulsive Hubbard term (U # 0), in spite of the large effort to
characterize the model!%31-44, since no unbiased results are available
for quantum AFM/CDW transitions, to the best of our knowledge.

In view of these open issues, and as a step towards a better
understanding of the role of e-ph interactions in strongly interacting
systems, we investigate in this article the competition between AFM

The electron-phonon (e-ph) interaction is a central issue in
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Fig. 1 Phase diagram. Ground state phase diagram of the Hubbard-Holstein
model at the half-filling of the square lattice, and adiabaticity ratio wo/t = 1.
The hatched region exhibits a correlated metallic (or superconducting)
behavior. The dashed line defines U = A, while the solid lines are guide to
the eyes. The red and blue lines correspond to the antiferromagnetic (AFM)
and charge-density wave (CDW) transitions, respectively. When not
shown, error bars are smaller than symbol size.

and CDW in the square lattice HHM at half-filling, as well as its
pairing response, using unbiased quantum Monte Carlo (QMC)
simulations. We determine precise critical points for the HHM at
intermediate interaction strengths, presenting benchmarks for lat-
tices with linear size up to L = 48 (i.e., 2304 sites) in some cases.
Our main results are summarized in the ground state phase dia-
gram displayed in Fig. 1. Here we highlight [i] the absence of a finite
critical e-ph coupling for the pure Holstein model, ie., the CDW
phase sets in for any A > 0 (and U = 0); [ii] the existence of a finite
AFM critical point on the line U = A, which is strongly dependent
on the phonon frequency; and [iii] an enhancement of nonlocal s-
wave pairing in the region between the AFM and CDW phases.
These results are also compared with other methodological
approaches, such as variational QMC.

Results
The model. The Hubbard-Holstein Hamiltonian reads

H=-—t Z (d;fadjfa +h.c.) - yZn;U + UZ”iT”il

(ij).o
f)z Mw? >
i 0% &
E —L X, | - g ¢
+ - <2M + 2 1 ) g — nlO' 17

where diT(7 (d,,) is a creation (annihilation) operator of electrons
with spin o( = 1, |) at a given site i on a two-dimensional square
lattice under periodic boundary conditions, with (i, j) denoting

(1)

nearest-neighbors, and n;, = d;[gdig being number operators. The
first two terms on the right hand side of Eq. (1) correspond to the
kinetic energy of electrons, and their chemical potential (y) term,
respectively, while the on-site Coulomb repulsion between elec-
trons is included by the third term. The ions’ phonon modes are
described in the fourth term, in which P; and X, are momentum
and position operators, respectively, of local quantum harmonic
oscillators with frequency wy. The last term corresponds to local
electron-ion interactions, with strength g. Hereafter, we define the
mass of the ions (M) and the lattice constant as unity.

It is also worth to introduce additional parameters, due to the
effects of the phonon fields to the electronic interactions. From a
second order perturbation theory on the e-ph term!®, one obtains

&/
1—(w/wy)”
with g2/w3 = A being the energy scale for polaron formation. The
appearance of such a retarded attractive interaction, depending
on the phonon frequency, leads us to define wy/t as the
adiabaticity ratio, and A/t as the strength of the e-ph interaction.
To facilitate the following discussion, we also define U= U — A,
which gives us a rough information about the local effective e-e
interaction, and is also an important parameter to our
methodological approaches. Furthermore, we set the electron
density at half-filling, i.e., (n;,) = 1/2.

We investigate the properties of Eq. (1) by performing two
different unbiased auxiliary-field QMC approaches: the projective
ground state auxiliary-field (AFQMC)*>%6, and the finite
temperature determinant quantum Monte Carlo (DQMC)
methods®-48. Following the procedures described in Karakuzu
et al.#%, we implemented a sign-free AFQMC approach to the
half-filling of the HHM, allowing us to analyze large lattice sizes,
but, conversely, being restricted to the U.s>0 region. The
properties of the U.s<O0 region, forbidden to our AFQMC
method, are investigated by DQMC simulations. We recall that
the DQMC method may exhibit sign problem for the HHM,
depending on the strength of parameters. However, as shown in
the Supplementary Figure 4, the values for the average sign with
U < A are still suitable for performing accurate simulations for the
CDW phase, in particular for intermediate interaction strengths,

an effective dynamic e-e interaction, U(w)=U —
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allowing us to obtain the physical quantities of interest, in some
cases up to L = 14 and § = 1/T = 28. In fact, the DQMC average
sign is strongly suppressed just around U = A, where our sign-free
AFQMC approach works. Thus, our AFQMC and DQMC
simulations are used complementarily.

The charge and magnetic responses are quantified by their

respective structure factors, ie., S.4,(q) = ﬁzi_je’iq'(i’j)minj),

and S,;,(q) = %Zi,jeiiq'(iﬂwsfsjz% with n; = ny + ny,
§ = My — s and N = L x L being the number of sites. This
allows us to probe their critical behavior by means of the
correlation ratio

S,(q+dq)
5@ @

with |6q| = 27/L, q = (m, n), and v = cdw or afm. According to
well established finite size scaling analysis, the critical region is
determined by the crossing points of R,(L) for different lattice
sizes’0>3, Finally, the pairing properties are investigated by the

finite temperature superconducting pair susceptibility y% (B) =

3 dr (8,(0)aL0), with A1) =155 fo @) (1)e]yy (0),
¢, (T) = e'c; ;e ™ and f,(a) being the pairing form factor for a
given symmetry. Here, we consider on-site, nearest-neighbors
(NN), and next-nearest-neighbors (NNN) spin-singlet pairing
operators for the s-wave symmetry, which are denoted by a = s,
s*, and s** (or s, as also called in literature), respectively; and also

consider the d.._,.-wave symmetry, a = d (see, e.g., White et al.>4),

RU(L) =1-

The Holstein model (U = 0). We first discuss the limit case of
U = 0 in Eq. (1), i.e., the pure Holstein model. While the Peierls’
argument> suggests an insulating charge ordered ground state
for any A > 0, one-dimensional systems exhibit a metal-CDW
transition for a finite critical A, despite the perfect FSN. In two
dimensions, the occurrence of a finite critical A. in the square
lattice is controversial: while variational QMC approaches pro-
vide evidence for A/t = 0.83233, unbiased QMC results suggest
the nonexistence of a finite critical point3%-31, Here, we address
this controversy by analyzing the critical behavior given by the
CDW correlation ratio, Eq. (2), by means of DQMC simulations
One should notice that, for U = 0, the DQMC method does not
suffer with the sign problem, allowing us to investigate larger
lattice sizes and lower temperatures.

The quantum critical region is probed by the behavior of the
correlation ratio as a function of the e-ph coupling, and projecting
on the ground state by using 8 ~ L, for different system sizes.
Fig. 2 displays the R.4y(L) as a function of A/t for several lattice
sizes, fixing U = 0 and § = 2L. Here, we start discussing the
possible existence of a CDW quantum phase transition at
Adt = 0.8, as suggested by variational methods. By fixing
Mt = 08, we notice that the correlation ratio increases
monotonically as a function of the lattice size, clearly supporting
long-range CDW order in the thermodynamic limit, at this
interaction strength and above, in line with Hohenadler et al.30.
In fact, one may estimate the QCP by the value of A/t determined
by a crossing of R 4y (L) for different system sizes. Here we define
A(L, L — AL) as the size-dependent critical coupling obtained by
the crossing between R.gy(L) and R gw(L — AL). As presented in
the inset of Fig. 2, the values of A (L, L — AL) are smaller than the
one suggested by the variational methods, and they also are
reduced when L increases. Given this, whether a metal-insulator
transition exists, it should occur at smaller coupling strengths.

A thorough determination of the existence of a critical point is
given by a finite size scaling analysis of A (L, L — AL). Following the
procedure adopted in Weber et al.3!, which hereafter is used to
determine the CDW transitions, we perform a power law fit
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Fig. 2 Charge correlation ratio for the Holstein model. Determinant
quantum Monte Carlo results for the charge-density wave correlation ratio,
Eg. (2), as function of A/t, for different lattice sizes, and by fixing g = 2L,
wo/t =1, and U = 0. The solid lines are just guide to the eyes. Inset:
AL, L — AL) as a function of 1/L; the solid (dashed) curve corresponds to
its power law (polynomial) scaling. When not shown, error bars are smaller
than symbol size.

[(L) = a + bLF] of the crossing points, as displayed in the inset of
Fig. 2. Within this scaling analysis, the critical coupling (at L — o)
A for U = 0 is consistent with a vanishing or very small value, even
when we adopt the less accurate (2nd order) polynomial fit. Similar
analysis for a different ground state projection, ie. f ~ L2, also
agrees with a vanishing A, for U = 0; see also the Supplementary
Notes 1. That is, these results provide evidence that a finite critical
e-ph coupling is not plausible for the square lattice Holstein model.
The difference between the square lattice and one-dimensional
systems may stem on the larger electronic susceptibility of the
former, which diverges with the square logarithm of temperature.

The Hubbard-Holstein model. We now turn to discuss the
behavior of the HHM for U # 0, investigating initially the par-
ticular case of U = A, by means of AFQMC simulations. We recall
that the HHM in the wy — oo limit is equivalent to the Hubbard
model with an onsite interaction Ugg. Then, it should exhibit a
metallic behavior along the line U = 1 in this case. However, the
existence of finite phonon frequencies leads to a retarded inter-
action, therefore to a more complex ground state. Indeed, our
AFQMC results for wp/t < 1 exhibit an enhancement of the spin-
spin correlations as a function of U/t, on the line U = A, as
showed in the Supplementary Fig. 1. Conversely, the charge-
charge response remains weak for any interaction strength, sug-
gesting that an AFM order sets in at ground state.

Similarly to the previous CDW analysis, the AFM long-range
order is established by investigating the crossing points of the
AFM correlation ratio. Fig. 3 displays the U.(L, L), i.e. the values
of U/t for the crossing points of R,,(L) and R,gn(aL), for
different phonon frequencies, and fixing 3 = 2L. Due to the large
lattice sizes achieved in our AFQMC simulations, here we adopt a
linear polynomial fit for the AFM transitions. As expected, the
pure Hubbard model (black square symbols in Fig. 3) is AFM for
any U > 0, i.e, U, = 0. However, in presence of e-ph coupling
(along the line U = 1), a quantum phase transition occurs,
changing from a correlated metallic-like ground state to an
ordered AFM one, for a given coupling strength. Dynamical
mean-field theory analyses also report similar results for higher
dimensionality calculations*¢-38. In our QMC simulations, for
instance, one finds U/t = A/t = 0.73(6) by fixing wy/t = 1; that
is, the ground state is AFM for any U = A > 0.73¢. The position of
this QCP strongly depends on the choice of wy/t, as showed in the
inset of Fig. 3. A similar analysis for a different ground state
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Fig. 3 Antiferromagnetic transitions for A = U. Projective auxiliary-field
quantum Monte Carlo results for the crossing points of R,¢n(L) and
Ratm(al), for different phonon frequencies, and by fixing g = 2L and
Uess = 0. The lines are linear scalings. Inset: Critical antiferromagnetic
points for Uess = O as function of the phonon frequency wo/t. When not
shown, error bars are smaller than symbol size.

projection (B ~ L2) agrees with it, but suggesting slightly larger
critical couplings, as presented in the Supplementary Notes .
Notice that such increasing behavior of U, as a function of w, is
consistent with the initial expectation of an emergent metallic
behavior in the antiadiabatic limit for U = A. The properties of
this correlated metallic-like state are discussed later.

We proceed by investigating the quantum critical behavior for
the general case, U # A. To this end, here we analyze the AFM and
CDW correlation ratios as functions of U/t, for fixed A/t and w/t,
e.g., as represented by the vertical dotted line in Fig. 1. With this in
mind, Fig. 4a displays AFQMC results for R,s,(L) as function of
Ult, and fixed Mt = 2 and wy/t = 1. The crossing points
UJL, L — AL) between R,s,(L) and R,q,(L — AL), as well as their
finite size scaling, are displayed in Fig. 4c, leading to an AFM
quantum phase transition at UA™M /¢ = 1.88(2). Similarly, the QCP
for a CDW transition may be obtained by DQMC simulations of
Reaw(L), as presented in Fig. 4b, with crossing points and finite size
scaling shown in Fig. 4c, leading to UPW /¢ = 1.63(1).

When the above analysis is repeated for other values of A/t, we
obtain the phase diagram presented in Fig. 1, with the QCPs
being reported in the Supplementary Tables. It is worth
mentioning that, for the range of parameters analyzed, we obtain
continuous transitions for both AFM and CDW phases, without
coexistence, and with a metallic-like (or SC) region between
them. First order transitions may occur for stronger coupling, as
suggested in the recent literature3233.

Pairing susceptibility response. Finally, it is instructive to dis-
cuss the properties of the region between AFM and CDW phases,
from which it is expected the emergence of SC. Since our DQMC
method exhibits a small average sign when U = A, then estab-
lishing long-range SC order is challenging, and we are restricted
to smaller lattice sizes and high temperatures; see, e.g., Supple-
mentary Fig. 5. Despite this, one is able to investigate the SC
properties by analyzing the tendency of the pairing susceptibility
as a function of the temperature. For instance, Fig. 5a displays the
behavior of y s for fixed A/t = 2, and U/t = 1.7. Here, we notice
an enhancement in the pairing correlations at low temperature,
with the dominant symmetry being the d-wave#l:44,

However, a better estimation for pairing is given by extracting
the particle-particle contribution of y, ). Thus, here we define
the effective pair (vertex) susceptibility>* as )(fosc) = Xa(se) ~ Xa(so)?

with ¥, being the noninteracting susceptibility. A positive
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Fig. 4 Antiferromagnetic and charge-density wave transitions for 1 = 2t.
a Projective auxiliary-field quantum Monte Carlo results for the antiferro
magnetic correlation ratio for # = 2L, and b determinant quantum Monte
Carlo results for the charge-density wave correlation ratio for g =L, as
function of the U/t, for different lattice sizes, and by fixing 4/t = 2 and
wo/t = 1. The solid lines are just guide to the eyes. ¢ The crossing points of
Raem(L) (red triangles), and R.q.,(L) (blue squares), and their respective scaling
curves. When not shown, error bars are smaller than symbol size.
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Fig. 5 Finite temperature pair susceptibility. Determinant quantum Monte
Carlo results for the pair susceptibility as function of temperature T, for
fixed A/t =2, U/t =17, L = 8, and a wo/t = 1 and ¢ wy/t = 4, and their
respective effective susceptibilities for b wo/t =1 and d wo/t = 4. When
not shown, error bars are smaller than symbol size.

eff
a(sc)

(weakening) of an attractive pair channel for the ath symmetry.
Fig. 5b exhibits X;f(fs o) for the data of panel (a), showing negative
tendency towards all of the examined channels. In particular, the
on-site s-wave has the largest negative response, which shows the
harmfulness of the Hubbard-like term for local pairs formation.
However, since Ty, ~ w, from the BCS theory?, further insights
about the nature of this region may be given by increasing w,
while keeping U, fixed, as displayed in Fig. 5¢, d, for wy/t = 4,
Mt=2, and U/t=1.7. For these parameters, despite the
increasing dominant behavior of y,. for the d-wave, only the
NNN s-wave exhibits a positive effective susceptibility. Thus,
these combined features suggest that, whether SC emerges at
ground state, it likely is (nonlocal) s-wave.

Indeed, since this metallic-like region seems to be in the
negative Uy side of the phase diagram in Fig. 1, the s-wave
symmetry is naively expected. Interestingly, such an enhancement
of nonlocal s-wave response suggests that short-range charge/spin
correlations may suppress the formation of local (s-wave) and NN
(s*-wave) Cooper pairs, making the NNN ones (s**-wave) the

(negative) response of corresponds to an enhancement
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main channel for pairing. It is also important to notice that, as a
consequence of the Kohn-Luttinger weak coupling argument?®,
instabilities in the particle-particle channel are expected in this
intermediate region without AFM and CDW orders, which could
lead to pairing®’~>°. However, these instabilities are believed to
occur at very low temperatures, usually not accessible for the
current QMC methodologies. Finally, we warn that a more
precise determination of the nature of this region may also
require the analysis of dynamical quantities, or long-range
effective electronic interactions#3-60,

Discussion

We have presented results for the HHM in the square lattice, using
unbiased AFQMC and DQMC methods complementarily, which
provide a broader picture about the physical responses of this model.
In particular, we have shown that, different from one-dimensional
systems, the emergence of the CDW phase in the square lattice
occurs for any A > 0, for U = 0. However, these CDW correlations
are strongly affected by a Coulomb interaction (U # 0), with the
occurrence of AFM even at U.g < 0. We also observed the existence
of a correlated metallic-like region between CDW and AFM phases,
with an enhancement of nonlocal s-wave pairing, rather than d-
wave. Despite the difficulty to establish long-range order for SC, one
may expect that s-wave SC sets in at zero temperature.

These findings constitute a significant step towards a better
understanding of this model, by providing precise QCPs, and
shedding lights over past theoretical inconsistencies, although
there still remain open questions, such as the behavior of the
phase boundaries as a function of w,. Further investigations on a
given compound may require the inclusion of its key features. In
the cuprates, e.g., the electron-phonon coupling effects are due to
the out-of-phase vibrations of planar oxygens along the c-axis, the
By phonon mode, which is momentum dependent (i.e., it is not
Holstein-like), and favors d-wave symmetry®1:62. However, doing
this would also demand an increasing degree of complexity for
the models considered (multi-band systems, non-Holstein pho-
non modes, etc)®364, and also a reduction in the energy scale of
the phonon fields, since w(q) <<t for most of the realistic
materials. Apart from these specificities, the results for the HHM
emphasize the fundamental role of the e-ph interaction in
strongly correlated systems, which is important to the emergence
of charge order and pairing, and may be relevant for the physics
of novel correlated materials.

Methods

Quantum Monte Carlo simulations. We employed two different approaches: the
DQMC and the AFQMC methods. Briefly, the DQMC (AFQMC) approach is
based on the decoupling of the non-commuting terms of the Hamiltonian in the
partition function (projection operator) by Trotter-Suzuki decomposition, which
discretizes the imaginary-time coordinate 7 in small intervals Az, with the inverse
of temperature T (projection time) being 8 = MA7. The interacting terms are
transformed in single-particle operators by means of a discrete Hubbard-
Stratonovich transformation, with the cost of including bosonic auxiliary-fields
S, ;> in real space and imaginary-time coordinates, coupled to fermionic degrees of
freedom. Monte Carlo methodologies are used for sampling S; ;. Throughout this
article, we choose A7t = 0.1, with 8 in unit of . Finally, in view of the large
autocorrelation time, a still unsolved challenge in the DQMC method for electron-
phonon systems, we restrict our analysis in the safe region of frequencies wo/t > 1,
when dealing with this approach (see also the Supplementary Notes 2). Detailed
introduction for these methodologies can be found, e.g., in dos Santos®®, Guber-
natis et al.%, and Becca and Sorella®”.

Data availability
The datasets obtained during this work are available from the corresponding author
upon reasonable request.

Code availability

Code is available upon reasonable request.
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