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1 Introduction

Understanding the IR behavior of four-dimensional non-abelian gauge theories is one of

the most interesting problems in high energy physics. Even at zero temperature and

chemical potential, this behavior can be drastically different for different choices of the

gauge group and matter content. In particular, UV-free gauge theories with matter admit

so-called conformal windows, regions in parameter space where they flow to non-trivial

conformal field theories (CFTs) in the IR. The most notable example is given by SU(nc)

gauge theories with nf fermions in the fundamental representation of the gauge group.

At fixed nc, the conformal window spans an interval n∗f ≤ nf ≤ 11nc/2. The upper edge

of the conformal window, where nf ≈ 11nc/2, is easily studied because it is accessible in

perturbation theory. Determining the lower edge of the conformal window n∗f is instead a

non-trivial task.

Computations based on (uncontrolled) approximations of Schwinger-Dyson gap equa-

tions suggest that n∗f ≈ 11.9 for nc = 3 and x∗ ≈ 4 in the Veneziano limit where nc, nf →∞,

with x = nf/nc fixed [1]. These results also indicate that at the lower edge of the conformal

window the bilinear fermion operator ψ̄ψ acquires an anomalous dimension γ ≈ −1 [2–4].
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Computations based on (uncontrolled) truncations of exact Renormalization Group (RG)

flow equations give n∗f ≈ 10 for nc = 3 [5]. Similar computations, making also use of

bi-furcation theory, give x∗ ≈ 4 in the Veneziano limit [6, 7] and n∗f ≈ 12 for nc = 3 [7] (see

also [8]). A phenomenological holographic bottom-up model of non-abelian gauge theories

in the Veneziano limit suggests that 3.7 . x∗ . 4.2 [9] (see also [10]). Previous analysis

based on the perturbative series in the gauge-coupling found n∗f ≈ 9 [11, 12] for nc = 3, and

using the Banks-Zaks conformal expansion found n∗f ≈ 10 [13] or n∗f ≈ 9 [14] for nc = 3,

and x∗ ≈ 2.9 [14] in the Veneziano limit.1

Lattice methods are the only ones so far based on first principles.2 Studying a non-

abelian gauge theory in its conformal phase on the lattice is a hard task and there is no

consensus yet on the value of n∗f for QCD (nc = 3). More specifically, the lattice community

did not reach a unanimous consensus on the case nf = 12, which is reported to be within the

QCD conformal window by most groups, with the exception of one (see [17], in particular

table I, for a review and an extensive list of references). The controversy on the nf = 12

case is still open, see e.g. [18–20] for some of the latest works that appeared after [17].3

The aim of this paper is to study the conformal window of gauge theories using pertur-

bation theory, starting from the upper edge and going down as much as we can towards the

strongly coupled regime. We will do so by exploiting the recent remarkable five-loop com-

putation of the β-function in MS [21–24] and by employing Borel resummation techniques

both for the ordinary perturbative series and for a Banks-Zaks conformal expansion [25],

namely an expansion in ε ∝ 11nc/2− nf along the one-parameter family of CFTs starting

from the upper edge of the conformal window. We will also make use of results in the

large-nf limit of non-abelian gauge theories. In this limit the theory of course is no longer

UV-free and no IR fixed point is expected, yet comparing the known exact results at the

first non-trivial order in 1/nf with the predictions coming from our resummations provide

a useful sanity check and a guidance for the numerics.

We find substantial evidence that nf = 12 is within the conformal window of QCD.

The value of γ at the fixed point seems to indicate that the theory there is still relatively

weakly coupled. Though the evidence is weaker, we find indications that also nf = 11

sits within the conformal window. The conformal window might extend for lower values

of nf , but our methods break down for nf < 11, where we expect that non-perturbative

effects become important. In the context of the scenario advocated in [26] other couplings

are expected to approach marginality, and the study of the RG flow of the single gauge

1Given our estimates of the errors due to both the numerical extrapolation and the non-perturbative

corrections, we think it is too optimistic to hope to reach the lower edge of the conformal window using

only few coefficients in perturbation theory as an input.
2The conformal bootstrap (see e.g. [15] for an introduction and [16] for an extensive review oriented on

numerical results) is also a viable first-principle method alternative to the lattice. However, CFTs expected

to arise in the IR from non-abelian gauge theories coupled to fermion matter sit well within the allowed

region of CFTs, while the numerical techniques developed so far allow us to study only CFTs living at

the edges of the allowed regions. We hope that further progress would allow us in the future to use the

conformal bootstrap to study the conformal window of four-dimensional non-abelian gauge theories.
3For completeness, most lattice studies indicate that nf = 8 is outside the conformal window, while the

case nf = 10 is unclear.
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coupling might be too restrictive. A similar analysis is performed in the Veneziano limit,

giving evidence that the conformal window extends at least up to x = 4.2.

In section 2 we set the stage for our analysis, starting with a brief review of basic

facts about perturbative expansions in non-abelian gauge theories. The nature of the

ordinary perturbative expansion of β and γ in non-abelian gauge theories is only known

in the large-nf limit at fixed nc. In this case both β and γ admit, at each known order

in the 1/nf expansion, a convergent series expansion in MS, in contrast to what happens

in other more physical renormalization schemes, such as momentum subtraction or on-

shell [27]. Surprisingly enough (at least to us), at fixed nf and nc or in the Veneziano

limit, it is not known whether the MS perturbative series for β and γ is convergent or

divergent asymptotic. We will argue that the most plausible case is the second one, and

that most likely the series is not Borel resummable. We then briefly review basic facts of the

conformal Banks-Zaks expansion. The first terms of the conformal series indicate a better

behaviour than that of the ordinary coupling series, though the conformal series should

also be divergent asymptotic under the above assumption on the gauge coupling expansion.

In section 3 we will clarify what it means and to what extent it is useful to attempt

to Borel resum a perturbative series that is expected to be non-Borel resummable. We

will see that in doing so one could and in fact does get an improvement with respect to

perturbation theory, that as we will see turns out to be crucial for the nf = 12 case of

QCD, where perturbation theory shows a fixed point up to 4-loops, but not at 5-loops.

In section 4 we finally present our results based on numerical resummations of the

perturbative series using Padé-Borel approximants. We first use the exact large-nf results

to improve on some aspects of the numerics and then we report the numerically resummed

β-function as a function of the coupling in the Veneziano limit for some values of x and

for QCD for different values of nf . We compare the values of the coupling constant at the

fixed point with those obtained by performing a conformal expansion in ε. The agreement

between the two procedures provides a sanity check of the procedure. As further check,

in addition to the anomalous dimension γ of ψ̄ψ, we also study the anomalous dimension

γg of the gauge kinetic term operator Tr[FµνF
µν ]. Our findings for γ and γg are in good

agreement with the available lattice results for nf = 12.

We conclude in section 5. Some further details are relegated in four appendices. In

particular, we collect the perturbative 5-loop result for β and γ computed in the literature

in appendix A, we review the exact large-nf computation of γ in appendix B, we report

some details of the numerical Borel resummation in appendix C and we review some known

mathematical facts about convergence properties of Padé approximants in appendix D. The

last appendix can be read independently of the rest of the paper.

2 Nature of perturbative series for RG functions

The knowledge of the QCD β-function with nf fundamental fermions has recently been

extended up to five-loop orders [21] in MS. The result of [21] has been verified and extended

to more general non-abelian gauge theories with fermions in [22–24]. Similarly the five-loop

fermion mass anomalous dimension for QCD was obtained in [28] and extended to a generic

– 3 –
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gauge group and fermion representation in [29, 30]. Using the notation of [22], we denote

the loopwise expansion parameter

a ≡ g2

16π2
(2.1)

where g is the usual gauge coupling constant. The general expressions for β(a) and γ(a) can

be found in the above references, e.g. β in eqs. (3.1)–(3.5) of [22], and γ in eqs. (4.1)–(4.3)

of [30]. For the reader’s convenience we report in appendix A the expression of β(a) and

γ(a) as a function of nf in QCD, and β(λ) and γ(λ) as a function of x in the Veneziano

limit, nc →∞, nf →∞, with x ≡ nf/nc and λ ≡ anc held fixed. The large order behaviour

of the perturbative series of β and γ in non-abelian gauge theories is largely unknown. We

briefly review what is known below and then explain our expectations for such large order

behaviour.

2.1 Gauge coupling expansion

The perturbative gauge coupling expansion of physical observables in non-abelian gauge

theories is generally divergent asymptotic and non-Borel resummable because of the pres-

ence of non-perturbative effects. These typically give rise to singularities located at real

positive values of the argument of the Borel transform of observables, making the Laplace

transform needed to recover the original observable ill-defined. Some of these singulari-

ties are associated to genuine semi-classical configurations, ordinary gauge instantons. In

euclidean space, the need of integrating around instanton configurations, real classical fi-

nite action solutions, immediately signal the impossibility of having a Borel resummable

perturbative series. Other singularities, apparently not associated to semi-classical con-

figurations, are related to the so called renormalons, see ref. [31] for a review. While

instanton singularities are associated to the factorial proliferation of Feynman diagrams in

QFT, renormalons are related to a specific set of Feynman diagrams that give a factorially

growing contribution to the perturbative series. More generally, it is a common lore that

renormalons are expected to appear in the perturbative expansion of physical observables

in a classically marginal and log-running coupling.4

The nature of the ordinary perturbative series for RG functions such as β and γ

has been established only in the large-nf limit, i.e. in an expansion in 1/nf with both

nc and the ’t Hooft-like coupling λf ≡ nfa held fixed. Remarkably, in this limit the

O(1/nf ) terms in β(λf ) and γ(λf ) can be computed exactly. Since β and γ are not physical

observables away from fixed points, their form is renormalization-scheme dependent. In

MS their expression is given in eqs. (B.6) and (B.8). Notably, the O(1/nf ) terms of β

and γ are analytic functions of the coupling constant in a neighbourhood of λf = 0,

implying that the perturbative expansion for these RG functions has a finite radius of

convergence in the large-nf limit. In particular, the contribution of the bubble diagrams

that dominate in the large-nf limit does not grow factorially and hence they do not give

rise to renormalons. The O(1/nf ) terms of the β-function have also been studied in more

physical mass-dependent renormalization schemes, such as momentum subtraction or on-

shell scheme, for QED [27]. In contrast to MS, bubble diagrams have been shown to display

4See however [32] for an exception in two dimensions.
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a factorial growth in these cases, leading eventually to a divergent asymptotic expansions

for the O(1/nf ) terms of β in the large-nf limit. The good large-nf behaviour of the MS

β-function has been considered an indication that, somewhat surprisingly, it might admit

a convergent perturbative expansion at finite nf (see the question I in the Conclusion of

the review [31]).

In the rest of this section we would like to make a few observations about the nature

of the perturbative expansion for β and γ in MS beyond the large-nf limit/beyond the

contribution of the subset of bubble diagrams. First of all, we believe that the convergence

of the MS RG-functions in the large-nf limit is in some sense expected. Indeed, we know

that gauge theories for d < 4 at large nf flow to a CFT in the IR. In this case γ and

β′ ≡ ∂λfβ at the fixed point are physical observables that at large nf depend only on d

and are analytic around d = 4. We can then use the ε-expansion in d = 4− 2ε to turn the

function analytic around d = 4 into the same function analytic around λf = 0. By analytic

continuation in d, the same expression should hold in d = 4, giving us the large-nf form of

the MS β and γ. In order to make this point clear, we review in appendix B how γ (and

similarly β) can in fact be computed in this way.

The second observation is that even though the bubble diagrams give a finite contri-

bution, the series might still be divergent because of the contribution of other diagrams.

As an indication in this direction, we can check that the perturbative expansion in the

Veneziano limit for generic x is worse behaved than in the large-nf (i.e. large-x) limit, by

simply looking at the coefficients that have been computed, i.e. up to five-loop order. To

this end, we write the full β in the Veneziano limit as a function of λf

β(λf ) =
2

3
λ2
f +

1

x

(
−11

3
λ2
f +

∞∑
i=1

pi

(
1

x

)
λi+2
f

)
. (2.2)

The pi are polynomials of degree i, hence in the limit x→∞ they approach constant values

pi(0). These constants match the O(nc) part of the Taylor coefficients of the O(1/nf ) terms

of the large-nf β-function (i.e. the analytic function β(1) in eq. (B.1)) and therefore they

give a convergent series. To test the growth of these coefficients away from the large-nf
limit, we use the five-loop perturbative result to obtain the pi’s up to i = 4. In figure 1 we

show that indeed the coefficients p1,2,3,4

(
1
x

)
are much larger, and growing with increasing

loop order, for x ∼ 1 than they are in the limit x→∞. We have checked that the behavior

is analogous for γ and a similar behavior is observed in QCD at finite nc as a function

of nf . We take this observation as an indication that away from the large-nf limit the

perturbative expansion of MS RG functions is divergent asymptotic.

The third observation is that it is natural to expect nonperturbative corrections that

invalidate the results of perturbation theory — independently of the nature of the series —

when the renormalization scale is of the order of the dynamically generated scale µ . ΛQCD.

MS is a mass-independent scheme and to all orders in perturbation theory no mass scale

enters in the RG functions, which are given by a power series in the coupling a. Non-

perturbatively, however, we expect contributions to the RG functions given by a certain

power of the dimensionless ratio ΛQCD/µ, accompanied by its own series of perturbative
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Figure 1. The coefficients of the perturbative expansion of the MS β-function in λf = nfa in the

Veneziano limit, see eq. (2.2). The plot shows 6 − pi(1/x) as a function of x in a log-log scale, the

offset was chosen so that the functions stay positive in the full range of x. We see that for large x

the perturbative expansion appears to be much better behaved than for x ∼ 1.

corrections, where

ΛQCD ≈ µ e
− 1
β0a (2.3)

is the dynamically generated scale. More precisely, we conjecture that the β function (and

similarly γ) is given by a trans-series

β(a) ∼ −
∞∑
n=0

βna
n+2 −

∞∑
m=2

e
− m
β0a

∞∑
n=0

βm,na
n+2 + . . . . (2.4)

We omitted for simplicity terms involving powers of log a that could be present as well. The

. . . represent other possibly present non-perturbative contributions, such as those given

by instanton anti-instanton configurations. These are larger than the non-perturbative

corrections in eq. (2.4) only close to the upper edge of the conformal window at finite

nc, where all non-perturbative corrections are anyhow negligible, so they can be neglected

altogether. It is interesting to ask what is the physical meaning of such corrections to

the β function, also because this will give us a handle on the estimation of the error. A

natural guess is that these contributions are associated to higher dimensional operators.

An irrelevant operator in the UV with dimension 4 + k has an associated coupling h of

dimension −k. By dimensional analysis this can only appear in the β function in the

combination hΛkQCD, which in terms of the dimensionless MS coupling ĥ = hµk can be

rewritten as

δβ ∼ ĥ
(

ΛQCD

µ

)k
= ĥ e

− k
β0a . (2.5)

It has been conjectured that at the lower edge of the conformal window conformality is

lost by annihilation of two fixed points [26].5 At large nc this operator is expected to be

5This scenario has been rigorously established in a weakly coupled, UV complete and unitary theory

in [33].
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a double-trace operator [26, 34, 35], and four-fermion operators are good candidates. We

expect this scenario remains qualitatively valid also at finite nc and hence as we approach

the lower edge of the conformal window, some (or more) dimension 6 operator(s) (with

a sizable four-fermion operator component) should become effectively marginal along the

RG. This argument motivates us to conjecture that the leading non-perturbative correction

in eq. (2.4) arise from m = 2 and is precisely due to such dimension 6 operators.6 In

particular, no contribution with m = 1 should arise in eq. (2.4). The imprints of such non-

perturbative corrections might be visible in the perturbative expansion as IR renormalon

singularities. This is however not necessarily the case. A perturbative series might be free

of ambiguities, without renormalon or other kind of singularities, and hence technically

Borel resummable, and still fail to reproduce the exact result, because non-perturbative

effects are not captured. It might also be possible that (some of) the non-perturbative

contributions in eq. (2.4) are not altogether visible in MS if such scheme remains mass-

independent beyond perturbation theory. Independently of these interpretations, however,

we expect that non-perturbative corrections affect the RG flow and eq. (2.5) with k = 2

gives the order of magnitude of their leading effect.

Summarizing, we will assume that the perturbative series in the coupling of the MS

β-function is divergent asymptotic and non-Borel resummable.

2.2 Banks-Zaks conformal expansion

Interacting CFTs are generally strongly coupled and not accessible in perturbation theory.

A non-trivial zero of a β-function requires a cancellation among different orders in the

perturbative expansion, which is in manifest contradiction with the fact that a term of order

n + 1 should be parametrically smaller than one of order n. A way out is to assume that

the lowest order coefficient β0 is accidentally small and to violate “once” the perturbative

rules. This is at the base of the Caswell-Banks-Zaks trick [25, 36]. If β0 > 0 and β1 < 0

(recall our definition of β in eq. (A.1)), we get a perturbative IR stable fixed point and the

ordinary perturbative series in the coupling constant turns into a series expansion in β0.

At fixed nc, or in the Veneziano limit, this is equivalent to an expansion in the parameter

ε ≡ 2

321
(n+
f − nf ) (QCD) , ε ≡ 4

75
(x+ − x) (Veneziano) , (2.6)

where

n+
f =

33

2
(QCD) , x+ =

11

2
(Veneziano) (2.7)

represent the upper edge of the conformal window in the two cases. The fixed point

equations β(a∗) = 0, β(λ∗) = 0 can be solved perturbatively in ε and give

a∗ =
∞∑
n=1

bnε
n (QCD) , λ∗ =

∞∑
n=1

bVn ε
n (Veneziano) . (2.8)

The factors 2/321 and 4/75 in eq. (2.6) are such that the first coefficients in the series (2.8)

equal b1 = bV1 = 1. Using eq. (2.8), the coupling constant expansion of any quantity turns

6This is the approach taken in (uncontrolled) truncations of exact RG flow equations, where the m = 2,

n = 0 non-perturbative correction in eq. (2.4) is included and somehow estimated, see e.g. [8].

– 7 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
9

into an ε-expansion for that quantity evaluated at the fixed point. In what follows we will

call this expansion in ε “conformal expansion”. In particular, for γ and γg we have

γ∗≡ γ(a∗) =

∞∑
n=1

gnε
n (QCD) , γ∗≡ γ(λ∗) =

∞∑
n=1

gV
n ε

n (Veneziano) ,

γ∗g ≡ 2β′(a∗) =
∞∑
n=1

b′nε
n+1 (QCD) , γ∗g ≡ 2β′(λ∗) =

∞∑
n=1

b′Vn ε
n+1 (Veneziano) . (2.9)

Note that if we know β up to loop order L, we can determine the conformal coefficients bn,

bVn , gn, gV
n , b′n and b′Vn up to order n = L− 1.

From the knowledge of the first few available terms, conformal expansions appear

to be better behaved than the corresponding ordinary coupling constant expansions, see

e.g. [37].7 Since in the conformal expansion we never flow away from the fixed point, and

hence no dynamical scale is generated, IR renormalons are not expected to appear [38].8

The large order behaviour of the conformal series for a∗, γ∗ and γ∗g is unknown.9 Like

for the analogue coupling constant expansions, it is not even known whether they are

convergent or divergent asymptotic. If the series in the coupling is divergent asymptotic,

as we argued in section 2.1 the conformal series is necessarily divergent as well. Indeed,

if the series expansion (A.1) of β(a) is divergent, so is also the series of the function ε(a)

obtained by solving β(a) = 0, because the series for ε(a) is simply obtained from that of

β(a) dividing by a constant times a2. Now suppose by contradiction that the series (2.8) for

the inverse function a(ε) is instead convergent, namely that at the point ε = 0 the function

is analytic. Since a′(0) 6= 0, we could apply Lagrange inversion theorem to prove that the

function ε(a) is also analytic at the origin, contradicting the initial assumption that the

series (A.1) for β(a) is divergent. Due to the factorial growth of asymptotic series, the

inverse series a(ε) is not only expected to be asymptotic, but also to have the same leading

large order behaviour, modulo an overall factor.10 We will then assume in what follows

that the conformal series (2.8) and (2.9) are all divergent asymptotic, consistently with

our assumption about the coupling expansion. Even if IR renormalons might not occur,

7Very recently the conformal expansion has been used to study the lower edge of the conformal win-

dow [13]. Assuming that γ equals exactly one at the lower edge, it has been found that n∗f ≈ 10 in QCD.

We do not think that the lower edge of the conformal window can be found in this way. First of all, as we

mentioned, when γ ∼ −1 one (or more) four-fermion operator(s) is (are) expected to be marginal and the

RG flow should involve the corresponding coupling constant(s). Second, the condition γ = −1 applies pos-

sibly at large nc and corrections are expected at finite nc. Third, it is not clear how the loss of conformality

is explained in the approach of [13], where conformality would seem to extend below n∗f .
8This is in agreement with the following fact. When an OPE approach is available, renormalons are

associated to non-perturbative condensates. On the other hand, in a CFT all operators, except the identity,

mush have a vanishing one-point function.
9The conformal series for a∗ depends on the scheme, because the definition of the coupling does, and

we always mean the coupling in the MS scheme. On the other hand, since γ∗ and γ∗g are observables, their

series expansion in ε is scheme-independent (i.e. each coefficient is scheme-independent).
10In fact, it has been argued in [39], inverting asymptotic series, that the most notable and studied

conformal expansion, the ε-expansion in quartic scalar theories [40], is divergent asymptotic. By now the

numerical evidence of the asymptotic nature of the φ4 ε-expansion is overwhelming, see e.g. [41].
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the series will be non-Borel resummable because of the same non-perturbative effects not

captured in the coupling expansion.

Independently of the nature of the perturbative series, one should be careful in using

the conformal expansion because the loss of conformality is not directly visible and one

could erroneously conclude that the conformal window extends below n∗f . This erroneous

result is due to the fact that non-perturbative corrections become sizable for nf ∼ n∗f
and the analysis based on perturbation theory breaks down. As explained in the previous

subsection, we expect this to happen when some operators, that have dimension 6 in the

unperturbed theory, approach marginality.

3 Borel resumming a non-Borel resummable series: what for?

As well-known, divergent asymptotic series can provide at best an approximate description,

with an accuracy that depends on the behaviour of their series coefficients. Denoting by

∞∑
n=0

Fna
n (3.1)

an asymptotic perturbative expansion in a coupling a of the observable F (a), if

Fn ∼ n! Re
[
t−n0

]
, n� 1 , (3.2)

for some complex parameter t0, the best accuracy is obtained by keeping NOpt(a) ≈ |t0|/a
terms. We refer to this as the “optimal truncation” of the perturbative series. The dif-

ference ∆ between the exact value of the function and the one as determined from its

asymptotic series at the point a in optimal truncation is given by

∆(a) ∼ e−
|t0|
a . (3.3)

Keeping more than NOpt(a) terms in the asymptotic series would lead to larger discrep-

ancies. If the large order behaviour of a series is unknown, optimal truncation can be

implemented by demanding that higher-order terms are always smaller (in absolute value)

than lower-order ones. The Borel transform of the series (3.1) is defined as usual:

BF (t) =

∞∑
n=0

Fn
n!
tn , (3.4)

and we indicate by

FB(a) =

∫ ∞
0
dt e−t BF (ta) (3.5)

its inverse. Independently of its Borel summability, if the coefficients Fn behave as in

eq. (3.2), |t0| equals the distance from the origin of the singularity of BF (t) closest to

the origin in the Borel plane t. The series (3.1) is “technically” Borel resummable if and

only if the function BF (t) has no singularities over the positive real t axis. However it

reproduces the exact result FB(a) = F (a) only if the function F (a) is analytic inside a
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Loop Order nf = 12 nf = 13 nf = 14 nf = 15 nf = 16

2 6 · 10−2 3.7 · 10−2 2.2 · 10−2 1.1 · 10−2 3.3 · 10−3

3 3.5 · 10−2 2.5 · 10−2 1.7 · 10−2 9.8 · 10−3 3.2 · 10−3

4 3.5 · 10−2 2.7 · 10−2 1.8 · 10−2 1.0 · 10−2 3.2 · 10−3

5 −5.5 · 10−6 3.2 · 10−2 1.9 · 10−2 1.0 · 10−2 3.2 · 10−3

Table 1. Approximate values of the QCD Caswell-Banks-Zaks fixed point coupling a∗ as a function

of nf obtained using different loop orders. The red color indicates values that should be taken with

care, because of a possible breakdown of perturbation theory.

disk in the complex plane a (with the origin on the boundary), with a radius that depends

on t0 [42]. If this is not the case, the unambiguous function FB(a) will miss some “non-

perturbative” terms. Let us now assume the worst case scenario, namely that the series

Fn is not technically Borel resummable and non-perturbative corrections are missed. In

this case FB(a) is not well-defined, because we need a contour prescription to avoid the

singularities present along the t axis. Let us denote by t1 the distance from the origin

of the closest singularity on the positive real axis. We end up having an equivalence

class of functions {FB,n(a)}, one for each different prescription, and an ambiguous partial

result. For simplicity let us consider the typical situation where the order of magnitude

of the ambiguity is the same as the leading non-perturbative correction which is anyhow

missed.11 The difference ∆B between the exact value of the function F and any FB in the

class {FB,n(a)} is roughly given by

∆B(a) ∼ e−
t1
a . (3.6)

The error (3.6) should be compared with the best one we can obtain in perturbation theory

using optimal truncation, given in eq. (3.3). Crucially, the singularity at |t0| and the one

at t1 are generally different. Since by definition t1 ≥ |t0|, Borel resumming a formally

non-Borel resummable function might lead to a better accuracy in the ending result.

After this general discussion, we can come back to the situation at hand, and see what

ordinary gauge coupling perturbation theory predicts for the zeroes of the MS β-function.

We report in table 1 the values a∗ where β(a∗) vanishes for QCD for different values of nf
and using different loop orders. As expected, the closer we are to the upper edge n+

f = 33/2

of the QCD conformal window, the more reliable perturbation theory is. The five-loop term

for nf = 12 and nf = 13 is larger than the lower-order (four-loop) term for the values of a

where the four-(or lower-)loop β function has zeroes. For this reason they are reported in

red and should be taken with care. Barring numerical accidents and assuming the series

entered its asymptotic form, a higher-order term larger in magnitude than a lower-order

11Whenever the singularities are due to semi-classical configurations such as instantons, one might hope

to cancel the ambiguities by combining in a single trans-series the asymptotic series arising from each

semi-classical configuration. In the best case scenario, one could be able in this way to recover all missing

non-perturbative effects and reproduce the exact result. This is the subject of resurgence, see [43] for a

recent review.
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Figure 2. Possible conjectured position of the singularities closest to the origin (black, red and

grey dots) of the Borel transform of the MS β-function. The red singularity might be due to an IR

renormalon or to an instanton anti-instanton configuration, the black one to a UV renormalon, the

grey ones of unknown origin.

one in a series signals either that i) we are outside the convergence radius of a series or

that ii) the series is asymptotic. As discussed in the previous section, we will assume the

case ii) in the following.

The values of t0 and t1 are not known for β(a). If non-perturbative corrections show

up as ambiguities in the Borel resummation, as is often the case, based on the arguments

in section 2 we expect that t1 ≥ 2/β0. In particular, the singularity at t1 = 2/β0 would be

an IR renormalon related to operators that have dimension six in the UV. For an instanton

anti-instanton configuration at finite nc we would have t1 = 1, but this is always either

sub-leading or negligible, as we discussed.12 The singularity t0 might be in the negative

real axis and due to a UV renormalon, though we cannot exclude the presence of other

singularities off the real axis of unknown origin.13 The scenario is summarized in figure 2.

The first UV renormalon might occur at t0 = −1/β0, in which case we would indeed have

t1 > |t0|. Note that both t1 and t0, being proportional to 1/β0, are parametrically far away

from the origin when we approach the upper edge of the conformal window. They move

towards the origin as the values of nf or x decrease in going towards the lower edge of the

conformal window.

The analysis above was based on the implicit assumption that we can reconstruct the

exact Borel function. In practice we know just five perturbative terms of β(a), so the Borel

function requires a numerical reconstruction. We use Padé approximants to estimate BF (t)

and refer the reader to appendix C for the details of the numerical implementation. See

also appendix D for a brief review on convergence properties of Padé approximants. The

limited number of known perturbative terms makes the numerical approximation subject

12In the renormalon literature, irrelevant operators are typically associated to UV renormalon singulari-

ties, that appear in the positive real t axis in a non-asymptotically free theory. They are the manifestation

of the non-perturbative non-renormalizability of the theory due to Landau poles. Although some formal

similarities, the two scenarios should not be confused.
13As a matter of fact, the first five loop coefficients for β(a), both in QCD and in the Veneziano limit, al-

ternate in signs every two. Of course we cannot draw any conclusion from the first few order terms, but such

behaviour would match with a pair of complex conjugate leading singularities close to the imaginary axis.
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Figure 3. Left: β-function as a function of the coupling λ in the Veneziano limit. Dotted grey lines

denote perturbative results, dashed lines denote the Borel resummations using Padé approximants

as indicated in the legend. The barely visible error band of the [2/2] approximant appears here as a

continuous blue line and the central values of the [2/2] and [1/3] approximants are overlapped. The

error band corresponds to cnp = 10. Right: coefficient of order 1/nf of the β-function as a function

of the coupling λf . The continuous orange line denotes the exact result obtained using large-nf
methods, the dashed lines denote the Borel resummation using Padé approximants as indicated in

the legend.

to an error that is typically larger than the one estimated to arise from the non-Borel

summability of the series and given by eq. (3.6).

4 Results

We report in this section our numerical results for the conformal window both for QCD

with nc = 3 and for the Veneziano limit. As discussed in the introduction, the more

strongly coupled region remains unaccessible to us, so the conformal window possibly

extends beyond the values of nf and x we can probe.

4.1 The Veneziano limit

In the Veneziano limit the upper edge of the conformal window is at x+ = 11/2. To begin

with we consider a value of x relatively close to x+, where the fixed-point is expected to be

weakly coupled.14 This is well described in perturbation theory, as shown in the left panel

of figure 3. We note that the results for β obtained by reconstructing the Borel function

through the Padé approximant [0/4] are quite off compared to the other approximants

and to perturbation theory, though perturbation theory is supposed to be valid in this

regime. For this reason we exclude from our analysis the [0/4] approximant and report

in what follows only the results obtained using the remaining approximants [1/3], [2/2]

and [3/1]. This will also be the case for QCD. We can actually use the exact O(1/nf )

result for β in the large-nf limit to test the accuracy of the different maximal Padé-Borel

approximants. In the Veneziano limit, large nf means large x limit. In the right panel

of figure 3 we show the 1/x term in β, denoted with β(1), as a function of the large-nf
coupling λf = anf . The continuous line is the exact result determined using large-nf

14Strictly speaking, weakly coupled with respect to the number of available coefficient terms.
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Figure 4. β-function as a function of the coupling λ in the Veneziano limit. Dotted grey lines denote

results in perturbation theory, dashed lines denote the central values of the Borel resummations

using [3/1] ad [1/3] Padé approximants as indicated in the legend. The shaded area corresponds to

the error associated to the [2/2] approximant and its central value is given by the continuous blu

line in the middle. In both panels the error band corresponds to cnp = 10.

methods, while the dashed lines are Padé-Borel approximants constructed with the leading

order large-x coefficients of β up to 5-loops. It is evident from the figure that [2/2] is the

approximant that better reproduces the exact result over the whole range shown15 and

thus we will consider this approximant as the preferred one. We will also report results

for the [3/1] and [1/3] approximants, but only for the [2/2] we will show in addition the

associated (non rigorous) error, estimated as explained in appendix C. A similar analysis

applies also for γ and γg, in which case the [2/2] approximant is again the one that better

matches the large-nf results (the evidence for γ is not as strong as for β and γg). In the left

panel of figure 3 and in all the other similar plots that will follow we have taken cnp = 10

in the non-perturbative contribution (C.9) to the error.

As x decreases, the fixed-point occurs at larger values of the coupling λ. We report in

figure 4 the results for β(λ) at two values of x: x = 4.2 and x = 4. The perturbative results

(grey dotted lines) significantly differ from each other though they all predict the presence

of a non-trivial zero, except for the 5-loop perturbative result (dark grey). We interpret

this result as a loss of reliability of the 5-loop coefficient. This interpretation is confirmed

by the results obtained by Borel resumming the series. Although the central values of the

Padé-Borel approximants [1/3], [2/2] and [3/1] significantly differ from each other, they all

predict a fixed point for both x = 4.2 and x = 4. The error band is however different in the

two cases and in particular for x = 4 it is too large to claim the presence of conformality.

We can also use the conformal expansion to compute λ∗, γ∗ and γ∗g at the fixed point

and compare the results with those obtained using ordinary perturbation theory. The

truncated available series in ε for both λ∗ and γ∗ start at O(ε) and reach O(ε4), while that

for γ∗g starts at O(ε2) and reach O(ε5). In all cases the maximal Padé-Borel approximants

15The expansion in λf of the 1/nf term of β is convergent, while we expect the series in λ in the ordinary

Veneziano limit at finite x to be divergent. Moreover, at large x the theory is in another phase, being

obviously not UV free. We are here assuming that the relative performance of the different approximants

in the large x limit applies also at finite x.
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Figure 5. The fixed point coupling as a function of x = nf/nc in the Veneziano limit. The central

values and error bars refer to the Padé-Borel approximants [1/2] in the conformal expansions and

[2/2] in the coupling expansion. For both ordinary coupling and conformal expansions the error

bars correspond to cnp = 10.

are of order 3 and are [2/1], [1/2] and [0/3]. We can select the “best” approximant by the

following argument. For ε < 0 and small, the theory is no longer UV free but formally we

have a conformal window in a non-unitary regime where λ∗ < 0. The perturbative zero at

two loops reads

λ∗ =
11− 2x

13x− 34
(2 loops) . (4.1)

According to eq. (4.1) the fixed point turns negative for x > 11/2 and remains essentially

constant in the limit of large x. The parametric behaviour of the [m/n] Padé- Borel

approximant as ε is negative and large is of order εm−n+1 and hence the approximant

[1/2] is the one with the correct asymptotic behaviour. We have verified this expectation

by comparing the results for λ∗ obtained with the Padé-Borel approximants with those

obtained using the large-nf β-function for values up to x ∼ 14.16 This analysis confirms

that the [1/2] approximant is the best one, the [0/3] having a similar performance, while

the [2/1] approximant has the wrong asymptotic behaviour. A similar analysis applied to

the Padé-Borel approximants for γ∗ and γ∗g selects instead the [0/3] as the preferred one.

We combine in figure 5 the values of λ∗ we find in both ordinary and conformal ex-

pansions using the preferred Padé-Borel approximants as explained above. The value of

λ∗ is renormalization-scheme dependent, but we are always using MS, so a comparison is

possible. It is reassuring to see that the values of λ∗ are in excellent agreement between

themselves in the regime of interest. The main source of error arises from the numerical

16This criterion is qualitative and not quantitative, because we are never in a controlled regime. The fixed

point is under perturbative control for x & 11/2, where large-x results are strictly speaking not reliable. On

the other hand, at large-x the perturbative fixed-point computed from the large-x β-function disappears

and new zeroes (possibly large-x artefacts) arise close to the poles of the Gamma-functions entering in (B.6).

In this regime the analysis breaks down, because Padé-Borel approximants can only provide an analytic

continuation of the would-be perturbative fixed point. Therefore in order to compare with large-x we need

to assume that in the limited range x . 14 the large-x expansion is already good enough.
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Figure 6. Values of |γ∗| (left) and γ∗g (right) as a function of x = nf/nc in the Veneziano limit.

The central values and error bars refer to the Padé-Borel approximants [0/3] in the conformal

expansions and [2/2] in the coupling expansion for both |γ∗| and γ∗g . In both panels and for both

ordinary coupling and conformal expansions the error bars correspond to cnp = 10.

reconstruction of the Borel function, the theoretical one associated to the actual non-Borel

summability of the series being sub-leading.

Similarly we report in figure 6 the values of |γ|∗ and γ∗g in both ordinary and con-

formal expansions using the preferred Padé-Borel approximants. Again the values of |γ|∗

and γ∗g are in excellent agreement between themselves in the regime of interest, with the

conformal expansion being significantly more accurate, especially for γ∗g . The value of γ∗

is particularly useful because it can give us an indication of how far we are from the lower

edge of the conformal window, assuming that |γ∗| = 1 when conformality is lost. We see

from the left panel of figure 6 that at x = 4.2 we have |γ∗| ∼ 0.3, indicating that likely

the conformal window extends for values of x < 4.2. Indeed, according to the conformal

expansion only, the conformal window extends up to x = 4 and below. When x . 4, the

non-perturbative error becomes relevant and the precise range of conformality depends on

which values of cnp is taken in eq. (C.9). This is a signal that we entered a regime in which

our results become unreliable. We will discuss in more detail the impact of the choice of

cnp on the results in the QCD case.

Computations based on approximate Schwinger-Dyson gap equations indicate

x∗ ≈ 4 [1], which is also the value found using truncations of exact RG flow equations [6, 7].

A phenomenological holographic bottom up approach gives instead 3.7 . x∗ . 4.2 [9]. No

lattice results are available in the Veneziano limit. We do not commit ourselves with an

estimate for x∗, which is beyond our analysis. However, the results shown indicate that at

x = 4.2 the theory is conformal and is probably so for values slightly below that, essentially

in line with these earlier estimates.

4.2 QCD: evidence for conformality at nf = 12

In QCD the integer closest to the upper edge of the conformal window is nf = 16. As can

be seen from table 1, at nf = 16 the fixed-point occurs for values of a where perturbation

theory is very accurate. Not surprisingly, the existence of an IR fixed point in this case

is undisputed in the lattice community. As nf decreases, the fixed-point occurs at larger

values of the coupling. For nf = 15, 14 the 5-loop β-function is still reliable at these values
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Figure 7. The QCD β-function as a function of the coupling a for nf = 11, 12, 13 flavours. Dotted

grey lines correspond to perturbative results, dashed lines denote the central values of the Padé-

Borel approximants [3/1] ad [1/3] as indicated in the legend. The shaded area corresponds to the

error associated to the [2/2] approximant and its central value is given by the continuous blu line

in the middle. The central values of the [2/2] and [1/3] approximants are always overlapped. The

error band corresponds to cnp = 10.

of the coupling, as evident in table 1 and confirmed by Padé-Borel approximants. The

presence of an IR fixed point is still under perturbative control.

At nf ≤ 13 the 5-loop β-function coefficient is no longer reliable. We report the plots

of the perturbative results and the central values of the maximal order approximants for

β as a function of a for nf = 11, 12, 13 in figure 7. As in the Veneziano limit, large-nf
results for both β, γ and γg select the [2/2] Padé-Borel approximant as the preferred one.

We then report results for the [3/1] and [1/3] approximants, but only for the [2/2] we also

show the associated error.

For nf = 13 the perturbative results significantly differ from each other though they

all predict the presence of a non-trivial zero. The 5-loop β-function has actually two

zeros.17 The second zero has been conjectured in [19] to be related to QCD* in the

scenario advocated in [26]. In contrast, we interpret this second zero as further evidence

17This is in fact the case for all values of nf ∈ [13, 16].
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of the unreliability of the 5-loop result at nf = 13. Two-fixed points of this kind appear

also in the 5-loop β-function in the Veneziano limit for 4.3 . x ≤ 11/2. In the large-nc
limit the expectation is that a double-trace operator O becomes marginal at the merging

point [26]. On the other hand, the appearance of a merging in β(a) would imply that the

single-trace operator TrF 2 is becoming marginal. This is in evident contradiction with our

results for γg in figure 9, which shows that this operator is irrelevant at the fixed point,

having scaling dimension 4 + γg. At finite nc, the operator O can possibly contain some

component of TrF 2, but we do not expect the merging should be visible by considering

only β(a) in perturbation theory. In fact, all the Padé-Borel approximants predict a single

IR-stable fixed point, as can be seen in figure 7. We discuss further the relation between

zeroes of our resummed beta functions and the QCD* scenario in the conclusions.

We now turn to the debated case nf = 12. Like at nf = 13, the 5-loop β-function

coefficient is expected to be unreliable, even more so, due to the larger values of the

couplings explored. This expectation is confirmed by our results. As can be seen from

figure 7, all the maximal Padé-Borel approximants considered show a zero of β(a), as well

as all perturbative results, but the 5-loop one. The existence of a zero for all the Padé-Borel

resummations within the error band indicates that nf = 12 is in the conformal window.

For nf = 11, the value of a∗ as computed in perturbation theory indicates that the

whole perturbative series is no longer reliable. We see from figure 7 that the qualitative

picture is the same as for nf = 12. In particular, the central values of the Padé-Borel

resummations, as well as all perturbative results but the 5-loop one, suggest a conformal

behaviour. On the other hand, the error band is too large to make any claim.18

We can also use the conformal expansion to compute a∗, |γ∗| and γ∗g at the fixed point.

Like in the Veneziano limit, an analysis of the non-unitary fixed points for ε < 0 and

comparison with large-nf results allow us to select the Padé-Borel approximant [1/2] as

the preferred one for the evaluation of a∗, and [0/3] for |γ∗| and γ∗g . The values of a∗,

|γ∗| and γ∗g in both ordinary and conformal expansions as a function of nf are reported

respectively in figures 8 and 9. The agreement between the two approaches is remarkable.

The value of |γ∗| for QCD with nf = 12 flavours has been computed by various lattice

groups over the years. We compare these results with ours in table 2. To obtain our results

we average over all the available Padé approximants, weighted by the errors, with the

final errors obtained combining the individual ones in quadrature, both in the conformal

and in the coupling expansion (as opposed to figures 6 and 9 in which we only show the

result from the preferred Padé approximant). Let us briefly mention the different lattice

techniques that have been used to obtain the results reported in table 2. The “gradient

flow” technique of ref. [44] is based on a lattice implementation of the renormalization

group. Ref. [45] measures the anomalous dimension from the scaling of the topological

susceptibility with the fermion mass. Ref. [46] uses the scaling of the spectral density

of the massless Dirac operator. The “finite-size scaling” technique of [47–50] uses the

dependence of correlators on the volume. As can be seen, our results are compatible with

18Applying Borel resummation techniques to the perturbative β-function [12] finds n∗f ≈ 9 in QCD.

Errors are not reported in [12]. As mentioned in footnotes 1 and 7, we think that the lower edge of the

conformal window is not accessible with few orders in perturbation theory.
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Figure 8. The fixed point coupling as a function of nf in QCD. The central values and error bars

refer to the Padé-Borel approximants [1/2] in the conformal expansions and [2/2] in the coupling

expansion. For both ordinary coupling and conformal expansions the error bars correspond to

cnp = 10.
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Figure 9. Values of |γ∗| (left) and γ∗g (right) as a function of nf in QCD. The central values

and error bars refer to the Padé-Borel approximants [0/3] in the conformal expansions and [2/2] in

the coupling expansion for both |γ∗| and γ∗g . In both panels and for both ordinary coupling and

conformal expansions the error bars correspond to cnp = 10.

the lattice ones. Similarly we consider γ∗g for QCD with nf = 12. In this case the only

lattice result we are aware of is that of ref. [51]. Given the large difference of accuracy in

our results between the ordinary and conformal expansions for γg, we use only the latter

to give an estimate for this quantity. Upon performing an error-weighted average of all the

available Padé’s and combining the errors in quadrature we get for nf = 12 γ∗g = 0.23(6),

in good agreement with the lattice result γ∗g = 0.26(2) of ref. [51].19

In figure 10 we show a∗, |γ∗| and γ∗g as a function of nf as computed using the conformal

expansion with cnp = 10. Note that the central values of a∗ in both the conformal and

coupling expansion are very close to each other also for nf = 11, i.e. the value of the

central green line in the upper central panel of figure 10 at nf = 11 is in good agreement

19Compatible values of the anomalous dimensions γ∗ and γ∗g for nf = 12 were found using the conformal

expansion in [14, 52], though no estimate of the error is provided there. These papers also give results up

to nf = 9. Again, our analysis suggests that perturbation theory is not reliable for such low values of nf .
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Ref. |γ∗| Method

This work

0.1 0.2 0.3 0.4 0.5 0.6

0.320(85) PB coupling

0.345(47) PB conformal

[44] 0.23(6) Gradient flow

[45]
0.47(10)

Top. susceptibility
0.33(6)

[46] 0.32(3) Dirac eigenmodes

[47] 0.235(46)

Finite-size scaling
[48] 0.235(15)

[49] 0.45(5)

[50] 0.403(13)

Table 2. Comparison between the results of our Padé-Borel (PB) resummation for |γ∗| in QCD

with nf = 12 — both using the coupling expansion and the Banks-Zaks conformal expansion, and

averaging over all available Padé approximants in each case — and lattice results.

with the value where the central blue line in the nf = 11 panel of figure 7 crosses zero.

This is suggestive of a conformal behaviour at nf = 11, but some care is needed before

jumping too quickly to a conclusion. When nf < 12 the contribution (C.9) to the full

error, which is sub-leading for higher values of nf , becomes sizable. The results shown

have cnp = 10. In both the ordinary coupling and conformal expansions, for nf ≥ 13 the

choice of cnp is essentially irrelevant, unless one considers unreasonably large values of this

parameter. For nf = 12 we have to take cnp ∼ 50 to enlarge the error so that this is

compatible with no fixed point in the coupling expansion. In the conformal expansion this

value reaches cnp ∼ 5 × 104. We think that a non-perturbative correction of this size is

unreasonable and that the evidence for a fixed point at nf = 12 is overwhelming. On the

other hand, the fixed point for nf = 11 in the conformal expansion is compatible with no

fixed point for cnp ∼ 50, while in the ordinary coupling expansion the error is dominated by

the contribution associated to the numerical reconstruction of the Borel function, namely

it is compatible with no fixed point even if one takes cnp = 0. We take these results as

evidence that nf = 11 is conformal, but we do not consider it enough to make a strong

claim. If we trust this evidence, we can use the resummation of the conformal expansion to

obtain |γ∗| = 0.485(143) and γ∗g = 0.36(19) (averaging all the available Padé’s weighted by

their errors and combining the errors in quadrature). Needless to say, we do not commit

ourselves with an estimate for n∗f .

We would finally like to conclude with a general observation about the use of Padé-

Borel versus simple Padé approximants. In the former case, we would not expect a gain in

considering Borel-resummation, because β(a) would be analytic at a = 0 and an ordinary

Padé approximant on β(a) should suffice. On the contrary, for a convergent series the Borel

function is analytic everywhere and expected to have an exponential behaviour at infinity,

and functions of this kind are not well approximated by low-order Padé approximants. We

have verified that by taking ordinary Padé approximants our results remain qualitatively

unchanged, though Padé-Borel approximants give slightly more accurate results. This
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Figure 10. The fixed-point coupling a∗ and the anomalous dimensions |γ| and γg in QCD as a

function of nf as obtained from the Padé-Borel resummation of the Banks-Zaks conformal expan-

sion. Grey dotted lines correspond to perturbative results, dashed lines denote the central values

of the Padé-Borel approximants indicated in the legend. The shaded area corresponds to the error

associated to the selected approximant and its central value is given by the continuous line in the

middle. In all panels the error band corresponds to cnp = 10.

can be seen as a sort of indirect numerical evidence of the non-convergence of the MS

β-function. See appendix D for a more general discussion on the convergence properties of

Padé approximants.

5 Conclusions

In this paper we applied Padé-Borel resummation techniques to the RG functions of QCD,

in order to test the existence of a fixed point beyond the perturbative regime. We considered

both the ordinary expansion in the coupling and the Banks-Zaks conformal expansion,

and we showed that in the regime in which the resummation is under control they give

compatible results for the critical MS coupling a∗, and for the anomalous dimensions γ∗, γ∗g
of respectively the fermion mass bilinear and the gauge kinetic term operator. According

to this analysis the conformal window in QCD extends at least to nf = 12, with weaker

indications that also nf = 11 is included, and in the Veneziano limit the window extends

at least to x = 4.2.
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Along the way, we provided arguments that led us to conjecture that these perturbative

series are divergent asymptotic, thereby supporting the need for Padé-Borel techniques. It

is important however to emphasize that the Padé-Borel analysis that we used applies inde-

pendently of whether the QCD β-function series is convergent or divergent asymptotic. We

also discussed the role of non-perturbative corrections, and suggested a relation between

renormalon singularities in the perturbative β function and contributions of irrelevant cou-

plings to the running of the gauge coupling, that are invisible to all orders in perturbation

theory in MS. Estimating the errors due to both the resummation techniques and the

non-perturbative corrections was an important part of our work: while these errors are

not rigorous, we believe that our estimates are reasonably conservative, and they provide a

crucial sanity-check, because they forbid us to extrapolate the five-loop perturbative result

to arbitrarily strong coupling.

We will now briefly comment about the behaviour of our resummed β function for nf/x

lower than those analyzed in the main text. In this range of nf/x the error bars become

large and our central values cannot be trusted, however we observe that the central values

sometimes admit a second zero, that merges and annihilate with the first non-trivial zero.

For instance the merging happens for nf between 9 and 10 in QCD. It would be tempting

to relate this to the QCD∗ mechanism that has been proposed in [26] for the end of the

QCD conformal window. However, the RG flow that connects QCD∗ to QCD involves

four-fermion couplings: at least close to the annihilation point, the flow happens in the

two-dimensional space spanned by the gauge-coupling and a four-fermion coupling that

is a singlet under the global symmetry, which becomes marginal precisely when the two

fixed points merge. On the other hand our analysis is completely blind to any four-fermion

coupling. As we recalled above, four-fermion couplings could appear in the MS β function

only via non-perturbative corrections. If we are conservative enough in estimating our non-

perturbative errors, we should then see large error bars covering up the strong-coupling

region in which these couplings are not negligible. This is consistent with the fact that

we observe annihilation in a region where our errors are large and our resummation is not

reliable. As a result, unless one finds a way to incorporate the nonperturbative corrections

in the β function, our approach is not powerful enough to study the proposed QCD∗

scenario for the end of the conformal window.

We regard the approach proposed here as a valid complement to non-perturbative

approaches such as lattice simulations and possibly in the future also conformal bootstrap

techniques. It can be useful to give an independent test when lattice results are not

completely conclusive, as we have seen in the case of QCD with nf = 12, and also as an

additional way to compute observables, as we did here for γ∗ and γ∗g . When higher loop

results will become available, they can be used to improve the precision of our numerical

resummation and to lower our upper bounds on n∗f and x∗, at least until the point where

the non-perturbative errors dominate. In the future this approach can be readily applied to

more general gauge groups and matter representation, for instance to probe the conformal

window in adjoint QCD, and also to other observables at the fixed point e.g. anomalous

dimensions of other composite operators.
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A Perturbative β function and anomalous dimension γ

We adopt the conventions of [22] for the β function and its perturbative coefficients, namely

β(a) =
1

2

da

d log µ
= −

∞∑
n=0

βn a
n+2 , (A.1)

where we are using the variable a ≡ g2

16π2 . Note that in our conventions there is a prefactor

of 1
2 in eq. (A.1), and βn is defined with a minus sign relative to the Taylor coefficients of

β. The coefficient of the lowest order a2 is the one-loop coefficient β0, and more generally

βn is the (n+ 1)-loop coefficient.

Similarly, our conventions for the anomalous dimension of the fermion mass operator

and its perturbative coefficients are

γ(a) =
1

m

dm

d log µ
= −

∞∑
n=0

γna
n+1 , (A.2)

where the mass m is the coefficient of ψ̄ψ in the Lagrangian. In this case the expansion

starts at one-loop order with the power a1, and similarly to the β function γn is the (n+1)-

loop coefficient. At a fixed point β(a∗) = 0, γ∗ ≡ γ(a∗) is related to the scaling dimension

of the operator ψ̄ψ by

∆ψ̄ψ = 3 + γ∗ . (A.3)

The anomalous dimension of the gauge kinetic operator is

γg(a) = 2
∂β(a)

∂a
≡ 2β′(a). (A.4)

At a fixed point γ∗g ≡ γg(a
∗) is related to the scaling dimension ∆F 2 of the operator

Tr[FµνFµν ] by

∆F 2 = 4 + γ∗g . (A.5)
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The perturbative coefficients up to five-loop order in the case of QCD read [21, 28]



β0 = 11− 2nf
3
, β1 = 102− 38nf

3
, β2 =

325n2
f

54
− 5033nf

18
+

2857

2
,

β3 =
1093n3

f

729
+n2

f

(
6472ζ(3)

81
+

50065

162

)
+nf

(
−6508ζ(3)

27
− 1078361

162

)
+3564ζ(3)+

149753

6
,

β4 =n4
f

(
1205

2916
− 152ζ(3)

81

)
+n3

f

(
−48722ζ(3)

243
+

460ζ(5)

9
+

809π4

1215
− 630559

5832

)
+n2

f

(
698531ζ(3)

81
− 381760ζ(5)

81
− 5263π4

405
+

25960913

1944

)
+nf

(
−4811164ζ(3)

81
+

1358995ζ(5)

27
+

6787π4

108
− 336460813

1944

)
+

621885ζ(3)

2
−288090ζ(5)+

8157455

16
− 9801π4

20
,

(A.6)



γ0 = 8 , γ1 =
404

3
− 40nf

9
, γ2 =−280n2

f

81
+nf

(
−320ζ(3)

3
− 4432

27

)
+2498 ,

γ3 =n3
f

(
128ζ(3)

27
− 664

243

)
+n2

f

(
1600ζ(3)

9
− 32π4

27
+

10484

243

)
+nf

(
−68384ζ(3)

9
+

36800ζ(5)

9
+

176π4

9
− 183446

27

)
+

271360ζ(3)

27
−17600ζ(5)+

4603055

81
,

γ4 =n4
f

(
−640ζ(3)

243
+

64π4

1215
− 520

243

)
+n3

f

(
25696ζ(3)

81
− 10240ζ(5)

27
+

448π4

405
+

91865

729

)
+n2

f

(
92800ζ(3)2

27
+

4021648ζ(3)

243
− 528080ζ(5)

81
+

36800π6

5103
− 33260π4

243
+

2641484

729

)
+nf

(
−151360ζ(3)2

9
− 25076032ζ(3)

81
+

99752360ζ(5)

243
− 3640000ζ(7)

27
+

2038742π4

1215

−150736283

729
− 255200π6

1701

)
+193600ζ(3)2+

92804932ζ(3)

243
+825440ζ(7)

− 463514320ζ(5)

243
+

96800π6

189
+

99512327

81
− 698126π4

405
.

(A.7)

In the Veneziano limit our conventions for the β function and its perturbative coefficients

are

β(λ) =
1

2

dλ

d log µ
= −

∞∑
n=0

βV
n λ

n+2 , (A.8)

and similarly for the anomalous dimension

γ(λ) = −
∞∑
n=0

γV
n λ

n+2 . (A.9)

These perturbative coefficients in the Veneziano limit can be obtained from [22–24] up to
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five-loop order and they read

βV
0 =

11

3
− 2x

3
, βV

1 =
34

3
− 13x

3
, βV

2 =
56x2

27
− 1709x

54
+

2857

54
,

βV
3 =

130x3

243
+x2

(
28ζ(3)

3
+

8654

243

)
−x
(

20ζ(3)

9
+

485513

1944

)
+

44ζ(3)

9
+

150473

486
,

βV
4 =x4

(
61

486
− 52ζ(3)

81

)
+x3

(
−1937ζ(3)

81
+

20ζ(5)

3
+

7π4

90
− 5173

432

)
+x2

(
33125ζ(3)

108
− 1630ζ(5)

9
− 241π4

540
+

3952801

7776

)
+x

(
−231619ζ(3)

648
+

4090ζ(5)

9
+

77π4

540
− 11204369

5184

)
+

38851ζ(3)

162
−330ζ(5)− 121π4

540
+

8268479

3888
,

(A.10)



γV
0 = 3 , γV

1 =
203

12
− 5x

3
, γV

2 =−35x2

27
−x
(

12ζ(3)+
1177

54

)
+

11413

108
,

γV
3 =x3

(
16ζ(3)

9
− 83

81

)
+x2

(
20ζ(3)− 2π4

15
+

899

162

)
+x

(
−889ζ(3)

3
+160ζ(5)+

11π4

15
− 23816

81

)
+

1157ζ(3)

9
−220ζ(5)+

460151

576
,

γV
4 =x4

(
−80ζ(3)

81
+

8π4

405
− 65

81

)
+x3

(
3278ζ(3)

81
− 416ζ(5)

9
+

46π4

405
+

8029

486

)
+x2

(
368ζ(3)2

3
+

35323ζ(3)

54
− 778ζ(5)

3
+

160π6

567
− 2843π4

540
+

1315303

7776

)
+x

(
−616ζ(3)2

3
− 2598341ζ(3)

648
+5304ζ(5)−1820ζ(7)+

17639π4

810
− 1100π6

567
− 46120039

15552

)
+

968ζ(3)2

3
+

215171ζ(3)

162
+3850ζ(7)− 66235ζ(5)

9
+

1210π6

567
− 3157π4

405
+

29826469

5184
.

(A.11)

B RG functions in the large-nf limit

In this appendix we review the results for β and γ at large nf . Ref. [53] showed that in the

large-nf limit of QCD (with nc kept finite) the MS β-function for the ’t Hooft-like coupling

λ = nfa can be written as20

β(λ) =
4TF

3
λ2 +

1

nf
β(1)(λ) +O

(
n−2
f

)
, (B.1)

where β(1)(λ) satisfies the equation

λ
d

dλ

(
β(1)(λ)

λ2

)
= f(2− 4TFλ/3) . (B.2)

20In the main text the large-nf coupling is denoted by λf to distinguish it from the coupling in the

Veneziano limit. For simplicity of notation, we will drop the subscript f in this section and denote it simply

by λ.
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The function f on the right-hand side is

f(ν) ≡
Γ(2ν)

(
CA
(
ν4 − 9

2ν
3 + 11ν2 − 45

4 ν + 7
2

)
− 4CF (ν − 3)(ν − 1)(ν − 3

2)(ν − 1
2)
)

3(ν − 1)Γ(2− ν)Γ(ν)2Γ(ν + 1)
.

(B.3)

In the case of SU(nc) with fundamental flavors the group theory factors are

CA = nc , CF =
n2
c − 1

2nc
, TF =

1

2
, (B.4)

while for U(1) theories they are

CA = 0 , CF = TF = 1 . (B.5)

From eq. (B.2) one obtains [54]

β(1)(λ) = λ2

(
−11CA

3
+

∫ λ

0

dλ′

λ′
f(2− 4TFλ

′/3)

)
. (B.6)

Note that the small-λ expansion of the integral starts from O(λ), and the integration

constant −11CA
3 is fixed to agree with the one-loop β-function. Equation (B.6) generalizes

results obtained previously for QED in [55–57]. Similarly for the MS mass anomalous

dimension one has [55, 56]

γ =
1

nf
γ(1)(λ) +O

(
n−2
f

)
, (B.7)

with

γ(1)(λ) = g(2− 4TFλ/3) , g(ν) ≡ − CF
2TF

(2ν − 1)Γ(2ν)

Γ(ν)2Γ(ν + 1)Γ(2− ν)
. (B.8)

A convenient approach to derive these formulas (though not the one pursued in the first

papers on the subject [55, 56]) is to (formally) continue the theory to dimension d with

2 < d < 4, and exploit that in this range of dimensions the large-nf theory admits a

controllable IR fixed point. The functions ∂λβ = β′ and γ at the fixed point at large nf ,

call them β′∗ and γ∗, are related to observable scaling dimensions of the CFT. At large-nf
the IR CFT decouples in a non-local mean-field-theory sector associated to the gluons and

a free CFT associated to the matter fields. One can then compute these observables in

1/nf conformal perturbation theory.21 We then have that β′∗ = β′∗(d) and γ∗ = γ∗(d) are

non-trivial functions of the space-time dimension, at each order in the 1/nf expansion. On

the other hand, using the leading order β-function for large nf we can compute the critical

value of the coupling constant λ∗ = λ∗(d) at the fixed point. Inverting this function and

plugging the result in β′∗ and γ∗ gives us the final answer for β and γ as functions of λ.

21Interestingly, the IR fixed point for large-nf QCD in 2 < d < 4 coincides with the UV fixed point

for the Thirring model of free fermions deformed by a certain (vector)2-type of quartic interaction [58]

(see [53, 58] for more details about the map between the two theories). Beyond the large-nf limit, the IR

fixed point of QCD becomes weakly coupled in the limit d → 4, while the UV fixed point of the Thirring

model becomes weakly coupled in the limit d→ 2. The result (B.2) for the β function was indeed computed

in [53] using the Thirring description of the fixed point, and it agrees with the large-nf limit of the five-loop

QCD β function.
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We now show how to use this approach to obtain the formula (B.8). We consider the

theory in d dimensions with Euclidean signature. To start with, let us derive the propagator

of the gluon in the IR for nf = ∞. At leading order at large nf the only contribution to

the 1PI two-point function is the fermionic bubble, hence the exact propagator in ξ gauge

takes the simple form (stripping off the color indices)

Pµν(q) =
λ

nf

1

q2

1

1 + λTFC(ν) qd−4
Πµν(q) + ξ

λ

nf

qµqν
q4

+O(n−2
f ) , (B.9)

where for convenience we have defined ν = d/2, and Πµν(q) is the transverse projector

Πµν(q) ≡ δµν −
qµqν
q2

. (B.10)

A simple one-loop calculation shows that

C(ν) =
1

(4π)ν
4(ν − 1)Γ(2− ν)Γ(ν − 1)2

(2ν − 1)Γ(2ν − 2)
. (B.11)

For simplicity we take in the following the Landau gauge ξ = 0. The IR limit corresponds

to λ q2ν−4 � 1, leading to

P IR
µν (q) =

1

nf

1

TFC(ν) qd−2
Πµν(q) +O(n−2

f ) . (B.12)

Using this propagator, we can compute the correction to the 1PI two-point function of the

fermion field, giving

Σ(p2)γσp
σ =

1

nf

CF
TFC(ν)

∫
ddq

(2π)d
(γµγργν)Πµν(q)(p+ q)ρ

(p+ q)2qd−2
+O(n−2

f ) , (B.13)

where the indices in the fundamental representation have been contracted on both sides,

giving the factor of CF in the numerator on the r.h.s. of eq. (B.13). Multiplying both sides

by γωp
ω and taking the trace over the fermionic indices, we obtain

Σ(p2)p2 =
1

nf

CF
TFC(ν)

∫
ddq

(2π)d
F (p, q)

(p+ q)2qd−2
+O(n−2

f ) , (B.14)

where

F (p,q) =
3−d

2
p2− 2−d

2
q2− (p2)2

2q2
+

3−d
2

(p+q)2+
p2(p+q)2

q2
− ((p+q)2)2

2q2
. (B.15)

Taking a Wilsonian approach, we will perform the integral in the slice of momenta bΛ <

|q| < Λ, where Λ is a UV cutoff and 0 < b < 1. Expanding around p = 0, we have

F (p, q)

(p+ q)2
=

1

q2

[
(1− d)p · q + (3− d)p2 − 2(2− d)

(p · q)2

q2

]
+O(|p|3|q|−3) , (B.16)

where we retain orders up to O(|p|2|q|−2) because higher orders lead to a UV finite integral.

We can now plug eq. (B.16) inside the integral in eq. (B.14) and use SO(d) invariance to
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conclude that the term linear in q cannot contribute, while in the term quadratic in q we

can replace

qµqν →
1

d
q2δµν . (B.17)

We then get

Σ(p2 = 0) =
1

nf

CF
TFC(ν)

(d− 4)(d− 1)Vol(Sd−1)

d(2π)d
log(b) +O(n−2

f ) . (B.18)

This means that in the effective action at the scale bΛ we have a non-canonical kinetic

term for the fermion, with coefficient Zψ = 1 − Σ(p2 = 0). Similarly, we can compute

the correction to the mass due to the modes between bΛ and Λ. The Feynman diagram

evaluates to the following integral

− (Zm − 1)m1 = −m 1

nf

CF
TFC(ν)

∫
ddq

(2π)d
(γµγν)Πµν(q)

(p+ q)2qd−2
+O(n−2

f ) , (B.19)

whose UV divergence is readily computed as before. Going to the canonical normalization

of the kinetic term, the correction to the renormalization of the mass is

Zm
Zψ

= 1− 1

nf

CF
TFC(ν)

4(d− 1)Vol(Sd−1)

d(2π)d
log(b) +O(n−2

f ) . (B.20)

Using eq. (B.11) and Vol(Sd−1) = 2πν/Γ(ν) we then have

γ(ν) =
d(log(Zm/Zψ))

d log(b)
=

1

nf
g(ν) +O(n−2

f ) , (B.21)

where g(ν) is exactly the function defined in eq. (B.8).

In order to find the dependence of the fixed point coupling λ∗ on ν, we use the ε-

expansion around d = 4. The beta function in d = 4−2ε is one-loop exact at leading order

in 1/nf :

β(λ) = −ελ+
4TF

3
λ2 +O(n−1

f ) . (B.22)

For ε > 0 we get a real IR fixed point at

λ∗ =
3

4TF
ε+O(n−1

f )→ ν(λ∗) = 2− 4TF
3
λ∗ +O(n−1

f ). (B.23)

Plugging ν(λ∗) in eq. (B.21) and replacing λ∗ → λ finally reproduces eq. (B.7). The same

strategy works also for the β function, in which case one needs to consider the scaling

dimension of the gauge kinetic operator. We refer the reader to [53] for this case, which is

more complicated since it involves 2-loop diagrams.
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C Details on the numerical resummation

We approximate the Borel transform of the RG functions β and γ using Padé-

approximants.22 Given the asymptotic series for a function f(a)

aζf
∞∑
n=0

fna
n , (C.1)

we define the generalized Borel-Le Roy transform as

Bf (t) =
∞∑
n=0

fn
Γ(n+ b+ 1)

tn , (C.2)

where b > −1 is a real parameter.23 The parameter ζf in eq. (C.1) is chosen in such a

way that f0 6= 0, so we have ζf = 2 for β and ζf = 1 for both γ and γg ∝ β′. The Borel

resummed function is obtained as

fB(a) = aζf
∫ ∞

0
dt tbe−tBf (at) . (C.3)

Given the first N + 1 terms of the series expansion of the Borel function (C.2), its [m/n]

Padé approximation reads

B[m/n]
b (t) =

∑m
p=0 cp(b)t

p

1 +
∑n

q=1 dq(b)t
q
, (C.4)

with m + n = N . The m + n + 1 b-dependent coefficients cp and dq are determined by

expanding eq. (C.4) around t = 0 and matching the result up to the tN term in eq. (C.2).

Plugging eq. (C.4) in eq. (C.3) leads to an approximation of the function fB(a) given by

f
[m/n]
B (a) = aζf

∫ ∞
0
dt tbe−tB[m/n]

b (at) . (C.5)

For the values of a where fB(a) provides a good approximation of the exact function f(a),

fB(a) should be independent of the dummy variable b, but a dependence will remain in its

Padé approximation f
[m/n]
B (a). Such a dependence can be used to estimate how well we

are approximating the exact Borel function. We have used the large-nf limit to find which

range of values for b gives more accurate results. It turns out that largish values of b are

preferred, and we have taken b0 = 10 as our central value.

At sufficiently high order, the m+n zeroes and poles of the Padé [m/n] approximants

can be used to “reconstruct” the analytic property of the Borel function, since most of

them accumulate on specific branch-cuts of the function, see appendix D for a more precise

statement and e.g. figure 2 of [60] or figure 4 of [61] for examples in 2d or 1d theories. In

principle one could see the possible appearance of IR renormalon singularities in this way.

22More refined analysis can be made when some analytic properties of the Borel function are known or

assumed and more perturbative coefficients are known. See e.g. section 4 of [59] for an application in the

2d λφ4 theory.
23The ordinary Borel function corresponds to b = 0.
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However the occurrence of random spurious poles hinder any possible use of the location of

zeros and poles of the approximants when few terms are available, like in our case. When

a pole occurs in the positive real axis, independently of its possible interpretation, we take

the Cauchy principal value of the integral and include the ambiguity, given by the residue

at that pole, into the final error estimate.

It is notoriously hard to find a systematic error estimate in numerical resummations,

which are always subject to some arbitrariness. We define our (non rigorous) error ∆[m/n]

as a sum of three contributions

∆ f
[m/n]
B ≡ ∆[m/n] = ∆

[m/n]
b + ∆[m/n]

r + ∆np . (C.6)

The factor ∆b measures the error due to the choice of the b parameter and is taken as

follows:

∆
[m/n]
b =

1

2

∣∣∣max
b∈B

f
[m/n]
B (b)−min

b∈B
f

[m/n]
B (b)

∣∣∣ . (C.7)

B is a grid of values of the parameter b inside the interval [b0 − ∆b, b0 + ∆b], where the

value of ∆b is an arbitrary choice. We have conservatively taken ∆b = 10, and the spacing

of the grid to be 2, so that B = {2k|k ∈ N, 0 ≤ k ≤ 10}. The factor ∆r is non-vanishing

only if the approximant has poles in the positive real axis, in which case we have

∆[m/n]
r = aζf−1

∑
p

Res

∣∣∣∣(upa )be−up/aB[m/n]
b0

(up)

∣∣∣∣ , (C.8)

where Res indicates the residue of the function, up is the location of the pole and p runs

over the number of poles in the positive real u = ta plane. The factor ∆np represents the

theoretical error due to possible non-perturbative contribution to the RG functions. As an

order-of-magnitude estimate it is taken as

∆np = cnp e
−κ
a , (C.9)

where cnp is an arbitrary coefficient, κ = Min(1, 2/β0) in QCD, κ = 2/β0 in the Veneziano

limit, 1 being the position of the instanton anti-instanton singularity in the Borel plane,

and 2/β0 being the exponent of the leading non-perturbative correction in eq. (2.4), as

explained in section 2.1. The error ∆np applies for the series of β, γ and γg.

A similar analysis applies in the conformal expansion where the coupling a is replaced

by ε defined in eq. (2.6). As can easily be seen from eqs. (2.8) and (2.9), in the conformal

case ζf = 1 for both a∗ and γ∗ while ζf = 2 for γ∗g , and all considerations made apply. In

particular, the theoretical error is taken as in eq. (C.9), where β0 is proportional to ε and

a is replaced by a∗(ε).

D Convergence of Padé approximants

This appendix briefly discusses what is known about the convergence properties of [m/n]

Padé approximants in general and can be read independently of the main text.

Given an analytic function f(z), we would like to understand if and in what sense its

approximants f [m/n](z) converge to f(z) when m,n → ∞. It is clear intuitively that it
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is difficult to prove point-wise convergence for Padé-approximants, even for single-valued

meromorphic functions. Indeed, suppose that f(z) is meromorphic in some domain D of

the complex plane that includes the origin and has n poles of order αi ∈ D, so that the

total pole multiplicity is M =
∑n

i=1 αi. The approximant f [m/n](z) has instead n poles in

the complex plane and for sufficiently large n the total multiplicity of the poles of f [m/n](z)

in D can exceed M . There are then at least a finite set of points where f [m/n](z) diverge

while f(z) is finite. The most general results on the convergence of Padé approximants

are based on convergence in “capacity”. There are various equivalent ways to define it, see

e.g. chapter 6.6 of [62]. The name arises from the definition in potential theory, where it

admits an interpretation in terms of electrostatic capacity. Capacity is a property of a set

that essentially measures its magnitude. The capacity of a finite two-dimensional domain

is non-vanishing. Codimension one regions such as a circle or a segment, despite being of

measure zero in C, have also non-zero capacity. For example, a disk of radius R and a circle

of radius R (the boundary of the disk) have the same capacities: cap(DR) = cap(S1
R) = R.

The capacity of any countable number of points is zero.

The most general results on the convergence of Padé approximants are due to Stahl [63],

building on previous works by Nuttall, and are based on convergence in capacity. Following

Stahl, we denote by [m/n](z) ≡ f [m/n](1/z) the Padé approximants of f(z) expanded

around z =∞. The function f(z) is assumed to be analytic at infinity, all its singularities

are in a compact set E ⊆ C with cap(E) = 0, and it has analytic continuations (not

necessarily single-valued) along any path on C\E, where C is the complex plane C extended

with the point at infinity, i.e. the Riemann sphere. Under these assumptions, Stahl has

shown that there exists a unique maximal domain of convergence Df such that, for every

compact set V ⊆ Df and for every ε > 0,

lim
m,n→∞

cap
(
z ∈ V | |f(z)− [m/n](z)| > ε

)
= 0 . (D.1)

The Padé approximants [m/n] should be parametrically diagonal, namely

lim
m,n→∞

m

n
= 1 . (D.2)

The domain Df is determined as the one whose boundary ∂Df has minimum capacity

among all the domains including the point at infinity and where f(z) has a single-valued

analytic continuation. For a meromorphic function Df = C, while Df ⊂ C if f has branch-

point singularities. The boundaries ∂Df of the domain should be thought as the various

branch-cuts connecting branch-point singularities and Df as the unique domain delimited

by branch-cuts with minimum capacity where f(z) is single-valued. The complement set

F = C \ Df has empty interior and corresponds to a compact set of zero capacity plus, if

f(z) has branch-points, an union of arcs in C. For single-valued functions the convergence

in capacity over C\E can be shown to occur for arbitrary approximants, not necessarily

parametrically diagonal. We refer the reader to [63] for more details and other results based

on different assumptions and to [62] for a more comprehensive introduction to the subject.

Interestingly enough, Stahl has also proved that almost all the poles and zeros of the

approximant [m/n](z) cluster to the set F . Isolated spurious poles in Df can however occur

– 30 –
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and generally hinder a point-wise convergence. For functions with a single branch-cut, the

set F (modulo a capacity zero set) coincides with the branch-cut. It is straightforward to

check how zeros and poles of large order approximants of simple known functions cluster on

their branch-cut, as expected. For more complicated functions with multiple branch-cuts

the clustering of zeros and poles allows us to “reconstruct” the set F .

It is important to emphasize that essentially all results on Padé approximants as-

sume that the original function to be approximated is analytic at the point where it is

expanded.24 This is not the case for functions f that have a divergent asymptotic series,

so the convergence of Padé approximants of f cannot be established. On the other hand,

by construction the Borel transform Bf of f is analytic around the point of expansion and

the convergence theorems might apply. Moreover, since the original function is recovered

by an integral, convergence in capacity (which is stronger than convergence in measure)

is enough to establish the point-wise convergence in f , as long as the real positive axis is

included in DBf and the Laplace transform is well defined.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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