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Introduction

The study of the primordial (or cosmological) stochastic gravitational
wave background (SGWB) encompasses two of the most promising
and compelling fields of cosmology at the moment: cosmic microwave
background (CMB) physics and gravitational waves (GW) astronomy.
The efforts of these two communities are indeed directed towards
a historic goal, that is the first observation of this primordial signal,
originating from the first instants of existence of the Universe. A
detection of the primordial SGWB would therefore open a unique
window on the physics of the early Universe, as this signal contains
an unparalleled wealth of information on such processes, and would
allow to test some of the predictions of the cosmic inflation paradigm
– which at the moment represents the favored scenario – together
with other early Universe theories.

At the moment, we are experiencing an extraordinary epoch
concerning the progresses associated to both the CMB and GW.

In the last three decades, in fact, CMB data – together with the
accurate mapping of the Large Scale Structure of the Universe by
means of galaxy surveys – have driven cosmology into its current
precision era, through measurements of the temperature and polariza-
tion fluctuations caused by primordial density perturbations. These
observations allowed cosmology to reach full maturity as a branch
of physics and to establish the current cosmological model (Planck
Collaboration, 2018) – named ΛCDM after the Cosmological Con-
stant Λ e the Cold Dark Matter (CDM) model – which also predicts
the production of a primordial SGWB by quantum fluctuations dur-
ing inflation, a mysterious phase of quasi-exponential expansion in
the very early Universe. Such signal is expected to leave its unique
imprint in the curl-component – called B-mode – of the CMB polariza-
tion field: , representing at this moment the most reliable mechanism
in order to achieve a convincing detection of primordial GWs.

Given the exceptional importance of such measurements, several
CMB B-mode experiments have already been deployed and are
currently searching for primordial B-modes, while others have been
planned for this and the next decade. The path to B-mode detection,
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Figure 1: The spectrum of gravitational
waves as a function of frequency and
wave period, together with some of the
available detection methods and some
of the relevant sources. Figure credit
NASA Goddard Space Flight Center.

however, is full of challenges: this primordial signal, indeed, is very
faint, with contaminations by a secondary B-mode signal generated
on arcminute scales by curl-free E-modes of the CMB polarization
gravitationally lensed by the Large Scale Structure of the Universe and
on larger scales by the astrophysical diffuse foregrounds from our own
Galaxy, mainly due to the thermal emission of dust grains and to the
synchrotron radiation emitted by cosmic ray electrons spiraling into
the Galactic magnetic field.

On the other hand, GW astronomy is undergoing a phase of in-
credible discoveries. This discipline could be seen, in some sense,
as younger with respect to CMB physics: despite the fact that the
existence of gravitational radiation had already been confirmed in
1982 by the measurement of the rate of orbital decay due to energy-
loss in GWs in a neutron star binary (Taylor and Weisberg, 1982),
the date of birth of GW astronomy can coincide with the first direct
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observation of the inspiral and merger of a stellar mass black hole
binary, that is September 14th, 2015, by the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) experiment (Abbott
et al., 2016). This observation was followed soon after by the first
observation of a binary neutron star merger (Abbott et al., 2017), in
collaboration with the Advanced Virgo interferometer (Acernese
et al., 2015). These exciting discoveries opened up a new era for
fundamental physics investigated through astrophysical and cosmo-
logical observations, including the possibility to observe an SGWB
of primordial origin, which will be the subject under investigation in
this Thesis.

As displayed in Figure 1, the spectrum of an SGWB produced by
quantum fluctuations in the early Universe covers a large range of
frequencies. This allows for at least other three different detection
methods – operating in three different frequency ranges – in addition
to the already mentioned CMB B-modes: Pulsar Timing Arrays, space-
borne and ground-based laser interferometers. The search through Pulsar
Timing Arrays exploits the correlations induced by the passage of
GWs in the arrival times of the radio pulses emitted by an ensemble
of Galactic pulsars with rotation period of ∼ 1 ms. Laser interferome-
ters, on the other hand, measure the change – induced by the passage
of a GW – in the proper distance between the two test-masses at the
ends of one arm of the interferometer, which producies phase-shifts
in the laser beams traveling back-and-forth along the arm.

Also in the case of Pulsar Timing and interferometers, an SGWB of
primordial origin could be contaminated by the presence of several
astrophysical foregrounds components, as exemplified in Figure
1: various populations of unresolved compact objects – including
merging binary black holes of both supermassive and of stellar
nature, neutron star binaries, Galactic and extra-Galactic binary white
dwarfs and others – will also produce a stochastic background of
astrophysical origin, which will represent a foreground in the search
of primordial SGWB.

Outline of the Thesis

In this Thesis, we will be concerned with the possibility of obtaining
precision measurements on the spectrum of a primordial SGWB,
using both CMB B-mode experiments and direct detection ones, such
as laser interferometers and Pulsar Timing Arrays.

Motivated by the fact that, in addition to the standard prediction
of single-field slow-roll inflation models, a multitude of alternative
production mechanisms have been proposed in the literature as pos-
sible sources of primordial B-modes, we will first explore (Chapter
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4) the capabilities of current and future CMB B-mode experiments to
characterize the shape of a primordial SGWB spectrum. To this end,
we will exploit a Principal Component Analysis formalism, in order to
maintain a model-independent approach: this will allow us to assess
the modulation in sensitivity of an experiment on the different cos-
mological perturbation scales and to determine where features in the
tensor power spectrum can be probed more effectively by each of the
considered experiments. We will include in our study – for the first
time in the literature on the subject – the contribution from residual
diffuse foreground contamination and we will derive robust expec-
tations on the sensitivities of three future B-mode probes, namely
the Lite satellite for the studies of B-mode polarization and Inflation
from cosmic background Radiation Detection (LiteBIRD) satellite
(Hazumi et al., 2019; Sugai et al., 2020), the Simons Observatory (SO)
(The Simons Observatory Collaboration et al., 2018; Lee et al., 2019)
and the Stage-IV network of ground-based observatories (CMB-S4)
(Abazajian et al., 2016; Abazajian et al., 2019b,a).

We will then extend the previous study by including the possibil-
ities offered by measuring the spectrum of a primordial SGWB with
laser interferometers and Pulsar Timing Arrays, in addition to CMB
B-mode probes (Chapter 5). This allows to constrain the shape of
the spectrum across ∼ 23 decades in frequencies. The combination
experiments probing such different frequency ranges allows to char-
acterize the SGWB beyond the simple detection of primordial tensor
modes: this will be extremely important in determining a candidate
primordial SGWB originated from quantum vacuum fluctuations
in the metric tensor, compatibly with the standard single-field slow-
roll scenario, or from alternative scenarios that can also produce the
SGWB. In this respect, we perform forecasts also on the promising
SU(2)-axion inflation scenario, in addition to the standard single-field
slow-roll model.

Concerning CMB and Pulsar Timing Array experiments, we con-
sider the LiteBIRD mission and the Square Kilometre Array (SKA)
survey (Weltman et al., 2020), respectively, while for the interfer-
ometers we consider space mission proposals including the Laser
Interferometer Space Antenna (LISA) (Baker et al., 2019; Smith and
Caldwell, 2019), the Big Bang Observer (BBO) (Crowder and Cornish,
2005b; Smith and Caldwell, 2017), the Deci-hertz Interferometer Grav-
itational wave Observatory (DECIGO) (Seto et al., 2001; Kawamura
et al., 2020), µAres (Sesana et al., 2019), the Decihertz Observatory
(DO) (Sedda et al., 2019) and the Atomic Experiment for Dark Matter
and Gravity Exploration in Space (AEDGE) (El-Neaj et al., 2019), as
well as the ground-based Einstein Telescope (ET) (Hild et al., 2011)
proposal. In this observational context, we implement the mathemat-



11

ics needed to compute sensitivities for both CMB and interferometers,
and derive the response functions for the latter from the first princi-
ples. Furthermore, we provide frequency integrated error bars from
the binned sensitivity curves for all the detectors, we include astro-
physical foregrounds for all experiments and we use the latest and
realistic CMB sensitivity curves for the LiteBIRD mission, including
state-of-the-art simulations for the CMB foregrounds.

This Thesis is organized as follows. In Chapter 1 we will briefly
review the standard (ΛCDM) cosmological model from its found-
ing principles to the inflationary paradigm and we will summarize
its observational successes, predictions and limitations, with a par-
ticular focus on the production of a primordial SGWB. Chapter 2,
will be dedicated to introducing the CMB as a tool for the detection
of primordial GWs. In Chapter 3, we will give an overview on the
observational status of current and future experiments that will
target the detection and characterization of the primordial SGWB,
including CMB B-mode probes, interferometers and Pulsar Timing
Array surveys. As anticipated above, in Chapter 4 (based on the work
Campeti et al., 2019b), we will explore the possibility of constraining
the shape of the primordial SGWB with future CMB B-modes in
model-independent way, within the framework of Principal Compo-
nent Analysis. As we also mentioned above, in Chapter 5 (based on
the work Campeti et al., 2020) we will extend the analysis of Chapter
4 by including constraints from interferometers and Pulsar Timing
Arrays, in addition to CMB B-mode probes. Finally, in Chapter 6, we
will summarize our work in this Thesis and outline the conclusions
and future work perspectives.





Part I

Primordial Gravitational
Waves in the Standard
Cosmological Model





1
Standard Cosmology

In this Chapter, we are going to review the current standard cosmological model – named ΛCDM after the
Cosmological Constant Λ and the Cold Dark Matter (CDM) model as will be explained later – predicting,
among other things, the generation of a primordial Stochastic Background of Gravitational Waves (hereafter
SGWB), which will be the common thread of this Thesis.

We will start from the cornestones of standard cosmology, i.e. general relativity and the Cosmologi-
cal Principle (Sections 1.1) and we will use them to justify the introduction of the Friedmann-Lemaître-
Robertson-Walker metric of the Universe (Section 1.2). This will lead us to the Einstein field equations,
from which we will derive the Friedmann and continuity equations in order to study the dynamics and
content of the Universe (Section 1.3). We will then use several observational evidences to introduce the Big
Bang model – basis of the current ΛCDM model – and highlight its main features (Sections 1.4 and 1.5):
an initial very high temperature state in which matter is ionized and in thermodynamic equilibrium; the
expansion; the epochs of radiation, matter and Cosmological Constant domination; a thermal history in
which the expansion determines the cooling of the Universe and the consequent decoupling of particle
species. Section 1.6 will be dedicated to describe one of the most important predictions of the Big Bang
model: the existence of a cosmic microwave background (CMB) of photons of primordial origin. We will
then discuss some of the problems of the Big Bang model (Section 1.7). Among them, the fact that we have
to postulate the existence of two dark components, dark energy and Dark Matter, the singularity problem,
the horizon problem and the flatness problem. In Section 1.8 we will see how cosmic inflation, an early era
of accelerated cosmic expansion driven by fundamental quantum fields, can solve some of these issues and
we will summarize the main prediction of this paradigm regarding the production of scalar and tensor per-
turbations primordial power spectra. We will finish this Chapter by discussing a relevant quantity which is
used in the current literature for describing the SGWB and which will be useful throughout this Thesis: the
gravitational wave energy density (Section 1.9).

This chapter benefited from the reading of the following books Peter and Uzan (2013), Dodelson (2003),
Amendola and Tsujikawa (2015), Maggiore (2018), in addition to specific references indicated in the text.

1.1 Foundations

Although cosmology as a branch of philosophy may be as old as
humankind itself (see Harrison (2000) for an historical review), the
root of modern physical cosmology – the effort of understanding
the structure, content and evolution of the Universe using methods
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belonging to the physical sciences – could arguably be traced back
to the formulation of the Copernican principle (see for instance Cham-
cham et al., 2017; Ellis, 2006, and references therein). This principle
states that we do not occupy a special place – that is the centre – of
the Universe, or, in other words, that we are not privileged observers.
Such an apparently simple idea represented a paradigm shift in the
history of human thought, and laid the foundations for the modern
cosmological model, as we are going to explain in the rest of this
Section.

Since modern cosmology, like any other physical science, must
pass the test of empirical data, we make a distinction in terminology
between the Observable Universe – that is the portion of the Universe
from which we are able to gather astrophysical and cosmological
data – and the Universe, which includes unobservable regions lying
outside the reach of our experiments. The only way we can infer
the properties of the Universe from the Observable Universe is by
making several assumptions or hypotheses; in particular, the modern
standard cosmological model is based on four founding hypotheses:

1. General Relativity (GR) is the theory of gravitation.
Einstein’s theory describes the mutual dynamical interaction
between the space-time structure and its content. GR is well tested
on Solar System scales and in the very strong field limit, thanks
to the first observations of a binary black hole merger and binary
neutron star inspiral by the LIGO collaboration (Abbott et al., 2016,
2017). However, it has not been tested yet neither on cosmological
scales nor at early times in the Universe history.

2. Symmetry prescriptions. In order to solve Einstein equations,
it is necessary to add to the previous hypotheses a prescription
for space-time symmetries. The textbook approach is usually to
employ the Copernican principle together with the assumption
that the Universe is isotropic, to justify the introduction of the Cos-
mological Principle, stating the statistical homogeneity and isotropy
of the Universe on distances larger than its largest structures
(∼ 100 Mpc). However, this formulation of the Cosmological Princi-
ple, extends the space-time properties above also to unobservable
regions of the Universe, and thus cannot be tested. In this respect,
the Cosmological Principle can be regarded as an a priori prescrip-
tion for the initial conditions of the Universe. A more modern
and empirically based approach consists in using the Copernican
principle together with the isotropy of Large Scale Structure and
CMB observations (see Section 1.6 below) to conclude that the
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Observable Universe is statistically homogeneous and isotropic
on sufficiently large scales (Ellis et al., 2012). Note also that the
Copernican principle does not have to be a philosophical prejudice
and can be observationally tested (see for instance Clarkson, 2012;
Ellis et al., 2012, and references therein).

3. Matter content and its non-gravitational interac-
tions. We will assume that on cosmological scales matter can be
modelled as a mixture of a pressureless fluid and radiation, plus
a Cosmological Constant (see Section 1.3 below). Moreover, our
astrophysical and cosmological observations can probe particular
objects (i.e. galaxies, clusters etc.) and not the matter distribu-
tion itself. Therefore, it will be necessary to quantify how much
individual objects are representative of the true underlying distri-
bution.

4. Topology. The three previous hypotheses allow us to determine
the local structure of the Universe, that is its geometry but not the
global structure, i.e. its topology. The usual textbook approach, in
this case, is to implicitly assume that the local structure coincides
with the global one, since most of the predictions of the model are
insensitive to this hypothesis. However, it should be noted that
cosmic topology can be observationally investigated (especially
using CMB data Planck Collaboration, 2016a) and is still subject of
inquiry (see for instance Luminet, 2016, for a recent review).

The rest of this Chapter will be dedicated to building the modern
cosmological model starting from these four hypotheses. First of
all, we will combine the first two hypotheses – GR and and the
Cosmological Principle – and introduce the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric.

1.2 The Friedmann-Lemaître-Robertson-Walker Metric

The properties of homogeneity of space (i.e. that at every moment in
time each point of the space is similar to any other) and isotropy (i.e.
no preferred direction) of the Universe, as stated by the Cosmological
Principle, can be summarized just by saying that every observer sees
an isotropic Universe around him. These properties allow to reduce
the general form of the space-time metric to the so-called FLRW
metric, which reads

ds2 = gµνdxµdxν = −dt2 + a2(t)dσ2 (1.1)
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and c = 1 will be assumed for convenience thoughout this Chapter.
Here gµν is the metric tensor and the scale factor a(t) – which is a
function of cosmic time t, that is the time measured by an observer
seeing the Universe uniformly expanding around him – encodes the
possibility of an expanding Universe (as observed by Hubble in 1929,
see Section 1.4 below), and is usually normalized at the present time
t0, a(t0) = a0 = 1. The term dσ2 in Eq. 1.1 represents the metric of the
three-dimensional space with constant curvature K, that is

dσ2 = γijdxidxj =
dr2

1− Kr2 + r2(dθ2 + sin2 θdφ2), (1.2)

which does not depend on time. Notice that in these last two equa-
tions we have chosen comoving coordinates (r, θ, φ), that is coordinates
defined in a reference frame expanding with the Universe and there-
fore constant in time.

The curvature K will be positive, negative or zero, corresponding
to closed, open and flat geometries, respectively. Taking a positive
curvature constant produces the metric of a three-sphere: the space in
this case is finite but has no boundary. The zero curvature case sim-
ply corresponds to the flat Euclidean space, while negative curvature
generates a hyperbolic space; both these spaces are usually taken to
be infinite although in principle it would be possible to obtain the
same local geometry with finite spaces, once one imposes appropriate
periodicity conditions (see for instance the textbooks Carroll, 2019;
Weinberg, 2008, and references therein). We note incidentally that
the spatial metric in Eq. 1.2 is often reported in the literature using
the coordinate transformation

r = fK(χ) =





K−1/2 sin
(

K1/2χ
)

if K > 0,

χ if K = 0,

(−K)−1/2 sinh
(
(−K)1/2χ

)
if K < 0,

(1.3)

in the form
dσ2 = dχ2 + f 2

K(χ)(dθ2 + sin2 θdφ2). (1.4)

We also define here some quantities related to the FLRW metric, and,
in particular to the scale factor a(t), that will prove to be useful in the
rest of this chapter. We start with the conformal time τ, defined as

dτ ≡ dt
a(t)

. (1.5)

We define then the Hubble parameter (where the dot indicates deriva-
tive with respect to time), as

H =
ȧ
a

; (1.6)
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its value today is denoted by H0 and is often expressed in terms of
the reduced Hubble parameter h, as in

H0 = 100h km s−1 Mpc−1. (1.7)

It will be also useful in later Sections to define the characteristic
distance and time scale for a FLRW Universe, that is the Hubble time
and Hubble radius

tH = RH = H−1, (1.8)

which are coinciding, since we adopted c = 1 in this Chapter. Finally,
we quantify the effect cosmic expansion has on the wavelenght λem

of photon emitted at time tem and observed with wavelenght λobs at
time tobs, through the cosmological redshift z

a(tobs)

a(tem)
=

λobs
λem
≡ 1 + z. (1.9)

1.3 Universe Content and Dynamics

The mutual interaction between the space-time metric and the matter-
energy content of the FLRW Universe is expressed in GR by Einstein
field equations,

Gµν = 8πGTµν, (1.10)

where the Einstein tensor Gµν = Rµν − gµνR/2 contains derivatives of
the metric tensor gµν through the Ricci scalar R and tensor Rµν, and
Tµν is the energy-momentum tensor for the matter components of
the Universe. The latter is restricted by the FLRW metric to take the
perfect fluid form, that is

Tµ
ν = (ρ + P)uµuν + Pδ

µ
ν , (1.11)

where ρ and P are the energy density and the pressure of the fluid,
respectively, and uµ = (−1, 0, 0, 0) is the four-velocity of the fluid in
comoving coordinates.

We can now use Einstein equations in order to the study the
dynamics of a FLRW Universe. First, by taking the (00) and (ii)
components of the Einstein equations and eliminating common
terms, we get the two Friedmann equations

H2 =

(
ȧ
a

)2
=

8πG
3

ρ− K
a2 (1.12)

ä
a
= −4πG

3
(ρ + 3P). (1.13)

Moreover, using the fact that the Einstein tensor satisfies the Bianchi
identities (implying ∇µGµ

ν = 0), we get the third fundamental equa-
tion describing the Universe dynamics, the conservation or continuity
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equation:
ρ̇ + 3H(ρ + P) = 0. (1.14)

On closer inspection, it is evident that only two of the three equations
1.12, 1.13 and 1.14 are independent, while the unknowns are three:
the scale factor, the energy density and the pressure of the cosmolog-
ical fluid mixture. Therefore we need to provide a third relation in
order to solve the system: this is accomplished connecting the energy
density and pressure of the fluid through an Equation of State (EoS),
that is

P = wρ. (1.15)

The EoS for radiation is w = 1/3, the one for pressureless or “dust-
like” matter (modeling for instance the matter in galaxies and gas)
will have w = 0, the Cosmological Constant Λ will be described
by a fluid w = −1 (which may be also called dark energy), while
the curvature term can also be seen as a fluid with w = −1/3. We
also note that for a component with constant EoS w, the continuity
equation gives

ρ ∝ a−3(1+w). (1.16)

Using also the first Friedmann equation together with the continuity
one allows to write the scale factor evolution in time as

a(t) ∝





t
2

3(1+w) if w 6= −1,

eHt if w = −1.
(1.17)

The first Friedmann equation (Eq. 1.12) can also be rewritten as

∑
X

ΩX + ΩK = 1, (1.18)

where
ΩK = − K

(aH)2 (1.19)

is the energy density associated to curvature and

ΩX =
8πGρX

3H2 , (1.20)

called density parameter, represents a generic matter-energy compo-
nent X, such as relativistic particles (including photons, neutrinos
and gravitons), non-relativistic matter (including baryons and cold
Dark Matter) and dark energy. We will describe in more detail each of
these cosmic components in a moment.

In the following we will also find it useful to define the critical
density of the Universe ρc as the energy density for which ∑X ΩX = 1,

ρc =
3H2

8πG
. (1.21)
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Therefore, we get from the first Friedmann equation that if ρ = ρc

the Universe will be spatially flat (K = 0), if ρ < ρc it will an open
Universe, and if ρ < ρc it will be a closed one.

Taking a closer look at Eq. 1.16, we can see that the larger is the
factor w in the EoS of a component, the more important such a
component becomes as the scale factor a shrinks going back in time
towards the birth of the Universe. We can therefore separate the
evolution of the Universe in four main regimes, depending on which
one of the components is dominating over the others in a specific
cosmological era. We list them here in chronological order.

Radiation-dominated era. The term “radiation” indicates any form
of matter-energy characterized by having an EoS with w = 1/3,
which is the case for a gas of relativistic particles. Since this rela-
tivistic matter – which includes photons, neutrinos and gravitons
produced in the very early Universe – has the largest value of w
among all other cosmic components, and therefore

ρ ∝ a−4, (1.22)

from Eq. 1.16, it is the first to dominate in cosmic history. We can
understand the behaviour in Eq. 1.22 in a very simple way: the
number density of photons, for instance, is inversely proportional
to the volume and therefore goes as ∝ a−3; however the energy
density is the product between the number density and the av-
erage energy per particle, and the latter goes as ∝ a−1 due to
cosmological redshift (see Section 1.2). Another interesting conclu-
sion that we can draw from Eq. 1.16, is that in the early Universe
the temperature was much higher than today. This can be seen for
instance by applying the previous argument to the temperature
TCMB of the photons of the CMB today, which has been very well
constrained to

TCMB = 2.7260± 0.0013 (1.23)

using FIRAS (Far Infrared Absolute Spectrophotometer) and
WMAP (Wilkinson Microwave Anisotropy Probe) data (Fixsen,
2009). In this case, the temperature of the primordial plasma at
very early times increases going backwards in time according to
the formula

T(t) =
TCMB
a(t)

. (1.24)

Matter-dominated era. As time passes the Universe expands and
becomes dominated by the matter component, since its energy
density goes as

ρ ∝ a−3. (1.25)
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We denote by “matter” any form of collisionless matter-energy,
that is having pressure much smaller that its energy density
(w = 0). Such an EoS is typical of a gas of non-relativistic par-
ticles, and in the cosmic budget includes baryonic matter and
Dark Matter. The term baryonic matter comprises all particles
included in the standard model of particle physics that can interact
electromagnetically, mostly protons, neutron and electrons.

Dark matter is a form of matter invisible through electromagnetic
observations, and its existence can be inferred by observing its
gravitational effect on the visible matter and radiation. There are
several observational indications of the existence (or the necessity)
of Dark Matter, among others, the rotational speeds of galaxies,
gravitational lensing, the temperature distribution of hot gas in
galaxies and clusters of galaxies, the angular power spectrum of
CMB anisotropies (see for instance the recent review by Di Paolo
and Salucci, 2020, and references therein).

In the standard cosmological model, the Dark Matter component
is modelled as a CDM component and consists in an additional
collisionless fluid (with w = 0) coupled to matter (almost) only
by gravity. Currently, the most suitable candidate for CDM is rep-
resented by massive particles – named Weakly Interacting Massive
Particles (WIMPS) – very weakly interacting with each other and
with other cosmic components.

Dark matter is thought to be a fundamental ingredient for the
formation of the cosmic large scale structure that we observe today,
in particular by providing deep initial potential wells.

Despite the efforts of the astroparticle physics community, the DM
particle has not been detected yet (apart from an announcement by
the DAMA experiment Bernabei et al., 2018, on which there is at
the moment no consensus in the community) but remains one of
the major focuses of current research (Arcadi et al., 2018).

Current observations suggest that baryonic matter represents only
∼ 5% of the total energy budget, while Dark Matter constitutes
the ∼ 27% of the matter-energy content of the Universe (Planck
Collaboration, 2018).

Curvature-dominated era. As we anticipated, curvature appears in the
first Friedmann equation with a term −K/a2 but can be regarded
equivalently as a cosmological fluid with w = −1/3 and energy-
density evolving with the scale factor as

ρ ∝ a−2. (1.26)

However, we will see in Section 1.4.2 that the curvature of the Uni-
verse is compatible with zero according to current observations.
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Dark energy-dominated era. As we will study in more detail in Sections
1.4.2 and 1.7.6, current observations point out that the Universe
is currently subject to an accelerated expansion. In the standard
cosmological model a fluid component with constant EoS w = −1,
named dark energy, is conventionally held responsible for this
phenomenon, although other candidates exist and are constantly
scrutinized as observations improve. Note that the effect of this
fluid is completely equivalent to that of a Cosmological Constant
Λ, therefore including dark energy in the Einstein field equa-
tions inside the matter-energy budget in the right-hand-side or
in the left-hand-side as a Cosmological Constant term, (that is
Gµν + Λgµν = 8πGTµν) gives the same results. The standard cos-
mological model takes the name of ΛCDM after this dark energy
or Cosmological Constant term and after the CDM model for Dark
Matter.

The energy density resulting from Eq. 1.16 for this component is
constant

ρ ∝ const. (1.27)

and is the last one to dominate the Universe.

Dark energy, according to latest observations, constitutes a striking
∼ 68% of the whole cosmic energy budget and its mysterious na-
ture constitutes one of the greatest challenges for current research.

We close this Section stating one of the most important predictions
of the standard cosmological model: an inevitable consequence of
extrapolating the expanding FLRW cosmological solution to the
initial time is that the scale factor becomes zero at this time a(t) = 0,
creating a singularity in space-time which is usually called Big Bang.
We will see in Section 1.7.1 that this represents a limit for the model
and that this conclusion is likely to be challenged by quantum gravity
theories.

1.4 Expansion History

Cosmologists have been accumulating observational evidences of the
expansion of the Universe for more than ninety years, starting with
Hubble’s work in 1929 (Hubble, 1929). Moreover, around twenty-two
years ago, simultaneous astronomical observations of distant Type
Ia Supernovæ by the two groups HSST (High-Redshift Supernova
Research Team, Riess et al., 1998) and SCP (Supernova Cosmology
Project, Perlmutter et al., 1999) pointed out that the cosmic expansion
is accelerating today, a fact that currently seems to be understandable
only postulating the existence of a dark energy component.
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1.4.1 Cosmological distance measurements

First of all we must stress that cosmological distances cannot be
measured directly, and the purely geometrical parallax method can
be used only for the closest stars to our Galaxy. One method is to
use the intrinsic luminosity L of a standard candle – that is a class of
objects for which it is known to be constant (or correlated to another
parameter independent of the distance) – and measure the flux F
coming from the same object, to compute the so-called luminosity
distance

DL =

√
L

4πF
= (1 + z) fK(χ), (1.28)

where
χ =

1
H0

∫ z

0
dz′

H0

H(z′)
. (1.29)

The dependence of the Hubble rate from the redshift, obtained from
the first Friedmann equation and Eq. 1.16, can then be expressed as

H2(z) = H2
0

[
Ω(0)

r (1 + z)4 + Ω(0)
m (1 + z)3 + Ω(0)

K (1 + z)2 + Ω(0)
Λ

]
,

(1.30)
where Ω(0)

X indicates the density parameter for each component at
present time and the index X = r, m, K, Λ stands for radiation, non-
relativistic matter (which includes baryons and CDM Ωm = Ωb + Ωc

), curvature and dark energy, respectively. One can then measure the
redshift z (Eq. 1.9) of the object via spectroscopic observations and
extract the value of the Hubble parameter today H0 from Eq. 1.28.

The equivalent of standard candles for the angular size are called
standard rulers: the principle is completely similar to the previous
one, but this time we know the transverse physical size of an object
dSsource, we measure the solid angle under which it is observed dΩ2

obs
and compute the angular distance:

DA =

√
dSsource

dΩ2
obs

=
fK(χ)

(1 + z)
. (1.31)

Hubble’s measurement, although plagued by large systematic
errors due to the calibration of the standard candles he was using
(Cepheid variables in particular), can be regarded as the first attempt
at measuring the expansion rate. In particular, the relations 1.28 and
1.31, in the hypothesis of small redshift z � 1, reduce to the Hubble
Law

DA ∼ DL ∼
z

H0
∼ v

H0
, (1.32)

where v is the recession velocity with which galaxies in an expanding
Universe are moving away from each other. In this low redshift
case, the slope of the curve in the plane v vs DL gives the Hubble
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parameter (Figure 1.1) today, however to extend the measurement to
larger redshifts, we need to use other kinds of standard candles or
distance indicators.

At the moment, the two most precise methods to measure H0 are,
on one hand, astronomical observations using Type Ia supernovæ
(SN Ia) as standard candles1 (for instance Riess et al., 2019) calibrated 1 Type Ia supernovæ are produced

when one of the stars in a binary
system is a white dwarf accreting
matter from the other companion star.
The white dwarf will eventually reach
the Chandrasekhar limit, collapse
and explode in a supernova. It has
been observed in local (z � 1) SN Ia
samples that the absolute magnitude
can be correlated with the width of the
luminosity curve, and by measuring
simultaneously the apparent magnitude
and the luminosity curve it is possible
to predict the absolute magnitude. They
are therefore considered to be good
standard candles, and they can be used
up to redshift z ∼ 1.

using Cepheid variables2 or other local distance indicators, and, on

2 Cepheids are variable stars which emit
pulses with a period between 2 and 100

days. The theory behind their pulsation
mechanism is very well understood and
therefore they can be used as standard
candles. However, their detection
extends only to about 20 Mpc and their
most precise calibration is currently
performed on the Large Magellanic
Cloud, and for larger distances we need
to use other types of standard candles.

the other hand, CMB observations, by assuming the ΛCDM model
and and inferring the expansion rate from the sound horizon at
recombination, which represents a standard ruler (Planck Collabora-
tion, 2018). In a similar way, H0 can be determined also without CMB
observations, by putting together Baryon Acoustic Oscillation (BAO),
big bang nucleosynthesis (BBN), and weak lensing data (Abbott et al.,
2018). Unfortunately, there exists a 4.4σ tension between the values
of H0 determined by the SH0ES experiment – obtained using SN Ia
and Cepheids in the Large Magellanic Cloud for calibration – that is
(Riess et al., 2019)

H0 = 74.03± 1.42 km s−1 Mpc−1, (1.33)

and the Planck measurement (Planck Collaboration, 2018)

H0 = 67.4± 0.50 km s−1 Mpc−1. (1.34)

The remarkable tension between these two measurements – which
refer to two extremely different epochs of cosmic history – has stim-
ulated discussion within the cosmology community, with multiple
attempts of experimental and theoretical explanation (see for instance
Knox and Millea, 2020), development of alternative ways of mea-
suring H0, for instance using GWs as standard sirens (The LIGO
Scientific Collaboration et al., 2019), real-time cosmology observations
of the Hubble cooling of the CMB monopole temperature (Abit-
bol et al., 2019), the strong gravitational lensing of quasars (Wong
et al., 2020; Shajib et al., 2020), alternative candles like Mira variables
stars (Huang et al., 2019), the tip of the Red Giant Branch of stellar
evolution (Freedman et al., 2019), or new data analysis techniques
(Kozmanyan et al., 2019; Reid et al., 2013; Jimenez et al., 2019). De-
spite this effort, the H0-tension still remains an open and central issue
in modern cosmology.

1.4.2 Cosmic acceleration

In 1998, two groups independently reported evidences for a late-time
acceleration in the cosmic expansion, using observations of SN Ia
up to redshift z ∼ 1 (Riess et al., 1998; Perlmutter et al., 1999). For
such redshifts, the Hubble law (Eq. 1.32) does not hold anymore and
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Figure 1.1: Original observations of the
recession velocity and distance of galax-
ies by Hubble in 1929 (From Hubble
(1929)). Hubble was the first to measure
the expansion of the Universe, propos-
ing a value H0 = 500 km s−1 Mpc−1,
much higher than today’s accepted
value.

the appropriate expression for the distance luminosity is the one in
Eq. 1.28, which depends on the cosmological density parameters.
This last relation can be used to infer that, assuming the ΛCDM
model, SN Ia data clearly favors a dark energy-dominated Universe,
and current Planck satellite CMB and BAO observations, which
indicate that the Universe is flat3 (Planck Collaboration, 2018), report 3 In Planck Collaboration (2018) the

constraint on the curvature density
parameter is found to be ΩK = 0.0007±
0.0019, adopting the data combination
TT,TE,EE+lowE+lensing+BAO to
break the degeneracy. As we will
explain in detail in Chapter 2, here
TT indicates the CMB temperature
power spectrum, while EE indicates
the E-type polarization one and TE
the cross-correlation between the two.
Lensing data will also be discussed later
in Chapter 2.

indeed a dark energy density4

4 This result adopts the
TT,TE,EE+lowE+lensing data com-
bination (see discussion in footnote
3).

ΩΛ = 0.6847± 0073. (1.35)

Combining recent SN Ia data from the Pantheon survey with CMB
data from the Planck experiment and BAO data (Planck Collabora-
tion, 2018) the EoS of dark energy is tightly constrained to be

wde = −1.03± 0.03, (1.36)

compatible with a Cosmological Constant.
Note that the hypothesis that SN Ia are actually good standard

candles has been repeatedly tested, for instance by exploring the
possibility of observational biases, variation of their properties with
cosmic time, dimming effect of interstellar medium and gravitational
lensing. However, the evidences are confirming the cosmic acceler-
ation explanation and new observations have been added, further
improving the robustness of the result.

As we will discuss in more detail in Section 1.7.6, the existence of
dark energy (and of Dark Matter as well) has to be postulated in the
ΛCDM model, and currently we have no deep understanding of this
component. A plethora of models – both theoretical and phenomeno-
logical – has been considered for explaining dark energy beyond the
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standard Cosmological Constant scenario, including modifications
of GR (see Planck Collaboration, 2016b; Ishak, 2019, and references
therein). However, further testing is needed and useful indications on
the nature of dark energy (and also Dark Matter) are likely to come
from the future Euclid mission (Laureijs et al., 2011; Amendola et al.,
2018), which will reconstruct the clustering of galaxies up to z ∼ 2
and weak lensing up to z ∼ 3.s

1.5 Thermal History of the Universe

As we anticipated in Section 1.3 (and in particular in Eq. 1.24), we can
expect the Universe to increase its temperature as we go backwards
in time and towards the big bang singularity, until we reach an initial
extremely hot and dense plasma state in which radiation (photons)
and matter where in thermodynamic equilibrium. In particular, we
can compute the temperature above which radiation start to become
important, that is the temperature at matter-radiation equivalence,

Teq = TCMB(1 + zeq) ' 6.56× 104Ω(0)
m h2 K, (1.37)

where TCMB is the CMB temperature today and zeq is the redshift of
matter-radiation equivalence.

The cosmic thermal history will be characterized by the competi-
tion between two quantities: on one side the reaction rate Γ of particle
interactions, on the other the Hubble expansion rate H. The thermody-
namic equilibrium at a temperature T is achieved if Γ� H, and in this
case the particle species can be treated according to a Fermi-Dirac or
Bose-Einstein distribution

Fi(E, T) =
gi

(2π)3
1

exp [(E− µi)/Ti(t)]± 1
=

gi
(2π)3 fi(E, T), (1.38)

where, for each particle species i of mass m and momentum p at
temperature Ti, gi represents the degeneracy factor, µi the chemical
potential and its energy is given by E2 = p2 + m2.

The temperature of the Universe T at a certain cosmic epoch will be
equal to the photon temperature Tγ, since the interacting particle
species at equilibrium will have all the same temperature. If the
temperature of the Universe, because of the expansion, goes below
a certain threshold set by the cross-section of each interaction, the
equilibrium is broken, the particle decouples and the interaction is
frozen.

Another important concept governing the cosmic thermal history
is that particle-antiparticle pairs are produced when the photons
energy is large enough, that is T > 2m for a particle species of mass
m.
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Let us now consider what happens when the reaction rate of a
particle species, that was before in thermodynamic equilibrium with
the primordial plasma, drops below the expansion rate. The form
of its distribution function at decoupling time tD is given by the
function fi[p, tD], defined in Eq. 1.38; after decoupling the particles
will propagate freely, conserving the form of f , while the momentum
p will be redshifted, according to p→ [a(t)/a(tD)]p. Particle species
can decouple either when they are relativistic (T � m) or when they
are non-relativistic (T � m); in the former case the temperature
of the species will decrease in time as Ti = T(tD)[aD/a(t)] and its
distribution function becomes

fi(p, t > tD) =
1

exp [E/Ti(t)]± 1
, (1.39)

while in the latter case we have Ti = T(tD)[aD/a(t)]2 and

fi(p, t > tD) = e−(m−µ)/T(tD)−p2/(2mTi(t)). (1.40)

The last fundamental concept in order to understand the thermal
evolution of the Universe can be derived from the conservation of
entropy s, that is

s =
2π2

45
gs∗(T)T3, (1.41)

with

gs∗(T) = ∑
i=bosons

gs∗i

(
Ti
T

)3
+

7
8 ∑

i= f ermions
gs∗i

(
Ti
T

)3
, (1.42)

being the effective number of relativistic degrees of freedom contributing
to the entropy. When a particle species becomes non-relativistic,
the temperature of the remaining relativistic particles is boosted
according to

T(+) =

[
g(−)s∗γ

g(+)
s∗γ

]1/3

T(−), (1.43)

where gs∗γ is given by 1.42 summing only over relativistic particles in
equilibrium with the photons and (+) and (−) indicate values after
and before decoupling, respectively. Armed with these tools, we can
now describe – in chronological order – some of the most relevant
events during the cosmic thermal history.

Planck epoch and radiation-dominated regime. For temperature above
1016GeV, the physics is not still well understood: the matter com-
position of the Universe represents the main uncertainty as the
particle species present at this time may not be evident today.
Moreover, GR may break down and quantum gravity effects may
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become very important for energies equal or above the Planck
mass mPl = 1/

√
G ≈ 1.22× 1019GeV, in the so-called Planck epoch.

In the energy range comprised between 1016GeV ≈ 1029K and
1GeV ≈ 1013K there are not unique theoretical predictions at
the moment, and several models describing the physics of the
Universe have been developed. Moreover, terrestrial particle
accelerators allow us to understand the range between ∼ 10 TeV
and ∼ 1GeV, but only below 1GeV we can currently trace back the
cosmic evolution with a relatively good accuracy. At about 100GeV
the electroweak phase transition happens, and particles receive their
masses via the Higgs mechanism; somewhere before sthere has
to be some dynamical mechanism producing an asymmetry in
the number of baryons and antibaryons, with the latter being
much less than the former in our Universe. This process is called
baryogenesis and we will give more details in Section 1.7.4. At
temperatures below ∼ 200MeV the QCD phase transition takes
place: free quarks and gluons form baryons and mesons.

At temperature T ∼ 1012 K, as we anticipated in Section 1.3, the
Universe is in thermodynamic equilibrium and is dominated by
relativistic particles. In this regime, the radiation energy density
can be computed as

ρr = g∗(T)
(

π2

30

)
T4, (1.44)

where the index i runs over the particle species and g∗ is the
effective number of relativistic degrees of freedom contributing to the
energy density

g∗ = ∑
i=bosons

g∗i

(
Ti
T

)4
+

7
8 ∑

i= f ermions
g∗i

(
Ti
T

)4
. (1.45)

At this temperature, the primordial plasma is composed of ultra-
relativistic electrons and positrons (since the temperature is higher
than the electron rest mass, T > me ≈ 0.5MeV ≈ 6× 109K), neu-
trinos, neutrons and protons and of course photons. The chemical
potential of photons is µγ = 0, since the number of photons in
the interactions is not conserved, therefore they must follow a
blackbody distribution. The equilibrium between electrons and
positrons is mantained by the reaction

e + ē←→ γ + γ. (1.46)

Using the chemical potential conservation for this reaction and the
electrical neutrality of the Universe (the number of electrons and
protons is equal and we can use therefore the constraint on the
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baryon to photon ratio today nb/nγ ∼ 5× 10−10), it is possible to
infer that, after electron-positron annihilation (T ∼ me), the ratio of
the excess of electrons over positrons and the photon density will
be

ne − nē

nγ
' 1.33

µ

T
' 10−8, (1.47)

and therefore the chemical potential for electrons and positrons
can be neglected as well.

Cold Dark Matter relics. If we assume that Dark Matter is produced
in the early Universe in the form of weakly interacting massive
particles (WIMPs) and initially was in thermodynamic equilibrium
with the cosmic plasma (see Section 1.3), we can reproduce pretty
well the observed Dark Matter density, though a caveat is repre-
sented by the fact that for a proper treatment of the Dark Matter
evolution the equilibrium description adopted until now is not
sufficient anymore, and the introduction of the Boltzmann equa-
tion is required (see Section 1.6). We will present here the main
results concerning the WIMP hypothesis without any derivation; a
detailed treatment can be found for instance in Arcadi et al. (2018).
We assume that a heavy Dark Matter particle X and its antiparticle
X̄ can remain in thermodynamic equilibrium annihilating into two
light particles l and l̄ via the interaction

X + X̄ ←→ l + l̄, (1.48)

as long as the T is larger than its mass. If this particle decouples
while it is non-relativistic, it produces a so-called cold relic: in this
case the density parameter for a cold relic (Arcadi et al., 2018) can
be expressed as

Ωch2 ≈ 8.76× 1011GeV−2
[∫ Tf

T0

g1/2
∗ 〈σv〉dT

m

]−1

(1.49)

where T0 is the temperature of the Universe at present time and
Tf indicates the one at the freeze-out time, that is when the reac-
tion in Eq. 1.48 cannot keep the particle in equilibrium anymore.
From this last equation, we can see that the density of a cold relic
(produced at electroweak mass scales m ∼ 200 GeV) matches the
observed Dark Matter density today (Ωch2 ∼ 0.12) for a cross-
section 〈σv〉 ∼ 10−26cm3s−1. This is called the WIMP miracle:
this cross-section is typical of the weak interaction and there are
several theoretical models predicting such a particle.

Neutrinos decoupling. Neutrinos are kept into thermodynamic equilib-
rium above temperatures TD & 1 MeV only by the weak interaction,
via the reactions

ν + e←→ ν + e and ν + ν̄←→ e + ē. (1.50)
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For T < TD, the reaction time scale for these reactions drop below
the expansion rate, determining the decoupling of neutrinos
from the rest of the matter. Neutrinos decouple when they are
relativistic, therefore, from decoupling time on, their temperature
will decrease a a−1. Note however that while the temperature of
the photons increases after electron-positron annihilation, the one
of neutrinos stays the same, since they are already decoupled. The
increase in temperature with respect to Tν can be computed using
Eq. 1.41 as

Tγ =

(
11
4

)1/3
Tν. (1.51)

An interesting consequence of neutrino decoupling is that, very
much alike what happens for photons, there exists also a cosmic
neutrino background (CνB) with temperature today ∼ 1.95 K, how-
ever current technology is not sufficient to detect it yet.

Primordial nucleosynthesis. Within the first three minutes, deuterium,
helium and other light elements are synthesized in what we call
primordial or big bang nucleosynthesis (BBN) (Figure 1.2). Before
that, at temperatures T & 100 MeV, the Universe is radiation-
dominated and electron and positrons are kept in equilibrium with
the primordial plasma by the interaction in Eq. 1.48. Nucleons
(that is neutrons and protons), on the other hand are maintained in
equilibrium by the weak interactions

νe + n←→ p + e, (1.52)

ē + n←→ p + ν̄e, (1.53)

n←→ p + e + ν̄e. (1.54)

The neutron-to-proton ratio in these conditions can be computed
from the assumption of thermodynamic equilibrium, as

(
n
p

)

eq
=

(
nn

np

)

eq
∼ e−Q/T ∼ 1, (1.55)

where nn (np) is the number density of neutrons (protons) and
Q = mn − mp = 1.293 MeV is the mass difference between
the two nucleons. As the temperature of the Universe drops
below the freeze-out temperature for weak interactions (Tf ∼
0.8 MeV), neutrinos decouple – as we just discussed – and the
reactions 1.52- 1.54 fail to maintain neutrons and protons in
equilibrium. Neutrons, whose mass is larger, decouple before
protons, disrupting the balance between the two nucleons in
Eq. 1.55 (

n
p

)

f
∼ e−Q/Tf ∼ 1

5
, (1.56)
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and then start to decay into protons (according to Eq. 1.54), with
their abundance decreasing in time as

nn(t) ≈ nn(t f )e−t/τn , (1.57)

where τn is the neutron lifetime.
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Figure 1.2: Evolution in time and
temperature of the abundances for
primordial elements. Protons are indi-
cated as H and neutrons as N. Relevant
events in the cosmic history re also
indicated, such as neutrino decoupling,
electron-positron annihilation and the
starting of BBN (“SBBN” in the figure).
From Pospelov and Pradler (2010).

As the temperature falls below 0.7 MeV, atomic nuclei cannot be
kept in thermodynamic equilibrium anymore and light elements
(deuterium, 3He, 4He, 7Li) finally be produced in a network of
two-body nuclear reactions. A key ingredient to achieve significant
abundances is the formation of a sufficient amount of deuterium:
light elements cannot be synthesized until the temperature drops
below TNuc ∼ 0.086 MeV, so that the production of deuterium
takes place according to the reaction

p + n −→ D + γ, (1.58)

overcomes the photodissociation of deuterium. This is usually
referred to as the deuterium bottleneck. Around the temperature
TNuc, the neutron-to-proton ratio can be computed from Eq. 1.57

to be (n/p)Nuc ∼ 0.133, and all neutrons are bound in 4He nuclei,
which have an abundance

YP ∼
2
(

n
p

)
Nuc

1 +
(

n
p

)
Nuc

∼ 0.238. (1.59)
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Finally, BBN does not produce significant abundances of elements
heavier than 4He for two reasons: first, there are no stable isotopes
with atomic mass number A = 5 or A = 8, so that the reactions
n + 4He, p + 4He or 4He + 4He cannot take place; second, reac-
tions such as 3H + 4He −→ 7Li + γ or 3He + 4He −→ 7Be + γ

present a significant Coulomb barrier. Nucleosynthesis stops as the
temperature drops below ∼ 0.05 MeV.

Recombination and photons decoupling. For temperature above T ∼ 1 eV,
the thermodynamic equilibrium between baryons and photons
is achieved through electromagnetic interactions, such as the
photoionization reaction:

p + e←→ H + γ. (1.60)

The behaviour of the ionization fraction Xe = ne/(np + nH) can be
approximately understood using the Saha equation

(
1− Xe

X2
e

)

eq
=

2ζ(3)
π2

nb
nγ

(
2πT
me

)3/2
eBH/T , (1.61)

where BH = me + mp − mH = 13.6 eV is the ionization energy
for the hydrogen atom. We can use this equation to give a rough
estimate5 of the recombination temperature Trec ∼ 0.3 eV ∼ 3600 K, 5 A more careful and detailed treatment,

exploiting a Boltzmann approach, can
be found for instance in Jones and Wyse
(1985); Peebles (1968).

that is the temperature at which 90% of the electrons have recom-
bined with protons to form hydrogen. Note that recombination
happens at a temperature much lower than the hydrogen binding
energy BH because of the high number of photons per baryon
present in the Universe (nb/nγ ∼ 5× 10−10). From the temperature
we can also compute the recombination redshift, using Eq. 1.24,
zrec ∼ 1320 and the cosmic time of recombination trec ∼ 290 000 yr.

Photons have been, up to this moment, tightly coupled to the
primordial plasma through Compton scattering

e + γ←→ e + γ, (1.62)

with an interaction rate Γ = neσT and σT is the Thomson cross-
section. We can find the decoupling (or last scattering) temperature
for photons by equating the interaction and the expansion rates
and using again Saha equation. In this case, the decoupling energy
scale is found to be Tdec ∼ 0.27 eV, corresponding to a redshift
zdec ∼ 1100 and cosmic time tdec ∼ 380 000 yr. However, the
last scattering surface (LSS) is not infinetesimally thin: defining its
width as the redshift range in which the visibility function

g(τ) = e−ηopt
dηopt

dτ
, (1.63)
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where ηopt is the optical depth

ηopt =
∫ τ0

τ
neσTadτ, (1.64)

is halved, we can find its thickness to be ∆zdec ∼ 185. After the last
scattering, photons can propagate freely throughout the Universe,
forming the cosmic microwave background (CMB), whose main
properties we are going to describe in the next Section.

Reionization. After the emission of the CMB, the Universe enters the
so-called dark ages. This period of darkness ends when the first
sources of ultraviolet photons are produced and the reionization
of the Universe can begin: current models trace back the origin
of these ultraviolet photons to first massive stars in relatively
low mass early galaxies, reionizing hydrogen between redshift
12 & z & 6, and to quasars reionizing helium between 6 & z & 2
(Planck Collaboration, 2018d). However, we must stress that the
uncertainties on this process are still significant. In Section 2.1, we
will study in more detail the imprint of reionization on the CMB
observables.

1.6 The Cosmic Microwave Background

The CMB, discovered in 1965 (Penzias and Wilson, 1965; Dicke et al.,
1965), represents one of the cornestones of our current understanding
of the Universe, and will likely continue to be at the center of the
cosmological research at least for the next decade, as we are going
to discuss in this Thesis (in particular Sections 5 and 4). As we will
describe in detail in Section 2.1, the greatest impact on cosmology
was arguably given by the discovery and detailed characterization of
the CMB anisotropies – small variations in intensity and polarization
across the sky – but also the absence of spectral distortions in the
CMB (Fixsen et al., 1996b; Chluba and Sunyaev, 2012) represents a
remarkable achievement, as we will explain later in this Section. The
CMB is, in fact, the best-measured blackbody in nature, with a Planck
spectrum

Bν(ν, T) = 2hν3 1
ehν/kBT − 1

, (1.65)

which, in the current cosmological picture, is a manifestation of the
fact that photons were once thermalized with the primordial plasma.
The temperature of the CMB today, defined as the average across the
full sky, has been measured with very high precision up to ∼ 1 mK,
(see Eq. 1.23) using the FIRAS and WMAP data (Fixsen, 2009) (Figure
1.3).

If some exotic physics mechanism – such as decaying or annihilat-
ing particles, primordial black holes, topological defects, primordial
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Figure 1.3: The original FIRAS measure-
ment of the intensity CMB blackbody
spectrum as a function of frequency,
from Fixsen et al. (1996a). Note that
error bars are invisible because they are
a small fraction of the line thickness.

magnetic fields to name a few – injects energy in the Universe at
z & 2× 106, we should be able to see some distortion in the blackbody
spectrum. These spectral distortions can be classified into two main
categories: µ-type distortions, Compton or y- type distortions (see Tashiro,
2014, for a recent review).

µ-type distortions. Distortions of the µ-type arise from energy injec-
tions between 2× 106 & z & 105: in this case the CMB can be
thermalized via Compton scattering but double Compton scat-
tering and bremsstrahlung are inefficient at high frequencies and
cannot change the photon number, leaving a non-vanishing an
frequency-dependent chemical potential µ in the Bose-Einstein
spectrum (Eq. 1.38).

y-type distortions. On the other hand, y-type distortions are generated
when the energy injection happens at z < zdec and therefore the
injected energy cannot be thermalized with photons. However, if
the exotic physics event occurs at z > 500, the electron temperature
can increase because of the energy injection. Despite the fact
that the event occurs after decoupling, some interaction between
electrons and photons due to Compton scattering still happens,
causing a distortion in the spectrum whose exact shape can be
predict using a Boltzmann approach. The parameter governing the
effect is the integrated Compton optical depth

y =
∫

σTne
Te − Tγ

me
dt, (1.66)
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with ne the number density of free electrons, me the electron mass
and the difference between electron and photon temperature is
clearly highlighted as the cause of the effect.

The FIRAS instrument onboard the COBE (COsmic Background
Explorer) satellite experiment put very tight constraints on the two
distortions parameter (Fixsen et al., 1996a): |y| < 15 × 0−6 and
|µ| < 9× 10−5 at 95% C.L.

We conclude this chapter by reporting another remarkable achieve-
ment of the COBE satellite (Smoot et al., 1992): the detection of fluc-
tuations in the temperature of the CMB with characteristic amplitude

〈(
δT
T

)2
〉1/2

∼ 1.1× 10−5, (1.67)

varyung across the sky. These are the so-called CMB anisotropies,
which were present in the CMB at the recombination time and were
redshifted by the cosmic expansion. We will return on them in Sec-
tion 2.1.

1.7 Shortcomings of The Big Bang Model

In this Section we review the main problems associated to the picture
above, which required the construction of a new phase of expansion,
based on early Universe processes, to be described in Section 1.8.

1.7.1 Singularity Problem

We already anticipated in Section 1.3, that the prediction of a big
bang singularity of the standard cosmological model, obtained by
extrapolating the FLRW cosmological solution to the initial time. We
remark here that the big bang is in fact not a physical event but a
limit of our standard model: the classic description of space-time
is likely to fail and quantum gravity effects are likely to become
significant.

1.7.2 Horizon Problem

In order to study the causality structure of the Universe, we need to
define the so-called particle horizon, that is the surface of the hyper-
surface t = t0, for an observer O at t0, that divides all particles in
the Universe in two sets: the ones that have already been observed
at t0 or before and the ones that have not yet been observed. For a
Universe obeying the Cosmological Principle, the particle horizon is
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simply a sphere of centre O and comoving radius χ given by

χ =
∫ t0

0

dt
a(t)

. (1.68)

If we take the scale factor to evolve in time as a(t) = tn, the integral
in Eq. 1.68 will converge only if n < 1. We know from Eq. 1.17 that
for a flat Universe n = 2/(3(1 + w)), therefore the particle horizon
will exist only if the cosmological fluid dominating the early Universe
has EoS w > −1/3. For two events at times t1 and t2 during an era
dominated by radiation – having constant EoS w = 1/3 – in the early
Universe, such particle horizon is well defined, and we can write the
physical diameter at time t2 for an event occurred at time t1 < t2

Dphys(t1, t2) = 2a(t2)
∫ t2

t1

dt
a(t)
' 2RH = 2H−1 (1.69)

where RH is the Hubble radius define in Eq. 1.8 and the last two
equalities hold for t1 � t2.

We can now enunciate the so-called horizon problem of the HBB
model. At decoupling time the size of the causally-connected regions
(defined by the particle horizon) was smaller than the size of the
Observable Universe at that time, and the LSS comprised as many as
∼ 105 − 106 different causally connected regions. One of these causally
connected regions occupies today an angular dimension on the sky
of about 1°, therefore it is very difficult to explain the remarkable
isotropy of the CMB on the entire sky, down to the level of ∼ 10−5

(see Eq.1.67), without any causal contact between separate regions.

1.7.3 Flatness Problem

If we rewrite the Friedmann equations 1.12 and 1.13 as a dynamical
system for the density parameters, we can find

Ḣ
H2 = −(1 + q), (1.70)

where q = (3(w + 1) − 2)(1− ΩK) − 3(w + 1)ΩΛ. From this last
equation we can express the evolution of ΩK with the scale factor –
neglecting the late Universe ΩΛ contribution – as

dΩK
d ln a

= (3w + 1)(1−ΩK)ΩK, (1.71)

which can in turn be integrated assuming a constant w to give

ΩK(a) =
Ω(0)

K

(1−Ω(0)
K )(1 + z)1+3w + Ω(0)

K

. (1.72)

Current observations indicate a very small present value for the
curvature (see note 3), we are justified therefore to assume |Ω(0)

K | =
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|Ω0 − 1| < 0.1. In this case, Eq. 1.72 will predict an extremely small
curvature density parameter value at the Planck epoch of the order

|Ω(zPl)− 1| < 10−60. (1.73)

This the so-called flatness problem: the big bang model alone does
not provide any explanation for such a small curvature at the Planck
epoch, giving rise to a fine-tuning issue, or alternatively, why we
should have strictly ΩK = 0 at all times.

1.7.4 Baryogenesis Problem

Current observations highlight a strong asymmetry between baryons
and antibaryons (nb − nb̄)/nγ ∼ 5× 10−10, which is just what we
need to explain the primordial nucleosynthesis abundances (and the
CMB anisotropies observations as we will see in Section 2.1). While
antimatter is produced in terrestrial particle accelerators and cosmic
rays, concentrations on cosmological scales, which would necessarily
produce intense X and γ rays because of the baryon-antibaryon
annihilation, have never been observed.

An attempt at explaining the baryon-antibaryon asymmetry with
an asymmetry in the initial conditions of the Universe fails if we
accept the inflation paradigm (as we will see in Section 1.8), since an
inflationary stage erases any pre-existing asymmetry.

Sakharov (Sakharov, 1991) identified three conditions that ev-
ery succesful theory must satisfy in order to produce a baryon-
antibaryon asymmetry: the violation of the baryon number, the C
and CP violation and the out-of-equilibrium state. Despite the fact
the standard model already contains all three ingredients, it cannot
explain the observed asymmetry, and therefore the baryogenesis
problem requires solutions beyond the standard model, such as
Grand Unified Theories (GUTs) or Supersymmetry (see Mukhanov
(2005) and references therein).

1.7.5 Magnetic monopole Problem

While topological defects, such as magnetic monopoles, are not
predicted by standard model of particle physics, they are in general
predicted by theories beyond the standard model. One famous
example is represented by GUTs: if a phase transition takes place
at the GUT energy scale TGUT ∼ 1016GeV as the temperature of the
Universe is dropping, magnetic monopoles with mass Mmonopole ∼
TGUT are copiously produced with a density

ΩMonopoleh2 ∼ 1017
(

TGUT

1016GeV

)3 (Mmonopole

1016GeV

)
(1.74)
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and therefore can dominate the energy budget of the Universe. This
is known as the magnetic monopole problem, since these magnetic
monopoles have never been observed.

1.7.6 Dark-sector, Cosmological Constant and coincidence problems

As we already pointed out in Sections 1.3, current cosmological
observations indicate that only around 5% of the total matter-energy
content of the Universe is in the form of baryonic matter, and that
we need to postulate that the remaining 95% is split between Dark
Matter and dark energy.

Dark matter, which according to recent observations is of non-
relativistic nature and constitutes around ∼ 27% of the total matter-
energy budget (Planck Collaboration, 2018), could be produced in
the primordial Universe and remain as a relic, as we have shown in
Section 1.5. There are many candidates for Dark Matter as a particle
beyond the standard model, but no convincing detection has been
achieved until now (see Section 1.3).

As we discussed in Section 1.4.2, current observations indicate that
dark energy is the cosmic component dominating the Universe today
and producing the observed accelerated expansion. Its behaviour has
been found to be very close to that of a Cosmological Constant (see
Section 1.4.2), with an energy density given approximately by

ρΛ ≈
Λm2

Pl
8π

≈ 10−47GeV4 (1.75)

where mPl ≈ 1.22× 1019GeV is the Planck mass, Λ ≈ H2
0 = (2.1332 h×

10−42GeV)2 and h = 0.674.
We can explore the possibility that the energy density of the

Cosmological Constant is a manifestation of the vacuum energy of
an empty space; assuming that GR is valid up to the Planck scale, the
vacuum energy density is found to be

ρvac ≈
m4

Pl
16π2 ≈ 1074GeV4, (1.76)

which is factor 10121 larger than the observed value for the Cosmolog-
ical Constant energy density (Eq. 1.75). Note that even if we consider
other plausible energy scales the discrepancy is still extremely large:
in order to be consistent with the standard model of particle physics,
the vacuum energy scale must be at least of the order of the elec-
troweak symmetry-breaking scale ρvac ∼ 1012GeV4. This is known as
the Cosmological Constant problem.

Many attempts have been made to explain cosmic acceleration
beyond the mere Cosmological Constant (see for instance the recent
review Ishak, 2019, and references therein); as we anticipated in
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Section 1.3, one possibility is to introduce a a uniformly distributed
cosmic fluid with EoS w = −1 that we named dark energy. We could
also change the background parametrization, having for instance a
dynamical dark energy with EoS wde and energy density going as

ρde = ρ
(0)
de a−3(1+wde), (1.77)

or also using the CPL parametrization (Chevallier and Polarski, 2001;
Linder, 2003) that lets the EoS vary with the scale factor according
to w(a) = w0 + wa(1− a). An EoS with w very close to −1 can be
obtained introducing a canonical scalar field φ with a potential V(φ)

interacting only gravitationally with other components: this is called
a quintessence model. Other possibilities include changing the per-
turbation parametrization, for instance through a phenomenological
approach (Planck Collaboration, 2016b).

Another path that has been (and currently is) explored to explain
cosmic acceleration is the one contemplating modifications of GR: as
we stated in Section 1.1 GR has been thoroughly tested, until now,
only on solar system scales and in the strong field limit, therefore
there could be room for modifications on cosmological scales. A com-
pilation of specific modified gravity models can be found for instance
in Ishak (2019) and also an attempt of “unified” approach to dark
energy and modified gravity has been developed, the Effective Field
Theory of dark energy, in which the gravitational action includes a
wide range of models (Creminelli et al., 2009).

Finally, a general problem of the standard cosmological model
involving the dark sector is the so-called coincidence problem: the
baryonic matter density , the Dark Matter density and the dark
energy density today coincide apart from a small multiplicative factor

Ω(0)
b : Ω(0)

c : Ω(0)
Λ ∼ 1 : 5 : 14, (1.78)

for no obvious reason, despite the fact that these three components
originate from very different mechanisms. In particular, we could ask
why the Cosmological Constant, in addition to have a very different
value from all known fundamental energy scales and therefore re-
quiring fine-tuning, only starts to dominate the Universe today. This
coincidence problem can be used as a guide for selecting interesting
directions of research, since it is difficult to imagine a satisfying ex-
planation of the nature of dark energy that does not solve also the
coincidence problem.

1.7.7 Origin of Structure Problem

The big bang model, being based on a perfectly homogeneous and
isotropic FLRW metric, is not capable of explaining the formation of
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cosmic structures that we observe today. In order to reproduce the
Universe as we observe, we need to introduce by hand in this frame-
work some small density fluctuations in the initial conditions, which
will then collapse under the action of gravity and form structures.
As we mentioned in Section 1.6, these fluctuations have indeed been
detected for the first time by the COBE satellite, so what we need in
an extension to the standard framework is a mechanism explaining
their presence.

1.8 The Inflationary Paradigm

As we discussed in the previous Section, the ΛCDM model – despite
its successes in predicting the existence and the spectrum of the
CMB and the abundance of primordial elements – presents several
issues, which generally require a fine-tuning of the initial conditions,
and evidently provide an incomplete explanation for cosmological
observations. This is where the inflationary paradigm comes to our
rescue: as we will discuss in this Section, inflation – that is a period
of accelerated expansion occurring before the radiation-dominated
era – provides a simple explanation for the homogeneity and isotropy
of the Universe, for its flatness and predicts the origin of the density
fluctuations that are the seeds for cosmological structure formation.
Moreover, inflation not only solves many of the problems of the
standard model, but provide also falsifiable predictions regarding the
statistics and the spectrum of density perturbations and primordial
gravitational waves.

Although the idea of a phase of initial exponential expansion
had been circulating quite some time before, the first to introduce a
realistic idea of cosmic inflation justified by quantum gravity ideas
were Starobinsky in 1979 (Starobinsky, 1979) and Guth in 1981 (Guth,
1987).

In this Section, we will first describe how the inflationary paradigm,
regardless of the specific model considered, solves some of the big
bang theory problems, then we wil review the predictions of the
simplest single-field scenario and the slow-roll approximation and
summarize its predictions regarding scalar and tensor perturbations.

1.8.1 Inflation and the solution of the big bang problems

Flatness Problem. From the first Friedmann equation, we can easily
infer that the quantity (1−Ω−1)ρa2 = 3K/8πG is constant during
the evolution of the Universe, and therefore

(1−Ω−1
i )ρia2

i = (1−Ω−1
f )ρ f a2

f (1.79)
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where ti and t f are the initial and final time of inflation. From
Eq. 1.73, we get

(1−Ω−1
i )ρia2

i ∼ 10−60(1−Ω−1
0 )ρ f a2

f , (1.80)

which indicates that the flatness problem could be solved if
ρ f a2

f � ρia2
i , implying ȧ f > ȧi. In other words, the cosmic ex-

pansion during inflation must accelerate

ä(t) > 0, (1.81)

Moreover, this last condition, when inserted in the second Fried-
mann equation, implies that the Universe during inflation is
dominated by a fluid with

ρ + 3P < 0. (1.82)

The usual way to quantify the duration of inflation is through the
number of e-folds

N = ln
( a f

ai

)
, (1.83)

We can therefore estimate the number of e-folds needed to obtain
the curvature density in Eq. 1.73 at the end of inflation, from the
equation ∣∣∣∣∣

ΩK(t f )

ΩK(ti)

∣∣∣∣∣ =
( a f

ai

)−2
= e−2N , (1.84)

to be N & 70. In conclusion, inflation solves the fine-tuning
issue of the flatness problem by explaining in a natural way an
extremely small number ∼ 10−60 with a number of e-folds N ∼ 70.

Horizon Problem. A period of accelerated expansion solves also the
horizon problem, since the condition in Eq. 1.81 can be expressed
in terms of the comoving Hubble radius H−1 = (aH)−1, as

d
dt
(aH)−1 < 0. (1.85)

This implies that the comoving Hubble radius decreases in time
– contrary to what happens in a radiation or matter dominated
era – thus solving the horizon problem: after inflation, the regions
appear to be separated by a distance larger than the Hubble radius,
but before inflation the entire Observable Universe was indeed
in causal contact (Figure 1.4). The number of e-folds needed to
solve the horizon problem today can be computed imposing that
a causal region of size ai corresponds today to the size of the
Observable Universe

a f RH(t0)

a0RH(t f )
∼ T0RH(t0)

Tf RH(t f )
∼ eN , (1.86)

which gives, assuming Tf ∼ TGUT , N & 57.
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Figure 1.4: Solution of the horizon prob-
lem within the inflationary paradigm,
from Guzzetti et al. (2016). The plot
shows the time evolution of the co-
moving Hubble radius during inflation
and during a radiation or matter dom-
inated era (here indicated as “Hot Big
Bang”). The behaviour of a comoving
scale λ, initially “sub-horizon”, is also
shown: during inflation the λ exits the
comoving Hubble radius (becoming
“super-horizon”) and later re-enters in a
radiation or matter- dominated era.

Magnetic Monopole and Perturbations production Problem. Inflation
solves also the monopole problem: if monopoles are produced
before inflation, the accelerated expansion would severely dilute
their number density, until we have less than one monopole per
horizon scale. For what concerns the production of primordial
density perturbations, inflation provides a mechanism based again
on the accelerated expansion: quantum vacuum fuctuations gener-
ated around the Planck epoch are stretched to cosmological scales
by the inflationary expansion. We will formalize this statement
in the rest of this Section and we will provide predictions on the
spectrum of these fluctuations.

1.8.2 Single scalar field scenario

The simplest inflationary models only require – in order to get the
sought-after accelerated expansion – the introduction of the inflaton, a
scalar field ϕ, with action

S = −
∫ √

−g
[

1
2

∂µ ϕ∂µ ϕ + V(ϕ)

]
d4x, (1.87)

and energy-momentum tensor

Tµν = ∂µ ϕ∂ν ϕ−
(

1
2

∂α ϕ∂α ϕ + V
)

gµν, (1.88)

and from its (00) and (ii) components we can extract, respectively,
the energy density and pressure of the inflaton

ρϕ =
ϕ̇2

2
+ V(ϕ) (1.89)

Pϕ =
ϕ̇2

2
−V(ϕ). (1.90)
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Using this last equation together with both the Friedmann equations,
we can derive the evolution equation for the inflaton, that is the
Klein-Gordon equation

ϕ̈ + 3H ϕ̇ + V,ϕ = 0, (1.91)

which can also be seen as a the equation of motion of a particle
rolling down its potential V, with V,ϕ acting as a force and the expan-
sion of the Universe in the term H ϕ̇ acting as a friction term.

The second Friedmann equation can be recast, for a inflaton-
dominated Universe, in the form

ä
a
=

8πG
3

(V − ϕ̇2), (1.92)

from which it is evident that, in order to realize an accelerated ex-
pansion, we must have ϕ̇2 < V. Furthermore, if ϕ̇2 � V, the EoS
associated with the inflaton will be wϕ = −1 and so we can use
Eq. 1.17 to infer that the expansion will be quasi-exponential. If we
also make a further assumption on the smallness of the field “accel-
eration” ϕ̇ � 3H ϕ̇ in order to make the condition ϕ̇2 � V last for
enough time, we realize the so-called slow-roll regime, in which the
inflaton field varies very little during inflation (Figure 1.5).

Figure 1.5: An example of inflationary
potential V(ϕ), having a flatter region
in which the slow-roll of the scalar field
ϕ can be realized (see Section 1.8.2).
After the slow-roll phase, the reheating
starts and the field oscillates around the
potential minimum and decays in other
particles. From Guzzetti et al. (2016).

In this regime, we can formulate most models in terms of the
slow-roll parameters

ε = − Ḣ
H2 , (1.93)

η = ε− ε̇

2Hε
(1.94)

and their predictions will be independent of the actual shape of the
potential V(ϕ). Note that, in terms of this two slow-roll parameters,
the conditions 1.81 and 1.82 reduce to ε < 1 and the slow-roll
conditions translate into {ε, |η|} � 1. It is possible to introduce a
second set of slow-roll parameters, the potential slow-roll parameters in
terms of derivatives of the inflaton potential

εV =
1

16πG

(
V,ϕ

V

)2
,

ηV =
1

8πG

(
V,ϕϕ

V

)
, (1.95)

which is useful to assess if a given potential can satisfy the slow-roll
conditions {εV , |ηV |} � 1.

In order to be consistent with the big bang model predictions
of a radiation dominated era followed by a matter dominated one,
inflation must end at a certain point. In this single field slow-roll
scenario the end of inflation coincides with the end of the slow-roll
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regime, that is when {ε, |η|} ' 1 and the field starts to rolls fast
along its potential. The inflaton will then reach the minimum of the
potential (see for instance Figure 1.5) and start to oscillate around
it. Up to this point, the Universe has been completely dominated
by the inflaton energy density, however the hot big bang paradigm
requires that the Universe is radiation-dominated and in a state of
thermodynamic equilibrium at a temperature Treheat ∼ 1 MeV: there
must be therefore a phase of reheating, in which the inflaton energy
is exploited to reach such a state. Typical mechanisms for achieving
reheating are the perturbative decay of the inflaton field and the
parametric resonance, the latter leading to an initial rapid and violent
phase called preheating (for more details see for instance Lozanov
(2019); Allahverdi et al. (2010) and references therein).

1.8.3 Cosmological perturbation theory and Scalar Vector Tensor (SVT)
decomposition

As we anticipated in Section 1.8.1, inflation is capable of explaining
through microphysics – that is through quantum fluctuations in the
early Universe – the macrophysics in today cosmological observa-
tions, and, in particular, the origin of the temperature fluctuations
observed in the CMB and of the cosmic large scale structure.

Before attacking the study of inflationary quantum fluctuations,
we need to briefly summarize the general theory of cosmological
perturbations, first introduced by Lifshitz in 1946 (Lifshitz, 1946).
A comprehensive review of the theory can be found for instance in
Kodama and Sasaki (1984).

The perturbed metric can be written at linear order as

ds2 = a2(τ)[−(1 + 2A)dτ2 + 2Bidxidτ + (δij + hij)dxidxj], (1.96)

while the metric tensor is composed of an unperturbed flat FLRW
part (that we will call background space-time) plus perturbations at
first order:

gµν = ḡµν + δgµν. (1.97)

We can then perfom the so-called SVT decomposition, completely
analogous to the decomposition of a vector in a longitudinal and
transverse part according to the Helmholtz theorem:

Bi = B||i + B⊥i = ∂iB + B⊥i . (1.98)

Here the longitudinal part B||i is curl-free and can therefore be written
as the gradient of a generic scalar function, while the transverse part
B⊥i is divergence-free ∂iB⊥i = 0. The equivalent SVT decomposition
for a rank-2 tensor reads

hij = 2Cδij + 2E||ij + 2E⊥ij + 2Et
ij, (1.99)
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where

E||ij =
(

∂i∂j −
1
3

δij∇2
)

E, (1.100)

E⊥ij =
1
2

(
∂iE⊥j + ∂jE⊥i

)
(1.101)

and E⊥i and Et
ij (also called transverse-traceless part) are divergence-

free quantities. The scalar modes in this decomposition represent
density perturbations, while transverse vector modes represent vector
perturbations (vorticity) and tensor modes represents gravitational
waves. Scalar modes represent the seed for cosmic structures, which
grow thanks to gravitational instability, while tensor modes are a
most important prediction of inflation and will be the main focus of
this Thesis. We will not be concerned further about vector modes,
since independently from the specific single-field inflation model
they are quickly suppressed by the cosmic expansion and disappear
before the end of inflation. The main advantage of the SVT theorem
is that it allows to decouple – at linear order – the perturbation
equations for the three types of modes, and this translates into an
independent evolution of each mode.

The perturbation in a certain quantity Q(x, t) is defined as the
difference between the value at a point in the perturbed space-time
and that at the corresponding point in the background space-time

δQ(x, t) = Q(x, t)− Q̄(x, t). (1.102)

Notice that the perturbations in the metric 1.96 are gauge-dependent,
that is they change according to our coordinate choice. In order to
compare meaningful quantities in defining the perturbations as in
1.102, we must make a gauge-choice, prescribing a one-to-one corre-
spondence between points in the background space-time and points
in the perturbed space-time, keeping the background coordinates
fixed. It is therefore useful to introduce gauge-invariant variables, such
as the two Bardeen’s potentials (Bardeen, 1980)

Φ ≡ −C−H(B− E′) +
1
3
∇2E and Ψ ≡ A +H(B− E′) + (B− E′)′

(1.103)
where a ′ indicates derivative with respect to conformal time Note
also that this gauge-dependency does not affect the intrinsically
tensor components Et

ij.
We introduce here another gauge-independent quantity – which

will turn out to be useful later in this Section, when treating the
scalar perturbations produced by inflation – the comoving curvature
perturbation

R = C− 1
3
∇2E +H(B + v) (1.104)
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where v is the scalar part of the 3-velocity vi appearing in the per-
turbed energy-momentum tensor.

1.8.4 Generation of primordial scalar perturbations

Any fluctuation in the inflaton field will generate metric perturba-
tions, so, in order to study the evolution of scalar and tensor modes,
we apply the gauge-invariant perturbations theory and write the
perturbed Einstein equations

δGµν = 8πGδTµν. (1.105)

In particular, this last equation allows us to derive the so-called per-
turbed Klein-Gordon equation, describing the evolution of the inflaton
fluctuations

Q
′′
+ 2HQ′ −∇2Q + a2 d2V

dϕ2 Q = ϕ′
(

X′ − 1
H∇

2Ψ
)

, (1.106)

where we introduced another gauge-invariant variable, the Mukhanov-
Sasaki variable

Q = δϕ− ϕ′C
H′ . (1.107)

and X = Ψ + Φ + (Ψ/φ)′. The Klein-Gordon 1.106 equation is
equivalent to the equation of motion obtained from the variation
of the action for a scalar field v with a time-dependent mass in a
Minkowski space-time, expanded to second-order

δ(2)S =
1
2

∫
dτd3x

[
(v′)2 − δij∂iv∂jv +

z′′

z
v2
]

(1.108)

where v = aQ = −zR and z = aϕ′/H. We can therefore promote
the field v to a quantum operator v̂ and perform the quantization
of a scalar field evolving in a time-dependent exterior field, where
the time-dependence is due to the space-time dynamics. The field
equation for v̂ is usually called the Mukhanov-Sasaki equation

v̂′′ −
(
∇2 +

z′′

z

)
v̂ = 0. (1.109)

We can then solve this equation in Fourier space and compute the
power spectrum of the comoving curvature perturbation R

PR =
k3

2π2

∣∣∣vk
z

∣∣∣
2

, (1.110)

which reduces in the slow-roll regime, after expanding the solution
and keeping leading and next-order terms for super-horizon modes,
to

PR =
1
π

H2

m2
Plε

[
1− 2(2ce + 1)ε + 2ceη + (2η − 4ε) ln

(
k

aH

)]
, (1.111)
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where ce = γe + ln 2− 2 and γe is the Euler constant. We can also
define a scalar spectral index ns, as

ns − 1 =
d lnPR

d ln k
= 2η − 4ε. (1.112)

The scalar perturbations power spectrum can also be re-parametrized
in a phenomenological way as a power-law, in order to compare it
more easily with observational data

PR = AS

(
k
k0

)ns−1
, (1.113)

where AS is the amplitude of perturbations at a given pivot scale k0.

1.8.5 Generation of primordial tensor perturbations

The perturbed Einstein equation 1.105 gives also the evolution equa-
tion for tensor perturbations, which reads, in the flat K = 0 case,

Et′′
ij + 2HEt′

ij −∇2Et
ij = 8πGa2Πt

ij, (1.114)

where Πt
ij is the purely tensor part of the anisotropic stress tensor,

quantifying the difference between a perfect and a non-perfect fluid.
In this case, anisotropic stress represents a damping term and is
mainly due to free-streaming neutrinos6 (see Section 1.3). Therefore, 6 See for instance Watanabe and Ko-

matsu (2006) for a detailed discussion
on the effect of neutrino free-streaming
on the evolution of gravitational waves.
Also free streaming photons have
a damping effect, although smaller
than the neutrino’s one: for a detailed
account see Saikawa and Shirai (2018).

moving to Fourier space, Eq. 1.114 becomes

h
′′
P,k + 2Hh

′
P,k + k2hP,k = 16πGa2Πt

P,k, (1.115)

where we expanded gravitational waves into the two polarization
states P = +,×,

Et
ij(k, τ) = ∑

P=+,×
Et

P(k, τ)εP
ij(k) (1.116)

using the polarization tensor

ε+ij =




1 0 0
0 −1 0
0 0 0


 ε×ij =




0 1 0
1 0 0
0 0 0


 , (1.117)

and we defined Et
P(k, τ) = hP,k(τ)/2 to make contact with the

conventional notation in the literature. The source term in the right-
hand side of 1.115, being given by causal mechanisms which cannot
act outside the horizon, can be neglected for super-horizon modes
(k � H), together with the third term on the left-hand side: in this
situation, the solution is simply given by hP,k ∝ const. The modes
will re-enter the horizon at a later time and evolve according to the
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full equation 1.115: we can therefore write a general solution solution
in terms of a tensor transfer function T (τ, k)

hP(k, τ) = hprim
P (k)T (τ, k), (1.118)

and a primordial amplitude hprim
P (k), which is determined when the

gravitational wave is well outside the horizon. Note also that the
transfer function is normalized as limk→0 T (τ, k) = 1.

Numerical solutions to the tensor evolution equation 1.115 are
shown in Figure 1.6 for three different wavenumbers: modes remain
constant as long as they are super-horizon and their amplitude start
to decay ad oscillate as soon as they enter the horizon; modes with
higher wavenumber enter the horizon earlier and are damped by the
expansion of the Universe.

Figure 1.6: Tensor modes amplitude
from the numerical solution of the
perturbation equation 1.115 as a
function of conformal time, from
Watanabe and Komatsu (2006). Three
different modes with high, medium and
low wavenumbers are shown as solid
red, dashed green and short-dashed
blue lines, respectively. Vertical lines
indicate the horizon crossing time for
each mode.

We come back now to the production mechanism of gravitational
waves during inflation. If we use the variable

µP(k, τ) =

√
m2

Pl
32π

a(τ)hP(k, τ) (1.119)

and vary the action for tensor perturbations at second order, we
arrive at the expression (assuming K = 0)

δ(2)S =
1
2 ∑

P=+,×

∫ [
(µ
′
P)

2 − γij∂iµP∂jµP +
a′′

a
µ2

P

]√
γd3xdτ, (1.120)

from which we can obtain the tensor evolution equation 1.115.
The last equation is actually the action for two independent scalar
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fields uP (corresponding to the two polarization state of a grav-
itational wave), with a time-dependent mass and evolving in a
static Minkowski space-time. The quantization of this theory is
then straightforward, once we promote µP to a quantum operator.
Similarly to the scalar case, the field equation in Fourier space is

µ
′′
P(k) +

(
k2 − a′′

a

)
µP(k) = 0. (1.121)

As in the scalar case, we can solve this last equation and write the
power spectrum of tensor perturbations

PT =
k3

2π2
64π

m2
Pl

∣∣∣µk
a

∣∣∣
2

, (1.122)

which, in the slow-roll regime, becomes

PT =
16
π

H2

m2
Pl

[
1− 2(ce + 1)ε− 2ε ln

(
k

aH

)]
. (1.123)

We can also define then the tensor spectral index nT

nT =
d lnPT
d ln k

= −2ε, (1.124)

use it to parametrize the tensor perturbations power spectrum as a
power-law

PT = AT

(
k
k0

)nT

, (1.125)

where AT is the amplitude of tensor perturbations at a given pivot
scale k0. Another quantity very commonly used in the primordial
gravitational waves literature is the tensor-to-scalar ratio

r =
AT
AS

= 16ε (1.126)

Finally, it is possible to connect the tensor-to-scalar ratio and the
spectral index nT in the consistency relation

nT = − r
8

, (1.127)

which is valid at lowest order for every single-field slow-roll infla-
tion model. An observational confirmation of this relation would
represent a remarkable confirmation of the simplest model of infla-
tion; we will provide more details on this issue in Sections 5.5.3 and
4.4.3. However, many alternative models to the single-field slow-roll
predict deviations from this consistency relation: some examples are
multifield inflation (Bartolo et al., 2001; Wands et al., 2002; Byrnes
and Wands, 2006), models with generalized lagrangians such as k-
inflation (Garriga and Mukhanov, 1999) or inflation with Galileon
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fields (G-inflation) (Kobayashi et al., 2010), inflation with gauge fields
(Maleknejad et al., 2013) or alternative to inflation, such as in string
cosmology (Gasperini and Veneziano, 1993; Brandenberger et al.,
2007) or in a cyclic Universe (Boyle et al., 2004).

We conclude this section with an important remark: an observa-
tional confirmation of the existence of primordial gravitational waves
through a measurement of the r parameter is currently one of the
main targets of the research in cosmology, since, in the context of sin-
gle field slow-roll models r is directly connected to the energy scale
of inflation. This can be seen recalling that the Friedmann equation
connects the inflationary potential and the Hubble parameter during
inflation (V ' 3H2M2

Pl with MPl = 1/
√

8πG being the reduced Planck
mass), therefore we have (Abazajian et al., 2016)

V1/4 = 1.04× 1016GeV
( r∗

0.01

)1/4
, (1.128)

where r∗ is the value of r at the pivot scale, that we chose as k0 =

0.05 Mpc−1 in this last equation.

1.8.6 Observational constraints on inflation

Currently the best observational constraints on the physics of in-
flation come from CMB and Large Scale Structure experiments.
However, as we will describe in more detail in Chapter 5, extremely
interesting constraints could be put in the future using other probes,
such as direct detection gravitational wave experiments.

The most recent observations – especially by the Planck satel-
lite’s data (Planck Collaboration, 2018c) (often in combination with
other experiments datasets to obtain tighter constraints or to break
degeneracies in the parameters) – are consistent with the simplest in-
flationary scenario (single field slow-roll), according to the following
evidences:

1. The Universe is spatially flat. The constraint on curvature from the
Planck measurement (see note 3 for more details) reads ΩK =

0.0007± 0.0019, compatible with the K = 0 hypothesis.

2. Density fluctuations have a nearly scale-invariant, red-tilted, almost
power-law spectrum. Again, from Planck’s results we get a spectral
index ns = 0.967± 0.004 not compatible with scale-invariance (that
is ns = 1) and without any evidence of a running of the scalar
spectral index (dns/d ln k = −0.0042± 0.0067 at 1σ), consistently
with the inflationary predictions.

3. Scalar perturbations dominate over tensor ones. Currently no detec-
tion of r exists and the best upper limit available is r < 0.06 at
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k0 = 0.05 Mpc−1 at 95% CL from the combination of CMB B-mode
polarization7 data from the Background Imaging of Cosmic Ex- 7 As we will discuss in detail in Chapter

2, we anticipate here that the SGWB
is known to excite the divergenceless
component of the CMB polarization
anisotropies, the so-called polarization
B-modes.

tragalactic Polarization 2 (BICEP2) - Keck (BICEP2 Collaboration,
2018) and Planck 2018 data (Planck Collaboration, 2018). Figure
1.7 shows the constraints from these combined datasets in the
plane r-ns for several models in the slow-roll approximation8 and

8 See also our forecasts in Section 5.5.3
including future B-mode probes and
gravitational wave interferometers.

including an uncertainty in the number of e-folds 50 < N∗ < 60.
This figure shows results for several inflationary models, among
which R2 inflation9, natural inflation10, hilltop quartic models11, 9 In the Starobinsky or R2 model, a

term quadratic in the Ricci scalar R is
added to the gravitational action, in
addition to the usual linear term in
the Einstein-Hilbert action. This model
predicts r = 3(ns − 1)2, that is r ' 0.003
for the Planck central value ns ' 0.968
(Kamionkowski and Kovetz, 2016).
10 Natural inflation (Freese et al., 1990)
is characterized by the periodic poten-
tial

V(φ) = Λ4
[

1 + cos
(

φ

f

)]
,

with f being the scale which determines
the curvature of the potential.
11 Hilltop quartic models have a poten-
tial of the form (Boubekeur and Lyth,
2005)

V(φ) ≈ Λ4
(

1− φp

µp + ...
)

.

In these models, the inflaton rolls away
from an unstable equilibrium.

α-attractors12, power-law inflation13, spontaneously broken super-

12 These models, described in Ferrara
et al. (2013); Kallosh et al. (2013) are
motivated by conformal symmetry and
supergravity. See Planck Collaboration
(2016) for a detailed description of the
potential for these models.
13 Power-law k-inflation models
(Armendariz-Picon et al., 1999) are
currently ruled out (see Planck Collabo-
ration (2014)).

symmetry (SB SUSY)14 and several different monomial potentials;

14 In these models, slow-roll inflation
is driven by loop corrections in sponta-
neously broken supersymmetric (SUSY)
grand unified theories (Dvali et al.,
1994).

for a detailed description of each model and of the corresponding
results, we refer the reader to Planck Collaboration (2018c) and
references therein. Note in particular that R2 inflation, also called
the Starobinsky model, is the one favored by current data.

4. Scalar perturbations are Gaussian and adiabatic. Scalar fluctuations –
due to the fact that, within the framework of the standard single-
field slow-roll model, they are produced from the quantum vac-
uum fluctuations of a scalar field – they must have a Gaussian
statistics. The Planck satellite has put tight constraints on primor-
dial non-Gaussianity (Planck Collaboration, 2019), limiting the
number of alternative models to be explored. Also the adiabatic
nature of the scalar fluctuations (i.e. the fact that the relative num-
ber densities of the various particle species are spatially constant)
has been confirmed (Planck Collaboration, 2018c).

In conclusion, the inflationary paradigm solves many of the prob-
lems of the big bang models and provides several falsifiable pre-
dictions, which are all consistent with current observations. In the
rest of this Thesis, we will be particularly concerned in providing
forecasts for future experiments capable of testing the existence of
inflationary gravitational waves, an extremely important prediction
of this theory that would allow us to directly probe the energy scale
of inflation if the simplest models hold true and would give us an
invaluable information on early Universe physics.

1.9 Evolution of the SGWB after inflation: the gravitational waves
energy density

As this Thesis will be dealing mostly with the tensor perturbations,
we give here some of the basic quantities describing the background
properties of the SGWB, and in particular we focus in this Section on
the time evolution of the inflationary SGWB after inflation.

Note that in the following we will often find useful to pass from
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Figure 1.7: Constraints at 68% and 95%
C.L. in the plane r-ns obtained using
Planck 2018 data alone (grey contours)
and in combination with the B-mode
polarization data of BICEP2-Keck
(red contours) and BAO data (blue
contours), from Planck Collaboration
(2018c) (see also footnote 3 and 7).
The predictions for several theoretical
models of inflation are also shown,
including an uncertainty in the number
of e-folds 50 < N∗ < 60, as indicated by
circles.

the GW wavenumber k to the frequency f of the GW today, which
are connected by the relation15 k = 2π f /c, can be expressed making 15 We reinstate only in this formula the

factor c, which is set to 1 elsewhere in
this Section and Thesis.

explicit the units of measure as k
Mpc−1 = 6.5× 1014 f

Hz .
A quantity commonly used in the gravitational wave literature to

compare the sensitivities of different experiments16 is the fractional 16 This quantity will come in particu-
larly handy in Chapter 5, when we will
compare forecasts on the sensitivities of
future CMB B-mode experiments and
direct experiments, such as space and
ground laser interferometers.

energy density in GWs at present (conformal) time τ0

ΩGW(k, τ0) =
1

ρc(τ0)

∂ρGW(k, τ0)

∂ ln k
. (1.129)

In the equation above, ρc is the critical density of the universe (see
Eq. 1.21) and ρGW the energy density of GWs, given by the (00)
component of the energy-momentum tensor of gravitational waves17 17 The energy-momentum tensor of

gravitational waves can be defined
starting from the variation of the
action for tensor perturbations with
respect to the metric, and assumes the
form tµν = 1

16πG ∑P=+,×(∂µEt
P∂νEt

P −
ḡµν∂αEt

P∂αEt
P).

ρGW =
1

32π2a2(τ)G
〈h′ijh′ij〉, (1.130)

where the tensor hij represents the GW metric perturbation. Express-
ing the time evolution of the primordial GW amplitude in terms of
the GW transfer function T (k, τ) (see Eq. 1.118), we can write the
tensor power spectrum at conformal time τ as

PT(k, τ) = P prim
T (k)

[
T ′(k, τ)

]2
. (1.131)

Substituting the last two equalities in Eq. 1.129, we obtain the fol-
lowing expression for the energy density of gravitational waves at
conformal time τ (see Watanabe and Komatsu, 2006, and references
therein).

ΩGW(k, τ) =
P prim

T (k)
12a2(τ)H2(τ)

·
[
T ′(k, τ)

]2
. (1.132)

In Chapter 5, we will find useful to compute ΩGW at present time
in an approximate analytical form. To this end, simple solution to
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the wave equation 1.115 can be analytically derived – neglecting the
anisotropic stress term for the moment – for a mode that re-enters the
horizon in a radiation-dominated

hRD
P (k, τ) = hprim

P (k)j0(kτ) (1.133)

or a matter-dominated Universe,

hMD
P (k, τ) = hprim

P (k)
3j1(kτ)

kτ
. (1.134)

Exploiting the transfer function we defined in Eq. 1.118, and as-
suming an instantaneous transition between matter- and radiation-
dominated eras, we can express the time evolution of the gravita-
tional waves amplitude in the following three regimes

T (k, τ) =





j0(kτ), if τ < τ∗ and k > k∗,

τ∗
τ
[A(k)j1(kτ) + B(k)y1(kτ)] , if τ > τ∗ and k > k∗,

3j1(kτ)

kτ
, if τ > τ∗ and k < k∗,

(1.135)
where the first two expressions represent the evolution of modes
that entered the horizon during the radiation-dominated era, while
the third one describes modes which entered the horizon during
matter-dominated era. Here τ∗ is the conformal time at the epoch
of matter-radiation equality and k∗ is the comoving wavenumber
of the modes that entered the horizon at that time, jx, and yx with
integer x are the spherical Bessel functions of first and second kind,
respectively. The functions A(k) and B(k) are computed matching
the first two expressions of Eq. 1.135 and their first derivatives at
matter-radiation equality, and read

A(k) =
3

2kτ∗
− cos(2kτ∗)

2kτ∗
+

sin(2kτ∗)
(2kτ∗)2 , (1.136)

B(k) = −1 +
1

(kτ∗)2 −
cos(2kτ∗)
(kτ∗)2 − sin(2kτ∗)

2kτ∗
. (1.137)

In conclusion, the resulting ΩGW can be written as a piecewise
function for the three different regimes (Watanabe and Komatsu,
2006)

ΩGW(k, τ) =
k2P prim

T (k)
12

·





a2(τ)

a4(τ∗)H2(τ∗)
[j1(kτ)]2 , if τ < τ∗ and k > k∗,

a(τ)
a3(τ0)H2

0

τ2∗
τ2 [A(k)j2(kτ) + B(k)y2(kτ)]2 , if τ > τ∗ and k > k∗,

a(τ)
a3(τ0)H2

0

[
3j2(kτ)

kτ

]2

, if τ > τ∗ and k < k∗.

(1.138)



standard cosmology 55

We need now to choose an appropriate conformal time to match
the first two expressions in Eq. 1.135. A possibility is to choose
τ∗ = τeq, where τeq is computed by equating the scale factor at
matter-radiation equality aeq with the analytical expression for the
scale factor for a mixed matter-radiation Universe (that is a(τ) =

H2
0 Ωma3

0τ2/4 + H0
√

Ωra2
0τ) (Caprini and Figueroa, 2018)

aeq = a0

(
Ωr

Ωm

)
=

H2
0

4
Ωma3

0τ2
eq + H0

√
Ωra2

0τeq. (1.139)

The resulting τeq is

τeq =
2
(√

2− 1
)√

Ωr

a0H0Ωm
' 86 Mpc, (1.140)

corresponding to a wavenumber

keq =

√
2a0H0Ωm√

Ωr
' 1.3× 10−2Mpc−1. (1.141) 101 102 103
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Figure 1.8: Scale factor evolution as a
function of conformal time τ: the one
for a matter-dominated Universe am
(see tect for details) is shown in orange,
ar for a radiation-dominated one is
shown in blue, while the mixed matter
+ radiation one is in red. We also show
the scale factor at matter-radiation
equality aeq as a dashed black line.
Adapted from Caprini and Figueroa
(2018).

However, as noted by Caprini and Figueroa (2018), the gravita-
tional waves transfer function obtained using τ∗ = τeq does not
reproduce very well the actual numerical solution of Eq. 1.115. In
fact, a better choice of the matching time is represented by τ∗ = τcross,
where τcross is the time at which the scale factors am = H2

0 Ωma3
0τ2/4

and ar = H0
√

Ωra2
0τ cross. Setting am(τcross) = ar(τcross) gives

τcross =
4
√

Ωr

a0H0Ωm
' 420 Mpc, (1.142)

corresponding to kcross = 1/τcross ' 2.38× 10−3Mpc−1. As can be
inferred from Figure 1.8, matching the two solutions at τcross better
reproduces the behaviour of the actual background and gives an
analytical solution which better approximates the numerical one
(Figure 1.9). We adopt therefore this latter choice for the matching
time in the following.

1.9.1 Damping due to changes in the effective degrees of freedom

As we discussed extensively in Section 1.5, because of the cosmic ex-
pansion and the consequent temperature decrease, a certain particle
species will not be able to maintain its equilibrium anymore with the
cosmic plasma. Therefore, the effective number of relativistic particle
species contributing to the energy density g∗ and entropy gs∗ of the
Universe will decrease in time. A detailed calculation of this two
functions can be found in Saikawa and Shirai (2018) in the context of
the Standard Model of particle physics (see Figure 1.10).
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ΩGW today obtained from the analytical
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Figure 1.10: Number of effective
degrees of freedom contributing to
energy density (g∗, blue curve) and
entropy (gs∗, orange curve) of the
Universe in the context of the Standard
Model of particle physics. These two
functions have been computed and
made available by Saikawa and Shirai
(2018).

Using the conservation of entropy and Eqs. 1.41 and 1.44, it can
be shown that the energy density of the Universe in the radiation
dominated era evolves according to ρ ∝ g∗g−4/3

s∗ a−4. This will affect
the evolution of scale factor, through the Friedmann equation 1.12

and, in turn, the evolution of the SGWB through the Eq. 1.115.
We can approximately quantify the suppression effect on ΩGW(k, τ0)

due to the change in effective relativistic degrees of freedom, noting
that the ratio between the GW amplitude when taking into account
the change in g∗ (and gs∗) and the one neglecting it, is (Caprini and
Figueroa, 2018)

h(k, τ0)|with g∗
h(k, τ0)|without g∗

=

(
g∗
g∗0

)1/2 ( gs∗
gs∗0

)−2/3
, (1.143)

where g∗0 and gs∗0 are the values of the functions g∗ and gs∗ at
present time. The SGWB energy density at present time will be
suppressed accordingly:

ΩGW(k, τ0)|with g∗
ΩGW(k, τ0)|without g∗

=

(
g∗
g∗0

)(
gs∗
gs∗0

)−4/3
. (1.144)

This damping effect is evident at frequencies > 10−12 Hz, as we show
in Figure 1.11 and it is particularly important at laser interferometers
frequencies ( f > 10−6 Hz), as we will discuss in Chapter 5. Figure
1.11 also shows a good agreement between the analytical and the nu-
merical solutions obtained from the Boltzmann code CLASS (Cosmic
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Linear Anisotropy Solving System, Blas et al., 2011) and by Saikawa
and Shirai (2018), except from the region between ∼ 10−16 Hz and
∼ 10−10 Hz, where the effect of neutrinos damping is taken into ac-
count in the numerical solutions but not in the analytical one. Both
numerical solutions take also into account the damping from free-
streaming photons, which, according to Saikawa and Shirai (2018),
can cause up to a factor ∼ 0.85 decrease around ∼ 10−17 Hz. Further-
more, the small differences in height between the peaks in the range
10−18 Hz . f . 10−16 Hz of the numerical and analytical solutions,
are also due to differences between the actual (numerical) scale factor
and the approximated one (see discussion around Eq. 1.139). How-
ever, as we will discuss in Chapter 5, neglecting both the neutrinos
and photons damping effects and the small scale factor differences
does not represent a problem for our purposes, for two reasons: (i)
we will be only interested in experiments probing frequencies above
∼ 10−10 Hz, where the effect of neutrinos damping is negligible;
(ii) we will use for our forecasts on the SGWB at CMB frequencies
(∼ 10−18 − 10−16 Hz) the angular power spectra computed by Boltz-
mann codes (such as CLASS (Blas et al., 2011; Dahal et al., 2020) and
CAMB (Code for Anisotropies in the Microwave Background, Lewis
et al., 2000)), which include the neutrino and photon damping terms.

10 20 10 17 10 14 10 11 10 8 10 5 10 2 101

f [Hz]

10 17

10 16

10 15

10 14

10 13

h2
G

W

Analytical solution with * = cross and g* suppression factor
Numerical result from CLASS code
Numerical result from Saikawa & Shirai 2018

Figure 1.11: Comparison between the
ΩGW today obtained from the analytical
approximation in Eq. 1.138, assuming
τ∗ = τcross, including the suppression
factor 1.144 due to the change in the
effective degrees of freedom in the early
Universe (in black), the ΩGW obtained
from the numerical solution to Eq.1.115

using the CLASS code, including the
free-streaming neutrinos and photons
damping (in red) and the numerical
solution to Eq.1.115 shown in Saikawa
and Shirai (2018), which also includes
the neutrinos and photons damping
term and the suppression due to the
change in the effective degrees of
freedom. We chose for all curves a
value r = 0.01 for the tensor-to-scalar
ratio.





2
Imprint of gravitational waves in the CMB

As we will discuss in detail in Chapters 3 and 5, the detection of the primordial SGWB can be pursued in
a direct way – through ground and space based laser interferometers or other techniques – or in a more
“indirect” way, by observing its effect on the CMB, and in particular on its polarization. The latter option,
represents at the moment our best near future opportunity to probe the primordial SGWB, if the correct
model for inflation is the standard single-field slow-roll.

This Chapter will be dedicated to the study of the imprints that primordial gravitational radiation
leaves on the CMB. We will need to introduce the theory of CMB anisotropies, starting from the rich
phenomenology of the temperature anisotropies (Section 2.1) and gathering the main mathematical and
statistical tools useful for this study. Sections 2.1.7 of this Chapter will be dedicated to the description of
other physical mechanisms producing secondary CMB anisotropies, such as the Sunyaev-Zeldov’ich effect
and the reionization. Section 2.2 will introduce the anisotropies in the polarization pattern of the CMB and
their splitting – according to their parity – into E and B-modes, with particular attention to the way the
scalar and tensor perturbations of the metric (Section 2.3). We will then explore the gravitational lensing
mechanism of the CMB anisotropies (Section 2.4), with a special focus on its contamination to primordial
B-modes observations (Section 2.4.1) and the possibility of “cleaning” the signal in a procedure called
delensing.

This chapter is built upon the reading of the following books and reviews Dodelson (2003), Hu (1995),
Hu and Dodelson (2002) and Bucher (2015) in addition to specific references indicated in the text.

2.1 Theory of CMB anisotropies: Temperature

This Section will be dedicated to the understanding of CMB temper-
ature anisotropies: we will first introduce the necessary Boltzmann
equations formalism to treat the evolution of a perturbed multi-
component Universe made of photons, baryons, neutrinos, Dark
Matter and Dark Energy (Section 2.1.1). We will then study the be-
haviour of perturbations on large, intermediate and small scales
(Sections 2.1.2, 2.1.3 and 2.1.4). We will then connect the Boltzmann
perturbed equations with the observed temperature anisotropies (Sec-
tion 2.1.5) and introduce their angular power spectrum (Section 2.1.6),
explaining the origin of the various contributions to the observed
temperature anisotropie. Finally, we will consider some of the major
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secondary sources of anisotropy.

2.1.1 Boltzmann equations

In order to study the evolution of perturbations in the primordial
plasma of photons and matter, we have to take into account the mu-
tual interactions between the matter-energy components themselves
(for instance the Compton interactions which couple photons to
electrons) and between the matter content and the space-time metric
(Figure 2.1).

Figure 2.1: Mutual interactions between
the cosmic matter-energy components
and the space-time metric, as encoded
in the Boltzmann equation 2.1. From
Baumann (2018).

This is achieved through the Boltzmann equation, describing the
time evolution of the distribution function f (see Eq.1.38) of a certain
species. Therefore, each of the species α = γ, ν, e, b, c... will satisfy a
Boltzmann equation of the kind

d fα

dt
= C[ fβ], (2.1)

where C is the collision term, describing the interactions of the species
α and can depend on the distribution functions of other species β. In
particular, the absence of a collision term implies the free-streaming of
a certain species

d fα

dt
= 0, (2.2)

which corresponds to Liouville’s theorem, i.e. the number of particles
in a phase space element does not change in time.

In the following, we will be concerned with studying the effect of
linear order perturbations in the Boltzmann equation for photons,
therefore we expand the photon distribution function (which for
convenience will be denoted simply as f ) at first order around its
zero-order Bose-Einstein value

f (x, p, t) =
[

exp
(

p
T(t)[1 + Θ(x, p, t)]

)
− 1
]−1

, (2.3)

where p is the photon momentum and we introduced the perturba-
tion to the photon distribution function Θ = δT/T. If we define the
zero-order distribution function as

f̄ =

[
exp

(
p

T(t)

)
− 1
]−1

, (2.4)

we can rewrite Eq. 2.3 as

f = f̄ − p
∂ f̄
∂p

Θ, (2.5)

at first order.
Now, the left-hand side of Eq. 2.1 for photons can be rewritten

expanding the full time derivative in partial derivatives and using the
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geodesic equation obtained from the perturbed metric1
1.96, while 1 Note that in this Chapter we have

chosen the conformal Newtonian gauge
to express the perturbed metric. This
amounts to saying that Eq. 1.96 will
have E = B = B⊥i = 0, and therefore,
from Eq. 1.103 for the two Bardeen
potentials, we get that A = Ψ and
C = −Φ.

the collision term in the right-hand side can be computed accounting
for the Compton interaction between photons and electrons (Eq. 1.62).
The final Boltzmann equation for photons in terms of conformal time
and neglecting polarization, reads (Dodelson, 2003)

Θ′ + ikµΘ + Φ′ + ikµΨ = −η′opt [Θ0 −Θ + µvb] , (2.6)

in Fourier space2, where we defined the cosine between the wavenum- 2 Following the notation common in the
literature, we are neglecting a˜over all
quantities computed in Fourier space
throughout this Chapter.

ber k and the photon direction p̂ as

µ =
k · p̂

k
, (2.7)

the `th multipole moment Θ` of the temperature field is defined as

Θ` =
1

(−i)`

∫ 1

−1

dµ

2
P`(µ)Θ(µ), (2.8)

and vb is the baryon velocity. Note that in the Boltzmann equation
above, all ` multipoles are in Θ, and only the monopole, Θ0, appears
explicitely. In order to understand the physical mechanism leading
to CMB temperature anisotropies – which involves the coupling of
baryons and photons in a single photon-baryon fluid before recombina-
tion – we will need also evolution equations for baryons. These can
be derived considering Compton and Coulomb (e + p −→ e + p) colli-
sion terms and noting that electrons and protons are tightly-coupled
because of the latter interaction, and therefore their fractional over-
densities are equal,

δb ≡
δρe

ρe
=

δρp

ρp
, (2.9)

and also their velocities vb ≡ ve = vp. The Boltzmann equations for
the baryons in Fourier space will then read

δ
′
b + ikvb + 3Φ

′
= 0,

v
′
b +

a′

a
vb + ikΨ = η

′
opt

1
R
[3Θ1 + vb] ,

(2.10)

where we defined the ratio of photon to baryon density as

1
R

=
4ρ̄γ

3ρ̄b
. (2.11)

We can now study the dynamics of the photon-baryon fluid before
recombination, when the tight-coupling approximation holds true.

2.1.2 Tight-coupling regime: small and intermediate scales

As we have outlined above, before recombination photons were
tightly-coupled to the baryons through Compton scattering. In
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particular, recalling the mantra of Section 1.5, the tight-coupling is a
regime in which the expansion rate is much smaller than the reaction
rate (Γ� H), or, in other words, the optical depth is ηopt � 1. In this
approximation, it can be shown (using Eqs. 2.6 and 2.8) that the only
non-negligible moments of the temperature fluctation (the multipoles
Θ`) are the monopole ` = 0 and the dipole ` = 1: photons, therefore,
behave as a fluid and can be described by just density and pressure.

The Boltzmann equations for photons and baryons (Eqs. 2.6 and
2.10) can be recast into a single second order differential equation,
describing the the acoustic oscillations of the photon-baryon fluid in
the tightly-coupled limit, that is

Θ
′′
0 +

a′

a
R

1 + R
Θ
′
0 + k2c2

s Θ0 = − k2

3
Ψ− a′

a
R

1 + R
Φ
′ −Φ

′′

︸ ︷︷ ︸
F(τ)

, (2.12)

where we defined the fluid sound speed as

cs =

√
1

3(1 + R)
. (2.13)

This equation can be generally regarded as that of a forced harmonic
oscillator, with the right-hand-side representing the forcing term F(τ):
it describes a system in which compression and rarefaction phases,
accompanied by heating and cooling of the fluid, alternates due to
the action of the radiation pressure against the gravitational attrac-
tion. While on super-horizon scales the perturbations show hardly
any evolution (see Section 2.1.4 below), smaller scales enter the hori-
zon at a certain point and oscillate in time: in particular, modes that
arrive at recombination in state of maximum compression (rarefac-
tion) generate odd (even) peaks in the temperature fluctuations (see
Eq. 2.14 below).

From the definition in Eq. 2.13, we can notice immediately that
the sound speed decreases as R increases, that is when the baryon
density becomes larger: this produces acoustic oscillations with
lower frequency. Baryons have also another important effect in the
acoustic peaks phenomenology: they shift the equilibrium point of
the forced harmonic oscillator (Eq. 2.12) with respect to radiation,
enhancing only oscillations in the compression phase (i.e. the odd
peaks) because of their additional mass. This is commonly called
baryon drag or baryon loading in the literature (Figure 2.3). Further-
more, an increase in baryon density influences the diffusion damping
scale (described in Section 2.1.3 below).

The gravitational potentials,known also as Bardeen potential
(Bardeen, 1980), in the forcing term F(τ) are mainly determined by
Dark Matter in a matter-dominated Universe, therefore this compo-
nent influences the oscillation peaks structure too: an increase in
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Ωch2 determines an increased asymmetry between the amplitudes
of even and odd peaks, similarly to what happens with an increase
in the baryon density. Other effects of variations of the Dark Matter
density – including its impact on the early integrated Sachs-Wolfe effect
– will be explored in Section 2.1.6.

An analytical solution to Eq. 2.12 for the monopole was obtained
by Hu and Sugiyama (1995)

Θ0(τ) + Φ(τ) = (Θ0(0) + Φ(0)) cos krs

+
k√
3

∫ τ

0
(Φ(x)−Ψ(x)) sin [k(rs(τ)− rs(x))]dx,

(2.14)

where we defined the sound horizon rs as

rs(τ) ≡
∫ τ

0
cs(x)dx. (2.15)

This solution, sometimes called the Sachs-Wolfe term3 (SW), describes 3 Not to be confused with the Sachs-
Wolfe plateau (described in Section 2.1.6)
and the integrated Sachs-Wolfe effect
(Section 2.1.5).

the dynamics of the photon-baryon fluid and gives the position of
the acoustic peaks as the extrema of the cosine in the first term4, that is

4 We are assuming here that the first
term ∝ cos krs dominates over the
integral term. This approximation gives
a reasonably accurate position of the
first peaks, when compared to the exact
solution (Hu and Sugiyama, 1995)

kpeak = nπ/rs with n = 1, 2, ...
We can arrive also at an analytical solution for the dipole moment

by taking the time derivative of Eq. 2.14,

Θ1(τ) =
1√
3
(Θ0(0) + Φ(0)) sin krs

− k
3

∫ τ

0
(Φ(x)−Ψ(x)) cos [k(rs(τ)− rs(x))]dx,

(2.16)

which produces peaks π/2 out of phase with the monopole solution
2.14, since it is dominated by the term sin krs. This dipole contri-
bution is sometimes called the Doppler term, and will be of utmost
importance in Section 2.1.6, where we will study its impact on the
angular spectrum of temperature anisotropies.

Let us now go beyond the strict tight-coupling approximation and
the simplified acoustic oscillations we have been treating up to now,
considering other physical mechanisms that act on the photon baryon
fluid for smaller scale perturbations. We start with the diffusion
damping of the oscillations.

2.1.3 Diffusion damping

Perturbations with larger wavenumber k (that is smaller scales) are
affected by the diffusion damping5, due to the fact that the tight- 5 Sometimes also called Silk damping in

the literature.coupling approximation in which photons and baryons constitute
an ideal single fluid is valid only if the Compton interaction is per-
fectly efficient. This is not actually the case as photons travel a finite
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distance between scatterings λD, determined by the expansion of the
Universe and the by the Compton mean free path

λD ∼ λC
√

N =
1

neaσT

1
a

, (2.17)

where N =
√

neσT H−1 is the number of scatterings in a Hubble time.
Every perturbation with λ < λD will thus be erased by the mixing
of hot and cold spots due to the traveling of the photons, causing
an exponential damping of smaller scales modes. In this scenario,
diffusion will generate heat conduction and shear viscosity πγ in
the photon-baryon fluid (Figure 2.2), leading to a non-negligible
quadrupole moment6 Θ2. Therefore, we will keep moments up to the 6 We shall see in Section 2.2 the impor-

tance of the quadrupole moment in
producing polarization.

quadrupole ` = 2 in the hierarchy of Boltzmann equations for photon
perturbations, while, for what concerns the baryons, the second of
Eqs. 2.10 will suffice for our purposes. The time dependence of the
solutions will be in this case (Dodelson, 2003)

Θ0, Θ1 ∼ eik
∫

dτcs(τ)e−k2/k2
D , (2.18)

Θ2 = − 4k
9η
′
opt

Θ1, (2.19)

where the damping scale is given by

1
k2

D
=
∫ τ

0

1
6(1 + R)neσTa(x)

(
R2

1 + R
+

8
9

)
dx, (2.20)

and can be connected to Eq. (2.17), as λD ∼ 1/kD.

Figure 2.2: The temperature acoustic
oscillations in the photon-baryon fluid
are damped by photon diffusion, which
produces anisotropic stress πγ. The
potential Ψ drives the oscillations (a
phase indicated as “driving” in the plot)
by decaying and leaving the photon-
baryon fluid in the phase of maximum
compression without a gravitational
force to counteract the pressure. From
Hu and Dodelson (2002).

A very important physical effect connected to the damping scale,
is the the one due to the baryon density: an increase in Ωbh2 deter-
mines a larger kD and therefore a shift of the the diffusion damping
effect to smaller scales7. This latter effect can be used in combination 7 It can be shown (Dodelson, 2003), that

kD ∝ (Ωbh2)1/2.with the fact that a an increase in baryon density enhances odd peaks
and suppresses even peaks, to break the degeneracies with other
cosmological parameters and put tight constraints on Ωbh2.
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2.1.4 Super-horizon modes

Having described the main phenomenology at smaller and interme-
diate scales, we now pass to large-scale modes. As anticipated in
Section 2.1.2, fluctuations on scales larger than the Hubble horizon
remain almost constant during the Universe evolution. This can be
seen by taking the super-horizon limit of the Boltzmann equations for
photons and by using the appropriate adiabatic initial conditions: the
effective temperature observed at recombination time will be given
by (Dodelson, 2003)

(Θ0 + Ψ)(τrec) = −
1
3

Φ(τrec) = −
1
5
R = −1

6
δc(τrec), (2.21)

in terms of the curvature perturbation R (Eq. 1.104) and the Dark
Matter density perturbation δc. This equation can derived consid-
ering that for super-horizon scales Φ ' −Ψ, Φ = 3R/5. The last
equality in 2.21, in particular, tells us that super-horizon Dark Matter
positive perturbations (overdensities) at recombination corresponds
to negative temperature fluctuations (“cold spots”) in the CMB,
since photons have to climb up the potential well. The redshift they
experience in this situation is enough to cancel the initial positive
temperature fluctuation due to the overdensity.

2.1.5 Connecting recombination to observed CMB: Free-streaming and
line-of-sight integration

We will now be concerned with deriving an expression for the multi-
pole moment observed today in the CMB anisotropy pattern in terms
of the temperature fluctuations at recombination. Through manipula-
tions and integration over conformal time of the Boltzmann equation
for photons 2.6, we can arrive at an analytical expression connect-
ing the monopole and dipole at recombination with temperature
fluctuations at τ0

Θ`(k, τ0) =
∫ τ0

0
g(τ) [Θ0(k, τ) + Ψ(k, τ)] j`[k(τ0 − τ)]dτ

− i
k

∫ τ0

0
g(τ)vb(k, τ)

d
dτ

j`[k(τ0 − τ)]dτ

+
∫ τ0

0
e−τ

[
Ψ
′
(k, τ) + Φ

′
(k, τ)

]
j`[k(τ0 − τ)]dτ,

(2.22)

where g(τ) is the visibility function defined in 1.63. This relation can
be recast in a more interpretable manner by noting that, since the
visibility function is sharply peaked at recombination, the first two
integrals in 2.22 can be substituted with the value of their integrands
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at recombination:

Θ`(k, τ0) = [Θ0(k, τrec) + Ψ(k, τrec)] j`[k(τ0 − τrec)]︸ ︷︷ ︸
SW term

+ 3Θ1(k, τrec)

(
j`−1[k(τ0 − τrec)]− (`+ 1)

j`[k(τ0 − τrec)]

k(τ0 − τrec)

)

︸ ︷︷ ︸
Doppler term

+
∫ τ0

0
e−τ

[
Ψ
′
(k, τ) + Φ

′
(k, τ)

]
j`[k(τ0 − τ)]dτ

︸ ︷︷ ︸
ISW term

.

(2.23)

The last integral, which is not zero only if the gravitational potentials
are time-dependent, represents the contribution of the integrated
Sachs-Wolfe effect (ISW). We will give more details on this important
effect in a dedicated Section (2.1.6). Another important information
that we can draw from this last expression is that, due to the char-
acteristic shape of spherical Bessel functions, the contribution of a
mode k manifest itself mainly on angular scales ` ∼ kτ0.

2.1.6 Angular power spectrum of temperature anisotropies

To make contact with observations, it is customary to expand the tem-
perature fluctuation Θ(x, p̂, τ) in spherical harmonics Y`m, according
to

Θ(x, p̂, τ) =
∞

∑
`=1

`

∑
m=−`

aT
`m(x, τ)Y`m(p̂). (2.24)

Using the orthogonality of spherical harmonics allows to relate the
observables aT

`m to the multipole moments

aT
`m(x, τ) =

∫ d3k
(2π)3 eik·x

∫
dωY∗`m(p̂)Θ(k, p̂, τ). (2.25)

The distribution of the aT
`m is expected to be Gaussian due to the

Gaussianity of inflationary quantum fluctuations: this implies a zero
mean 〈aT

`m〉 = 0 and variance

〈aT
`ma∗T`′m′〉 = δ``′′δmm′C

TT
` . (2.26)

Here C` is the angular power spectrum of temperature anisotropies: it
cannot be observed directly, but one can obtain an estimator in the
form

ĈTT
` =

1
2`+ 1 ∑

m
aT
`ma∗T`m. (2.27)

Furthermore, there is a fundamental statistical limitation to the
estimator effciency, the so-called cosmic variance

〈ĈTT 2
` 〉 − 〈ĈT

` 〉2
CTT 2
`

=
2

2`+ 1
, (2.28)
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predominantly affecting larger scales.
It is possible to obtain an expression for the temperature spectrum

produced by scalar perturbations only – which we indicate as CTT
`,s

with a subscript s standing for scalar – in terms of the multipoles Θ`,
that is

CTT
`,s =

2
π

∫ ∞

0
k2PR(k)

∣∣∣TTT
`,s (k)

∣∣∣
2

dk. (2.29)

In order to derive the expression above, we have separated the tem-
perature fluctuation in a part depending on the initial amplitude
and phase of the perturbation (R(k)) and a scalar modes transfer
function TTT

`,s (k, k̂ · p̂), describing its evolution

TTT
`,s (k) =

Θ`(k, τ0)

R(k) , (2.30)

and we have expanded TTT
s (k, p̂) in Legendre polynomials. Equiva-

lent expressions for the angular spectrum and transfer function for
tensor modes can be obtained; the total CTT

` will be the sum of the
scalar and tensor part in this case (see Section 4.1).

Note that completely analogous expressions to the TT angular
power spectra 2.29 and the transfer function 2.30 can be derived as
well for the E and B polarization spectra (which will be introduced
later in Section 2.2) and their cross-correlations (see for instance
Dodelson, 2003).

Large scales: Sachs-Wolfe plateau

We can now use Eq. 2.29 in conjunction with the solutions to the
Boltzmann equations at different scales – discussed in Sections 2.1.2
- 2.1.4 – to provide some insight in the structure of the temperature
power spectrum. We start with the simplest one to interpret, the
super-horizon solution 2.21: in this case the angular power spectrum
at large scales is expected to be a constant (for a scale-invariant scalar
spectrum) , the so-called Sachs-Wolfe plateau (SWP) (Hu, 1995) (Figure
2.3)

`(`+ 1)CTT ,SWP
` =

8
25

AS, (2.31)

and this last expression can be derived using the consideration that
the gravitational potential is constant in the matter-dominated epoch.
From Eq. 2.23, there are other effects that can produce deviations
from the SW constant plateau, in particular the dipole (Doppler) term
and the ISW effect (see Section 2.1.6 below).

Intermediate and small scales: acoustic oscillations

On intermediate and small scales there are several effects contribut-
ing: the monopole, the dipole, the ISW effect and the diffusion
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Smaller Angles Figure 2.3: A visual summary of the
physical mechanisms, described in
Section 2.1, affecting the spectrum of
temperature anisotropies, from Hu
(1995). The solid green line represents
the effective temperature Θ(τ) + Ψ(τ),
with the effect of baryons on the
asymmetry of odd and even peaks
indicated as “drag” and the SW plateau
clearly evident at large scales. The
Doppler term is indicated as the dotted
red curve. The diffusion damping
affecting smaller scales is represented as
the solid orange curve. The Early ISW
and Late ISW effects are represented
as dashed blue and dotted pink curves,
respectively. Below the plot, a scheme
representing the shift in the `-axis
(beginning with ` = 2), due to a change
in the cosmological parameters.

damping. The first thing to notice is that, due to the free-streaming,
the monopole term shows peaks slightly shifted to smaller ` with
respect to the approximated prediction in Section 2.1.2, that is
kpeak ∼ 0.75π/rs. The dipole term, as we observed before, is out-of-
phase with the monopole, therefore its addition will mainly impact
the trough regions, raising their level with respect to the peaks.

Integrated Sachs-Wolfe effect

The ISW effect is due to the time-variation of the Bardeen potentials
Ψ and Φ in Eq. 2.23 during the time in which a photon is falling
down and climbing up a potential well, determining a net change
in the photon temperature. It can be separated in two different
contributions:

Early ISW effect (EISW). This term is due to the variation of grav-
itational potentials at the transition between a matter- and a
radiation-dominated Universe, and is particularly important for
modes corresponding to the horizon scale around recombination
time (around the first peak, see Figure 2.3), due to the Bessel func-
tion behaviour in the ISW integral in 2.23. The EISW contribution
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can be approximated therefore by

Θ`(k, τ0)
EISW = [Ψ(k, τ0)−Ψ(k, τrec)

−Φ(k, τ0) + Φ(k, τrec)]j`[k(τ0 − τrec)],
(2.32)

which adds constructively to the monopole, raising the amplitude
of the first peak.

Late ISW effect (LISW). This effect is due to the variation of the po-
tentials in the late Universe, when dark energy or curvature are
dominating. The main contribution is at very large scales ` . 30
(Figure 2.3), affecting the SW plateau, since the potentials are al-
ready very small for sub-horizon scales at decoupling. LISW is an
important probe of the nature of dark energy, and can be cross-
correlated with other cosmological observables – for instance large
scale structure (Corasaniti et al., 2005) or radio galaxies surveys
(Vielva et al., 2006) – to constrain the EoS or the sound speed of
dark energy.

Effect of the cosmological parameters

We consider now the impact that a variation of a selection of the
ΛCDM model cosmological parameters can have on the angular
power spectrum of temperature anisotropies.

We start from the effect of curvature ΩK: in an open (closed)
Universe the peaks get shifted to higher (lower) ` with respect to the
flat case, due to the different projection of the anisotropies.

Dark energy has two main effects: on one side it enhances the
spectrum at very large scales due to the LISW effect, while on the
other side has a similar effect to curvature, since it changes the
angular diameter distance to the LSS, thus shifting the peaks location
to lower ` for higher ΩΛ.

Figure 2.4: Effect of the variation
of the baryon density Ωbh2 on the
temperature angular power spectrum
of CMB anisotropies. From Hu and
Dodelson (2002).

Varying the amplitude AS and tilt nS of the scalar spectrum
changes the overall normalization of the spectrum and the relative
importance of large and small scales, pivoting around the reference
scale k0. This effect is similar to the one of the optical depth to reion-
ization8 ηreion. The rescattering of photons on newly freed electrons

8 A description of reionization can be
found in Section 1.5

only affects modes which are sub-horizon at the time of reionization:
an increase in ηreion determines a suppression in the spectrum at
` & 100, while larger scale modes are unaffected.

We already discussed at lenght the effect of variation in the baryon
density (see also Figure 2.4), so we refer the reader to Sections 2.1.2
and 2.1.3 for details.

For what concerns the CDM density, we also anticipated in Section
2.1.2 that it affects the temperature spectrum in a similar way to
baryon density, exacerbating the height asymmetry between even and
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odd peaks (if we keep baryon fixed). Notice also that variations in
the Dark Matter density affect also the Bardeen’s potential decay: for
an increase in Ωch2 the potentials decay less and therefore the EISW
effect is less pronounced, with a corresponding suppresion of the first
peak.

2.1.7 Other secondary sources of anisotropy

We gather in this Section some of the most important secondary
sources of anisotropy that we neglected in the previous Section.
Also the ISW effect and the gravitational lensing of the CMB can be
considered secondary sources. We described the former in Section
2.1.6, while the latter will be discussed in a separate Section (2.4).

Reionization

During reionization, electrons are freed by the first sources of ultravi-
olet photons, with consequent rescattering of the CMB photons after
decoupling. The consequence of this phenomenon are threefold: (i)
the production of new secondary anisotropies; (ii) the suppression
of the already formed temperature anisotropies on small scales, due
to the averaging of many lines of sight converging at the scattering
event (leaving anisotropies only in the unscattered fraction e−τreion );
(iii) the generation of additional polarization on large scales (see
Section 2.3.2 for details). The anisotropy observed today (neglecting
the ISW effect) will be given therefore by (Peter and Uzan, 2013)

Θ(τ0) ' (1− e−ηreion)[Θ(τreion) + p̂ · vb(τreion)]

+ e−ηreion [Θ(τrec) + p̂ · vb(τrec)],
(2.33)

where ηreion is the optical depth to reionization and we have ap-
proximated the visibility function as a sum of two Dirac deltas at
recombination and reionization time. Note also that the first term in
Eq. 2.33 represents both the averaging over many lines of sight and
the new secondary anisotropies, while the second term depicts the
temperature of the unscattered fraction of photons.

Sunyaev-Zel’dovich effect

Figure 2.5: A comparison of intensity
variation for the tSZ (solid line) and the
kSZ (dashed line), for a cluster with
Compton y paramter 10−4, Te = 10 keV
and peculiar velocity vr = 500 km s−1.
Also shown for reference is the CMB
original spectrum multiplied by a factor
0.0005. From Carlstrom et al. (2002).

CMB photons, during their free-streaming, can encounter the regions
of hot plasma (∼ 107 − 108K) found in galaxy clusters, and this
can give rise to variations of their temperature through the inverse
Compton scattering with free electrons in the cluster. This effect is
called thermal Sunyaev-Zel’dovich effect (tSZ)9. The starting point is

9 See Carlstrom et al. (2002) for a
review.

the Kompaneets equation (see for instance Rybicki and Lightman,
1986, and references therein), describing the Compton interaction
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of an isotropic and unpolarized radiation with an optically thick
gas of non-relativistic electrons at temperature Te. Specializing the
Kompaneets equation to the case of an incident blackbody spectrum
with intensity Iν and temperature Tγ � Te, we get a temperature
variation

∆Tγ

Tγ
=

∆Iν

Iν
= −2

kB

mec2

∫
neσTTedl. (2.34)

The tSZ introduces therefore spectral distortions of the y-type (Sec-
tion 1.6), with a net effect of an increase in temperature (or intensity)
at high frequencies and a decrease in temperature at low frequencies
(Figure 2.6).

Figure 2.6: tSZ effect for a galaxy
cluster with mass exaggerated by a
factor 1000 with respect to a typical
one. The dashed line represents the
original blackbody spectrum, while the
solid line the spectrum distorted by the
SZ effect. From Carlstrom et al. (2002).

The tSZ effect has interesting astrophysical and cosmological
applications: the temperature variation is proportional to ne, thus
providing a measurement for the mass of the gas in the cluster;
moreover, ∆Tγ is independent of the redshift of the galaxy cluster,
allowing to detect them at high redshift.

The peculiar velocity of a cluster can also induce a distortion in the
CMB spectrum: this is called kinetic Sunyaev-Zeldovich effect (kSZ) and
is governed by the equation

∆Tγ

Tγ
= −vr

c

∫
neσTdl. (2.35)

where vr is the radial component of the cluster velocity.

Gravitational waves signature in the temperature spectrum

Also tensor perturbations contribute to the temperature anisotropies:
they affect almost exclusively the large scale part of the temperature
power spectrum (see Figure 2.8), since on smaller scales gravitational
waves have entered the horizon and decayed (see Section 1.8.5). This
tensor contribution to the temperature at very large scales is roughly
scale-invariant, similarly to scalars.

The effect on the temperature spectrum is too weak – consistently
with current CMB upper limits from polarization spectra (see Section
1.8.6) – and too limited by cosmic variance to be detected using the
current state-of-the-art CMB technology, therefore, as we will see in
Section 2.3, primordial GWs detection is best attempted through their
imprint on the B-modes of the polarization.

2.2 Theory of CMB anisotropies: Polarization

Up to now we have considered only the physics behind intensity
(temperature) of the CMB and neglected the possibility of having
a polarized radiation. The CMB is indeed polarized by Thomson
scattering 10 (Eq. 1.62), as we will explore in the following. In order 10 Compton scattering reduces to

Thomson one since the energy of CMB
photons is much smaller than the
electrons rest mass.
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to treat properly polarization, we need to introduce some of the
necessary formalism, starting from the Stokes parameters.

2.2.1 Stokes parameters

A monochromatic electromagnetic plane wave of frequency ω propa-
gating along the ẑ-axis in Cartesian coordinates, has an electric field
vector, evolving in time as

E(x, t) = E exp [i(ωt− k · x)] (2.36)

with E is given by

E =




ax exp (iξx)

ay exp (iξy)

0


 (2.37)

and ξx and ξy are phase angles. The wave can also be described
using the four Stokes parameters, that is the total intensity

I = 〈a2
x〉+ 〈a2

y〉 = Ix + Iy, (2.38)

and the Q, U and V parameters, characterizing its polarization state

Q = 〈a2
x〉 − 〈a2

y〉 = Ix − Iy, (2.39)

U = 2〈axay cos(ξx − ξy)〉, (2.40)

V = 2〈axay sin(ξx − ξy)〉, (2.41)

where the 〈...〉 represent averages over several periods, with the
assumption that ax,y and ξx,y are slowly varying with respect to
the period of the wave. Furthermore, only three of the four Stokes
parameters are independent, being connected by the relation

I2 = Q2 + U2 + V2. (2.42)

We are interested now in the way the Stokes parameters trans-
form under a rotation of the x̂ − ŷ plane by an angle α around the
propagation direction ẑ, that is under the coordinate transformation

(
x′

y′

)
=

(
cos α sin α

− sin α cos α

)(
x
y

)
. (2.43)

The Q and U parameters transform under this rotation as
(

Q′

U′

)
=

(
cos 2α sin 2α

− sin 2α cos 2α

)(
Q
U

)
, (2.44)
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while I and V are invariant. This means that (Q, U) transforms,
under a coordinate transformation of the kind

x′i = Ak
i xk (2.45)

as
P′ij = Ak

i Al
jPkl (2.46)

or, in other words, Q and U transform under rotation as the compo-
nents of a symmetric traceless 2× 2 tensor,
(

Q U
U −Q

)
→
(

cos α sin α

− sin α cos α

)(
Q U
U −Q

)(
cos α − sin α

sin α cos α

)
.

(2.47)
Therefore, we can build two quantities from Q and U transforming as
a spin-2 field under rotation, that is

(Q± iU)′(ẑ) = e∓2iα(Q± iU)(ẑ). (2.48)

2.2.2 Spin-s spherical harmonics

We now introduce a basis of spin-s spherical harmonics (Goldberg
et al., 1967), which will be relevant in the next Subsection, where we
will expand the polarization field on the sphere, just like what we did
for the temperature field in Section 2.1.6.

First of all, we define as a spin-s function on the sphere a function

s f (θ, φ) that transforms under a rotation of angle α about the ẑ-axis,
as

s f ′(θ, φ) = e−isα
s f (θ, φ). (2.49)

Such a function can be expanded in the basis sY`m of spin-s spherical
harmonics satisfying the completeness and orthogonality relations:

∫ 2π

0
dφ
∫ 1

−1
d cos θsY∗`′m′(θ, φ)sY`m(θ, φ) = δ``′δmm′ , (2.50)

∑
`m

sY∗`m(θ, φ)sY`m(θ
′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′). (2.51)

This basis allows for the construction of the so-called spin-raising and
spin-lowering operators ∂±, capable of increasing and decreasing the
spin of a function, respectively:

∂± s f (θ, φ) = − sins θ

(
∂θ ±

i
sin θ

∂φ

)
sin∓s θ s f (θ, φ). (2.52)

These operators can be then used to define the spin-s spherical
harmonics in terms of the spherical harmonics Y`s:

sY`m =

√
(`− s)!
(`+ s)!

(∂+)sY`m and sY`m = (−1)s

√
(`+ s)!
(`− s)!

(∂−)−sY`m,

(2.53)
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where the expression on the right holds for 0 ≤ s ≤ ` and the one on
the left for −` ≤ s ≤ 0.

2.2.3 E and B modes

Having defined the appropriate basis, we are now in the position to
expand the polarization field just as we did for the temperature one:

(Q± iU)(n̂) = ∑
`m
±2a`m ±2Y`m(n̂), (2.54)

with expansion coefficients

±2a`m =
∫

d2n̂ ±2Y∗`m(Q± iU). (2.55)

We can now solve the inconvenience of having Stokes parameters Q
and U which are not invariant under rotation: in a similar way to the
Helmholtz theorem (Section 1.8.3), which allows the decomposition
of a vector into gradient and curl components, the spin-2 polarization
field can be decomposed in gradient and curl components, the so-
called polarization E−modes and B−modes, respectively, which are
invariant under rotations just like the temperature. The polarization
field is thus decomposed in terms of these two quantities, as

(Q± iU)(τ, x, n̂) = −∑
`m
(aE

`m ± iaB
`m)±2Y`m(n̂), (2.56)

with expansion coefficients given by

aE
`m = −1

2
[2a`m +−2 a`m] and aB

`m = − 1
2i

[2a`m −−2 a`m] , (2.57)

and the newly defined E- and B- modes

E(n̂) = ∑
`m

aE
`mY`m, (2.58)

B(n̂) = ∑
`m

aB
`mY`m. (2.59)

The analogy of polarization E- and B-modes with the electric and
magnetic fields appears evident once we consider their behaviour
under a parity transformation, that is a reflection with respect to
the plane perpendicular to k: aE

`m takes a factor (−1)`, while aB
`m

transforms as (−1)`+1aB
`m. Therefore, E is the scalar or electric com-

ponent of the polarization, while B is the pseudo-scalar or magnetic
component.

The angular power spectra can be defined similarly to temperature
fluctuations ones (Eq. 2.26) also for E- and B-modes. Taking into
account temperature and polarization, the CMB will therefore be



imprint of gravitational waves in the cmb 75

described by the correlations

〈aT∗
`maT

`′m′〉 = CTT
` δ``′δmm′ , (2.60)

〈aE∗
`maE

`′m′〉 = CEE
` δ``′δmm′ , (2.61)

〈aT∗
`maE

`′m′〉 = CTE
` δ``′δmm′ , (2.62)

〈aB∗
`maB

`′m′〉 = CBB
` δ``′δmm′ . (2.63)

Note that the TB and EB cross-spectra vanish if the physics behind
the production of temperature and polarization fluctuations is not
parity-violating.

2.2.4 The generation of CMB polarization

We now turn to the physical mechanism generating polarizations
in the CMB, that is the Thomson scattering between CMB photons
and electrons, and we show that polarization is produced only if the
radiation incoming on electrons possesses a quadrupolar intensity
distribution.

The angular dependence of the differential cross-section for Thom-
son scattering is (Chandrasekhar, 1960)

dσ

dΩ
=

3σT
8π
|ε̂′ · ε|2, (2.64)

where ε̂′ and ε̂ are the polarization directions of the incident and
scattered radiation, respectively, and σT is the Thomson cross-section.

Following the discussion by Kosowsky (1996), we choose our
coordinate system so that the outgoing scattered radiation is along
the ẑ-axis and is characterized by the Stokes parameters I, Q, U and
V11. On the other hand, incident radiation has intensity I′(θ, φ) and 11 We will not consider further the V

Stokes parameter in this derivation,
since it can be shown that it remains
zero after scattering, if it was zero
initially.

is assumed to be completely unpolarized.
Now, an unpolarized light beam can be represented as the in-

dependent superposition of two linearly polarized beams with
perpendicular linear polarization vectors. Moreover, we can choose
the polarization vectors for the scattered beam so that ε̂y is in the
scattering plane and ε̂x is perpendicular to the scattering plane. Sim-
ilarly, the incident beam will have ε̂′y in the scattering plane and ε̂′x
perpendicular to the scattering plane (Figure 2.7).

Form Eqs. 2.38 and 2.40, intensities along the x̂- and ŷ-axes will
be given by Ix = (I + Q)/2 and Iy = (I − Q)/2. Furthermore,
the condition that incident radiation is unpolarized corresponds to
I′x = I′y ≡ I′/2.

The scattered intensities are

Ix =
3σT
8π

[
I′x(ε̂

′
x · ε̂x)

2 + I′y(ε̂
′
y · ε̂x)

2
]
=

3σT
16π

I′, (2.65)

Iy =
3σT
8π

[
I′x(ε̂

′
x · ε̂y)

2 + I′y(ε̂
′
y · ε̂y)

2
]
=

3σT
16π

I′ cos2 θ, (2.66)
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Figure 2.7: Definitions of quantities
involved in the description of polariza-
tion generated by Thomson scattering.
Primed quantities refer to the incident
beam, while unprimed one to the
scattered beam. From Kosowsky (1996).

from which we can compute the Stokes parameters for the scattered
wave, that is

I = Ix + Iy =
3σT
16π

I′(1 + cos2 θ)

Q = Ix − Iy =
3σT
16π

I′ sin2 θ

U = 0

(2.67)

Integrating over all incident intensities, we get the total Stokes param-
eters, which, depend only on the intensity of the incident radiation,
(having assumed unpolarized incident radiation):

Itot =
3σT
16π

∫
dΩ(1 + cos2 θ)I′(θ, φ),

Qtot =
3σT
16π

∫
dΩ sin2 θ cos 2φI′(θ, φ),

Utot =
3σT
16π

∫
dΩ sin2 θ sin 2φI′(θ, φ).

(2.68)

If we now expand the incident intensity in spherical harmonics (see
Eq. 2.24),

I′(θ, φ) = ∑
l,m

almYlm(θ, φ), (2.69)

we can rewrite the scattered wave Stokes parameters as

I =
3σT
16π

[
8
3
√

πa00 +
4
3

√
π

5
a20

]
,

Q =
3σT
4π

√
2π

15
<(a22),

U = −3σT
4π

√
2π

15
=(a22),

(2.70)
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from which we can infer that the polarization of the scattered radia-
tion into the ẑ direction is

Q− iU =

√
3

40π
σTa22. (2.71)

In conclusion, Thomson scattering will generate polarization in the
CMB – from incoming unpolarized radiation12 – only if the incident 12 This is an approximation, as radiation

incoming on electrons could in general
be already polarized because of previ-
ous Thomson scatterings. In this case, a
Boltzmann treatment is needed (see for
instance Maggiore (2018) and references
therein).

radiation possesses a quadrupolar anisotropy pattern (Y22 in terms of
spherical harmonics).

2.3 Primordial gravitational waves and B-modes

An important property of the CMB polarization is that scalar perturba-
tions can only generate E-mode polarization, while tensor perturbations can
produce both E- and B-modes. Therefore, in an ideal setting in which no
contamination from foregrounds and gravitational lensing is present,
observing the primordial B-modes would therefore correspond to
directly observing primordial gravitational waves. As we will discuss
in detail in Sections 2.4 and 3.1.3, this is not the case unfortunately,
as a secondary B-mode signal is generated by Galactic diffuse fore-
grounds and by the leaking of E-mode polarization into B-modes due
to gravitational lensing by the cosmological Large Scale Structure.
However, there are several strategies to disentangle the primordial
SGWB signal from the contaminants and subtract the latter, and even
though this procedures leave in general a residual contribution lim-
iting our observational power, it certainly allows the exploitation of
CMB B-modes for the exploration of an SGWB produced in the early
Universe.

2.3.1 GW records in the polarized CMB

In order to show that B-modes are actually produced – in an ideal sit-
uation, as explained above – only by primordial tensor perturbations,
we follow the calculation by Polnarev (1985)13 and consider a simpli- 13 See also Kamionkowski and Kovetz

(2016) and references therein.fied situation in which we have a single monochromatic plane-wave
gravitational wave (propagating along the ẑ-axis) which is perturbing
the flat FRLW metric:

h+(x, τ) = h(τ)eikτ−ikz. (2.72)

Note that we chose a +-polarized wave, although the following
calculation can be easily repeated for a ×-polarized wave.

Now, the geodesic equation allows us to write the frequency
shift experienced by freely-propagating photons, due to the single
gravitational wave:

1
ν

dν

dτ
= −1

2
(1− µ2) cos 2φ e−ikz d

dτ
(heikτ). (2.73)
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The next step will be to compute the polarization produced by this
anisotropic radiation field because of Thomson scattering; to this end
we introduce the distribution functions fi(p, x, τ) with i = I, Q, U, V
and p is the photon momentum. The unperturbed distribution for
intensity (see also discussion around Eq. 2.4) is

f̄ I =
[
ehν/kT(τ) − 1

]−1
, (2.74)

while the other Stokes parameters have zero unperturbed distribu-
tions f̄Q = f̄U = f̄V = 0. Perturbations to these distribution functions
are defined according to ∆ieik·x = 4δ fi/(∂ f̄ /∂ ln T). Since Thomson
scattering does not generate circular polarization, we will just set
∆V = 0 in the rest of the derivation.

Defining the new variables ∆̃i through the relations

∆I = ∆̃I(1− µ2) cos 2φ, (2.75)

∆Q = ∆̃Q(1 + µ2) cos 2φ, (2.76)

∆U = ∆̃U2µ sin 2φ, (2.77)

we can finally write the Boltzmann equations for the polarization
distributions functions

∆̃′I + ikµ∆̃I = −h′ − η′[∆̃I − Λ̃], (2.78)

∆̃′Q + ikµ∆̃Q = −η′[∆̃Q + Λ̃], (2.79)

∆̃U = −∆̃Q (2.80)

where η is the Thomson optical depth and Λ̃ is given in terms of the
Legendre moments ∆̃i` of ∆̃i

Λ̃ =

[
1
10

∆̃I0 +
1
7

∆̃I2 +
3

70
∆̃I4 −

3
5

∆̃Q0 +
6
7

∆̃Q2 −
3

70
∆̃Q4

]
. (2.81)

We can then use the formalism developed in Section 2.2.2 to compute
the expansion coefficients for E- and B-modes (aE

`m and aB
`m) and

finally, the angular power spectra

CEE
l =

1
16π

∫
dk k2

[
(l + 2)(l + 1)∆̃Q l−2

(2l − 1)(2l + 1)
+

6l(l + 1)∆̃Q l

(2l + 3)(2l − 1)
+

l(l − 1)∆̃Q l+2

(2l + 3)(2l + 1)

]2

,

CBB
l =

1
4π

∫
dk k2

[
l + 2

2l + 1
∆̃Q l−1 +

l − 1
2l + 1

∆̃Q l−1

]2
,

(2.82)

from which we can conclude that tensor perturbations produce both
E and B non-zero angular power spectra.

In a completely analogous way, it can be shown that a single scalar
mode with wavenumber k along the ẑ-axis does not produce B-mode
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polarization. The frequency shift experienced by the photons (named
Sachs-Wolfe effect, see Section 2.1.2) due to this scalar perturbation,
will have a different dependence proportional to ∝ (cos2 θ − 1/3) with
respect to the tensor perturbation case. In this case, only the aE

`m, and,
consequently, the CEE

` will be non-zero.

2.3.2 Physical interpretation of the polarization spectra

We show in Figure 2.8 the separate scalars and tensors contribution
to the temperature and polarization CXX′

` s, with X, X′ = T, E, B, eval-
uated using the Boltzmann code CLASS. The cosmological parameters
have been chosen to match the Planck 2018 Planck Collaboration
(2018) ones and we chose a value r = 0.01 for the tensor-to-scalar
ratio, below the current upper limits.

We discuss now some of the relevant physical mechanisms at work
in the polarization spectra (see Cabella and Kamionkowski, 2004, and
references therein). Polarization spectra due to scalar (density) per-
turbations show acoustic peaks (left panel of Figure 2.8), out-of-phase
with respect to the peaks in the TT scalar power spectrum. This hap-
pens because, before recombination, electrons and photons are in
the tight-coupling regime and no polarization is produced, since
no quadrupolar anisotropy pattern in the radiation incident on the
electrons can be generated. However, as recombination approaches,
photons start decouple and to have longer free paths lenghts, a pro-
cess which depends on the time derivative of the baryon density.
Therefore, polarization will have acoustic oscillations governed by
Eq. 2.12 and will be out-of-phase with the temperature peaks pro-
duced by density perturbations at the LSS, and in phase with the
peculiar velocity at the LSS (Cabella and Kamionkowski, 2004).
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Figure 2.8: Separate scalar and tensor
perturbations contribution to the
temperature and polarization CMB
angular power spectra, evaluated
using the Boltzmann code CLASS. The
cosmological parameters have been
chosen to match the Planck 2018 Planck
Collaboration (2018) ones and we chose
a value r = 0.01 for the tensor-to-scalar
ratio.

As the right panel of Figure 2.8 shows, the power spectra due to
tensor perturbations have all a dramatic decrease for ` & 100, due to
the fact that smaller scale gravitational waves enter the horizon ear-
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lier and therefore have more time to decay (see Discussion in Section
1.8.5). In particular, the peak at ` ∼ 100 – named recombination bump–
will arise from gravitational waves entering the horizon around the
time of recombination. Focusing on CBB

` (see also Figure 2.9), we see
that larger-scale modes – which were superhorizon at recombina-
tion time – will have a suppressed effect on subhorizon physics: this
causes the decrease in the spectra towards smaller `.

As we anticipated in Section 2.1.7, also reionization has a remark-
able effect on polarization spectra: it produces bumps at ` . 10
thanks to the scattering of the quadrupole – which has been growing
since the time of decoupling due to the free-streaming of photons
– by the newly freed electrons. In the following, we will call this
feature of the CBB

` spectrum reionization bump (see also Figure 2.9).
Another effect of reionization is to lower the heights of the acous-
tic peaks in temperature and polarization spectra, as we already
discussed in Section 2.1.7.

The recombination and the reionization bumps represent the
most prominent features in the CBB

` spectrum, and will be subject of
further analysis and forecasts for future detection in Chapters 4 and
5.

2.4 Weak gravitational lensing of the CMB

We have shown in Section 2.3 that scalar perturbations are not ca-
pable of producing B-modes, while tensor ones can both generate
E- and B-type polarization. However, we also anticipated that this
is true only in absence of secondary effects and mentioned diffuse
Galactic foregrounds and the E-to-B leakage due to gravitational lens-
ing by the cosmological Large Scale Structure as the most prominent
contaminants to the primordial SGWB signal.

The application of gravitational lensing to CMB anisotropies
constitutes a subject with a vast literature; in this Section we will
introduce only the very basics of the topic, with a focus on the con-
taminating effect on B-modes.

Lensing – due to the density perturbation pattern intervening
between the LSS and us – is a nonlinear effect that remaps the pri-
mordial temperature and polarization of the CMB, displacing each
field from a direction θ at the LSS to a new direction θ + δθ (Bartel-
mann and Schneider, 2001):
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(2.83)
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where δθ = ∇ϕ is the deflection angle and ϕ is lensing potential, that
is the projection on the sphere of the integrated 3-dimensional grav-
itational potential Φ(x) along the line of sight n̂ between us and
the LSS. Restricting for simplicity to the flat-sky limit (Hu, 2000) 14, 14 For the extension to the full-sky

is also presented in Hu (2000) and
Challinor and Lewis (2005).

assuming the Born approximation holds true15 and defining the con-
15 That is, we can take the integral along
the unperturbed line of sight.

vergence field in terms of the lensing potential κ = −∇2φ/2, it can be
shown that the lensing of E-modes produces a B-mode component,
according to

CBB, lens
` =

∫ d2l′

(2π)2 W2(l, l′)CEE
l′ Cκκ

|l−l′ |, (2.84)

even if no B−mode component is initially present. Here the weight
with which different Fourier modes l, l′ contribute is defined as

W(l, l′) =
2l′ · (l− l′)
|l− l′|2 sin (2φl,l′), (2.85)

with φl,l′ being the angle between the modes l and l′ and Cκκ
|l−l′ | is the

convergence power spectrum.
A quick numerical evaluation of CBB, lens

` in the full-sky is achiev-
able using the CLASS or CAMB Boltzmann codes, and is shown in
Figure 2.9 as a red dot-dashed line, for the Planck 2018 cosmological
parameters (Planck Collaboration, 2018).

As evident from this Figure, the lensing B-mode contribution is
particularly important at smaller scales, and its amplitude is similar
or even greater than the primordial signal one, even at the recombina-
tion peak, for interesting values of r. Even though this lensing signal
has a well-understood amplitude which has already been measured
by current experiments (as we will mention later in this Section), its
the sample-variance associated to the lensed B-modes in the maps
that increases the noise when trying to measure primordial B-modes.
An efficient subtraction strategy appears therefore necessary: as we
will see in the next Subsection, the lensing contamination can be
cleaned adopting a delensing technique, that is by estimating at the
map level both the primordial E-mode contribution and the lensing
potential.
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Figure 2.9: Numerical evaluation of the
primordial CBB

` for the three values of
tensor-to-scalar ratio r = 0.06, 0.01, 0.001
(solid, dashed and dot-dashed grey
curves, respectively) and of CBB, lens

`
(red dot-dashed curve) using the CLASS

Boltzmann codes. We adopted the
Planck 2018 cosmological parameters
(Planck Collaboration, 2018).

The B-modes from gravitational lensing have been detected by
Planck (Planck Collaboration, 2016), BICEP2 (The BICEP/Keck Col-
laboration et al., 2018), POLARBEAR (POLARBEAR Collaboration
et al., 2017), the ACT (Louis et al., 2017) and the SPT experiments
(Hanson et al., 2013), while no detection exists yet for primordial
B-modes; we will delve more deeply into the current observational
status of CMB B-mode measurements in the next Chapter (in particu-
lar in Section 3.1).
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2.4.1 Lensing reconstruction and delensing

Several ways to reconstruct the lensing potential have been explored
in the literature (see for instance Diego-Palazuelos et al., 2020, for a
recent work comparing different techniques).

One possibility is represented by the exploitation of Large Scale
Structure tracers correlated with CMB lensing (Manzotti, 2018),
such as galaxy surveys (Namikawa et al., 2016), the Cosmic Infrared
Background (CIB) (Manzotti et al., 2017; Planck Collaboration, 2018e)
or through tomographic line intensity mapping (Karkare, 2019).

Another possibility is represented by reconstructing directly the
lensing potential from the CMB itself – which we will call internal
lensing reconstruction – taking advantage of the higher order statistics
introduced by lensing. One of the most common tool to achieve this
are the optimal quadratic estimators introduced in Hu and Okamoto
(2002b), which exploit the information stored in off-diagonal mode-
coupling in spherical harmonics space induced by lensing. Averaging
over pairs of harmonic space modes separated by a given scale allows
to estimate the amount of lensing on that scale: the accuracy of this
reconstruction procedure tipically increases as we increase the angu-
lar resolution and sensitivity of a CMB experiment simply because
this increases the number of smaller-scale modes it is possible to
measure.

Besides quadratic estimators, other techniques for internal lensing
reconstruction are represented by maximum likelihood (Hirata and
Seljak, 2003) and by optimal maximum a posteriori methods (Carron
and Lewis, 2017).

It is important to mention that the internal lensing reconstruction
– and therefore the internal delensing of B-modes – can be improved
in a significant way using an iterative approach (Hirata and Seljak,
2003; Smith et al., 2012): this technique can be intuitively understood
considering that, since the lensed B-mode represents a source of noise
for the lensing reconstruction estimator, the delensed B-mode (having
less power than the initial lensed B-mode) can be used in an iterative
way as input for a further round of delensing with lower statistical
errors.

A comparison of the delensing efficiency between the quadratic
estimators and the iterative delensing for the CMB-S4 experiment
(Abazajian et al., 2016) is also shown in Figure 2.10. In particular this
Figure shows the B-mode noise on scales ` . 300 as a function of the
noise level used in polarization-based lensing reconstruction for the
CMB-S4 experiment (Abazajian et al., 2016), which will be discussed
in more detail in Section 3.1.2. The case without any delensing
(purple line) is equivalent to an effective ∼ 5 µK − arcmin white
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Figure 2.10: The B-mode noise on
scales ` . 300 as a function of the
noise level used in polarization-based
lensing reconstruction for the CMB-S4

experiment (Abazajian et al., 2016).
The case without any delensing (pur-
ple line) is equivalent to an effective
∼ 5 µK − arcmin white noise level. The
blue and red curves represent the case
with delensing using quadratic esti-
mators and the one using an iterative
procedure (Hirata and Seljak, 2003),
respectively. From Abazajian et al.
(2016).

noise level. The blue and red curves represent instead the case with
delensing using quadratic estimators and the one using an iterative
procedure (Hirata and Seljak, 2003), respectively: from the slopes of
the curves we can see that, especially for lower levels of noise used
during reconstruction, the iterative strategy produces significantly
better results than the simple quadratic estimators.





3
Observations of the primordial gravitational wave back-
ground: where do we stand?

The production of a primordial SGWB is predicted by the inflationary paradigm (Section 1.8.5): this sce-
nario predicts indeed the generation of tensor and scalar perturbations by vacuum quantum fluctuations.
Scalar modes are known to be the seeds for the cosmic Large Scale Structure formation and have been
subject to thorough measurements, while primordial tensor modes still remain undetected. The importance
of their detection cannot be overestimated, since this primordial SGWB contains an unparalleled amount
of information on the very early Universe physics (see Section 1.8.5). Furthermore, if the standard single-
field slow-roll inflationary scenario is confirmed, a detection of the tensor-to-scalar ratio r would allow to
directly infer the energy scale of inflation (Eq. 1.128), allowing us to probe ultra-high energy scales, not
accessible by terrestrial particle colliders.

In this Chapter, we will give an overview of the current and future landscape of experiments that will
target the detection and characterization of the primordial SGWB. As we will discuss in much more depth
in Chapter 5, there are at least three methods – in three separate frequency ranges – to search a primordial
SGWB:

• the CMB B-mode experiments, at frequencies f ≈ 10−18 − 10−16 Hz,

• Pulsar Timing Arrays (PTA) at f ≈ 10−9 − 10−7 Hz,

• Laser and atomic interferometers at f ≈ 10−7 − 103 Hz.

In the following we are going to describe each of these three observational methods, and establish their
status at present time and their future perspectives, starting with the CMB B-mode experiments (Section
3.1). This Section will also introduce one of the major challenges – together with lensing (see Section 2.4.1)
– for detection of the primordial signal by CMB experiments, that is the contamination due to Galactic
diffuse foregrounds, the most prominent ones being the thermal emission of dust grains and the syn-
chrotron radiation from cosmic ray electrons spiraling in the magnetic fied of our Galaxy (Section 3.1.3).
We will then describe in Section 3.2 the possibilities offered by some of the already operating or planned
PTA experiments and laser (and atomic) interferometers. Similarly to what happens in the CMB case, also
direct detection experiments can suffer from the presence of an astrophysical foreground: in this case, the
contamination of the primordial SGWB signal is due to the astrophysical SGWB emitted by populations of
compact objects, such as black-hole binaries (BBH), neutron-star binaries (BNS), Galactic and Extragalactic white
dwarfs (GWD and EGWD), massive black hole binaries (MBHB) and others. Section 3.2.6 will be dedicated
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to a brief description of the contribution of these astrophysical foreground sources for each of the direct
detection experiments we consider.

This Chapter is based on the following reviews Christensen (2019); Caprini and Figueroa (2018); Ro-
mano and Cornish (2017), to which we refer the reader for a more detailed and comprehensive treatment.

3.1 Status of CMB B-mode experiments

In this Section, we will discuss the current status of CMB measure-
ments, starting with a concise summary of the status of temperature
anisotropies, E-type polarization and lensing (Section 3.1.1), present-
ing also the current upper limits available on the primordial B-modes.
We will then introduce some representatives of the current and next-
generation B-mode probes (Section 3.1.2), which will be the subject of
further analysis in Chapters 4 and 5. Finally, we will outline the situa-
tion concerning the astrophysical foregrounds contamination, which
represent a formidable antagonist in all B-mode searches (Section
3.1.3).

3.1.1 CMB constraints on temperature, E- and B-modes and lensing

Temperature anisotropies, as we anticipated in Section 1.6, were
first detected by the COBE satellite experiment (Smoot et al., 1992);
currently the best measurements on the their power spectrum come
from the data from the the SPT (Calabrese et al., 2013), the ACT
(Louis et al., 2017; Choi et al., 2020) and the Planck satellite (Planck
Collaboration, 2018) experiments (Figure 3.1).

For what concerns the EE and TE polarization spectra, the current
constraints are given by data from Planck (Planck Collaboration,
2018), BICEP2-Keck (Ade et al., 2016a), ACTPol (Louis et al., 2017;
Choi et al., 2020), SPTPol (Henning et al., 2018) and WMAP (Hinshaw
et al., 2013), (Figures 3.2 and 3.3).

The gravitational lensing potential power spectrum has also been
measured by several CMB experiments, including the Planck satellite
(Planck Collaboration, 2018e), the BICEP2 (Ade et al., 2016b), PO-
LARBEAR (POLARBEAR Collaboration, 2020, 2014), ACT (Das et al.,
2014; Sherwin et al., 2017) and SPT (van Engelen et al., 2012; Simard
et al., 2018; Wu et al., 2019) experiments (Figure 3.4).

As we mentioned earlier, no detection exists yet of B-type polariza-
tion associated to primordial tensor modes; however, B-modes from
lensing (Section 2.4) have been already measured by Planck (Planck
Collaboration, 2016), BICEP2 (The BICEP/Keck Collaboration et al.,
2018), POLARBEAR (POLARBEAR Collaboration et al., 2017), ACT
(Louis et al., 2017) and SPT (Hanson et al., 2013) (Figure 3.5). Further-
more, the joint analysis of Planck and BICEP2-Keck data allowed to
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Figure 3.1: Current constraints on the
TT spectrum from the SPT, ACT and
Planck experiments. Also shown is the
theoretical spectrum computed from
Planck best-fit ΛCDM cosmology. From
https://lambda.gsfc.nasa.gov/.

Figure 3.2: Current constraints on
the EE spectrum from the SPTPol,
ACTPOl, WMAP, BICEP2-Keck and
Planck experiments. From https:

//lambda.gsfc.nasa.gov/.

https://lambda.gsfc.nasa.gov/
https://lambda.gsfc.nasa.gov/
https://lambda.gsfc.nasa.gov/
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Figure 3.3: Current constraints on
the TE spectrum from the SPTPol,
ACTPOl, WMAP, BICEP2-Keck and
Planck experiments. From https:

//lambda.gsfc.nasa.gov/.

Figure 3.4: Current constraints on the
gravitational lensing power spectrum
from the SPT, SPTPol, ACT, ACTPOl,
BICEP2-Keck, POLARBEAR and
Planck experiments. From https:

//lambda.gsfc.nasa.gov/.

https://lambda.gsfc.nasa.gov/
https://lambda.gsfc.nasa.gov/
https://lambda.gsfc.nasa.gov/
https://lambda.gsfc.nasa.gov/
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put upper limits on the amplitude of primordial tensor perturbations
at the pivot-scale k0 = 0.05 Mpc−1, that is r0.05 < 0.06 at 95% C.L.
(BICEP2 and Planck Collaborations).

A detection of primordial B-modes was initially claimed by the
BICEP2 experiment (Ade et al., 2014), but – after further analysis –
the detection was not confirmed due to possible contamination from
diffuse Galactic foregrounds (BICEP2 and Planck Collaborations).
The impact of CMB foregrounds on primordial B-modes estimates
can indeed be very significant, as we will later discuss in Section
3.1.3.

Figure 3.5: Current constraints on
the BB spectrum from the from the
POLARBEAR, SPTPol, BICEP2-Keck,
Planck experiments and from the
combined BICEP2-Keck and Planck
data. See text for references. From
https://lambda.gsfc.nasa.gov/.

3.1.2 B-mode probes

The primordial SGWB is known to imprint its unique signature
in the B-mode polarization of the CMB (see Section 2.3), and this
represents currently the most promising channel for a near future
detection. Driven by these motivations, numerous CMB B-mode
experiments are currently scanning the microwave sky in search
of primordial B-modes, among them the the BICEP2/Keck Array
(The BICEP/Keck Collaboration et al., 2018), POLARBEAR/Simons
Array (POLARBEAR Collaboration et al., 2017; Suzuki et al., 2016),
the Atacama Cosmology Telescope (ACT) (Louis et al., 2017), the
South Pole Telescope (SPT) (Hanson et al., 2013), the Cosmology

https://lambda.gsfc.nasa.gov/
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Large Angular Scale Surveyor (CLASS) (Dahal et al., 2020), the Q and
U Bolometric Interferometer for Cosmology (QUBIC) (Tartari et al.,
2016) and the Large Scale Polarization Explorer (LSPE) (Addamo
et al., 2020).

Furthermore, the next decade will see a great increase in the ef-
forts for detection with a new generation of experiments from the
ground, including the Simons Observatory (SO) (The Simons Ob-
servatory Collaboration et al., 2018; Lee et al., 2019), the South Pole
Observatory (SPO) and the Stage-IV network of ground-based obser-
vatories (CMB-S4) (Abazajian et al., 2016; Abazajian et al., 2019b,a).
The other very promising strategy for detection is represented by
space-borne experiments: recently, the Japan Aerospace Exploration
Agency has selected the LiteBIRD1 (Hazumi et al., 2019; Sugai et al., 1 See also the link https://ntrs.nasa.

gov/search.jsp?R=20190032161.
2020) as the second Strategic Large-class mission.

In the following, we will briefly describe the design of the Lite-
BIRD, SO and CMB-S4 experiments, since in Chapters 4 and 5 we
will perform forecasts based on the specifications for these experi-
ments. Note that, since these three experiments are under current
development, the design and specifications reported here may be
subject to rapid change in the near future.

The LiteBIRD satellite

One of the main advantage of space missions over ground-based
telescopes is represented by their access to the largest angular scales
(multipoles ` ≈ 2− 30). In fact, those scales are in general outside the
reach of ground-based experiments due to the presence of 1/ f noise
due to the atmospheric contamination (see Section 4.1.2).

Figure 3.6: Schematic design for the
LiteBIRD satellite. From Sugai et al.
(2020).

The LiteBIRD satellite is indeed designed in order to target not

https://ntrs.nasa.gov/search.jsp?R=20190032161
https://ntrs.nasa.gov/search.jsp?R=20190032161
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only the scales where the recombination bump lies (in the range ` ≈
11− 200, with a maximum around ` ∼ 80), but also the very large
scales (` ≈ 2− 11), where a peak in the B-mode primordial signal –
the reionization bump – is expected due to cosmic reionization physics
(see Section 2.3.2).

In this respect, the full-sky measurement of LiteBIRD – including
these largest of scales – will be complementary to the measurements
of ground-based experiments such as SO, SPO and CMB-S4. In fact,
the latter will focus on deep observations of low-foregrounds sky
patches, reaching smaller scales with respect to the LiteBIRD satellite.

This space mission – which will observe the full-sky from the sec-
ond Sun-Earth Lagrangian point L2 – will feature more than 4000
transition-edge sensor bolometers (TES), divided between three
5 K-cooled telescopes: the Low-, Medium- and High-Frequency Tele-
scopes (LFT, MFT and HFT respectively). Each telescope will also be
supplied with rotating half-wave plates as the first optical element, in
order to separate the CMB and the instrumental polarization compo-
nents and to suppress the instrumental 1/ f noise. LiteBIRD will have
in total fifteen frequency channels (from 40 to 402 GHz), distributed
among these three telescopes: as we will see in Section 4.3.1, this
wide frequency coverage increases the capability of LiteBIRD to sepa-
rate the Galactic foreground contamination from the primordial CMB
signal. We report in Table 5.1, the sensitivities and angular resolution
for each of these 15 frequency channels, for the most updated design
configuration under study at the moment of writing.

The primary objective of the LiteBIRD mission – among other
scientific objectives, such as measuring the optical depth to reion-
ization to cosmic variance-limited error and others (see Hazumi
et al. (2019)) – will be to the detection of the tensor-to-scalar ratio
with an uncertainty sigmar < 0.001 (Sugai et al., 2020), which is the
condition defining the full success of the mission. Even in absence
of a detection, the upper limit set by LiteBIRD will have important
consequences in terms of disfavoring several well-motivated inflation
models.

It is worth mentioning here again the complementarity between
the ground experiments and LiteBIRD: this satellite will indeed
provide a full-sky and multi-frequency measurement of the fore-
ground sky, which could be very useful for the foreground-cleaning
of ground-based observations. On the other hand, the high-resolution
lensing measurements by ground-based probes could be useful to
delens LiteBIRD data (Diego-Palazuelos et al., 2020) (see also Section
2.4.1).
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The Simons Observatory

The ground-based SO is currently being built in the Atacama Desert
at an altitude of about 5200 m. It will feature about 60000 detectors,
divided among its four telescopes, that is one Large Aperture Tele-
scope (LAT) with a 6 m-aperture primary mirror and three refracting
0.4 m Small Aperture Telescopes (SATs). Both LAT and SATs will
provide multifrequency measurements of the CMB sky in six bands,
from 27 to 280 GHz.

1
5

 m

LATR

Elevation structure

Receiver cabin

Azimuth bearing

Optical path

M1

M2

Figure 3.7: Schematic design for the
SO LAT telescope. From Galitzki et al.
(2018).

SAT

SAT Array

SAT ground screen

Figure 3.8: Schematic design for the
SO SAT telescope. From Galitzki et al.
(2018).

The SATs are optimized for a deep survey of larger angular scales
(about ∼ 1°) polarization over ∼ 10% of the sky: they will be em-
ployed therefore to search for primordial B-modes (see Table 4.1 for
the specifications used in this Thesis).

The LAT will provide instead high angular resolution measure-
ments (up to ∼ 1 arcmin) over ∼ 40% of the sky: it will target the
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smaller angular scale of temperature and polarization spectra, the
lensing, the SZ effects, the primordial bispectrum and extragalactic
sources. Notably, the lensing measurement obtained from the LAT
could also be used to delens the SATs (see Section 2.4.1).

SO will target, among many other scientific objectives (including
measurements of the scalar perturbations spectrum, non-Gaussianity,
the neutrino mass and others, see Lee et al., 2019), a value of σr =

0.003 for the baseline configuration (or σr = 0.002 for the goal con-
figuration) for an r = 0 model. Such a sensitivity would allow a
measurement at least 3σ for a model with r ≥ 0.01.

CMB-S4

CMB-S4 will be composed of a collection of large and small tele-
scopes situated at the South Pole and in the Atacama Desert. The
South Pole is characterized by a particularly stable atmosphere, a lo-
cation ideal for deep observations using small telescopes, in order to
search for primordial B-modes. On the other hand, the Atacama site
is – thanks to its height and its very dry atmosphere – the preferred
location for conducting an ∼ 70− 80% fraction of the sky necessary
for one of the other science cases of the experiment, that is measuring
the contribution of light relic particles to the effective number of
relativistic species in the early Universe (Ne f f ).

Figure 3.9: Schematic design for
the CMB-S4 SAT telescopes. From
Abazajian et al. (2019b).

Considering the peculiarities of each of the two sites, the CMB-S4

experiment will perform two different surveys: a low-resolution
ultra-deep one (with noise level ≤ 1 µK − arcmin) dedicated to B-
mode searches and a deep and wide (with noise ∼ 1 µK − arcmin
and resolution ≤ 1.5 arcmin) one dedicated to measuring Ne f f . The
former survey will observe a low-foreground ∼ 3% patch of the sky
(extensible to a larger fraction if the primordial SGWB is discovered)
from the South pole, using fourteen 0.55 m refractor SATs observing
frequencies ≤ 155 GHz, other four 0.55 m SATs at 220− 270GHz and
a 6-m LAT observing seven frequency bands from 20 to 278 GHz
devoted to low-resolution B-mode measurements for systematics
contamination control and high-resolution (∼ 1.5 arcmin) measure-
ments for delensing. On the other hand, the deep and wide survey
will be conducted from the Atacama site and will feature two 6-m
LATs covering eight frequency bands from 30 to 278 GHz. In total,
the number of TES detectors used in CMB-S4 will be one order of
magnitude greater than SO, reaching about 511000 units.

Concerning the target sensitivity of CMB-S4 to primordial GWs,
this experiment will aim at detecting r ≥ 0.003 at more than 5σ. In
absence of a detection, this experiment will be able to push the upper
limit to r ≤ 0.001 at 95% C.L. (Abazajian et al., 2019b),



94 towards precision measurements of the primordial power spectrum of gravitational

waves: combining b-mode cosmic microwave background and direct gravitational waves

observations

3.1.3 The foregrounds challenge for B-mode experiments

As we mentioned frequently above, astrophysical foregrounds consti-
tute one of the main challenges for the primordial SGWB detection
using CMB B-modes, and represent one of the major limiting fac-
tors for achieving the r ∼ 0.001 level. These foregrounds produce a
B-mode signal of secondary origin, which contaminates the sought-
after primordial one, making it necessary to resort to component
separation strategies in order to separate the two contributions or
to marginalise over them at the power spectrum or cosmological
parameters estimation stage. Such strategies require some previous
knowledge on the spectral shape of the foregrounds, on their spatial
fluctuations and on their intensity and polarization maps.

Concerning, component separation algorithms – as we will detail
in Section 4.3 for the specific case of a maximum-likelihood parametric
component separation approach – they allow in general to subtract the
foreground and estimate the primordial contribution, at the price of a
residual noise contribution limiting the sensitivity of the experiment.

In this Section, we will briefly review the main mechanisms pro-
ducing astrophysical foregrounds, whose impact will be relevant for
the B-mode probes will we consider later in this Thesis (Chapters
4 and 5). We will start with the two most important foregrounds
sources, namely synchrotron and thermal dust emissions, and then
we will move to secondary contaminants, such as spinning and mag-
netic dust, carbon monoxide and others, see for a review Dickinson
(2016).

Synchrotron

One of the two strongest contributions to polarized foregrounds is
represented by the synchrotron radiation emitted by cosmic ray elec-
trons accelerated by the Galactic magnetic field. The emission law
is thus governed by the strength of the magnetic field, the number
and the energy spectrum of the cosmic ray electrons and can there-
fore vary across the sky. At first approximation, the Spectral Energy
Distribution (SED) of synchrotron radiation is given by a (curved)
power-law (see Farsian et al., 2020, and references therein)

Isync(n̂, ν) = Async(n̂)
(

ν

νs

)βs(n̂)+Cs(n̂) ln(ν/νs)

, (3.1)

where νs is the pivot frequency, Async the amplitude, βs the spectral
index, Cs the curvature and n̂ the direction of observation.

The spectral index for synchrotron has been found to vary in the
range −2.5 ≤ βs ≤ −4.4 with an average value βs ' −3.25± 0.15,
combining polarization observations from the S-band Polarization



observations of the primordial gravitational wave background: where do we stand? 95

All Sky Survey (S-PASS), Planck and WMAP (Krachmalnicoff et al.,
2018). Concerning the synchrotron curvature, no evidence as been
found yet within current precision (see Krachmalnicoff et al., 2018,
and references therein).

The polarization fraction of synchrotron at high Galactic latitude is
between 10% and 40% (see Dickinson, 2016, and references therein),
and therefore this foreground has an important impact on B-mode
searches. This is also highligthed from Figure 3.10, comparing the
power spectrum of synchrotron at 95 GHz (orange band) with the one
of primordial B-modes with r = 0.1, 0.01 and 0.001 (grey curves) and
lensing B-modes (blue curve). The upper edge of the synchrotron
band has been obtained from power-law fits of Planck data on the
largest sky fraction considered in the analysis (∼ 70%), while the
lower edge comes from the smallest sky fraction analyzed in Krach-
malnicoff et al. (2018).

Thermal dust

The other main contribution to B-mode foregrounds comes from
the thermal emission of interstellar dust grains (with sizes ranging
from a fraction of µm to 1 nm) heated by stellar radiation, with a
temperature tipically around ∼ 20 K. Their emission depends on
the density, temperature, size and chemical composition of the dust
grains, and thus it is spatially variable across the sky.

The thermal dust SED is tipically approximated by the one-
component modified black-body (or grey body) (see Farsian et al.,
2020, and references therein)

Idust(n̂, ν) = Adust(n̂)
(

ν

νd

)βd(n̂)+1 e
hνd

kTd(n̂) − 1

e
hν

kTd(n̂) − 1
, (3.2)

where βd is the spectral index, Td is the dust temperature and Adust

the amplitude.
As we anticipated above, the emission from thermal dust can

represent a significant contamination for CMB polarization: the mean
polarization fraction at high Galactic latitude can reach up to 20%.
Again Figure 3.10 highlights the importance of the dust foreground
with respect to the primordial B-mode signal.

Recent observations by the Planck satellite (Planck Collabora-
tion, 2018b) show that the dust SED is well-fitted by the modified
blackbody in Eq. 3.2, and point towards a value of Td ≈ 19.6 K and
βd = 1.53± 0.02.
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Figure 3.10: Comparison bewteen
the power spectrum of synchrotron
at 95 GHz (orange band), dust at
95 GHz (green band) and at 150 GHz
with the one of primordial B-modes
with r = 0.1, 0.01 and 0.001 (grey
curves) and lensing B-modes (blue
curve). The upper edge of the bands
has been obtained from power-law
fits of Planck data on the largest sky
fraction considered in the analysis
(∼ 70%), while the lower edge comes
from the smallest analyzed sky fraction
(∼ 24%). Note that the lower edge for
synchrotron comes from the smallest
sky fraction analyzed in Krachmalnicoff
et al. (2018). From Planck Collaboration
(2018b).

Spinning and magnetic dust

Another contribution to polarized foregrounds could come from
the rotation of ∼ 1 nm dust grains and molecules at GHz frequen-
cies – the so-called spinning dust – possessing an electric dipole and
thus emitting dipole radiation (Draine and Lazarian, 1998). Since
the emission is dominated by the smallest grains – which are the
easiest to spin – the spectrum will feature a peak typically around
∼ 30 GHz. The polarization fraction of spinning dust is expected not
to exceed . 1% (Dickinson et al., 2018) at frequencies relevant for
CMB polarization experiments, making it a good candidate as the
source of the Anomalous Microwave Emission (AME)2. Because of 2 AME is a diffuse Galactic radiation

component, that cannot be explained
by synchrotron, thermal-dust or free-
free emission, and that has been
repeatedly observed in the frequency
range ∼ 10− 60GHz. For a review see
Dickinson et al. (2018).

such a small polarization fraction, spinning dust it is not expected to
represent a major polarized foreground. Nevertheless, its proper sub-
traction could be a necessary step for high-sensitivity future B-mode
experiments searching for r ∼ 0.001.

An additional source of contamination could reside in the mag-
netic dipole radiation due dust grains, ferromagnetic and ferrimag-
netic materials in the interstellar medium. The spectrum of this
magnetic dust emission is similar to thermal dust, and is character-
ized by a temperature of the order of tens of K, making difficult to
disentangle it from the thermal dust emission. Contrary to spinning
dust, magnetic dust could be highly polarized: theoretical studies
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indicate a polarization fraction ∼ 10%− 15% (Dickinson, 2016), which
could be an issue for B-mode searches.

Carbon Monoxide (CO) lines

The rotational transition lines of the CO molecule in our Galaxy
could contaminate significantly the CMB polarization at the corre-
sponding frequencies (Puglisi et al., 2017). Despite the moderate
polarization level (between ∼ 0.5%− 2.5% (Puglisi et al., 2017)) gen-
erated by the interaction of the Galactic magnetic field and the CO
molecule magnetic moment, CO lines could cause significant system-
atic errors in future B-mode searches. Thus, they should therefore
carefully accounted for when choosing the bandpasses, in order to
avoid the strongest lines (Dickinson, 2016).

Free-Free emission

Free electrons accelerated in the Coulomb field of ions (tipically
protons), emit free-free radiation. The polarization fraction for this
Galactic component is expected to be� 1% at high Galactic lat-
itude (Dickinson, 2016), therefore it is not expected to contribute
significantly to polarized foregrounds.

Point sources

Extragalactic sources, such as galaxies, can also contribute to po-
larized foregrounds, mainly in the infrared and radio bands. Some
of the individual sources – usually called point sources – can be re-
solved and masked (Collaboration, 2016), while the rest of unresolved
sources will form a polarized diffuse foreground with a few percent
of polarization fraction; however, this diffuse polarized foreground
can affect only small scales and should not represent a problem for
B-mode searches (Dickinson, 2016).

Cosmic Infrared Background (CIB)

The CIB – formed by many individual galaxies – can also contribute
to polarized foregrounds with a low level (. 1%) of polarization: it
has been shown that it does not represent a problematic foreground
for B-mode searches at frequencies below 353 GHz (Feng and Holder,
2020).

3.2 Beyond B-modes: PTA and laser interferometers

This Section will be structured similarly to Section 3.1 for the CMB:
after having summarized the current status and the observational per-
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spectives (Sections 3.2.1 and 3.2.2), we will describe in broad terms
some of the current and planned GW laser and atomic interferom-
eters (Sections 3.2.3 and 3.2.4) and PTA surveys (Section 3.2.5), for
which in Chapter 5 we will provide forecasts regarding the detection
of an inflationary SGWB. Section 3.2.6 will be dedicated instead to
listing the relevant sources of astrophysical foregrounds for these
direct detection experiments (see also Section 5.4).

3.2.1 The landscape of direct GW observations

Although the existence of gravitational radiation had already been
confirmed in 1982 by the measurement of the rate of orbital decay
due to energy-loss in GWs in a neutron star binary (Taylor and Weis-
berg, 1982), the first direct observation has been performed only in
2016 by the Advanced LIGO (Harry, 2010) interferometer for a bi-
nary black-hole system (Abbott et al., 2016). Shortly after that, the
first direct observation of GWs produced by a binary neutron stars
system (Abbott et al., 2017) was carried out in collaboration with
the Advanced Virgo interferometer (Acernese et al., 2015). With
these discoveries, a new channel for astronomical observation was
inaugurated, opening up, among numerous other opportunities, the
possibility to observe an SGWB produced by several possible sources.
In this Thesis, we will be concerned with an SGWB of inflationary
origin; however, there is a plethora of physical phenomena which
could in principle produce an SGWB, such as cosmic defects, first-
order phase transitions in the early Universe and preheating (see
Caprini and Figueroa, 2018, for a comprehensive review). On top of
that, several astrophysical sources, including neutron star binaries,
stellar-mass and massive black hole binaries and white dwarf bina-
ries among others (see Christensen, 2019, for a review), can produce
an SGWB of astrophysical origin. We will see in Section 3.2.6 that this
astrophysical background could represent a foreground in searches of
the primordial SGWB.

As anticipated in the introduction of this Chapter, there are at least
two ways to detect an SGWB in a “direct” manner – so called in order
to distinguish it from the “indirect” searches through CMB B-modes
or BBN, among others methods – that is PTA and ground-based or
space-borne laser (and atomic) interfometers.

For what concerns PTA, the current generation of experiments –
placing upper limits on the SGWB – includes the Nanohertz Obser-
vatory for Gravitational Waves (NANOGrav) (Arzoumanian et al.,
2016, 2018), the European PTA (EPTA) (Lentati et al., 2015b) and the
Parkes PTA (PPTA) (Yardley et al., 2011). The next generation of PTA
surveys will feature, instead the Square Kilometre Array (SKA) (Welt-
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man et al., 2020), probing the nano-Hertz band (≈ 10−9 − 10−7 Hz).
Ground-based laser interferometers tipically operate between a

few Hertz and a few kilo-Hertz; at the moment Advanced LIGO
(Harry, 2010), Advanced VIRGO (Acernese et al., 2015) and KAGRA
(Somiya, 2012) are active, while the future generation will comprise
the Cosmic Explorer (CE) (Reitze et al., 2019) and the Einstein Tele-
scope (ET) (Hild et al., 2011).

Concerning observations from space, the Laser Interferometer
Space Antenna (LISA) (Baker et al., 2019; Smith and Caldwell, 2019)
will operate in the milli-Hertz band and is scheduled for launch in
the early/mid 2030s. Furthermore, a wide array of space missions
has been proposed for the 2040s, including the µAres (Sesana et al.,
2019) laser interferometer for the micro-Hertz band, the Decihertz
Observatory (DO) (Sedda et al., 2019) and the atomic interferometer
Atomic Experiment for Dark Matter and Gravity Exploration in Space
(AEDGE) (El-Neaj et al., 2019), both operating in the deci-Hertz band.
We mention also the proposed Advanced Millihertz Gravitational-
wave Observatory (AMIGO) (Baibhav et al., 2019) in the milli-Hertz
band, which could be considered at first approximation an enhanced
version of LISA.

This vast landscape of experiments is completed by two future
ultra-sensitive space interferometers, the Big Bang Observer (BBO)
(Crowder and Cornish, 2005b; Smith and Caldwell, 2017), the Deci-
hertz Interferometer Gravitational wave Observatory (DECIGO) (Seto
et al., 2001; Kawamura et al., 2020), both targeting the deci-Hertz
band.

3.2.2 Observational perspectives for the primordial SGWB

We discuss here the current upper limits on the SGWB, and the
perspectives of present and future observatories.

Upper limits

At the time of writing, current laser interferometers and PTA survey
have not observed yet an SGWB, neither of cosmological nor of
astrophysical origin. However – during their second observing run
– the Advanced LIGO and Virgo collaborations have managed to
put upper limits on the energy density of such a background in the
∼ 20− 100 Hz frequency band, corresponding to ΩGW h2 < 6.0× 10−8

at 95% C.L. for a scale-invariant background and ΩGW h2 < 4.8× 10−8

at 25 Hz for a background due to compact binaries (Abbott et al.,
2019) (which, as we will see in Section 3.2.6 is expected to be a power-
law with spectral index ≈ 2/3).

Current PTA survey were able to provide upper limits in the band
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∼ 10−9 − 10−7 Hz as well: EPTA found ΩGW h2 < 1.1× 10−9 at a
frequency 2.8 nHz (Lentati et al., 2015b); NANOGRAV found instead
ΩGW h2 < 4.2× 10−10 at a frequency 3.3 nHz (Arzoumanian et al.,
2016) ; finally, PPTA found ΩGW h2 < 2.3 × 10−10 at a frequency
6.3 nHz (Lasky et al., 2016a).

There are several other methods that allow to search for a SGWB
(see Christensen, 2019; Romano and Cornish, 2017, for reviews). This
includes the Doppler tracking of spacecraft (in which the Earth and a
spacecraft are considered as free test-masses), which gives a current
best upper limit of ΩGW < 0.03 at a frequency 1.2 µHz from the
Cassini data (Christensen, 2019).

We mention here also the possibility to put indirect upper limits
(besides the ones provided by CMB B-modes), using BBN: in fact
a too large GW energy density would affect the cosmic expansion
rate and induce a decrease in the amount of helium produced from
deuterium (see Section 1.5), changing the observed element ratios.
This fact, combined with CMB and BAO observations, can be used to
put a limit ΩGW ≤ 3.8× 10−6 at freqencies & 10−15 Hz (Pagano et al.,
2016; Lasky et al., 2016a).

Future perspectives for an inflationary SGWB

At the moment, the most promising method for a near-future detec-
tion of an SGWB of inflationary origin is represented by the CMB
B-mode experiments scheduled for the next decade (see Chapter
5). This is because, given the current upper limits provided by the
combined Planck and BICEP2-Keck data (BICEP2 and Planck Col-
laborations), and assuming a standard single-field slow-roll scenario
for inflation, the possibilities for detection of a primordial SGWB at
solar system scales are severely limited by the almost scale-invariant
nature of the ΩGW spectrum (Figure 1.11), at least with detectors now
available or scheduled within the next decade.

Nonetheless, there are several very compelling reasons to pursue
the quest for a primordial SGWB also with direct detection exper-
iments. Several theoretical models predict a blue-tilted or peaked
primordial SGWB spectrum at higher frequencies (see Caprini and
Figueroa, 2018; Guzzetti et al., 2016; Bartolo et al., 2016, and refer-
ences therein), making a detection with PTA and laser interferome-
ters frequencies feasible even for experiments planned for the next
decade. We explore this possibility in Chapter 5, in the framework of
the spectator axion-SU(2) inflation model.

Furthermore, in the event that a primordial SGWB, compatible
with the single-field slow-roll inflation prediction, is discovered by
the next-decade CMB B-mode experiments, this would establish a
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clear goal for ultra-sensitive missions planned for the decade 2030-
2040 or later, such as DECIGO and BBO.

3.2.3 Laser interferometers

The detection principle for laser interferometers is quite simple (see
Appendix A or Romano and Cornish (2017) for a review): as a GW
is passing, it changes the proper distance between the two freely
moving test-masses at the ends of the arm of the interferometer, pro-
ducing phase-shifts in the laser beams traveling back-and-forth along
the arm. As we will compute in Appendix A (see also the review
Romano and Cornish, 2017), the specific design of the interferometer
is one of the factors determining its frequency response.

An SGWB signal – differently from other GW signals like transient
(i.e. binary inspirals or burst events) or continuous periodic ones
from pulsars – will manifest itself only as an extra source of noise in
a single detector, making impossible to distinguish the two compo-
nents if the signal is smaller than the instrumental noise, as typically
happens for a primordial SGWB. Nonetheless, if the signal is greater
or comparable to the instrumental noise, a subtraction strategy based
on the different spectral shapes of the two may be possible.

However, a much more effective method has been devised in
order to attempt the detection of an SGWB: the cross-correlation of the
outputs of two or more detectors (see Section 5.3.1).

Another possible strategy for detection using a single interferom-
eter – adopted for instance by the LISA mission – is the construction
of null channels, that is specific combinations of the interferometer
outputs that allow to measure the detector noise.

In the following, we will briefly describe the design and capabili-
ties of each laser interferometer we will consider in Chapter 5 for our
forecasts on the primordial SGWB, starting from the LISA mission.

LISA

Figure 3.11: Schematic design of the
LISA mission. From https://www.esa.

int/Science_Exploration/Space_

Science/LISA.

Low-frequency GW observations from Earth-based detectors are
strongly limited, below ∼ 1 Hz, by the presence of seismic noise.
Space missions, such as LISA and others, are therefore required to
explore frequencies below this value. In particular, the LISA mission
will be able to probe the band ≈ 0.1 mHz− 0.1 Hz and search an
SGWB up to ΩGW ∼ 10−13 in this band.

LISA will consist of three spacecrafts, each on hosting two test-
masses, disposed in an equilateral triangle configuration with arm
lenght 2.5 Gm and connected by six laser links, two traveling in
opposite directions along each each arm: this is due to the fact that,
because of the distance between spacecrafts, the direct reflection

https://www.esa.int/Science_Exploration/Space_Science/LISA
https://www.esa.int/Science_Exploration/Space_Science/LISA
https://www.esa.int/Science_Exploration/Space_Science/LISA
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typical of a Michelson interferometer is not possible, so phase-locking
between the arriving and leaving laser signal has to be performed
instead.

Figure 3.12: A more detailed schematic
representation of the LISA mission,
showing the laser links (green and
yellow lines) traveling in opposite
directions inside each interferometer
arm of lenght 2.5 Gm and the position
of test-masses and lasers inside each
of the three spacecrafts. From Schuldt
(2018).

As we anticipated above, this particular configuration permits the
construction of the so-called Time Delay Interferometry (TDI) signals
(see Appendix A), allowing to measure the instrumental noise at
the output of the interferomter and thus to disentangle it from the
sought-after SGWB signal, even in absence of cross-correlation with
another instrument.

LISA will perform an Heliocentric orbit at a distance of about
1 AU from the Sun, trailing Earth by 20° and inclined by 60° with
respect to the ecliptic (Figure 3.13).

The LISA mission is now a Phase A mission for European Space
Agency (ESA) with ESA state members and NASA contributions,
scheduled for launch in the early or mid 2030s (Baker et al., 2019). It
is worth mentioning the extraordinary success obtained by two flight
demonstrations, namely the LISA Pathfinder mission (2015-2017)
and the Gravity Recovery And Climate Explorer Follow-On mission
(2018-), launched in order to test the readiness of LISA’s technology.

DO

DO is a proposed post-LISA mission (2035-2050) that will probe the
yet unobserved deci-hertz band (0.01− 1 Hz). Among the many other
goals of its rich science case, including observations of intermediate
mass black holes and meausurements of the eccentricity of binary
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19 – 23°
60°
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Figure 3.13: Orbit for the LISA mission.
From Baker et al. (2019).

black holes, it will target a SGWB up to an amplitude ΩGW h2 ∼
10−14 − 10−15, depending on the choice of its actual design, between
the two proposed alternatives: DO Optimal or DO Conservative.

Both the Optimal and Conservative options have been proposed
as LISA-like missions with shorter arm lenght (108 m) and one order
of magnitude improvement in acceleration noise with respect to
LISA. However, the DO Conservative design will improveover LISA
by adopting smaller wavelenght lasers (532 nm instead of 1064 nm
used for LISA), higher laser power (10 W instead of 2 W) and larger
diameter telescopes (1 m instead of 0.3 m). The DO Optimal design
further improves over the Conservative one by using 30 W-lasers and
2 m-telescopes.

µAres

Also µAres is a proposed mission for the 2040s decade: it will probe
the unexplored region µHz region (≈ 10−7 − 10−2 Hz), between
PTA survey and LISA. The science case for this mission is extremely
rich and encompasses massive black holes physics and astrophysics,
Galactic white dwarfs and binary black holes, extreme mass ration
ispirals (EMRIs) among others, and also SGWBs, both of cosmologi-
cal and astrophysical (Galactic and Extragalactic binary white dwarfs,
massive black hole binaries, Extragalactic binary black holes and neu-
tron stars) origin. In particular, it will target a cosmological SWGB at
the level of ΩGW h2 ∼ 6× 10−17 at 2× 10−4Hz.

The µAres mission will be composed by two identical equilateral
triangle LISA-like constellations, with longer arms L = 430× 109 m. In
this case, one of the two triangular configurations would be trailing
Mars orbit within the ecliptic plane while the other would be in the
same orbit but 90° tilted with respect to the ecliptic plane (Figure
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Figure 3.14: Configuration of the µAres
mission. From Sesana et al. (2019).

3.14).

BBO

BBO is another proposed post-LISA space mission: it will be an ultra-
sensitive experiment operating in the band ≈ 0.03− 3 Hz, capable
of probing a primordial SGWB down to ΩGW ∼ 10−17 with minimal
contamination from astrophysical foregrounds (see Sections 3.2.6 and
5.4).

Figure 3.15: The BBO hexagram con-
figuration. From Romano and Cornish
(2017).

BBO will be composed by four independent equilateral triangle
LISA-like constellations with arms of 5× 107 m and very powerful
lasers (∼ 500 W) in Heliocentric orbit at 1 AU distance from the Sun
(Figure 3.16): of these four, two triangular constellations will be copla-
nar and rotated by 180° one with respect to the other, forming the
so-called hexagram configuration (Figure 3.15), while the other two
will be on the same orbit, but ahead and behind the BBO-hexagram
by 120°.

This particular configuration has two main advantages. First, the
BBO-hexagram allows ultra-sensitive measurements of the SGWB
by cross-correlation of the outputs of the two co-located instruments.
Second, the two single interferometers grant a high angular resolu-
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tion, necessary for the subtraction of the foreground generated in the
BBO band by binary black holes and neutron stars (Section 3.2.6).

Figure 3.16: Configuration of the four
BBO constellations. From Cutler and
Harms (2006).

DECIGO

The concept of the proposed DECIGO mission is very similar to the
BBO one: an hexagram constellation composed by two co-located
triangular interferometer for ultra-sensitive SGWB searches and
two other single constellations useful for compact binaries sources
identification and subtraction (Figure 3.18).

Figure 3.17: Schematic design for a
single DECIGO constellation. From
Kawamura et al. (2020).
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In the DECIGO case, however, the arm length will be shorter
(106 m) and it will feature Fabry-Pérot cavities in its arms (Figure 3.17),
allowing for a much lower laser power with respect to BBO (10 W).

DECIGO will be slightly less sensitive than BBO, reaching a level
ΩGW ∼ 5× 10−17 in the band ≈ 0.1− 10 Hz.

Figure 3.18: Configuration of the
DECIGO mission. From Kawamura
et al. (2020).

ET

As we anticipated above, the main factor limiting the sensitivity of
Earth-based GW detectors at low-frequencies is the seismic noise
( f . 1 Hz). The other major limitations are due to the test masses
and suspensions thermal noise ( f . 100 Hz) and to laser shot-noise
(100 Hz . f . 104 Hz). The third generation detector design ET is
expected to reduce all these noise sources, improving the sensitivity
by ∼ one order of magnitude over the second generation ground-
based interferometers (Advanced LIGO and Virgo), and reaching a
value of ΩGW ∼ 10−12 for an SGWB.

The ET design we will consider in this Thesis is the so-called
xylophone configuration Hild et al. (2011): this instrument will be
composed by three detectors, each one consisting of two individual
Michelson interferometers – one optimized for the low-frequency
range (ET-LF) and the other for the high frequencies (ET-HF) – with
angle-opening of 60° and arm lenght of 10 km, forming an equilateral
triangle configuration (Figure 3.19). Only the ET-LF interferometers
will be located underground, to reduce the seismic noise.
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Figure 3.19: Schematic design of ET. See
text for details. From Hild et al. (2011).

3.2.4 Atomic interferometers: AEDGE

The detection principle behind atomic interferometers, such as the
AEDGE experiment, is that the passage of a GW with strain h in-
duces a phase-shift ∆ϕ in the relative phase between cold atom
clouds by changing their separation L by an amount δL = hL (El-Neaj
et al., 2019):

∆ϕ = ωA × 2L, (3.3)

where ωA is the frequency of the atomic transition we are consider-
ing.
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Figure 3.20: Experimental setup of the
AEDGE experiment. Description in the
text. From El-Neaj et al. (2019).

AEDGE is an atomic interferometer space mission proposed for
the years 2035-2050: it will probe the deci-hertz band (≈ 0.01− 10 Hz)
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and with a sensitivity to an SGWB similar to DO Optimal (ΩGW h2 ∼
10−15).

The experimental setup for the AEDGE experiment is shown in
Figure 3.20: the experiment is composed by two satellites that contain
clouds of ultra-cold atoms (acting as test-masses), connected by two
laser beams traveling along the arm L in opposite directions.

3.2.5 PTA experiments: SKA

Searches of an SGWB can be conducted also using PTA surveys in
the frequency range ≈ 10−9 − 10−7 Hz. The basic principle behind
these searches is that the passage of a GW produces correlated
modulation in the arrival times of the radio pulses emitted by an
array of Galactic pulsars with rotation period of ∼ 1 ms (see Romano
and Cornish, 2017, and references therein).

The observational power of PTA surveys will increase in the
next decades, as the parameters on which the sensitivity of these
survey to an SGWB depends (such as the timing precision, the total
observations time, the number of observed pulsars in the array and
the number of observations) are expected to improve.

In this Thesis, we will perform forecasts for the SKA PTA survey
assuming the observation of 200 pulsars with millisecond periods
and 50 ns residuals, for a period of 10 yr and an observation cadence
of one every week. This setup should be reasonable for the year
∼ 2040, according to Mingarelli et al. (2019), allowing for searches
of an SGWB down to a level of ΩGW ∼ 10−14. However, as we will
discuss later in Section 3.2.6, the PTA band is dominated by the
astrophysical foreground produced by massive black hole binaries,
awhich needs to be subtracted in order to detect a cosmological
SGWB wit amplitude smaller than this foreground.

3.2.6 Astrophysical foreground sources for PTA and laser interferom-
eters

Similarly to what happens for B-mode experiments, also direct cos-
mological SGWB searches could be impeded by the presence of a
multi-component astrophysical foreground. Also in this case, subtrac-
tion strategies can be devised in order to attempt the detection of a
primordial SGWB; we will consider the subtraction of astrophysical
foregrounds in a dedicated section (Section 5.4), while here we will
just briefly summarize the various sources and their importance for
each of the experiments considered in the previous section.

Each GW experiment, probing a different frequency band, will be
affected in a distinct way by the various astrophysical sources able to
produce such a contaminating background.
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We will start considering the situation of the ground-based experi-
ment ET. The most relevant foreground in the band of these ground
based experiments is expected to be the one produced by unresolved
compact binaries, that is BBH, BNS and BH-NS systems. This predic-
tion is based on the current estimates of the merging rates of these
compact objects (Abbott et al., 2019) – which is still subject to large
uncertainties – and yields a predicted amplitude of the BBH+BNS
foreground at f∗ = 25 Hz of Ω∗ = 8.9+12.6

−5.6 × 10−10. The BBH+BNS
signal is well approximated at low frequencies by the power-law

ΩBBH+BNS( f ) = Ω∗

(
f
f∗

)2/3
, (3.4)

from which it is possible to infer that this foreground will be not
only a significant limiting factor at ET frequencies (Zhu et al., 2013;
Sachdev et al., 2020) for the search of a cosmologically produced
SGWB, but also in the LISA band (Pieroni and Barausse, 2020), as
well as DO, µAres and AEDGE ones. Subtraction strategies (see
for instance Pieroni and Barausse, 2020; Pan and Yang, 2019) are
currently being developed to reduce the impact of this foreground.

The compact binary foreground could affect also the DECIGO and
BBO bands, however, as we will see in Section 5.4, BBO should be
able to resolve and subtract most of these sources, while DECIGO
should be capable of substantially reducing their impact in a similar
way.

Unresolved GWD are also capable of producing an astrophysical
SGWB with a shape approximately given by Eq 5.32; this foreground
should affect mainly the low-frequency part of the LISA band, and
the bands of the other laser and atomic space interferometers. How-
ever, as we will see in Section 5.4 LISA should be able to disentangle
this Galactic contribution exploiting its anisotropy and its modulation
in time due to the motion of the constellation (Adams and Cornish,
2014), and similarly for the other interferometers.

The contribution of EGWD to the astrophysical foreground, dif-
ferently from GWD, is expected to be fairly isotropic (with an hint
of anisotropy due to the stronger signal from nearby Galaxies) and
should have an amplitude about one order of magnitude smaller than
it Galactic counterpart. It could be a relevant foreground for LISA
and the other space interferometers, although its unique spectral
shape deviating from a power-law (see Eq. 5.33) could be very useful
to disentangle it from a cosmological SGWB.

Finally, we consider the unresolved MBHB astrophysical SGWB:
this signal is created by the coalescence of MBHB when galaxies
merge and its amplitude depends on galaxy merger rates and on
the MBHB masses, which have both considerable astrophysical un-
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certainties. This foreground has a typical frequency dependence
ΩMBHB ∝ f 2/3 for frequencies f . 10−8 Hz, and becomes consid-
erably steeper at higher frequencies (see Eq. 5.35): it dominates the
SKA range and the band of µAres below . 10−5 Hz.

A conservative upper limit can be derived for the MBHB fore-
ground at PTA frequencies ( f . 10−8 Hz) (Caprini and Figueroa,
2018):

ΩMBHBh2 & 10−11
(

f
10−8Hz

)2/3
. (3.5)
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4
A Principal Component Analysis of the Tensor Spectrum

This Chapter is based on the work Campeti et al. (2019b).

In this Chapter we will study how the shape of the spectrum of primordial gravitational waves can be con-
strained by the future CMB B-mode experiments LiteBIRD, SO and CMB-S4 (Section 3.1.2).

This study is motivated by the fact that, in addition to the standard prediction of single-field slow-roll
inflation models, several other production mechanisms have been studied as possible sources of primordial
B-modes; among them, massive gravity inflation (Domènech et al., 2017), open inflation (Yamauchi et al.,
2011), the SU(2)-axion model (Dimastrogiovanni and Peloso, 2013; Adshead et al., 2013b; Maleknejad et al.,
2013), modified gravity models with speed of gravitational waves different from light speed (Raveri et al.,
2015), models of inflation with topological defects/cosmic strings (Lizarraga et al., 2014), rolling axion
(Namba et al., 2016), high-scale inflation (Baumann et al., 2016), multifield inflation (Price et al., 2015)
and others. In order to be able to distinguish different physical mechanisms it is necessary to be able to
quantify deviations of the measured spectrum from the power-law inflationary prediction, as it is done in
(Hiramatsu et al., 2018) for the first time for the reconstruction of the tensor power spectrum.

This work aims at providing a Principal Component Analysis (PCA) of the primordial tensor spec-
trum, similar to what has been done for scalar modes prior to the Planck mission (see Leach, 2006, and
references therein). The PCA formalism allows to identify and study eigenvectors of the Fisher matrix
associated to the primordial perturbation spectra, assessing the modulation in sensitivity of an experiment
on the different cosmological perturbation scales, and determining where features in the tensor power
spectrum can be probed more efficiently.

This technique has been applied in many different contexts, i.e. the scalar primordial power spectrum
(Hu and Okamoto, 2004; Leach, 2006)), the reconstruction of the inflaton potential (Kadota et al., 2005), the
process of reionization (Hu and Holder, 2003), the dark energy equation of state (Huterer and Starkman,
2003), weak lensing (Munshi and Kilbinger, 2006), the optimal binning of the primordial power spectrum
(Paykari and Jaffe, 2010), the search of inflationary and reionization features in the Planck data (Obied
et al., 2018) and many others.

Although with different procedure and final goals, PCA has also been applied to the tensor power
spectrum in a recent work (Farhang and Vafaei Sadr, 2018). We expand these analyses and set rather
different perspectives for our study, (i) by including, for the first time as a major aspect and in a coherent
manner, the contribution from residual diffuse foreground contamination (Section 4.3), using the most
recent techniques of foreground separation and cleaning via Maximum Likelihood Parametric Fitting
implemented into the ForeGroundBuster (FGBuster) publicly available code (See github.com/fgbuster/

github.com/fgbuster/fgbuster
github.com/fgbuster/fgbuster
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fgbuster and reference therein); (ii) by deriving robust expectations concerning the sensitivity of three
forthcoming CMB probes (Sections 4.4.1 and 4.4.2) and modelling these experiments as realistically as
possible (including 1/ f noise when available); (iii) by investigating through a Monte Carlo Markov chain
(MCMC) analysis the limitations of this technique, namely the impact of the physicality priors (which
prevent the exploration of forbidden regions where the power spectrum assumes negative, and thus
unphysical, values) on the derived constraints, the residual correlations between parameters and the
departures from Gaussian behaviour (Sections 4.2.3 and 4.4.4).

The Chapter is organized as follows. In Section 4.1 we give the necessary definitions regarding the
observational setup, the CMB power spectra and the fiducial cosmological model, and in Section 4.2 we
review the general PCA algebra. In Section 4.3 we study and include the diffuse astrophysical foregrounds
in our analysis, assessing the level of contamination and its role in the PCA, in Section 4.3.1 and 4.3.2,
respectively. In Section 4.4 we predict and study the capability of future satellite (4.4.1) and ground-
based (4.4.2) probes of constraining deviations from the inflationary CGB spectrum; in Section 4.4.3 we
give explicit examples of deviations from the inflationary predictions and how PCA can measure and
characterize those; Section 4.4.4 is dedicated to the study of the limitations and caveats imposed by the
PCA method in the context of the tensor power spectrum. Finally, in Section 4.5 we outline our conclusions
and future perspectives.

4.1 Overview of the Observational Setup

In this section, we briefly review the standard formalism for scalar
and tensor power spectra of primordial perturbations, as well as for
the angular power spectra in the CMB, and we define our fiducial
cosmological model. Moreover, we define the nominal specifications
of the CMB B-mode probes we will consider throughout the analysis.

According to single field, slow-roll inflationary scenario, quan-
tum vacuum fluctuations excite cosmological scalar, vector and
tensor perturbations. While vector modes decay, scalar and tensor
modes in the metric stay constant and we focus on them in the fol-
lowing. The scalar curvature spectrum can be parametrized in the
usual way as a power-law spectrum, as in Eq. 1.113, in which we set
the pivot-scale k0 to 0.002 Mpc−1. No information is stored in the
higher order statistics, as the vacuum fluctuations are assumed to be
Gaussian distributed. The presence of matter fields during inflation
changes this picture (see Agrawal et al., 2018a). Similarly, the tensor
power spectrum can be written using the same standard power-
law parametrization, as in Eq. 1.125, for which we choose again the
pivot-scale k0 = 0.002 Mpc−1. We will use often the tensor-to-scalar
ratio r as defined in Eq. 1.126. Currently there are only upper limits
available on r, as discussed in Section 1.8.6.

The actual observables are not scalar or tensor power spectra, but
the angular power spectra CXX′

` of CMB anisotropies (see Section
2.1.6), where X are generic labels for the total intensity of linear polar-
ization. They are defined using the two-point correlation function of

github.com/fgbuster/fgbuster
github.com/fgbuster/fgbuster
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the spherical harmonic coefficients 〈aX∗
`m aX′

`′m′〉 = δ``′δmm′CXX′
` , where

X, X′ ∈ {T, E, B}, representing respectively the total intensity (T), gra-
dient (E) and curl (B) modes of the CMB polarization (Kamionkowski
et al., 1997; Seljak and Zaldarriaga, 1997) and aX

`m are the multipole
moments of total intensity and polarization fluctuations.

We provide now the link between the observable angular power
spectra and the primordial one. First of all, we remind that each an-
gular power spectra has uncorrelated scalar and tensor contributions,

that is CXX′ , prim
` = CXX′

`,s + CXX′
`,t . The scalar and tensor contribution

can be written in terms of the primordial power spectra as

CXX′
`,x =

2π

`(`+ 1)

∫
d ln kPy (k) TX

`,y (k) TX′
`,y (k) , (4.1)

where for the scalar case X, X′ = {T, E}, x = {s} and y = {R},
while for the tensor one X, X′ = {T, E, B}, x = {t} and y = {T}.
The TX

`,y are the scalar or tensor transfer functions; they depend on
cosmological parameters as we review next, and are obtained from
the solution of the Boltzmann equations. We compute them using
the publicly available code CAMB (Code for Anisotropies in the
Microwave Background (Lewis et al., 2000)) .

4.1.1 Fiducial Model Adopted

Our fiducial cosmological model is a flat ΛCDM with the six param-
eters fixed by the most recent observations (Planck Collaboration,
2018). We choose the best fit cosmological parameters from Table 2

in the quoted reference, obtained from the TT, TE, EE spectra and
also including the large scale polarization (labeled as low E) and
gravitational lensing. The model is made by 4 parameters express-
ing background quantities in a flat FLRW Universe, specifically the
abundance of particles in the standard model (Ωbh2 = 0.02237), CDM
(Ωch2 = 0.12), reionization optical depth (τ = 0.0544), amplitude
of the Hubble constant today (H0 = 67.36); 2 parameters define
the power spectrum of scalar perturbations, namely its amplitude
(As = 2.1× 10−9), and scalar spectral index (ns = 0.9649). For what
concerns the tensor power spectrum, we consider three cases, cor-
responding to r = 0, r = 0.001 and r = 0.01. The value r = 0.001
is particularly relevant from the point of view of both observation
and theory: it is close to the limit sensitivity of future B-mode probes
and the prediction of the original Starobinsky model of inflation (see
Planck Collaboration, 2018c, and references therein). The r = 0.01
case would be a strong signal within reach by the operating probes
in the near future. For both models with r > 0, we assume a scale-
invariant spectrum with tensor spectral index nT = 0.
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4.1.2 Instrumental Specifications

As we anticipated, we will consider several future CMB B-mode
probes, representing the ongoing projects with ultimate sensitivity
for r and nT . The relevant parameters for us are represented by the
instrumental sensitivity, usually given in µK-arcmin, the full width at
half maximum (FWHM), the sky fraction considered, fsky, as well as
the relevant multipole range in the angular domain. As anticipated
in the introduction. we will consider the LiteBIRD satellite1 designed 1 See litebird.jp/eng.

in order to have as primary goal the CGB observations from space
(Hazumi et al., 2019). For what concerns ground probes, we consider
the SO (The Simons Observatory Collaboration et al., 2018); in par-
ticular, we consider the small aperture telescopes (SATs), since they
will gather most of the information on the primordial B-mode power
spectrum. Finally, we also study the case of the ultimate network
of ground-based probes, the CMB-S4 (Abazajian et al., 2016).2 We 2 For CMB-S4 we also use specifications

from the websites https://www.nsf.

gov/mps/ast/aaac/cmb_s4/report/

CMBS4_final_report_NL.pdf and
https://cmb-s4.org/wiki/index.php/

Survey_Performance_Expectations.

report in Table 4.1 the instrumental specifications for these three ex-
periments. The sensitivity reported is for polarization measurements.
The ` range for LiteBIRD is given by `min = 2 and `max = 1350, for
SO and CMB-S4 is instead `min = 30 and `max = 4000. The Table also
resports the sky fraction fsky and the delensing factor λ (defined in
Section 4.1.3) employed for each experiment. For SO and CMB-S4 we
additionally take into account 1/ f noise, adopting the optimistic case
of (The Simons Observatory Collaboration et al., 2018) for SO and
using the specifications contained in the websites in footnote 2 for
CMB-S4. For LiteBIRD, the reported specifications were taken during
the Phase A1 process (Hazumi 2019, private communication) and
may slightly differ from the definitive ones.

Following (Stompor et al., 2016) and (The Simons Observatory
Collaboration et al., 2018), the instrumental noise model for a given
experiment and a given frequency ν is

NXX
`,ν =

[
w−1

X,ν exp

(
`(`+ 1)

θ2
FWHM,ν

8 log 2

)]
·
[

1 +
(

`

`knee

)αknee
]

, (4.2)

where w−1/2
X,ν is the sensitivity of the experiment (white noise level)

in the frequency channel ν in µK-rad, θFWHM,ν represents the beam
size in radians and αknee and `knee parametrize the 1/ f noise con-
tribution for each frequency channel. Moreover, we assume perfect
polarization efficiency, so that w−1/2

E = w−1/2
B =

√
2w−1/2

T .

https://www.nsf.gov/mps/ast/aaac/cmb_s4/report/CMBS4_final_report_NL.pdf
https://www.nsf.gov/mps/ast/aaac/cmb_s4/report/CMBS4_final_report_NL.pdf
https://www.nsf.gov/mps/ast/aaac/cmb_s4/report/CMBS4_final_report_NL.pdf
https://cmb-s4.org/wiki/index.php/Survey_Performance_Expectations
https://cmb-s4.org/wiki/index.php/Survey_Performance_Expectations
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Experiment Frequency Sensitivity FWHM `knee αknee

[GHz] [µK-arcmin] [arcmin]

40.0 36.1 69.2
50.0 19.6 56.9
60.0 20.2 49.0
68.0 11.3 40.8
78.0 10.3 36.1
89.0 8.4 32.3

LiteBIRD 100.0 7.0 27.7 n/a n/a
( fsky = 0.6; 119.0 5.8 23.7

λ = 0.8) 140.0 4.7 20.7
166.0 7.0 24.2
195.0 5.8 21.7
235.0 8.0 19.6
280.0 9.1 13.2
337.0 11.4 11.2
402.0 19.6 9.7

27.0 35.3 91.0 15 -2.4
SO (SATs) 39.0 24.0 63.0 15 -2.4
( fsky = 0.1; 93.0 2.7 30.0 25 -2.6

λ = 0.5) 145.0 3.0 17.0 25 -3.0
225.0 5.9 11.0 35 -3.0
280.0 14.1 9.0 40 -3.0

20.0 14.0 11.0 200 -2.0
30.0 8.7 76.6 50 -2.0
40.0 8.2 57.5 50 -2.0

CMBS-S4 85.0 1.6 27.0 50 -2.0
( fsky = 0.03; 95.0 1.3 24.2 50 -2.0

λ = 0.1) 145.0 2.0 15.9 65 -3.0
155.0 2.0 14.8 65 -3.0
220.0 5.2 10.7 65 -3.0
270.0 7.1 8.5 65 -3.0

Table 4.1: Instrumental specifications
for the LiteBIRD, SO and CMB-S4

experiments.



118 towards precision measurements of the primordial power spectrum of gravitational

waves: combining b-mode cosmic microwave background and direct gravitational waves

observations

4.1.3 Astrophysical and Instrumental Contributions to the Observed
Power Spectrum

In the following, we will use CXX′
` for the total observed power

spectrum

CXX′
` = CXX′ , prim

` + CXX′ , noise
` + λCXX′ , lens

` + CXX, f gs
` , (4.3)

where CXX′ , prim
` is the primordial angular power spectrum, CXX′ , noise

`

is the contribution from instrumental noise (including the 1/ f noise
term and the noise degradation after component separation as we
will define in Section 4.3.1), λCXX′ , lens

` represents the lensing term

and CXX, f gs
` is the residual contamination by polarized diffuse fore-

grounds, which will be described in detail in Section 4.3.
The contribution from gravitational lensing acts as a contaminant

when estimating the primordial CMB power spectrum. This term
can be modelled, thus removing the bias in the observed power spec-
trum. However, the associated cosmic variance will still limit the
constraints, especially on B-modes. By performing the so-called de-
lensing in the map-domain (Knox and Song, 2002; Kesden et al., 2002;
Hu and Okamoto, 2002a; Smith et al., 2012) the lensing correction to
the observed power spectrum and the associated cosmic variance can
be suppressed. We model the result of this operation directly in the
power spectrum domain, suppressing CXX′ , lens

` by a constant factor
λ. λ = 0 means that the lensing contribution is completely removed
and λ = 1.0 means that no delensing is performed. The effectiveness
of delensing depends on the noise level and the resolution of of the
experiment, we take λ = 0.8 for LiteBIRD (see Namikawa et al., 2016),
λ = 0.5 for SO (The Simons Observatory Collaboration et al., 2018)

and λ = 0.1 for CMB-S4 (see Abazajian et al., 2016). As for CXX′ , prim
` ,

CXX′ , lens
` is evaluated with CAMB.

4.2 Principal Component Analysis of the Tensor Power Spectrum

In this section we briefly review the formalism of Fisher information
matrix (Section 4.2.1) and the PCA (Section 4.2.2). We apply it to the
tensor power spectrum and highlight the new aspects related to this
context (Section 4.2.3).

4.2.1 Fisher information matrix for tensor power spectrum

In order to discretize the tensor power spectrum PT , following (Hu
and Okamoto, 2004), we write

PT(k) = As ∑
i

piWi(ln k) , (4.4)



a principal component analysis of the tensor spectrum 119

where Wi is the discretization window function, which we choose to
be a triangle

Wi(ln k) = max
(

1−
∣∣∣∣
ln k− ln ki

∆ ln k

∣∣∣∣, 0
)

, (4.5)

and
∆ ln k = ln ki+1 − ln ki , (4.6)

is the discretization constant. In this discrete representation, the
derivative of the CXX′

` with respect to the power spectrum parameters
pi becomes

DXX′
`i =

∂CXX′
`

∂pi

∣∣∣∣
fid

=
2π

`(`+ 1)
As

∫
d ln k TX

` (k) TX′
` (k)Wi(ln k) . (4.7)

We choose the k range 10−4 < k < 0.2 Mpc−1, which comfortably
contain the scales to which the CMB power spectrum is sensitive to.
The discretization scale is chosen to be ∆ ln k = 0.05, sharper features
are smeared out because of geometrical projection effects and lensing
(Hu and Okamoto, 2004).

The Fisher information matrix for a Gaussian field on the sphere is
(see, e.g., Tegmark, 1997)

Fij = fsky

`max

∑
`=2

2`+ 1
2

Tr
[
D`iC

−1
` Dj`C

−1
`

]
, (4.8)

where we are approximating the loss of information due to the
partial celestial coverage with a factor proportional to the covered sky
fraction fsky, C` is the matrix

C` =




CTT
` CTE

` 0
CTE
` CEE

` 0
0 0 CBB

`


 , (4.9)

and Di` is its derivative with respect to pi.
As emphasized in (Hu and Okamoto, 2004), the lensing contribu-

tion CXX′ , lens
l contains the product between CBB

` , which depends on
the primordial tensor power spectrum parameters, and Cφφ

` . There-
fore, when performing the derivatives with respect to the power
spectrum parameters pi in (4.7), we take into account this depen-
dence. The lensing potential, instead, does not depend on the tensor
power spectrum, so does not contribute to the DXX′

` .
We address also the possible issue of degeneracies between the

effect that the primordial power spectrum and the other cosmological
parameters can have on the C`s. In particular, following (Hu and
Okamoto, 2004) and (Leach, 2006), the Fisher matrix Fµν for both
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power spectrum and cosmological parameters can be written as a
block matrix

Fµν =

(
Fij B
BT Fab

)
, (4.10)

where Fab is the block for the cosmological parameters {As, nS, τ,
Ωbh2, ΩDh2, H0}, Fij is the one for the power spectrum parameters
and B contains the cross terms between power spectrum and cos-
mological parameters. We emphasize that r is not included in the
cosmological parameters so that the primordial tensor power spec-
trum is entirely defined by the pi coefficients in Eq. 4.8. We study
the effect of the inclusion of r in Section 4.4.4. Inverting Eq. 4.10 we
obtain the covariance matrix Cµν = F−1

µν , whose upper diagonal block
Cij is the covariance matrix for the power spectrum parameters or-
thogonalized with respect to the cosmological parameters and the
corresponding Fisher matrix would be F orth

ij = (Cij)
−1. Performing

a block-wise inversion of the matrix in Eq. 4.10 (see, e.g., Press et al.,
1992) we get

F orth
ij = Fij − B F−1

ab BT , (4.11)

where the first term is the original information content on the primor-
dial power spectrum and the second term expresses the information
loss due to the degeneracy with the cosmological parameters.

4.2.2 Principal component analysis

PCA (see e.g. Hu and Okamoto, 2004; Paykari and Jaffe, 2010; Mun-
shi and Kilbinger, 2006) aims at identifying the uncorrelated variables
and ranking them according to their uncertainty. In practice, since
we assume the covariance matrix to be the inverse of the Fisher infor-
mation, it consists in performing the singular-value decomposition

F = ST E S , (4.12)

where the rows of S are the eigenvectors of F, E = diag(e) and ei

are the eigenvalues of F ordered from the largest to smallest. The
PCA produces in this way a new set of parameters ma – called PCA
amplitudes – that are linear combinations of the original parameters
pi

m = S p . (4.13)

The covariance of these new parameters is E−1 and therefore they are
uncorrelated and the uncertainty on their determination is given by

σa = e−1/2
a , (4.14)

where the first PCA amplitude m1, corresponding to the largest
eigenvalue, is the best-measured component, while the last PCA
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amplitude mn, corresponding to the smallest eigenvalue, is the worst-
measured component. In summary, PCA finds a natural basis for
the free parameters for a given experimental configuration and tells
us the linear combinations of the original parameters that can be
determined best.

Another goal of PCA is to compress the information. Suppose that
we want to consider only a fixed number of linear combinations of
the parameters, the first PCA amplitudes are the choice that retains
the largest fraction of the total information. In many cases – which
include ours – most of the information is retained in the first few
PCA modes. We can determine the number of PCA modes that is
worth keeping in our analysis by plotting the information fraction
retained in first N modes (e.g. Figure 4.4), as we will describe in
Section 4.4.

4.2.3 PCA modes for model testing

The Sa(k), with a lower then some N, can be used as a basis for the
primordial tensor power spectrum. Of course, they span a subspace
of all possible functions – the modes to which the given experimental
configuration is sensitive to. This basis can be used to probe the
detectability of specific theoretical models that predict features in
the tensor power spectrum (see the introduction of this Chapter). We
discuss here two approaches that we exploit and compare later in this
Chapter.

We already have the Fisher uncertainty on the ma coefficients from
the construction of the PCA basis. Therefore, given a theoretical
power spectrum Pmodel , it is natural to forecast how detectable it is by
first projecting it over the PCA modes

ma =
∫

d ln k Sa(k)Pmodel(k) , (4.15)

and then evaluating the probability of getting a value higher than
∑N

a=1(ma/σa)2 from a χ2 distribution with N degrees of freedom.
This significance forecast is both extremely fast and easy to perform
because it neither involve any additional run of Boltzmann codes nor
require any likelihood sampling. It is therefore particularly attractive
for studying large sets of inflationary models and probing their
parameters space.

This approach is essentially a Fisher estimation that has notable
caveats. First, the uncertainties are lower bounds that are not guaran-
teed to be reached. Second, this formalism – including the way we
constructed the PCA modes – is insensitive to the physicality prior
PT > 0: it is based on the curvature of the likelihood with respect to
the PCA amplitudes but the likelihood is not differentiable around
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PT = 0. This is formally true also for r or each entry of the p vec-
tor, but the physicality prior translates into r > 0 and pi > 0 and
therefore their one-sided derivatives and curvatures are well defined.

Since this is not true for PCA amplitudes, we also consider another
route to model testing. We modify the CosmoMC (Lewis and Bridle,
2002; Lewis, 2013) package for MCMC, redefining the tensor power
spectrum (Leach, 2006) as

PT(k) = As

N

∑
a=1

maSa(k) , (4.16)

where the Sa are the same PCA modes defined in the previous ap-
proach. We then fit the full set of parameters {m1,..., mN , As, ns,
τ, Ωbh2, ΩDh2, H0} to a given angular power spectrum assuming
flat priors. Clearly, if the best fit is consistent with all the PCA am-
plitudes ma being consistent with zero, no deviation from scale-
invariance is detected. This approach can account for the full com-
plexity of the posterior distribution and, in particular, the physicality
prior PT(k) > 0.

As we anticipated in the introduction of this Chapter, several
examples of theoretical models that predict features in tensor power
spectrum have been studied in the literature. It is beyond the scope
of this work to investigate specifically these scenarios since our
focus is on the applicability and limitations of the PCA to express
constraints on the tensor power spectrum. However, in Section 4.4.3,
we apply this formalism to a toy-model of red-tilted spectrum.

4.3 The role of diffuse astrophysical foregrounds

In the estimation of the Fisher matrix we include the uncertainty due
to the removal of diffuse foregrounds, in addition to the ones from
instrumental noise, lensing and cosmic variance. This contribution
has not been considered up to now in the PCA literature and in
particular for the analysis concerning the tensor spectrum. However,
it is well known that diffuse foregrounds are the predominant source
of uncertainty on large scale B-mode polarization (see e.g. Planck
Collaboration, 2018a, and reference therein). In this section we
first explain how we model this uncertainty and then show that
including foregrounds is necessary, especially when the experimental
configuration provides access to the largest angular scales, including
the reionization bump.

4.3.1 Uncertainties from foreground cleaning

Several emission mechanisms contribute to the diffuse foregrounds
from our own Galaxy (see Dickinson, 2016, and references therein).
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Figure 4.1: The power spectrum of
foregrounds residuals for dust and
synchrotron (solid red curve) and the
post-component separation instru-
mental noise (solid orange curve) for
the three experiments considered in
this work, the lensing contribution
λCXX′ , lens

` with delensing factor λ = 0.8
for LiteBIRD, λ = 0.5 for SO and
λ = 0.1 for CMB-S4 (dashed blue
curve) and without delensing (λ = 1,
dot-dashed purple curve). We also plot
as a reference the primordial BB power
spectrum CBB,prim

` for r = 0.01 (upper
solid grey curve) and r = 0.001 (lower
solid grey curve).

In our analysis we consider thermal dust and synchrotron radiation
– respectively emitted by thermal emission of dust grains and cosmic
ray electrons spiraling the Galactic magnetic field. They are most
important contaminants to the CMB B-modes from CGB. We leave
to a future work the inclusion of other contaminants of secondary
importance, like spinning and magnetic dust (Draine and Lazarian,
1998; Draine and Hensley, 2013) and carbon monoxide (Greaves et al.,
1999; Puglisi et al., 2017).

As we anticipated, we will exploit the publicly available code
FGBuster which represents an implementation of parameter fitting
in foreground estimation and removal for CMB experiments. We
review here very briefly the corresponding formalism used for the
computation of the uncertainties after component separation, which
is based on the parametric maximum likelihood approach (Errard
et al., 2011; Errard et al., 2016; Stompor et al., 2016, 2009), and is
the basis of the FGBuster implementation. In the presence of multi-
component emissions contributing to the signal measured on a given
sky pixel p, we can write

dp = Asp + np, (4.17)

where the data vector dp contains the multi-frequency measurements
for the sky pixel p, sp is the multi-component sky signal vector (with
each polarized sky component represented by an entry of the vector),
A is the mixing matrix and np is the instrumental noise vector. The
instrumental noise at each frequency is assumed known a priori to
be Gaussian and uncorrelated, with variance matrix Np. The columns
of the mixing matrix are the SEDs of the components. They are not
completely determined a priori and can have free parameters – the
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so-called spectral parameters β – that have to be determined from the
frequency maps.

In our analysis we consider three components: CMB, thermal dust
and synchrotron. We assume perfect calibration and therefore the
CMB emission law has no free parameters and is constant in ther-
modynamic units. For the frequency dependence of the synchrotron
emission, we assume its brightness temperature to be a curved power-
law

Async(ν) =

(
ν

ν0

)βs+Cs log(ν/ν0)

. (4.18)

where ν0 is the reference and pivot frequency of the synchrotron
emission and is fixed at 70 GHz. The spectral index βs and the cur-
vature Cs are the free parameters. Note that, as of today, no evidence
was found for the curvature (see Krachmalnicoff et al., 2018, and
references therein). However, the experimental configurations that
we consider will have a much higher sensitivity and therefore their
results can be influenced by small departures from the standard
power-law emission. For dust, we assume the standard modified
black-body

Adust(ν) =

(
ν

ν0

)βd+1 e
hν0
kTd − 1

e
hν

kTd − 1
, (4.19)

where in this case ν0 is chosen equal to 353 GHz. βd is the spectral
index of the emissivity and Td is the temperature of the grains, and
they are both free parameters. In total, we have four free parameters.
Their reference values (i.e. the “true” values that we assume in
the forecast) are βs = −3.0, Cs = 0, βd = 1.54 and Td = 20 K,
which well represent current constraints and measurements (Planck
Collaboration, 2018b).

The component separation process first estimates the non-linear
parameters and then uses the estimated mixing matrix to separate
CMB and foregrounds through a linear combination of the frequency
maps. These two steps are shared by many component separation
approaches, we refer to Stompor et al. (2009) for more details on the
specific procedure that we consider. We can identify two contribu-
tions to the uncertainty of the estimated CMB map, both sourced by
the instrumental noise. In the first step, the statistical uncertainty
in the determination of the spectral parameters and the consequent
imperfect estimation of the emission laws causes a leakage of fore-
ground power into the CMB map – the so-called statistical foreground
residuals. Even if the mixing matrix were perfectly recovered, in
the second step the noise in the frequency maps propagates to the
component maps and is referred to as statistical noise. These uncer-
tainty terms add extra power to the CMB map. We forecast these
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contributions following (Errard et al., 2011).
In order to estimate the statistical foregrounds residuals we first

evaluate the statistical uncertainty on the spectral parameters as the
inverse of their Fisher information

Σ−1 ' −tr

{[
∂AT

∂β
N−1A(ATN−1A)−1ATN−1 ∂A

∂β′
− ∂AT

∂β
N−1 ∂A

∂β′

]
∑
p

spsT
p

}
.

(4.20)

The power spectrum of the foreground residuals is equal to

C f gs
` ≡ ∑

k,k′
∑
j,j′

Σkk′α
0j
k α

0j′

k′ Cjj′
` , (4.21)

where

α
0j
k ≡ −

[
(ATN−1A)−1ATN−1 ∂A

∂βk

]

0j
, (4.22)

and j and j′ run over dust and synchrotron and 0 is the component-
index of the CMB.

This estimation assumes spatially-constant spectral parameters,
which is probably a too stringent assumption given the high sensitiv-
ity of the experimental configurations we consider. Therefore we sup-
pose to fit the spectral parameters independently over patches equal
to HEALPix pixels with resolution parameter Nside = 8, correspond-
ing to an extension of about 7 degrees in the sky. The adopted value
reflects the current knowledge concerning the typical angular scale of
spatial variation of foreground spectral parameters (Planck Collabo-
ration, 2018b), currently implemented in foreground models (Thorne
et al., 2017). The number of patches is npatch = [12× fsky × N2

side]

and, assuming statistical isotropy of the foregrounds, this factor
rescales upwards Σ and, consequently, C f gs

` . This estimation follows
Errard et al. (2016) and works on scales smaller than the patch size,
`patch ' 25. On larger scales the foregrounds residuals have the
shape of a white spectrum because the noise and, consequently, the
foregrounds residuals in each patch are uncorrelated (see Errard and
Stompor, 2018, for more details). For simplicity, we take these large
scales foreground residuals to be constant and equal to the statistical
residuals around ` = `patch.

As far as the statistical noise is concerned, we follow (Stompor
et al., 2016) and estimate it as

CXX′ , noise
` ≡

[(
AT
(

NXX′
`

)−1
A
)−1

]

CMB CMB

, (4.23)

where NXX′
` ≡

(
NXX′
`

)νν′
≡ NXX′

`,ν δν′
ν is a matrix containing the

instrumental noise for each frequency channel as we anticipated
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in Eq. 5.9. Note that the term NXX′
`,ν is diagonal in X, X′, since the

instrumental noise is uncorrelated in T, E and B.
The statistical residuals and the noise after component separation

are output by FGBuster, which contains the forecast tool xForecast
(Stompor et al., 2016) and relies on PySM (Thorne et al., 2017) for the
simulation of the foreground emission.

We report the foreground residuals and the noise after component
separation for LiteBIRD, SO and CMB-S4 in Figure 4.1. Already at
this stage, we can see that the inclusion of the foreground residuals
is always relevant for scales larger than a degree and is particularly
important at the scales accessible from space.

4.3.2 Impact of foreground residuals on PCA

In order to evaluate the impact of foreground residuals, we compare
the uncertainties σr on the tensor-to-scalar ratio obtained from the
Fisher matrix Fab for the cosmological parameters (Section 4.2.1) with
and without the addition of foregrounds. As we can see from the
values reported in Table 4.2 for the three considered experimental
configurations and three values of r, a proper inclusion of the un-
certainty coming from the foregrounds is most important for the
LiteBIRD configuration, with an increase in σr by about a factor ∼ 4
(assuming r = 0). The SO configuration is the least affected by fore-
grounds, being dominated by the instrumental noise contribution,
with σr growing by a factor between 1.25 and 1.44, depending on the
value of r we are assuming. CMB-S4 shows a definitely significant
increase between, with the uncertainty on r taking a factor ranging
between 1.25 and 2.3.

Experiment r σr σr,NOFG Ratio

r = 0 2.7× 10−4 6.6× 10−5
4.1

LiteBIRD r = 0.001 4.0× 10−4 2.0× 10−4
2.0

r = 0.01 6.0× 10−4 4.4× 10−4
1.36

r = 0 8.2× 10−4 5.7× 10−4
1.44

SO r = 0.001 8.6× 10−4 6.2× 10−4
1.39

r = 0.01 1.3× 10−3 1.04× 10−3
1.25

r = 0 4.6× 10−4 2.0× 10−4
2.3

CMB-S4 r = 0.001 5.4× 10−4 3.0× 10−4
1.8

r = 0.01 1.2× 10−3 9.6× 10−4
1.25

Table 4.2: Comparison between un-
certainty on tensor-to-scalar ratio r
from Fisher matrix including (σr) or
not including (σr,NOFG) foregrounds
residuals into the analysis, for three
experimental configurations and three
values of r. The ratio of the uncertain-
ties on r before and after the inclusion
of foregrounds is also shown.

On the basis of these evidences, we proceed by addressing the vari-
ation in the properties of PCA modes with and without foregrounds.
We apply the formalism developed in Section 4.2 for deriving the
PCA modes Sa(k) and we restrict here to the LiteBIRD case with
r = 0. The results are shown in Figure 4.2. For reasons which will be
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explained in the next Section, the Sa(k) are obtained in this case by
orthogonalizing with respect to all cosmological parameters except
r. Consequently, the non-oscillatory modes, typically among the first
ones, catch the overall power of tensor modes and play the effective
role of the parameter r itself.
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Figure 4.2: A comparison between
the first eight PCA modes, obtained
with LiteBIRD specifications, assuming
r = 0 and delensing factor λ = 0.8,
with (solid blue curve) and without
(solid orange curve) the foregrounds
residuals. The errors on the modes with
(indicated as σa, FG in blue) and without
(σa, NOFG in orange) foregrounds are
also reported. Note that our results will
based on the modes with foregrounds.

Both with and without foregrounds, we see two different pos-
itive modes that pick up power around k ≈ 6 × 10−4Mpc−1 and
k ≈ 6 × 10−3Mpc−1, respectively. These are the scales contribut-
ing to the reionization and recombination bump (Hiramatsu et al.,
2018). The other modes present oscillatory patterns with charac-
teristic oscillation scales getting shorter and shorter as n increases,
meaning that the experimental setup provides weaker constraints
on smaller features of the primordial power spectrum. The presence
of foregrounds has visible and non-negligible effects on all the PCA
modes and their eigenvalues. While the positive mode related to
the reionization bump is the best constrained mode both with and
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without foregrounds, the one related to the recombination bump
is upgraded from third to second mode when foregrounds residu-
als are considered, overtaking the first oscillatory pattern around
k ≈ 6× 10−4Mpc−1. Note that the constraints on both modes are
degraded, but the effect is more important for the latter since fore-
ground residuals are the dominant uncertainty for the reionization
peak, while they are lower than lensing and noise for the recombina-
tion peak. A closer look at the errors associated to each mode (also
reported in Figure 4.2) shows how foregrounds lead to a dramatic
loss of information on the reionization bump. This information is
indeed carried by the foregrounds-free modes S1, NOFG and S2, NOFG –
which corresponds to the modes S1, FG and S3, FG. Their uncertainty
grows by a factor ∼ 5 (from σ1, NOFG = 0.0003 to σ1, FG = 0.0014)
and by a factor ∼ 6 (from σ2, NOFG = 0.0008 to σ3, FG = 0.005). In
comparison, the information loss on the recombination bump is
restrained: the constraint on the foreground-free mode S3, NOFG –
which corresponds to S2, FG and carries most of the information on
the recombination bump – is just ∼ 30% smaller (σ3, NOFG = 0.0015
instead of σ2, FG = 0.002). Note that shifts of relative importance
when foregrounds are introduced are also present in the other modes
(see Figure 4.2) and, in all the cases, the uncertainties σa associated
to each PCA mode Sa increase. The SO and CMB-S4 configurations
do not get constraints from the reionization bump, and therefore
the shape and relative importance of the PCA modes do not change
when foregrounds are introduced. However, as in the LiteBIRD case,
their constraints on all the modes are reduced. In the CMB-S4 case
the effect of foregrounds is certainly non-negligible, with the uncer-
tainties on the first two modes taking a factor 2.5 and 2, respectively.
Concerning SO, since the instrumental noise is higher, the presence
of foreground residuals is less important but still noticeable, with
enhancements by a factor 1.36 on S1 and 1.18 on S2.

We conclude that the contribution of the foreground residuals defi-
nitely cannot be neglected in a PCA analysis of the primordial tensor
perturbations in the context of B-mode experiments. The inclusion
of foregrounds will therefore be the baseline for our analysis in the
prosecution of this work.

4.4 Constraining primordial tensor perturbations with PCA

We now discuss the application of the PCA formalism described
in Sections 4.2 and 4.3 to the experimental configurations we con-
sider. As emphasized before, the application to the tensor power
spectrum needs some special cares compared to the scalar power
spectrum case. The reason is that in the former case the PCA basis
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does not describe small deviations of a large, well constrained power
spectrum. One of the most important consequences is that, if some
power from primordial gravitational waves is found in the B-modes
power spectrum, the relative constraints on the PCA amplitudes can
be very different from the ones predicted by the PCA analysis itself
(i.e. σi < σj for i < j). In other words, the information in a power
spectrum with a power contribution from tensors can be very differ-
ent from the information matrix that defined the PCA basis. This is
potentially problematic because the extent of the tensor contribution
is not known a priori but the number of modes retained is fixed to
N from the onset, discarding the information lying outside the space
spanned by {SaST

a }a<N . In the scalar case we just have to choose a
sufficiently high N to capture most of the Fisher information from
which the Sa themselves where defined. In the tensor case we have to
test the stability of this property with respect to a range of possible
Fisher information matrices Fr, arising from angular power spectra
different from the one used for the definition of the Sa basis (which
assumes no tensors). We can think of the sum of the eigenvalues of Fr

as the total information about the primordial tensor power spectrum.
It can be computed as tr(Fr), without performing a Singular Value
Decomposition (SVD). The Fisher information on the first N ma co-
efficients, on the contrary, is equal to ST

N Fr SN , where the matrix SN

contains the first N columns of S. Therefore, when we describe the
power spectrum only in terms of the first N Sa modes, the fraction of
the total information we retain is given by

I(r, N) =
tr
(
ST

N Fr SN
)

tr (Fr)
. (4.24)

For r = 0, our parametrization of the tensor power spectrum is by
construction the one that guarantees the maximum I for any value of
N. For r 6= 0 this is no longer true, but a value of I sufficiently high
means that the parametrization still capture (approximately) all of
the information that our data can provide. We choose N such that
I is high enough (98%) up to r < 0.01. Once N is fixed, the Fisher
uncertainties associated with the i-th PCA mode in our basis are
given by

σ2
i =

(
ST

N Fr SN

)−1

ii
, (4.25)

Note that for r 6= 0 it is no longer guaranteed that σi < σj for i < j
and that mi and mj are uncorrelated for i 6= j. After studying the I
function and choosing the appropriate value of N, we study the PCA
products for three observed CMB power spectra, computed for a
scale invariant primordial power spectrum with r = 0, 0.01 and 0.001.
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4.4.1 Application to LiteBIRD

The Fisher matrix for r = 0, which we use to define the PCA basis, is
shown in Figure 4.3 and its first eigenvectors are the blue functions
reported in Figure 4.2. We can recognize in the matrix the features
that we highlighted in Section 4.3.2, when discussing the functions.
Most of the information is concentrated in two regions, precisely
the scales that contribute the most to the recombination and the
reionization bumps, in accord with (Hiramatsu et al., 2018). The
strong off-diagonal correlations express the fact that we are chiefly
sensitive to the overall power in those regions, while we have much
less information about features within them.
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Figure 4.3: Fisher matrix for LiteBIRD,
for r = 0 and delensing factor λ = 0.8.
The color bar gives the value of the
elements of the matrix, with higher
value representing more information.

Figure 4.4 shows the evaluation of I over a grid of values of r and
N. Considering that r axis is log-scaled, the level curves are quite
vertical, meaning that the PCA basis defined for r = 0 is effective
in capturing the information in an observation with a very different
primordial power spectrum. While for r = 0 we need five modes in
order to capture 98% of the information, we only need three more
modes when r = 0.01. For LiteBIRD we indeed set N = 8.

In Table 4.3 we compare the uncertainties and the signal-to-noise
ratio S/N = (m2

a/σ2
a )

1/2 associated to each of the modes retained
for three values of r . We can see from this table that the values of σa

for the case r = 0 are monotonically increasing – as expected – but
those of the r 6= 0 cases are not. In particular, in these latter cases the
second mode has smaller uncertainty than the first one. Reminding
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Figure 4.4: Information fraction I(r, N)
(Eq. 4.24) as a function of r and number
of modes retained in the analysis
N, using the LiteBIRD experimental
configuration. The level curves of
constant I(r, N) for 90%, 95%, 97%, 99%
and 99.3% are reported in white. To
obtain this plot we generated Fisher
matrices Fr for 50 logarithmically
spaced values of r between 0.0001 and
0.01 plus the value r = 0.

the shape of these modes, we see that this means that as r is different
from zero, we get more information from the recombination bump
than from the reionization bump. This trend is also reflected in the
associated S/N ratio, which is greater in the second mode than in
the first for both r = 0.001 and r = 0.01. Moreover, the S/N ratio
suggests that only the second mode, for both r 6= 0 cases, can be
detected. However, one should not interpret this as a limit of PCA,
but as a product of the fact that we are performing PCA over a
signal simulated with a flat tensor power spectrum characterized
only by its tensor-to-scalar ratio, while PCA is designed to describe
power spectra with more features. We refer to Section 4.4.3 for a toy
example of early universe model where the application of the PCA is
more suited.

Even if we do not report the results in detail, we have also run
the case with no delensing (λ = 1.0 instead of λ = 0.8) and, as ex-
pected, we see that delensing also contributes in shifting the relative
importance in terms of information, from the reionization to the
recombination bump.

4.4.2 Application to SO and CMB-S4

We now focus on the two ground based experiments, SO and CMB-
S4. We consider them together because the results are similar, as we
shall see. To start with, the Fisher matrices for the two configurations
(shown in Figures 4.7 and 4.8) have essentially the same structure. By
comparing with the LiteBIRD case (Figure 4.3) we observe that SO
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Experiment PCA mode r = 0
r = 0.001 r = 0.01
σa S/N σa S/N

1st 0.0014 0.005 1.0 0.03 2.0
2nd 0.002 0.002 3.0 0.003 16.0
3rd 0.005 0.01 0.09 0.06 0.14

LiteBIRD 4th 0.007 0.007 0.13 0.009 1.02

5th 0.01 0.019 0.14 0.09 0.3
6th 0.014 0.014 0.17 0.02 1.2
7th 0.019 0.019 0.02 0.02 0.2
8th 0.03 0.03 0.08 0.04 0.6

1st 0.004 0.004 1.2 0.006 8.0
SO 2nd 0.01 0.01 0.08 0.014 0.6

3rd 0.019 0.019 0.14 0.03 0.9
4th 0.03 0.03 0.006 0.04 0.05

1st 0.002 0.002 2.2 0.005 9.0
2nd 0.006 0.006 0.09 0.014 0.4

CMB-S4 3rd 0.01 0.01 0.3 0.02 1.4
4th 0.014 0.019 0.005 0.03 0.03

5th 0.02 0.02 0.14 0.04 0.7
6th 0.03 0.03 0.04 0.05 0.2

Table 4.3: Comparison between the
uncertainties from Fisher analysis for
the three values of r and the three
experiments considered in this work.
The signal-to-noise ratio (S/N) for the
two cases r = 0.001 and r = 0.01 is also
reported.

and CMB-S4 are not sensitive to the scales that could be probed with
the reionization bump. On the other hand, the higher resolution and
delensing capability give access to some information beyond the first
acoustic peak. These features are visible also in the PCA modes, as
we can see in Figure 4.9.

In order to choose N and make sure that we can use our PCA
basis also for observed spectra that have power in the primordial
tensor power spectrum, we study I(r, N). This check is passed, as
Figures 4.5 and 4.6 show that the dependence on r is even weaker
than in the LiteBIRD case. We therefore need fewer modes to capture
98% of the information in the whole r range and use N = 6 for CMB-
S4 and N = 4 for SO. Note that the two configurations have similar
I for r = 0 but differ for higher values of r, with the SO case being
essentially r-independent. The reason is that SO has a higher noise
than CMB-S4 and consequently it needs a higher signal with respect
to the latter experiment to produce changes in the Fisher matrix.

The uncertainties on the PCA modes obtained for both experi-
ments and the three different values of r are reported in Table 4.3,
together with the associated S/N ratio. Thanks to the higher sensitiv-
ity, the uncertainties of CMB-S4 are essentially always half of those
SO. Beyond this difference they share the same qualitative behaviour.
Notably, their uncertainty in the r = 0.001 case essentially coincide
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Figure 4.5: Information fraction I(r, N)
(Eq. 4.24) as a function of r and number
of modes retained in the analysis N, us-
ing the SO experimental configurations.
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4.4.3 Example of application: tilted spectra from inflation

As we discussed in Section 4.2.3, PCA can be used to detect deviation
of the tensor power spectrum with respect to the fiducial case. In
this section we show a very basic application of the PCA method, by
applying it to data simulated using a red-tilted model of the tensor
power spectrum and to the inflationary consistency relation.

Red-tilted model

We consider a model parametrized as PT(k) = AT(k/k0)
nT1 on

scales k < k1 and PT(k) = AT on scales k ≥ k1, with (k1 =

0.001 Mpc−1, nT1 = −1) (Figure 4.11). This simple model has been
considered also in (Hiramatsu et al., 2018) and (Farhang and Vafaei
Sadr, 2018), because of its resemblance with the tensor power spec-
trum predicted by open inflation associated with bubble nucleation
(Yamauchi et al., 2011). However, we warn the reader that our choice
of the model and the parameters (k1, nT1) is not motivated by funda-
mental physics and is only an example of exploitation of the PCA.
We leave the study of tensor power spectra from specific early uni-
verse physics to a future work. In this example we construct the
PCA modes assuming the fiducial cosmology with r = 0 and the
specifications of the LiteBIRD satellite, while the data used as input
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Figure 4.8: Fisher matrix for CMB-S4

with r = 0. The color bar gives the
value of the elements of the matrix.

for the MCMC are simulated assuming the red-tilted tensor power
spectrum described above with r = 0.01. The PCA amplitudes re-
covered from the MCMC for this red-tilted model are reported in
Figure 4.10, and are clearly consistent with projected ones (solid or-
ange curve), showing a characteristic trend not compatible with the
fiducial scale-invariant spectrum (solid blue curve). Also the cosmo-
logical parameters are very well recovered and compatible with the
input ones, therefore this application represents a success for PCA.
We also compute a chi-square from the ratio of likelihoods for this
red-tilted model and the fiducial scale-invariant model with r = 0.01,
obtaining χ2 ∼ 8. This value can be compared to the value χ2 ∼ 20
reported in Table 3 of (Hiramatsu et al., 2018) for the same power
spectrum model and a similar experimental configuration which,
however, does not include foregrounds. The difference between the
two values is indeed due to the addition of foregrounds, since the
red-tilted model starts to differ from a scale-invariant model with
r = 0.01 around the reionization bump scales, and, as we explained
in Section 4.3.2, the constraints on these scales are strongly affected
by the presence of foregrounds.

Testing inflationary consistency relation

The consistency relation, namely nT = −r/8 (Planck Collaboration,
2018c), is a standard prediction of canonical single-field inflation (see
Section 1.8), and its confirmation, given a detection of primordial
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gravitational waves, would be of paramount importance to determine
the source of such signal. In order to test this relation, we use the
PCA basis of Section 4.4.1 for LiteBIRD and the one of Section 4.4.2
for the CMB-S4 experiment, and then we project two models accord-
ing to eq. (4.15), in which we assume the consistency relation (one
with r = 0.05 and one with r = 0.01), on the PCA basis. We compare
then the projected amplitudes of the models with nT = −r/8 to the
ones with nT = 0, to see if the given experiment will be able to dis-
tinguish the tilt due to the consistency relation from a scale-invariant
model with the same r. Unfortunately, we find that these two models
are indistinguishable for LiteBIRD and CMB-S4 in both the r = 0.05
and r = 0.01 cosmologies, given that the errors σa on the projected
amplitudes ma are about two orders of magnitude larger than the
effect of the consistency relation on a scale-invariant spectrum in the
case r = 0.01 and about one or two orders of magnitude (depending
on the specific mode) in the case r = 0.05 for both experiments.3 3 This is in agreement with the results

presented in (Abazajian et al., 2016) for
CMB-S4.
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the PCA basis through formula (4.15),
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However, we will explore the possibility of extending this analysis in
Section 5.5.3, exploiting the lever provided by space laser interferome-
ters to test the consistency relation.

4.4.4 Limitations of the PCA and MCMCs

The PCA methodology we used to forecast the constraints on PT is
insensitive to the physicality prior PT > 0. In this section we discuss
in detail the importance of such a prior and how it can jeopardize the
validity of these Fisher estimates. While doing that, we also justify
our choice of parametrizing PT only as a linear combination of PCA
modes, without including the popular cosmological parameter r. We
indeed show that this parametrization makes the Fisher analysis
marginally more robust against the physicality prior.

To start with, let us highlight briefly the consequences of including
r in the parametrization of PT (and in the set of cosmological parame-
ters against which we orthogonalize the PCA modes). Clearly, we can
equivalently impose that in our tensor power spectrum basis {Sa}
we have S1 = (1, ..., 1), so that m1 is effectively r and the associated
uncertainty is σr (we refer to this choice as the basis with the constant
mode and contrast it with our standard basis described in Sections 4.4.1
and 4.4.2). The Sa functions for a > 1 are still PCA modes, but the
orthogonality with S1 changes their shape. Most notably, S1 can be
the only positive definite mode, forcing all the others to be oscillatory
– as can be seen in Figure 4.12 for the LiteBIRD configuration4. Note 4 Incidentally, we note that the orthog-

onalization with respect to the other
six cosmological parameters {As, ns, τ,
Ωbh2, ΩDh2, H0 } has no effect either
on the shapes or the uncertainties of
the modes. The reason is that most of
the information about the modes come
from the BB angular power spectrum,
while the one about the six ΛCDM
parameters come from TT, EE and TE.

also that, in this constant mode basis, the tensor spectrum used to
build the PCA basis has the same value of r for which the basis is
going to be used.

We now discuss a first visual argument showing that the Fisher
estimates are very often inconsistent with the physicality prior. We
run the Fisher analysis on the LiteBIRD configuration using the basis
with the constant mode and two input angular power spectra, gen-
erated with r = 0.01 and r = 0.001. Assuming that the σa we obtain
are correct, we plot in Figure 4.13 and 4.14 the 2σ range in which the
modes are statistically expected to oscillate in 95% of the cases. When
r = 0.01, for the modes up to S4 this range does not intersect the
physicality prior. For the other modes, the intersection means that the
Fisher estimate is unrealistic, as it predicts an oscillation larger than
what is allowed by the physicality prior. The case r = 0.001, due to
the lower S/N, is even more affected by the prior (Figure 4.14): the
2σ-contours intersect the negative region for all the modes beyond r.

Second, we now run actual MCMC to estimate {ma} and the other
cosmological parameters. We consider input power spectra generated
with r = 0.01 and r = 0.001, all the three experimental configurations
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Figure 4.12: The first 8 PCA modes
Sa(k) for the LiteBIRD experiment
in the standard basis (solid orange
curve) and in the constant r mode
basis (solid purple curve). Note that
the first mode of the constant r mode
basis has been arbitrarily rescaled here
to 0.3 to be shown in the same figure
as the standard basis, but in reality is
normalized to 1, as explained in the
text.

and basis both with and without constant mode. The uncertainties
derived from the MCMC estimation σMCMC have to be larger or
equal to the Fisher ones σFisher. Without the physicality prior we
checked that it is indeed the case, but as we turn on the prior the
constraints that it imposes on the ma values often dominate or are
comparable with those imposed by the observation, resulting in
σFisher > σMCMC for most of the modes (Tables 4.4-4.6). Only very few
of the highest S/N modes satisfy σFisher < σMCMC and, interestingly,
in the LiteBIRD case, for r = 0.001, their number is two when we
use our standard basis and only one when we impose a constant
mode. The effect of the physicality priors is visible even more clearly
in the 1D and 2D marginal distribution of the MC samples (Figures
4.15 and 4.16): the marginal distributions are strongly asymmetric,
the contours have often polygonal shapes and are very different
from the ones expected from the Fisher analysis (red ellipses). As it
is evident from these plots, the non-Gaussianity of the contours is



140 towards precision measurements of the primordial power spectrum of gravitational

waves: combining b-mode cosmic microwave background and direct gravitational waves

observations

−2.5

0.0

2.5

5.0

7.5
P T

(k
)

×10−11

10−3 10−1
−2.5

0.0

2.5

5.0

P T
(k

)

10−3 10−1 10−3 10−1 10−3 10−1

Wavenumber k [Mpc−1]

Figure 4.13: Plots of (rAs ±
As σa,Fisher Sa(k)) for each mode a,
for the first eight PCA modes in the
constant mode basis with r = 0.01 for
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such that the maxima of the marginal distributions are significantly
different from the best-fit values (which of course match the input
values of the parameters). As a side comment, in the LiteBIRD case
and input power spectrum with r = 0.01, we compare our standard
basis and the basis with the constant mode (only the first three
modes, figure 4.17). We note that the latter case shows a m1-m3

correlation5, while the former has the kind of shape we expect from 5 We can understand this 2D marginal
as follows. Figure 4.13 shows that S3 is
strongly peaked in a very small k-range
and, consequently, maSa can hit the
prior even for m3 very close to zero,
if they are negative. This prior effect
occurs more easily when m1 (i.e. r) is
small, producing the m1-m3 correlation.

uncorrelated parameters with asymmetric probability distributions.
This behaviour of our basis is preferable, as the PCA should ideally
yield uncorrelated parameters.

Concluding, while we can always use the PCA basis to model the
primordial tensor power spectrum, the Fisher uncertainties – that we
obtain as a byproduct of the PCA – are rarely accurate in absolute
terms and should be used only for relative comparisons.
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Experiment PCA basis construction Input MCMC PCA mode σFisher σMCMC

1st 0.03 0.04

2nd 0.003 0.004

3rd 0.06 0.03

r=0.01 4th 0.009 0.009

5th 0.09 0.04

6th 0.02 0.014

7th 0.02 0.014

Standard 8th 0.04 0.014

basis 1st 0.005 0.009

2nd 0.002 0.002

3rd 0.01 0.008

r=0.001 4th 0.007 0.004

5th 0.019 0.01

6th 0.014 0.004

7th 0.019 0.003

LiteBIRD 8th 0.03 0.003

1st (const.) 0.0006 0.0017

2nd 0.007 0.01

3rd 0.01 0.012

r = 0.01 4th 0.019 0.015

5th 0.019 0.016

6th 0.03 0.017

7th 0.04 0.019

Constant mode 8th 0.04 0.017

basis 1st (const.) 0.0004 0.0005

2nd 0.003 0.002

3rd 0.007 0.002

r = 0.001 4th 0.009 0.0017

5th 0.014 0.002

6th 0.019 0.0016

7th 0.019 0.002

8th 0.03 0.002

Table 4.4: Comparison between uncer-
tainties on the first eight PCA modes
for LiteBIRD for different PCA bases
and different values of r. In the first two
cases we take our PCA basis produced
with r = 0 (standard basis) and project
on it the models with r = 0.01 (first case
from the top) and r = 0.01 (second case
from the top). In the third and fourth
case from the top instead, we construct
the PCA basis with a constant r = 0.01
and r = 0.001 mode, respectively, so
that m1 = r. The third column from the
left shows the value of r chosen in the
simulation used as input data for the
MCMC.

Experiment PCA basis construction Input MCMC PCA mode σFisher σMCMC

1st 0.006 0.007

r = 0.01 2nd 0.014 0.014

3rd 0.03 0.019

Standard 4th 0.04 0.02

basis 1st 0.004 0.004

r = 0.001 2nd 0.01 0.006

3rd 0.019 0.007

SO 4th 0.03 0.008

1st (const.) 0.0013 0.002

r = 0.01 2nd 0.014 0.014

3rd 0.019 0.017

Constant mode 4th 0.04 0.017

basis 1st (const.) 0.0009 0.0009

r = 0.001 2nd 0.01 0.0019

3rd 0.019 0.002

4th 0.03 0.0018

Table 4.5: Comparison between uncer-
tainties on the first four PCA modes
for SO for different PCA bases and
different values of r.
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Figure 4.14: Plots of (rAs ±
Asσa,FisherSa(k)) for each mode a,
for the first eight PCA modes in the
constant mode basis with r = 0.001 for
LiteBIRD.

4.5 Chapter summary

In this Chapter, we studied the principal component analysis applied
to the tensor primordial power spectrum, with the goal of investigat-
ing its capability to detect, in a model-independent way, deviations
from scale-invariance through the B-modes of the CMB polarization
anisotropies. The PCA technique consists in diagonalizing the Fisher
matrix and taking its eigenvectors to form a basis of uncorrelated
modes, called PCA modes. The modes are ranked from the best to
the worst measured ones according to the inverse of the square root
of the eigenvalue associated to each mode, which represents the
uncertainty on that mode.

We derived constraints on the power spectrum parameters using
the specifications from three future B-mode probes, namely LiteBIRD,
SO and CMB-S4. We included the contributions of gravitational
lensing by Large Scale Structure, instrumental noise and – most im-
portant – the residuals of diffuse foregrounds (dust and synchrotron)
following a foreground cleaning procedure. We found that residuals
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Experiment PCA basis construction Input MCMC PCA mode σFisher σMCMC

1st 0.005 0.008

2nd 0.014 0.014

r = 0.01 3rd 0.02 0.02

4th 0.03 0.02

5th 0.04 0.021

Standard 6th 0.05 0.022

basis 1st 0.002 0.003

2nd 0.006 0.004

r = 0.001 3rd 0.01 0.0057

4th 0.019 0.0059

5th 0.01 0.0061

CMB-S4 6th 0.03 0.006

1st (const.) 0.0012 0.0019

2nd 0.01 0.014

r = 0.01 3rd 0.014 0.014

4th 0.03 0.015

5th 0.03 0.015

Constant mode 6th 0.04 0.016

basis 1st (const.) 0.0005 0.0005

2nd 0.006 0.0019

r = 0.001 3rd 0.01 0.002

4th 0.019 0.0017

5th 0.019 0.0016

6th 0.03 0.0015

Table 4.6: Comparison between uncer-
tainties on the first six PCA modes for
CMB-S4 for different PCA bases and
different values of r.

have a major impact on the analysis, and, in order to have realistic
signal-to-noise ratio for the experiment considered, they must be
included. Indeed, depending on the experiment and the value of
tensor-to-scalar ratio r considered, adding foregrounds residuals can
increase even by a factor ∼ 4 the uncertainty on r and on the PCA
modes. Moreover, we found that the effect of foregrounds is relevant
for both satellite and ground-based experiments.

Then, through the shapes of these PCA modes and the uncertainty
associated to each mode, we characterized the k-range for which
each of the three experiments will be most sensitive to features in the
power spectrum. In particular, LiteBIRD showed peaks of sensitivity,
corresponding to the reionization and the recombination bump in the
B-mode spectrum, consistent with (Hiramatsu et al., 2018). Moreover,
we found that the relative importance of the two peaks quickly
shifts from the reionization peak to the recombination one as we
probe values of r different from zero. For SO and CMB-S4, instead,
the sensitivity is peaked on the recombination bump with CMB-S4

showing significantly smaller uncertainties on the first modes with
respect to SO.

Throughout our discussion, we have explained how the choices
we have made in constructing our basis basis try to address the ob-
stacles to the application of the PCA to the tensor power spectrum.
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Firstly, since it is still undetected, we use a reference angular power
spectrum with no tensor contribution for constructing the Fisher
matrix. We devised, however, a procedure to choose the number
of PCA modes retained that makes the basis well suited to analyze
angular power spectra with substantial tensor contributions. Second,
we remove r from the parametrization of the tensor power spectrum,
which is then expressed solely as a linear combination of PCA modes.
We found indeed that including r makes difficult for any other mode
to have Fisher predictions that are robust with respect to the physical-
ity prior PT > 0. In any case, this prior remains the main limitation to
the applicability of the PCA analysis to the tensor power spectrum, as
highlighted in our comparison with the MCMC analysis.
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Figure 4.15: 1D and 2D marginal
distributions of the first eight PCA
amplitudes for the standard PCA basis
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5
A Multi-Frequency Study of the Tensor Spectrum: Com-
bining LiteBIRD, PTA and Laser Interferometers

This Chapter is based on the work Campeti et al. (2020).

In this Chapter we will extend the analysis of Chapter 4 and investigate the possibility of measuring the
spectrum of the primordial SGWB signal using not only CMB B-mode experiments (see Section 3.1.2),
but also PTA surveys (Section 3.2.5), and laser and atomic interferometers (Section 3.2.3), thus obtaining
constraints across ∼ 23 decades in frequency.

For the CMB and PTA experiments we consider the LiteBIRD mission and SKA, respectively. For the
interferometers we consider space mission proposals including LISA, BBO, DECIGO, µAres, DO and
AEDGE, as well as the ground-based ET proposal.

As we already mentioned, combining these experiments, we can measure the SGWB spectrum across 23

decades in frequency; if we also include indirect probes using the Big Bang Nucleosynthesis (BBN) and the
number of relativistic degrees of freedom, the range extends to 29 decades (Lasky et al., 2016a; Adshead
et al., 2020a). This combination enables a detailed characterization of the SGWB that goes beyond the
simple detection of r, which will be of utmost importance to determine if the detected primordial SGWB
was sourced by the quantum vacuum fluctuations in the metric tensor, as in the single-field slow-roll
scenario, or from alternative scenarios that can also produce the SGWB. In this context, the possibility of
SGWB production from gauge fields, both Abelian (Sorbo, 2011; Barnaby and Peloso, 2011; Barnaby et al.,
2012; Cook and Sorbo, 2012, 2013; Namba et al., 2016; Shiraishi et al., 2016; Domcke et al., 2016; Özsoy,
2020) and non-Abelian (Maleknejad et al., 2013; Adshead et al., 2013b,a; Dimastrogiovanni and Peloso,
2013; Maleknejad and Sheikh-Jabbari, 2011, 2013; Maleknejad, 2016; Dimastrogiovanni et al., 2017; Obata
and Soda, 2016; Adshead et al., 2016; Adshead and Sfakianakis, 2017; Agrawal et al., 2018a,b), has been
investigated in the literature.

These sourced gravitational waves come with distinct observational signatures: they can be non-scale-
invariant, partially chiral (circularly polarized), and strongly non-Gaussian. In this work, we focus on
the first signature, i.e., the spectrum of the SGWB, which can be blue, red, or with a bump. See the above
list of references for the other two signatures. Note also that the high-frequency GW produced by the
gauge field during (p)reheating after inflation contributes to the effective number of relativistic degrees
of freedom, which provides further constraints on the axion-U(1) models (Adshead et al., 2018, 2020a,b).
Specifically, we seek to gather in one resource the expectations on the SGWB from the most promising
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future experiments, covering the whole frequency range of the GW spectrum, and study how they distin-
guish between the single-field slow-roll prediction and the SU(2) gauge field predictions. We build on the
work of Ref. Thorne et al. (2018) whose focus was on detection of chirality of the SGWB from the SU(2)
gauge field (also see Ref. Domcke et al. (2020) for prospects to detect chirality of the SGWB by LISA and
ET).

To this end, we try to use coherent assumptions for each experiment and, whenever possible, to derive
the relevant quantities from the first principles using the latest available information in the literature. We
provide therefore a quick reference for both communities of cosmologists and GW astronomers for the
sensitivities of future experiments capable of detecting a SGWB, summarizing the mathematical tools
needed to compute such sensitivities for both the CMB and interferometers. Finally, we show our results
in a coherent manner by plotting error bars representing the uncertainty on the binned tensor power
spectrum for each experiment. For example, we derive forecasts for the precision on the tensor-to-scalar
ratio r and the tensor spectral index nT , for the combination of CMB B-modes experiments and laser
interferometers (LiteBIRD+LISA and LiteBIRD+BBO), using a Monte Carlo Markov Chain exploration of
the full cosmological parameters space.

We differentiate our work from the previous literature in three ways. First, we provide frequency-
integrated error bars from the binned sensitivity curves for all the detectors. Second, we include astrophysi-
cal foregrounds for all experiments. Finally, we use the latest and realistic CMB sensitivity curves for the
LiteBIRD mission, including state-of-the-art simulations for the CMB foregrounds.

The Chapter is organized as follows. In Section 5.1 we describe the two theoretical tensor power spec-
trum models for which we will provide forecasts in the subsequent sections: the single-field slow-roll
model and the spectator axion-SU(2) model. In Section 5.2 we discuss the experimental setup for the CMB
B-mode experiment LiteBIRD, including the instrumental noise, the lensing contribution and the astro-
physical foregrounds contamination. In Section 5.3 we construct the instrumental sensitivity curves for
PTA experiments and interferometers, while in Section 5.4 we illustrate the effect of the astrophysical fore-
grounds on each experiment. Section 5.5 is dedicated to the discussion of our results concerning forecasts
on the sensitivity of all the experiments for the spectator axion-SU(2) and single-field slow-roll models.
We also present the updated forecasts on the tensor spectral index nT exploiting the combination of CMB
experiments and laser interferometers. We conclude in Section 5.6 with future perspectives.

5.1 Theoretical Models of Tensor Power Spectrum

In this Section we review the theoretical models of the primordial
tensor power spectrum for which we will provide forecasts in the
rest of the Chapter. We consider two possibilities in this respect: one
is the nearly scale-invariant tensor power spectrum predicted in the
context of the single field-slow roll inflation, while the other is the
one produced by the spectator axion-SU(2) model (Dimastrogiovanni
et al., 2017).

5.1.1 Single-Field Slow-Roll Model

As we discussed in Section 1.8, in the single-field slow-roll infla-
tionary scenario, cosmological scalar and tensor perturbations are
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produced by the quantum vacuum fluctuations. The power spectrum
for the scalar perturbations is parametrized by a power-law (see
Eq. 1.113) Pvac

R (k) = AS (k/k0)
nS−1 , where k0 = 0.05 Mpc−1 is the

pivot-scale and the superscript vac indicates that it is produced by
quantum vacuum fluctuations. The same applies to the tensor power
spectrum (see Eq. 1.125)

Pvac
T (k) = AT

(
k
k0

)nT

. (5.1)

We also enforce the inflationary consistency relation in single-field
slow-roll inflation (Lyth and Riotto, 1999), connecting the spectral
index and the amplitude of the tensor spectrum as nT = −r/8.

5.1.2 Spectator Axion-SU(2) Model

Gauge fields are ubiquitous in physics and can affect the predic-
tions of inflation (see Maleknejad et al. (2013) for a review). In this
work we consider the SGWB produced in the spectator axion-SU(2)
model (Dimastrogiovanni et al., 2017) based on the “chromo-natural”
inflation model (Adshead and Wyman, 2012). This model has the
Lagrangian

L = Lin f laton +
1
2
(
∂µχ

)2−µ4
[

1 + cos
(

χ

f

)]
− 1

4
Fa

µνFaµν +
λ

4 f
χFµν F̃aµν,

(5.2)
where Lin f laton represents a generic inflaton sector generating the
quasi-de Sitter expanding background and the curvature pertur-
bations in agreement with the current CMB observations, χ is a
pseudo-scalar axion field with a cosine-type potential, µ and f are
dimensionful parameters and λ is a dimensionless coupling constant
for the axion and gauge fields. The field strength tensor of the SU(2)
gauge field is given by Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ − gεabc Ab
µ Ac

ν with g be-
ing the gauge field self-coupling constant, and F̃aµν is its dual. We
ignore the effect of the gravitational Chern-Simons term RR̃ because
its effect on the SGWB is sub-dominant compared to the FF̃ term
(Mirzagholi et al., 2020).

During inflation the SU(2) gauge field establishes a homogeneous
and isotropic vacuum expectation value, Āb

i = a(t)Q(t)δb
i (Malekne-

jad and Sheikh-Jabbari, 2011, 2013), which is an attractor solution
(Maleknejad and Erfani, 2014; Domcke et al., 2019; Wolfson et al.,
2020). The perturbation around this value contains scalar, vector, and
tensor modes (Maleknejad and Sheikh-Jabbari, 2011, 2013), and the
tensor mode linearly mixes with gravitons to produce the SGWB. In
particular, the gauge field produces a chiral SGBW with either left-
or right-handed circular polarization, depending on which circu-
lar polarization mode experiences a transient growth near horizon
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crossing (Adshead et al., 2013b,a; Dimastrogiovanni and Peloso, 2013;
Maleknejad et al., 2013).

Assuming that only left-handed polarized GWs are produced, we
can write the sourced contribution to the tensor spectrum as (Thorne
et al., 2018)

P L, Sourced
T (k) = r∗PR(k) exp

[
− 1

2σ2 ln2
(

k
kp

)]
, (5.3)

PR, Sourced
T (k) ' 0, (5.4)

where PR is the scalar curvature perturbation power spectrum, the
parameter r∗, which is the tensor-to-scalar ratio at the peak scale
k = kp, controls the amplitude of the tensor power spectrum, and
the parameter σ controls the width of the Gaussian-shaped feature
produced in the spectrum by this model. These parameters are
related to the model parameters given in Eq. 5.2 (see below). This
form of the tensor power spectrum is valid for the cosine potential
given in Eq. 5.2 as well as for axion potentials with an inflection point
(Fujita et al., 2019).

The total tensor spectrum will be the sum of the sourced and the
vacuum contributions

PT(k, kp, r∗, σ) = Pvac
T (k) + PSourced

T (k, kp, r∗, σ), (5.5)

PSourced
T (k, kp, r∗, σ) = P L, Sourced

T (k) + PR, Sourced
T (k), (5.6)

while the contribution of the axion and SU(2) gauge fields to PR
is negligible with respect to the vacuum one for an appropriate
choice of the model parameters1, i.e., mQ ≡ gQ/H ≥

√
2 where 1 We do not include the non-linear

scalar curvature perturbation induced
by the gauge field. This can be very
large in the original chromo-natural
model in which the axion plays the role
of inflaton (Papageorgiou et al., 2018;
Domcke et al., 2019). This contribution
in the spectator axion-SU(2) model
is smaller (Agrawal et al., 2018a), but
may still affect the allowed parameter
space in which the sourced GW is
comparable to or larger than the
vacuum contribution (Papageorgiou
et al., 2019). There is also a possibility
of having a non-negligible contribution
to the scalar sector for a very large σ
parameter choice, if the energy fraction
of the axion grows after inflation and
the axion decays faster than the inflaton
(see Thorne et al., 2018, and references
therein).

H is the Hubble expansion rate during inflation (Dimastrogiovanni
and Peloso, 2013; Dimastrogiovanni et al., 2017); thus, PR(k) =

Pvac
R (k). The parameters

{
r∗, kp, σ

}
can be connected to the physical

parameters in the model Lagrangian {g, λ, µ, f } (Thorne et al., 2018;
Fujita et al., 2019). The peak wavenumber kp corresponds to the time
t∗ at which χ is at the inflection point of the potential, χ(t∗) = π f /2.
The value of mQ is given by m∗ ≡ mQ(t∗) = (g2µ4/3λH4)1/3. The
other relevant dimensionless variable is ξ∗ ≡ λχ̇(t∗)/(2 f H) ≈
m∗ + m−1∗ . With these variables, we can write k/kp = eH(t−t∗), σ2 =

(λ/2ξ∗)2/[2G(m∗)], and G(m∗) ≈ 0.666 + 0.81m∗ − 0.0145m2∗ −
0.0064m3∗. The effective tensor-to-scalar ratio at the peak scale r∗ can
also be related to the model parameters, but in principle can assume
any positive value, while the width of the Gaussian feature σ is
bounded by the peak scale choice kp because of the attractor behavior
of the background axion field coupled to the SU(2) gauge fields.

In the rest of this work we will consider three sets of parameters:
{

r∗, kp, σ
}
=
{

400, 1015 Mpc−1, 9.1
}

,
{

0.15, 1011 Mpc−1, 8
}

,
{

50, 106 Mpc−1, 4.8
}

,
(5.7)
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and we will refer to them as AX1, AX2 and AX3 models, respectively.
For all cases we will assume the vacuum contribution to the tensor-to-
scalar ratio of rvac = 10−5 (Thorne et al., 2018), although this choice
might be subject to backreaction of particle production of the gauge
field (Maleknejad and Komatsu, 2019; Papageorgiou et al., 2019). To
avoid this we can simply assume a larger value for rvac, which would
add the scale-invariant component to all the figures we show in this
Chapter.

We chose the parameters given in Eq. 5.7 to provide representative
examples for our analysis. The first set of parameters represents a
tensor spectrum model that is simultaneously detectable by both
CMB and laser interferometers, while still satisfying the upper bound
provided by the BICEP2/Keck/Planck analysis (see the end of Sec-
tion 5.1.1). The second set produces instead a spectrum that is just
outside the reach of LiteBIRD and at the same time comfortably
detectable by the advanced interferometers µAres, DECIGO and
BBO, thanks to the large bump feature produced at kp = 1011Mpc−1.
The third parameter set produces a spectrum that peaks in the PTA
experiments frequency range while still being compatible with the
BICEP2/Keck/Planck upper limit in the CMB range. Thanks to
the relationship between σ and kp, which tends to flatten out the
spectrum, we were able to obtain a model that is detectable by SKA
and LiteBIRD, but not by space interferometers LISA, DO, AEDGE,
DECIGO and the ground-based ET (Section 5.5).

In Figure 5.1 we show the tensor power spectra PT as a function
of the wavenumber k for the five cases considered in this work.
We have checked that all models are consistent with the current
CMB shortwave and second-order back-reaction (Clarke et al., 2020),
indirect upper bounds (Cabass et al., 2016), PTA limits (Arzoumanian
et al., 2018) and ground-based interferometers LIGO/Virgo (Abbott
et al., 2019) limits.

5.1.3 Gravitational Wave Energy Density

A quantity commonly used in the literature to show the sensitivities
of GW observatories is the fractional energy density in GWs at
the present (conformal) time ΩGW(k, τ0) (Kolb and Turner, 1990)
(Eqs. 1.129-1.132).

The GW transfer function T (k, τ) – needed to obtain ΩGW us-
ing Eq. 1.132 – can be computed by solving numerically the wave
equation (Eq. 1.115). However, this can be quite computationally
expensive, especially since the GW transfer function depends on
cosmological parameters and therefore we will need to compute this
quantity for each point in the cosmological parameter space explored
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Figure 5.1: Tensor power spectra as a
function of the wavenumber k for the
five representative cases considered
in this work, plus a standard r = 0.06
model representing the CMB upper
bound from the BICEP2/Keck/Planck
combined analysis (black dashed
curve).

in the MCMC analysis of Section 5.5.3. Therefore, in the rest of this
work, we will find convenient to use the approximate analytical ex-
pressions for ΩGW derived in Section 1.9 (Figure 1.11), taking also
into account the suppression factor due to changes in effective rela-
tivistic degrees of freedom in the early Universe described in Section
1.9.1.

5.2 Updated Forecasts for CMB B-mode Experiments: The Lite-
BIRD Case

CMB experiments are at the forefront of the search for a primor-
dial SGWB. As we discussed in Sections 3.2.2 and 3.1.1, the current
best observational bounds on the SGWB come from the CMB. Fur-
thermore, as it will be shown in Section 5.5, they represent our best
opportunity to detect a SGWB if the correct model for its production
is the single-field slow-roll inflation with r . 0.001.

The current generation of operating CMB experiments includes
BICEP2/Keck, POLARBEAR, ACT, SPT and CLASS while the next
generation of experiments, planned for this decade, will comprise
the Simons Array, SO, SPO and CMB-S4 on the ground-based side,
and the LiteBIRD mission observing from space. In this work, we
will focus on making forecasts for the LiteBIRD, which is expected to
be – together with CMB-S4 – the most sensitive among the planned
missions, capable of detecting a tensor-to-scalar ratio r . 0.001.

As we discussed in Section 2.3.2, the signature of the primordial
SGWB in the B-mode polarization has two main contributions: one
at very large scales (around k ∼ 6× 10−4 Mpc−1) where the CMB
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photons are re-scattered by the free electrons made available by
cosmic reionization (Zaldarriaga, 1997), producing the so-called
reionization bump, and the other at intermediate scales (k ∼ 6 ×
10−3 Mpc−1) corresponding to the recombination bump (Hiramatsu
et al., 2018). This primordial signal, however, is fainter than the
contaminating signals of the secondary origin: smaller scales are
dominated by the gravitational lensing due to the cosmological Large
Scale Structure, which converts the E-mode polarization of the CMB
into a secondary B-mode (Zaldarriaga and Seljak, 1998) (Section 2.4),
while larger scales are contaminated by the presence of the diffuse
Galactic foregrounds (Section 3.1.3).

In this Section we first review the formalism of CMB power spec-
tra (Section 5.2.1). We then describe the relevant noise sources for
CMB experiments, including the instrumental, the lensing and the
astrophysical foreground contributions (Section 5.2.2). Finally, we
review the Fisher matrix approach for computing the binned uncer-
tainties on the tensor power spectrum for a CMB experiment (Section
5.2.3).

5.2.1 CMB angular power spectra for the axion-SU(2) model

We already defined the necessary formalism of the CMB angular
power spectra in Section 4.1; we specialize here the expression for
the angular power spectra in Eq. 4.1 to the axion-SU(2) sourced
contribution to the tensor spectrum, defined in Section 5.1.2

CXX′ , Sourced
`,t =

2π

`(`+ 1)

∫
d ln k

[
P L, Sourced

T (k) + PR, Sourced
T (k)

]
(k) TX

`,T (k) TX′
`,T (k) ,

(5.8)
with XX′ = {TT, EE, TE, BB}. Note that the chiral tensor spectrum
produced in the axion-SU(2) model also yields non-zero parity-odd
cross-spectra such as TB and EB spectra, which could be used as
an observational marker to distinguish it from the standard SGWB
from the vacuum fluctuations (Lue et al., 1999; Saito et al., 2007;
Contaldi et al., 2008). However, these cross-power spectra are difficult
to detect unless r & 0.05 (Thorne et al., 2018); thus, in this work we
will be concerned only by the intensity of the SGWB rather than by
its circular polarization, and consider only the BB spectrum in our
analysis.

5.2.2 Noise and Foregrounds for CMB Experiments

In this work we will consider the LiteBIRD satellite and its con-
straining power on the SGWB. Similarly to what we did in 4.1.2, we
characterize this instrument using the following parameters: the po-
larization sensitivity (in µK-arcmin units) at each frequency channel,
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the Full Width at Half Maximum (FWHM) for the instrument beams,
the observed sky fraction fsky and the multipole range of the mea-
surement. For LiteBIRD we adopt a multipole range from `min = 2 to
`max = 200. We report all the other specifications in Table 5.1.

Experiment Frequency Sensitivity FWHM
[GHz] [µK-arcmin] [arcmin]

40 59.29 60

50 32.78 56

60 25.76 48

68 15.91 43

78 13.10 39

89 11.25 35

LiteBIRD 100 7.74 29

( fsky = 0.6) 119 5.37 25

140 5.65 23

166 5.81 21

195 6.48 20

235 15.16 19

280 17.98 24

337 24.99 20

402 49.90 17

Table 5.1: Instrumental specifications
adopted for the LiteBIRD CMB experi-
ment (LiteBIRD collaboration, private
communication).

As outlined by 4.3, there are three relevant noise sources which
contribute to the total observed CMB B-mode spectrum CBB

` : the
gravitational lensing B-mode CBB, lens

` , the residual contamination due

to polarized diffuse foregrounds CBB, f gs
` , and the post component

separation noise CBB, noise
` .

We model the instrumental noise (Stompor et al., 2016) at each
frequency channel ν as

NBB
`,ν =

[
w−1

B,ν exp

(
`(`+ 1)

θ2
FWHM,ν

8 ln 2

)]
, (5.9)

where w−1/2
B,ν is the white noise level (or sensitivity) in each frequency

channel in µK-rad and θFWHM,ν is the beam size in radians.
The lensing represents a contaminant of unknown amplitude

when searching for a primordial signal and affects especially the
smaller angular scales of the CMB B-modes. We compute CBB, lens

`

using the CAMB code. Note that for LiteBIRD we conservatively do
not consider any cleaning from the lensing contamination, i.e. a
procedure called delensing (Knox and Song, 2002; Kesden et al.,
2002; Hu and Okamoto, 2002a; Smith et al., 2012), corresponding to a
choice of λ = 1 for the delensing parameter in Eq. 4.3. We also stress
that high-resolution ground-based experiments such as CMB-S4 can
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be exploited to delens LiteBIRD data to enhance its capability in
reconstructing the SGWB (see Section 2.4).

On the other hand, the dominant source of noise on large scale
B-mode polarization is the diffuse Galactic foregrounds (see, e.g.,
Planck Collaboration, 2018a, and references therein). In particular,
we will consider the two main sources of foregrounds for B-mode
experiments: thermal dust and the synchrotron radiation (see Section
3.1.3). We generate simulated sky maps of the polarized Galactic
foreground emission using the “d1s1” sky model in the Python
Sky Model (PySM) code (Thorne et al., 2017), and degrade them to a
HEALPIX (Górski et al., 2005) resolution Nside = 128. We add to the
simulated maps an instrumental white noise realization generated
by the model in Eq. 5.9. We perform component separation for three
possible spectral energy distributions (SEDs): the CMB SED, for
which we assume no free parameters; the thermal dust SED, for
which we take the one-component modified black-body in Eq. 4.19,
and the synchrotron SED, for which we assume the curved power-
law in Eq. 4.18.

We compute the contributions of residual foregrounds CBB, f gs
` and

post component separation noise CBB, noise
` to the observed spectrum

using the parametric maximum likelihood approach (Errard et al.,
2011; Errard et al., 2016; Stompor et al., 2016, 2009) implemented in
the publicly available ForeGroundBuster (FGBuster) code2. This code 2 See https://github.com/fgbuster/

fgbuster and reference therein.allows for several different choices of cleaning techniques, among
which we choose the Multi-Resolution procedure, an evolution of
the Multi-patch technique presented in (Errard and Stompor, 2018).
While in the Multi-Patch approach we fit all the spectral parameters
over independent sky patches equal to HEALPIX pixels with the same
resolution parameter Nside, in the Multi-resolution approach, each
of the free spectral parameters is fitted on a different HEALPIX grid
with different resolution. The patches resolution for each parameter
are gathered in the Multi-resolution vector Nsides, for which we
adopt the choice Nsides = [βd, Td, βs, Cs] = [64, 8, 8, 0], obtained by
prioritizing the characterization of dust SED over synchrotron SED
and by requiring that systematic residuals are much smaller than
the statistical ones (J. Errard 2019, private communication). This
selection of parameters provides appropriate residuals for the current
foreground modeling in LiteBIRD.

We average the resulting residual foregrounds plus post-component
separation noise spectra over 100 noise realizations, obtaining the fi-
nal spectrum in Figure 5.2 (red curve). This spectrum is roughly
composed by two parts. In the angular domain, the diffuse Galactic
foregrounds are usually characterized by a decaying power law with
the angular multipole. Therefore, at high `, the foreground contam-

https://github.com/fgbuster/fgbuster
https://github.com/fgbuster/fgbuster
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ination is less relevant, and the component separation noise is the
co-addition of sensitivity in multi-frequency channels corresponding
to the CMB solution. On the other hand, at low and intermediate
multipoles, the structure is dominated by the component separation
residuals from the large scale pattern of foregrounds.

101 102

`

10−6

10−5

10−4

10−3

10−2

10−1

100

`(
`

+
1)
C
`/

2π

Realizations of Res. Foregrounds +Post-Comp.Sep Noise

Average Res. Foregrounds+Post-Comp.Sep. Noise

Lensing

r = 0.01

r = 0.001

Figure 5.2: The sum of the residual
foregrounds and post-component sep-
aration noise for 100 noise realizations
(in orange) and their average (in red).
We also show the lensing power spec-
trum CBB, lens

` (black solid line) and the
primordial B-mode signals for r = 0.01
(dashed grey) and r = 0.001 (solid
grey).

5.2.3 Fisher Matrix for the Tensor Power Spectrum

To compute the binned uncertainties on the tensor power spectrum
for LiteBIRD, we use a Fisher matrix approach similar to the one
described in Section 4.2.1 (Campeti et al., 2019a; Hiramatsu et al.,
2018). The tensor power spectrum PT can be discretized as in Eq. 4.4,
where we choose a discretization window function Wi equal to 1

inside the i-th of the N power spectrum bins and 0 outside

Wi(ln k) =





1 for ki−1 ≤ k < ki with 1 ≤ i ≤ N

0 for k < ki−1 and k > ki
, (5.10)

and ∆ ln k = (ln ki+1 − ln ki) is the width of the i-th bin. Similarly
to Eq. 4.7, we can write the derivative of the CBB

` with respect to the
power spectrum parameters pi in a simple way:

DBB
`i =

∂CBB
`

∂pi

∣∣∣∣
fid

=
2π

`(`+ 1)
AS

∫
d ln k TB

` (k) TB
` (k)Wi(ln k) . (5.11)

We choose the k range to be 10−4 Mpc−1 < k < 1 Mpc−1 such that it
contains the whole sensitivity curve of the LiteBIRD experiment. To
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obtain the error bar on each power spectrum wavenumber bin, we
first compute the Fisher information matrix (see, e.g., Tegmark, 1997)
(see Eq. 4.8)

Fij = fsky

`max

∑
`=2

2`+ 1
2

Tr
[

DBB
`i

(
CBB
`

)−1
Dj`

(
CBB
`

)−1
]

, (5.12)

where the factor fsky takes into account the loss of modes by a partial
sky coverage. We then take the diagonal of its inverse to obtain

σ2
PS(ki) = (F−1)ii. (5.13)

The desired binned uncertainty on ΩGW is then easily obtained from
Eq. 1.129

σΩGW (ki) = σPS(ki) ·
AS

12H2
0

[
T ′(k, τ0)

]2
. (5.14)

5.3 Interferometers and PTA

The landscape of the current and future GWs experiments is vast,
characterized by their complementarity in probing the GW spec-
trum across a wide range of frequencies. The frequency window
between ∼ 10−7 and ∼ 10 Hz is expected to be observed from space
through a host of funded and proposed laser interferometers, ranging
from µAres (Sesana et al., 2019) in the micro-Hertz band, to LISA
(Smith and Caldwell, 2019) and AMIGO (Baibhav et al., 2019) in the
milli-Hertz band, to BBO (Crowder and Cornish, 2005b; Smith and
Caldwell, 2017), DECIGO (Seto et al., 2001) and DO (Sedda et al.,
2019) in the deci-Hertz bands. In this work we also include the re-
cently proposed space-based atom interferometer AEDGE (El-Neaj
et al., 2019), which will observe the deci-Hertz band as well. Going
higher in the GW frequency (∼ 10− 103 Hz), the next-generation
ground-based detectors (CE (Reitze et al., 2019) and ET (Hild et al.,
2011)), also exploiting laser interferometry, will complement the pre-
vious observations in the high-frequency part of the GW spectrum.
Note however that, while ET – being composed by three interferom-
eters disposed in an equilateral triangle configuration (see Section
3.2.3) – will be able to detect an SGWB on its own, CE – which has
been proposed as a single detector with perpendicular arms – will
need to be correlated in a network of other interferometers to attempt
the detection of an SGWB. We will not consider further CE in the
following, leaving the exploration of cross-correlation in a network of
interferometers to future work.

We summarize in Table 5.3 the main instrumental characteristics
and capabilities of GW observatories treated in this work, including



160 towards precision measurements of the primordial power spectrum of gravitational

waves: combining b-mode cosmic microwave background and direct gravitational waves

observations

the experiment type, the arm lenght (L) for traditional interferome-
ters, the total observation length (Tobs), the observational efficiency ε

to compute the actual observation time Te f f = εTobs, the frequency
range at which the experiment is operating, and the minimum of the
binned sensitivity curve with and without foregrounds.

Experiment Type L Tobs ε Freq.Range Ωmin
GW Ωmin

GW References
[m] [yr] [Hz] w/o Fgs w/ Fgs

LISA Space 2.5× 109
4 75% 10−4 − 10−1 5.9× 10−14 9.9× 10−14 Smith and Caldwell (2019)

M.I.

DO Space 108
4 75% 10−3 − 101 3.7× 10−15 2.1× 10−14 Sedda et al. (2019)

Cons. M.I.

DO Space 108
4 75% 10−3 − 101 7.1× 10−16 3.7× 10−15 Sedda et al. (2019)

Opt. M.I.

µAres Space 430× 109
10 100% 10−6 − 10−2 4.7× 10−18 2× 10−17 Sesana et al. (2019)

M.I.

DECIGO Space 106
10 100% 10−4 − 101 2× 10−17 9.8× 10−17 Kuroyanagi et al. (2015)

F.P.I.

BBO Space 5× 107
10 100% 10−4 − 101 1.8× 10−18 1.8× 10−18 Crowder and Cornish (2005a)

M.I.

AEDGE Space 4.4× 107
5 60% 10−2 − 1 4.2× 10−16 2.6× 10−15 El-Neaj et al. (2019)

A.I.

ET Ground 1× 104
1 100% 1− 103 4.5× 10−14 2.8× 10−13 Hild et al. (2011)

M.I.

SKA PTA - 10 100% 10−9 − 10−7 3.8× 10−14 7.4× 10−14 Weltman et al. (2020),
Mingarelli et al. (2019)

Table 5.2:Summary of the instrumental specifications for the interferometers

and PTA considered in this work. “M.I.” stands for Michelson Interferometer,
“F.P.I.” stands for Fabry-Pérot Interferometer and “A.I.” stands for Atomic

Interferometer. The binning used to compute the values of Ωmin
GW is

∆ ln k = 1.2.

Going lower in the frequency, PTAs will probe GWs in the ∼
10−9 − 10−7 Hz region. There are several planned and ongoing PTA
experiments (NANOGrav (Arzoumanian et al., 2016, 2018), EPTA
(Lentati et al., 2015a), PPTA (Kerr et al., 2020; Hobbs, 2013), IPTA
(Perera et al., 2019)). In this work we show the expected constraints
for the most ambitious experiment of this kind, i.e., the SKA (Welt-
man et al., 2020).

All of the experiments listed above will target several GW sources,
both stochastic and deterministic, but in the following we will be
interested only in the stochastic ones, and in particular in the possi-
bility of detecting a SGWB of the primordial origin. Therefore, we will
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consider other SGWB sources, such as unresolved Galactic and extra-
Galactic compact binaries for instance, as a foreground or confusion
noise to our sought-after primordial signal.

In this Section, we will describe the formalism required to com-
pute the sensitivity curves for the interferometers (Subsection 5.3.1),
neglecting for the moment the effect of foregrounds. In fact, a de-
tailed description of our choices concerning the astrophysical fore-
ground contamination will be given later in Section 5.4, also ana-
lyzing how it affects the sensitivity curve for each experiment. The
method used to compute the sensitivity curve for the SKA, together
with a description of the impact of foregrounds for this PTA experi-
ment, will be described instead in Section 5.4.4. To supplement these
sections, in Appendix we describe the construction of the interferom-
eters response functions (Appendix A) and the noise properties of
each experiment (Appendix B).

5.3.1 Instrumental Sensitivity Curves

In this Section we derive the equation for the sensitivity curve of a
GW laser interferometer to an homogeneous and isotropic SGWB.
Three of the experiments considered in this work (µAres, DECIGO,
BBO) are designed as two independent triangular interferometers,
with consequently uncorrelated instrumental noises. The target of
these experiments is to measure the cross-correlation of the outputs
of the two independent detectors. Therefore, in the following we
will provide formulae for both the sensitivity of a single detector
(suited for LISA, DO and ET) and for the cross-correlation of two
independent detectors. Our discussion follows Refs. (Smith and
Caldwell, 2017; Romano and Cornish, 2017; Schmitz, 2020), and we
refer to those papers for a more complete and detailed derivation.
For a derivation of the sensitivity curve of a PTA experiment, which
will not be reproduced here, we refer the reader to Refs. (Romano
and Cornish, 2017; Hazboun et al., 2019).

A SGWB can be expanded in plane waves as

hab(t,~x) =
∫ +∞

−∞
d f
∫

d2n̂ ∑
P=+,×

h̃P( f , n̂)eP
ab(n̂)e

i2π f (t−n̂·~x), (5.15)

where h̃P is the amplitude of a sinusoidal plane GW, P = +,× is the
linear polarization state of GW, n̂ the GW propagation direction and
eP

ab the polarization tensor. In time domain, the data dI of a detector I
can be written as the sum of the signal sI and noise nI

dI(t) = sI(t) + nI(t). (5.16)

Moving to Fourier space, the noise spectrum for a single detector is
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determined by

〈
ñI( f )ñ∗I ( f ′)

〉
=

1
2

δ( f − f ′)S I
n( f ). (5.17)

Similarly, we define the GW signal strain power spectrum Ss through
the correlation of the GW Fourier modes defined in Eq. 5.15:3 3 More generally, the covariance matrix

of h̃P can be written in terms of the
“GW Stokes parameters” in analogy to
the electromagnetic waves (Seto, 2006)
〈

h̃P( f , n̂)h̃∗P′ ( f ′, n̂′)
〉

=
1
2

δ( f − f ′)
δ(2)(n̂− n̂′)

4π

(
I + Q U − iV

U + iV I −Q

)
.

(5.18)

Here, I is the Stokes I and should not
be confused with the index for the
detector used in the main text. Circular
polarization from chiral GW due to the
SU(2) gauge field would appear as the
Stokes V (Thorne et al., 2018). In this
work we are concerned only with the
total intensity of the SGWB and ignore
Q, U, or V, hence δPP′ in Eq. 5.19.

〈
h̃P( f , n̂)h̃∗P′( f ′, n̂′)

〉
=

1
2

δ( f − f ′)
δ(2)(n̂− n̂′)

4π
δPP′Ss( f ). (5.19)

We can now introduce the response function TP
I ( f , n̂) to describe the

signal response of a detector I to a sinusoidal plane GW, which will
be computed in Appendix A for several different detector configu-
rations. Using this we write the signal response s̃I of a detector I in
Fourier space as

s̃I( f ) =
∫

d2n̂ ∑
P=+,×

TP
I ( f , n̂)h̃P( f , n̂), (5.20)

with TP
I ( f , n̂) = Tab

I ( f , n̂) eP
ab(n̂)e

−i2π f n̂·~x.
For a network of detectors I, J = 1, 2, ..., we write

〈
s̃I( f )s̃∗J ( f ′)

〉
=

1
2

δ( f − f ′)C̃I J( f ) =
1
2

δ( f − f ′)RI J( f )Ss( f ), (5.21)

where C̃I J is the covariance matrix of the signal response defined by

C̃I J =
〈
s̃I s̃J

〉
−
〈
s̃I
〉〈

s̃J
〉
, (5.22)

and RI J( f ) is the so-called overlap reduction function for the detector
pair I J (Flanagan, 1993) (see also discussion in Appendix A)

RI J( f ) =
∫ d2n̂

4π ∑
P=+,×

TP
I ( f , n̂)TP∗

J ( f , n̂). (5.23)

As we anticipated in Section 3.2.6, the usual approach used to
measure an SGWB is to cross-correlate the outputs dI(t) and dJ(t) of
two detectors I and J. The cross-correlation estimator is therefore

X̂ =
∫ +∞

∞
d f
∫ +∞

∞
d f ′δT( f − f ′)d∗I ( f )d∗J ( f ′)Q( f ), (5.24)

where Q( f ) is a filter function and δT is a finite-time approximation
to the Dirac delta function. The mean value for the estimator X̂ reads
then

〈X̂〉 = T
∫ ∞

0
Ss( f )RI J( f )Q( f )d f , (5.25)

where T is the mission observation time. Its variance reads instead

σ2
X ≈

T
2

∫ ∞

0
S2

n( f )|Q( f )|2d f . (5.26)
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It easy to show that the optimal filter maximizing the signal-to-
noise ratio (hereafter SNR) for a cross-correlation measurement of a
SGWB using a pair of detectors I, J, takes the form (Allen, 1996)

Q( f ) =
Ss( f )
S2

n( f )
R∗I J( f ), (5.27)

from which follows (see Romano and Cornish (2017), Schmitz (2020)
and references therein)

SNR =
〈X̂〉√

σ2
X

=

[
2T
∫ fmax

fmin

R2
I J( f )S2

s ( f )

S I
n( f )S J

n( f )
d f

]1/2

, (5.28)

where [ fmin, fmax] is the detector pair bandwidth.
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Figure 5.3: Strain sensitivity curves
(without the contribution of astrophys-
ical foregrounds discussed in Section
5.4) for all the interferometers and PTA
experiments considered in this work.
We also plot for reference the strain
curve for the Advanced LIGO (aLIGO)
experiment.

Since the GW strain power spectrum density can be related to the
fractional energy density spectrum in GW as (Romano and Cornish,
2017)

Ss( f ) =
3H2

0
4π2 f 3 ΩGW( f ), (5.29)

we can write the sensitivity curve in terms of the minimum de-
tectable gravitational wave energy density ΩGW with the desired SNR
in a frequency bin ∆ f as (Smith and Caldwell, 2017)

Ωmin
GW( fi) =


ndetT

∫ fi+∆ f /2

fi−∆ f /2

(
3H2

0
4π2

)2

∑
J>I

R2
I J( f )

f 6S I
n( f )S J

n( f )
d f



−1/2

,

(5.30)
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for a network of ndet detectors I, J = 1, 2....
Another useful quantity, which is common in the literature, is the

strain spectral sensitivity Sh for the detector network, defined as

Sh =

(
∑
J>I

R2
I J( f )

S I
n( f )S J

n( f )

)−1/2

. (5.31)

In Appendices A and B, we give details on our computations for
the overlap reduction function RI J( f ) and the noise spectrum Sn( f )
for each experiment, respectively. In Figure 5.3 we show the strain
sensitivity curves for all the interferometers and PTA experiments
considered in this work.

5.4 Astrophysical foregrounds for interferometers and PTA

We proceed now to describe the main sources of astrophysical fore-
grounds considered in this work: we first provide approximate
analytical fitting formulas for each component; then we introduce
a new filter function capable of maximizing the SNR expression
including foregrounds (eventually mitigating them with external
information) and describe our foreground cleaning strategy on a
case-by-case basis.

5.4.1 Approximate analytical fits for the foreground sources

As we anticipated in Section 3.2.6, the main sources of astrophysical
foregrounds for laser and atomic interferometers are represented
by the unresolved populations of Galactic and Extragalactic white
dwarfs, as well as unresolved stellar mass compact binaries, such as
black hole, neutron star and black hole - neutron star binaries. At PTA
frequencies the dominant foreground is expected to be the one due
to the coalescence of Massive Black Hole Binaries (MBHB). This latter
foreground could be of importance also for the µAres interferometer,
at frequencies below ∼ 10−5 Hz.

We now describe the model adopted for each of the foreground
contributions mentioned above, starting with the GWD confusion
noise. Following Refs. (Cornish and Robson, 2017; Robson et al.,
2019), we parametrize it as

S gal
f g ( f ) = A f−7/3e− f α+β f sin κ f [1 + tanh(γ( fk − f ))]Hz−1, (5.32)

where A = 9 × 10−45 and the parameters α, β, κ, γ and fk are re-
ported in Table 1 of Ref. (Robson et al., 2019). These parameters vary
according to the total mission observation time, hence the amount of
cleaning that is possible to perform on the data.
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On the other hand, the contribution to the SGWB of the EGWD
binaries can be analytically approximated as (Nishizawa et al., 2012)

S exgal
f g ( f ) = 4.2× 10−47

(
f

1 Hz

)−7/3
exp

(
−2
(

f
5× 10−2Hz

)2
)

Hz−1.

(5.33)
The contribution of unresolved BBH and BNS, as we anticipated

in Section 3.2.6, can be approximately expressed at interferometers
frequencies by a power-law (see Eq. 3.4)

SBBH+BNS
f g ( f ) =

3H2
0

4π2 f 3 Ω∗

(
f
f∗

)2/3
, (5.34)

where we assume for the amplitude of the BBH+BNS foreground a
value of Ω∗ = 8.9× 10−10 at f∗ = 25 Hz, which is the best estimate
according to the current measured merging rates of these compact
objects (Abbott et al., 2019).

As for the unresolved MBHB foreground at SKA and µAres fre-
quencies, we use the analytical model given in (Sesana et al., 2008)

SMBHB
f g ( f ) =

h2
0
f

(
f
f0

)−4/3 (
1 +

f
f0

)2γ

, (5.35)

where the parameters h0, f0 and γ are determined by the particular
astrophysical model assumed for the MBHB system. The shape and
amplitude of the MBHB foreground can vary greatly according to
the theoretical model considered and, in particular, to the eccentricity
of the binary system. However, just for the purpose of showing an
indicative level for this foreground, we adopt the VHMhopk model
(Lodato and Natarajan, 2006), with parameters h0 = 0.69× 10−15, f0 =

4.27× 10−8 Hz and γ = −1.08, which are consistent with the current
upper limits from the 11-year NANOGrav data set (Arzoumanian
et al., 2018).

5.4.2 A new filter for foreground mitigation

In this Section, we will describe a possible strategy for the mitigation
of astrophysical foreground, introducing in particular a new filter
Q( f ) maximizing the noise-only SNR (Eq. 5.28), but also the SNR
including foregrounds, taking also into account the possibility of miti-
gation by using external information on the foregrounds provided by
other experiments.

Specifically, we consider the possibility of a multi-band cleaning
strategy for the BBH+BNS foreground in the space interferometers
bands: it has been shown in the works of Pieroni and Barausse
(2020) and Pan and Yang (2019) that it is indeed possible to use the
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information on the BBH+BNS populations gathered by ground-
based experiments – such as Advanced LIGO/Virgo or the future
ET and CE detectors – to remove to a certain degree this foreground
contamination from the band of space-borne interferometers like
LISA.

In the following, we will assume to know the foreground SBBH+BNS
f g

up to a fractional uncertainty on its amplitude σf g. In this case, the
cross-correlation estimator X̂ (defined in 5.24 will contain also the
foreground contribution – which we denote by S f g in the following,
dropping the superscript BBH + BNS for notational simplicity –
besides the primordial one (Ss):

〈X̂〉 = T
∫ ∞

0
[Ss( f ) + S f g( f )]RI J( f )Q( f )d f . (5.36)

Thus, we define the following cross-correlation estimator of the
primordial signal Ss

Ŷ = X̂− T
∫ ∞

0
S f g( f )RI J( f )Q( f )d f , (5.37)

and we can write the associated SNR as (Pan and Yang, 2019)

SNRŶ =
µ√

σ2
instr + σ2

sys

(5.38)

where µ is the mean value of the primordial signal Ss( f ),

µ = T
∫ ∞

0
Ss( f )RI J( f )Q( f )d f , (5.39)

σinstr is the statistical uncertainty due to detector noise

σ2
instr ≈

T
2

∫ ∞

0
S2

n( f )|Q( f )|2d f , (5.40)

and σsys is the systematic bias due to the limited accuracy of the
foreground measurement

σ2
sys = σ2

f g

(
T
∫ ∞

0
S f g( f )RI J( f )Q( f )d f

)2
. (5.41)

We will show in Appendix C (Poletti D. in preparation) – in a sim-
ilar way to the fact that the filter Q( f ) in Eq. 5.27 maximizes the
foreground-less SNR (Eq. 5.28) – that the filter

Q( f ) =
SsR∗I J

S2
n
− 2T

Is× f g

σ−2
f g + 2T I f g× f g

S f gR∗I J

S2
n

, (5.42)

where

Is× f g =
∫ Ss( f )S f g( f )

S2
n

|RI J |2( f )d f , (5.43)
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and

I f g× f g =
∫ S2

f g( f )

S2
n
|RI J |2( f )d f , (5.44)

maximizes the SNR in Eq. 5.38, taking into account the presence of
foregrounds.

Note that, if we know the spectral shape of the foreground but
we do not have any external constraint σf g on its amplitude, we can
still apply Eqs. 5.38 and 5.42 in the limit σf g → ∞ (and T > 0): in
this case the filter has zero response to the foreground template and
this corresponds to subtracting the foregrounds by only exploiting its
spectral dependence.

Moreover, the SNR 5.38 and the filter 5.42 can obviously be ap-
plied to whatever foreground with known spectral shape, not only to
the BBH + BNS foreground.

Finally, we note that an expression for the binned sensitivity curve
in terms of the minimum detectable GW energy density can be
easily obtained in an analogous way to Eq. 5.30 also in the case with
foregrounds.

5.4.3 Foreground cleaning strategy

We discuss now, on a case-by-case basis, our treatment of the contami-
nation of the astrophysical foregrounds when attempting a detection
of the primordial SGWB for each of the experiments considered in
this work, starting with LISA.

LISA

As evident from Figure 5.4, the WD binaries constitute one of the
most relevant confusion noise source in the LISA band, at frequencies
f . 5 mHz. However, it has been shown in Adams and Cornish
(2014) that this foreground can be subtracted almost completely by
exploiting its anisotropy and its time-modulation due to the motion
of LISA’s constellation (see also Pieroni and Barausse, 2020). In
this work, therefore, we will optimistically assume that the GWD
foreground can be perfectly subtracted.

The EGWD foreground could also be relevant in the LISA band, in
particular between f & 5 mHz and f ∼ 0.2 Hz, beyond which it starts
to deviate from a power-law behavior. Differently from the GWD
one, this foreground is expected to be almost isotropic, with a hint
of anisotropy due to the stronger signal by nearby galaxies which
may be used to favor the subtraction. Moreover, its unique spectral
shape could also help in separating and subtracting this contaminant
from the primordial signal. As shown in Pan and Yang (2019), the
impact of this foreground on the SNR is secondary with respect to
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Figure 5.4: Characteristic strain noise
curve for LISA (dashed black). The fore-
grounds due to the GWD after removal
of resolved sources (dot-dashed blue),
the BBH + BNS foreground (dot-dashed
green) and the EGWD contribution
(dot-dashed red) are also shown.

the BBH+BNS foreground, as we will discuss below. This happens
because the spectral shape of the EGWD foreground can be predicted
very accurately at lower frequencies, thus the uncertainty on these fre-
quencies – where LISA is more sensitive – is very small and slightly
growing at higher frequencies. Therefore, we will optimistically as-
sume that the EGWD foreground can be perfectly subtracted for our
purposes.

The main foreground in the LISA band is represented by the
unresolved BBH+BNS populations. Differently from the GWD and
EGWD foreground – which cannot be subtracted using ground-
based experiments, since WD binaries never enter their bands –
we exploit a multi-band cleaning technique for the BBH and BNS
foreground. We adopt a value σf g = 0.1 for the fractional uncertainty
on the foreground amplitude, justified by the analysis of Pieroni and
Barausse (2020), involving multi-band cleaning with Advanced LIGO
and Virgo. A value σf g = 1.3× 10−2 can also be reached using a
network of three CE detectors located in Australia, China and US
(Pan and Yang, 2019). Furthermore, the level σf g ∼ 10−3 could be
reached using external information provided by ET (M. Pieroni, A.
Ricciardone e E. Barausse in preparation).

DO Optimal and Conservative

The DO interferometer, both in its Optimal and Conservative in-
carnations, suffers mainly from the presence of the BBH and BNS
foreground (Figure 5.5). The contribution from GWD is almost irrel-
evant in both designs, as it affects only the very low-frequency part
of both sensitivity curves. The same holds for the AEDGE experi-
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Figure 5.5: Characteristic strain noise
curve for DO Optimal (dashed grey)
and DO Conservative (dashed dark
green). The foregrounds due to the
GWD (dot-dashed blue), the BBH +
BNS foreground (dot-dashed green)
and the EGWD contribution (dot-
dashed red) are also shown.

ment (Figure 5.6), since it has similar sensitivity and frequency range
to DO Optimal (Figure 5.3). For DO (Optimal and Conservative)
and AEDGE, we make the same foreground cleaning assumption
described above for LISA.
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Figure 5.6: Characteristic strain noise
curve for AEDGE (dashed blue).
The relevant foregrounds are the
BBH + BNS (dot-dashed green) and the
EGWD binaries (dot-dashed red).

DECIGO and BBO

As for DECIGO and BBO, the BBH+BNS foreground constitutes
the main contaminant in their bands (Figures 5.7 and 5.8). BBH
and BNS can be individually resolved and subtracted by these two
ultra-sensitive interferometers (see Section 3.2.6), leaving a residual
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foreground with amplitude a factor ∼ 5 × 10−3 smaller than the
original one in the DECIGO case (see Nishizawa et al. (2012); Yagi
and Seto (2011) and references therein), while BBO should be capable
instead of resolving all compact binaries in its band, thanks to its
deeper sensitivity, which allows to fully subtract them (Cutler and
Harms, 2006; Nishizawa et al., 2012).

Despite the subtraction of resolved sources, the BBH+BNS fore-
ground remains a strong limiting factor for DECIGO: it has been
suggested in the past that an improvement of a factor ∼ 2 or ∼ 3
in sensitivity should be enough to fully resolve and subtract this
foreground (Nishizawa et al., 2012). In alternative to this sensitivity
boost, we also try to consider the possibility of a multi-band cleaning
for DECIGO using ET, corresponding to σf g ∼ 10−3; however, in this
case the sensitivity does not improve significantly with respect to
the case in which we only use the spectral dependence to subtract
the foreground. We conclude that in order to fully restore the SGWB
detection power of DECIGO, we need at least a value σf g ∼ 10−6,
which is at the moment outside of the reach of external ground-based
experiments.

The EGWD confusion noise is expected to contribute mostly in
DECIGO’s and BBO’s bands in the range 10−3 − 10−1 Hz. As we dis-
cussed in LISA’s case, potentially this foreground could be subtracted
in a very efficient way using its unique spectral dependence, and
moreover its contribution is expected to drop very steeply beyond
f ∼ 0.2 Hz, thus not limiting the maximum sensitivity of DECIGO
and BBO. For these reasons, we neglect it in the following analysis.
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Figure 5.7: Characteristic strain noise
curve for DECIGO (dashed orange).
The relevant foregrounds are the
EGWD (dot-dashed red) and the
BBH + BNS foreground (dot-dashed
green).
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Figure 5.8: Characteristic strain noise
curve for BBO (dashed orange). The
relevant foregrounds are the EGWD
(dot-dashed red) and the BBH + BNS
foreground (dot-dashed green).

µAres

The sensitivity curve of µAres appears to be strongly affected by the
Galactic WD foreground in almost all the experiment bandwidth
(Figure 5.9). However, we assume that a subtraction strategy, ex-
ploiting its anisotropy and time-modulation similarly to LISA’s case
Adams and Cornish (2014), can be applied also to µAres, perfectly
subtracting this contaminant. The EGWD foreground, on the other
hand, should be of little importance for µAres, and we neglect it in
the following.

The BBH+BNS foreground is also very relevant in the µAres band,
therefore we adopt a multi-band cleaning approach as in LISA’s
case: for the AX1 model, a value σf g = 0.1 is enough to obtain
multiple detections over µAres band, while for the other SGWB
models we also show results for σf g = 10−3 (in conjunction with
third-generation detector ET). However, even the latter value for
σf g it is not enough to detect some SGWB models (see for instance
the standard r = 0.01 case in Figure 5.24): we conclude that to
restore the full “sensitivity bucket” of µAres, we need at least a value
σf g ∼ 10−5, which is not foreseen at the moment using for proposed
third-generation ground-based detectors.

In addition to the usual three foreground components we de-
scribed above, the coalescence of MBHB could produce an unresolved
foreground between ∼ 10−7 and ∼ 10−5 Hz (dot-dashed purple
curve). The actual contribution of MBHB strongly depends on the
model of galaxy merger rates during cosmological evolution and
on the typical BH masses involved, which have both considerable
astrophysical uncertainties. One possibility could be of using LISA to
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detect every MBHB merger during mission time as resolved sources,
constructing then a model for the MBHB population at µAres fre-
quencies (Bonetti et al., 2019). Again, the capability of LISA of detect-
ing all MBHB mergers in the Universe depends on the actual MBHB
astrophysical scenario. We neglect this foreground, since, according
to current predictions, this foreground should not affect the most
sensitive bins in the µAres sensitivity curve for the detection of an
SGWB, thus making our results robust against its inclusion.
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Figure 5.9: Characteristic strain noise
curve for µAres (dashed orange).
The relevant foregrounds are the
BBH + BNS (dot-dashed green), the
EGWD binaries (dot-dashed red) and
the unresolved MBHB (dot-dashed
purple).

ET

Concerning the ground-based ET, the dominant source of the con-
fusion noise in this frequency band is represented by BBH and BNS
(Figure 5.10). The BBH contribution can be remarkably reduced by
individually resolving sources, leaving a residual with amplitude a
factor ∼ 200 smaller than the initial foreground, while the BNS and
BH-NS contributions are more strenuous and can be reduced only
by a factor ∼ 2 and ∼ 10, respectively (Zhu et al., 2013). The total
BBH + BNS foreground will be reduced by an overall factor of ∼ 3
(Zhu et al., 2013), thus still constituting an important limiting factor
when attempting a detection of the primordial SGWB. We adopt in
this case the σf g → ∞ limit in our filter for ET, corresponding to
subtraction using only the spectral dependence of this foreground.

5.4.4 SKA

For SKA we optimistically include only the white noise component
in the noise budget; however, we note that the so-called “red noise”
component due to pulsar timing noise (Hazboun et al., 2019) could
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Figure 5.10: Characteristic strain curves
for ET (dahsed blue). The relevant
foreground for this experiment, namely
due the BBH + BNS populations, is
shown as a dot-dashed green line.

be present in the data, raising considerably the noise level in the
lower frequency part of the PTA sensitivity curves. We use the the
codes hasasia4 (Hazboun et al., 2019) and gwent5 to compute the 4 https://hasasia.readthedocs.io/en/

latest/index.html
5 https://gwent.readthedocs.io/en/

latest/index.html

sensitivity to the SGWB, choosing for the pulsars an rms timing
residual of σt = 50 ns, an observing time T = 10 yr, a number of
pulsars Np = 200 and an average observation cadence of 1 per week
(Mingarelli et al., 2019).
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Figure 5.11: Characteristic strain curves
for SKA (dashed blue). The relevant
foreground for this experiment, namely
the unresolved MBHB noise, is shown
as a dot-dashed purple line.

As for the foreground, Figure 5.11 shows that the most sensitive
part of the SKA bandwidth will be limited by the presence of the
MBHB astrophysical foreground. We adopt, in this case, a subtraction
strategy based on the spectral shape of this contaminant, using the

https://hasasia.readthedocs.io/en/latest/index.html
https://hasasia.readthedocs.io/en/latest/index.html
https://gwent.readthedocs.io/en/latest/index.html
https://gwent.readthedocs.io/en/latest/index.html
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limit σf g → ∞ in the SNR and filter expressions in Eqs. 5.38 and 5.42,
respectively.
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Figure 5.12: Sensitivity curves on
the energy density of gravitational
waves ΩGW with (solid and dot-dashed
lines) and without (dashed lines)
the contribution of the astrophysical
foregrounds for all the experiments
considered in this work, obtained with
a logarithmic binning in wavenumber
with ∆ ln k = 1.2. Note that we assume
a value σf g = 0.1 for LISA, DO Optimal
and Conservative for the case with
foregrounds (see Section 5.4), while
for µAres we choose σf g = 10−3. For
DECIGO we show two sensitivity
curves with foregrounds: the dot-
dashed one assumes subtraction using
only the spectral dependence of the
foreground (that is by taking the filter
5.42 in the limit σf g → ∞), while
the dashed one assumes multi-band
cleaning with σf g = 10−3. BBO, on the
other side, should be able to resolve
and fully subtract all compact binaries
in its band. We also plot for reference
the sensitivity curve for the aLIGO
experiment without the astrophysical
foregrounds.

5.5 Results

In this Section we present the forecasts for CMB, PTA and interfer-
ometers, described respectively in Sections 5.2 and 5.3. We will first
show the binned sensitivity curves obtained for LiteBIRD, SKA, and
all the interferometers (Section 5.5.1). Then, in Section 5.5.2 we will
proceed to show the error bars for each experiment and each of the
five example tensor power spectrum models described in Section 5.1.

5.5.1 Binned ΩGW Sensitivity Curves

We calculate the binned sensitivity curves to the gravitational wave
energy density ΩGW using Eq. 5.14 for the LiteBIRD CMB experiment
and Eq. 5.30 for all the interferometers and PTA experiments (and its
equivalent when taking the foregrounds into account, see for details
Section 5.4). We plot them in Figure 5.12, choosing ∆ ln k = 1.2 as
the power spectrum discretization scale. The solid and dashed lines
show the sensitivities obtained with and without the foregrounds,
respectively. The sensitivity of a CMB experiment to ΩGW , as com-
puted in Section 5.2.3, depends on the fiducial tensor power spectrum
used to compute the C` in the Fisher matrix given in Eq. 5.12; thus,
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the sensitivity of LiteBIRD (in red) is computed for r = 0 – that is
without including cosmic variance – for consistency with what is
done for the interferometers.

We find that the best sensitivity of LiteBIRD (including fore-
grounds) at frequencies f ∼ 10−17 Hz is similar to those of the most
advanced among the interferometers, namely µAres at f ∼ 10−3 Hz,
DECIGO and BBO at f ∼ 10−1 Hz. However, when plotting error
bars on the model predictions in the next sub-Section, we find that
the shape of the GW spectrum is very different for CMB and inter-
ferometer frequencies. It has a rising spectrum towards the CMB
frequency after the transition between the matter and radiation
dominated eras, while for the single-field slow-roll model it rapidly
flattens out at higher frequencies, making a detection challenging for
interferometers. The situation changes dramatically for some param-
eter choices of the axion-SU(2) model, which can produce a strongly
blue-tilted signal easily detectable at interferometer frequencies
(Thorne et al., 2018).

Figure 5.12 also highlights the fact that the frequency window be-
tween ∼ 10−16 − 10−9 Hz is devoid of any experiment. The constraints
on the SGWB intensity in this range come only from indirect limits,
such as the BBN, second-order back-reaction and CMB shortwave
calculations (Clarke et al., 2020).

Concerning the effect of the foregrounds, we find significant
impacts in the frequency range ≈ 1 − 103 Hz due to unresolved
BBH and BNS, mainly limiting the sensitivity of ET. Also the DO
and AEDGE experiments seem to be still affected for a fractional
uncertanty on the amplitude of the BBH+BNS foreground at the level
σf g = 0.1. However, this does not prevent detection of the AX1 model
at high significance in multiple bins for these three experiments, as
we will see in the following. Moreover, in order to detect primordial
SGWB signals with lesser SNR than the AX1 model, it will possible
to further decrease σf g to the ∼ 1.3 × 10−2 level using external
information from third generation ground-based experiments such
as CE (see Pan and Yang (2019) and Section 5.4), or even to the
∼ 10−3 level using ET (M. Pieroni, A. Ricciardone e E. Barausse in
preparation).

Note that the LiteBIRD sensitivity always includes the fore-
grounds.

5.5.2 Error bars for the spectator Axion-SU(2) models

Next, we calculate the 1σ error bars on ΩGW for five models of the
primordial tensor spectrum. Of these, three are the AX1, AX2 and
AX3 models defined in Section 5.1.2 (see Eq. 5.7), while the other two
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are single-field slow-roll ones with r = 0.01, 0.001 and nT = −r/8. In
this Section we discuss the results for the former models, while in the
next Section 5.5.3 we discuss the latter.

In Figure 5.13, we show the results for LiteBIRD, SKA, LISA and
ET. The light and dark shaded areas show the error bars for the AX1

model with and without the astrophysical foregrounds included
in our calculation (see discussion in Section 5.4). We always take
the foregrounds into account for the LiteBIRD CMB satellite, as
explained in Section 5.2.2.

For what concerns the AX1 model, we tuned its parameter set to
have simultaneous detections in the CMB, PTA and interferometers
ranges, while still being consistent with the BICEP2/Keck/Planck
upper bound at CMB scales (the dashed pink curve in Figure 5.13).

By observing closely the CMB part of the spectrum, the LiteBIRD
error bars clearly show two peaks of sensitivity corresponding to the
reionization bump (second bin from the left) and the recombination
bump (fourth and fifth bins from the left), as we anticipated in Sec-
tion 5.2. Both these bumps corresponds to detections of this model
(Figure green error bars in 5.13).

For the space-borne interferometer LISA, we adopt a multi-band
cleaning of the BBH+BNS foreground, exploiting external informa-
tion from Advanced LIGO/Virgo, which provide σf g = 0.1, as we
discussed in Section 5.4: this allows detection in two bins either with
or without foregrounds (blue error bars in Figure 5.13).

The ground-based ET (purple error bars in Figure 5.13) shows
detections only in the absence of the foreground. We have tried to
tune the axion-SU(2) parameter set to have detections also from
ground in the presence of the foreground, but were not successful
due to the attractor behavior of the theory and the CMB upper
bounds, as explained in Section 5.1.2.

On the other hand, SKA shows remarkably two detections in the
foreground-less case and one in the case with foregrounds for this
model, confirming PTA surveys as a useful instrument to character-
ize exotic SGWB models with bump- or peak-like features in their
frequency range (see also Garcia-Bellido et al. (2016)).

In Figures 5.14–5.16, we show the expected error bars for the AX1

model for the other interferometers. We show the error bars only for
the experiments that can give a detection (without the foregrounds
contamination) in at least one bin. Therefore, we show DO Conserva-
tive, DO optimal and AEDGE only for the AX1 model, which has the
strongest signal in the frequency range favorable to them. We do not
show them for the other models because they would not be able to
have a detection in at least one bin. However, we make an exception
for DECIGO and BBO and do not show their error bars for the AX1
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Figure 5.13: Expected 1σ error bars on
ΩGW for the AX1 model (the solid blue
line) for the LiteBIRD (green), SKA
(orange), LISA (blue), and ET (purple).
We show the constraints with and
without the astrophysical foregrounds
in the light and dark shared areas,
respectively. We use the logarithmic
binning in wavenumber with ∆ ln k =
1.2. We also show for comparison the
other tensor spectrum models adopted
in this work (dashed lines), including
the BICEP2/Keck/Planck upper bound
r = 0.06.

model despite excellent prospects for the detection, since these experi-
ments are so sensitive that the error bars would be for the most part
invisible, similarly to what happens for the µAres experiment.

Figures 5.14 and 5.15 show that the error bars for the DO Conser-
vative and Optimal designs are similar for this particular model, with
the less-sensitive Conservative setup having two detections missing
with respect to the Optimal case in the last two bins. In both cases,
the foreground contamination appears to have a small impact. Fig-
ure 5.16 shows the error bars for the AEDGE atomic interferometer:
this detector shows a similar sensitivity to the DO Optimal design,
with the latter being slightly less sensitive while covering a wider
frequency range.

The error bars on the AX1 model for the µAres mission are shown
in Figure 5.17. The foreground contamination plays a minor role in
this very high SNR case, and µAres is capable of detecting this model
across an impressive range of frequencies ∼ 10−6 − 10−2 Hz, even for
a value as high as σf g = 0.1 for the BBH+BNS multi-band foreground
cleaning, as provided by Advanced LIGO/Virgo.

Next, we show the error bars for the AX2 model. This set was
specifically tuned to show the capability of the axion-SU(2) to pro-
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Figure 5.14: Same as Figure 5.13 but for
the DO Conservative.

duce a signal out of the reach of LiteBIRD while being detectable
in the interferometer bands. For this case we use a larger bin size,
∆ ln k = 2.0. In Figures 5.18, 5.19 and 5.20, we show the results for
this model for µAres, DECIGO and BBO, respectively. Concerning
the BBH+BNS foreground cleaning, we adopt for µAres a value
σf g ∼ 10−3, which is enough to have high-significance detections
in three bins in the case with foregrounds. For DECIGO we show
instead two different options for the foreground treatment: the
very light shaded error bars represent the case in which we only
use the spectral dependence to subtract the foreground, while the
light shaded error bars assume instead multi-band cleaning with
σf g ∼ 10−3. The dark shaded error bars show, as always, the case
without foregrounds. In this case, we see that the addition of fore-
grounds for DECIGO does not allow any detection, while we have
a detection at high significance in one bin in the case without fore-
grounds contamination.

BBO, on the other hand, should be able to resolve and subtract
all compact sources (see Discussion in Section 5.4): because of this,
the error bars for BBO with and without foregrounds are the same,
showing detections of the AX2 model at high-significance in three
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Figure 5.15: Same as Figure 5.13 but for
the DO Optimal.

bins.
We have explored the possibility of having an axion-SU(2) tensor

spectrum peaked in the PTA frequency range with the AX3 model,
producing a signal detectable by SKA and LiteBIRD – while still
complying with the BICEP2/Keck/Planck upper bound on CMB
scales – but outside the reach of LISA and ET (even without the
foreground contamination, see Figure 5.21). This behavior of the
tensor spectrum can be obtained thanks to the attractor nature of the
axion-SU(2) model, which poses a minimum value for the Gaussian
width of the spectrum bump σ for a given peak scale kp (see Section
5.1.2). Although we do not show error bars for other experiments, we
checked that the AX3 model is also not detectable by DO, AEDGE
and DECIGO, while µAres and BBO can detect it at high significance
in three bins, even when accounting for foregrounds.

5.5.3 Error bars on single-field slow-roll models and combined constraints
on nT

We consider now the two single-field slow-roll models with r = 0.01
and 0.001, both with nT = −r/8. We choose a bin size of ∆ ln k = 2.0.
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Figure 5.16: Same as Figure 5.13 but for
the AEDGE. Note a different scale for
the vertical axis.

The model with the larger r = 0.01 is easily detected by LiteBIRD
in multiple bins. On interferometric scales, it can be detected in two
bins by BBO (Figure 5.23), while µAres can detect this model only
without foregrounds (Figure 5.24), and DECIGO, in its standard
design, cannot detect this model even without foregrounds (Figure
5.22).

To have a detection in at least one bin for the lower r = 0.001,
we try increasing the binning scale to ∆ ln k = 4.0. This model is
detected by LiteBIRD on the CMB side, however not even BBO, the
most sensitive among the considered experiments, can detect it on
the side of interferometers (Figure 5.25). The SNR remains smaller
than 1 even considering a single bin enclosing the whole BBO band.

With the extremely high sensitivity of BBO at frequencies ∼ 16
orders of magnitude larger than the CMB, one can create a significant
lever-arm, providing interesting constraints on the spectrum tilt
nT . The path of multi-frequency measurements of the primordial
tensor spectrum has been explored in the past, in the context of
forecasts (see for instance Smith et al., 2006, for the combination of
Planck/CMBPol and DECIGO/BBO), as well as of the analysis of
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Figure 5.17: Same as Figure 5.13 but for
the µAres. Note a different scale for the
vertical axis.available datasets, combining for instance the Planck, BICEP2/Keck,

PPTA and LIGO data (Meerburg et al., 2015), and adding SPTPol
(Lasky et al., 2016b) or COrE and other indirect constraints (Cabass
et al., 2016) to the previous datasets.

Here, we update the forecasts on the tensor power spectrum am-
plitude r and the tilt nT from the combination of CMB and laser
interferometers, considering in particular the two configurations Lite-
BIRD+LISA and LiteBIRD+BBO. We take into account foregrounds
for all experiments. We bin the LISA and BBO sensitivity curves with
∆ ln k = 2.0 and 4.0, respectively. We explore the full cosmological
parameters space including {AS, nS, τ, Ωbh2, Ωch2, H0, r, nT} via the
Monte Carlo Markov Chain (MCMC). We modify the MontePython

MCMC package (Audren et al., 2013; Brinckmann and Lesgour-
gues, 2018) by adding a Gaussian likelihood for the interferometers
(Mandic et al., 2012)

L(Ω̂i, σi|~θ) ∝ exp

[
1
2 ∑

i

(Ω̂i −ΩM( fi;~θ))2

σ2
i

]
, (5.45)

where ΩM( f |~θ) is the proposed model as a function of frequency f
and model parameters ~θ, Ω̂i the fiducial model in the frequency bin
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Figure 5.18: Expected 1σ error bars
on ΩGW for the AX2 model (the solid
orange line) for the LiteBIRD (green)
and µAres (orange). We show the
constraints with and without the astro-
physical foregrounds in the light and
dark shaded areas, respectively. Note
that the error bars with foregrounds
are computed assuming a multi-band
cleaning with σf g ∼ 10−3. We use the
logarithmic binning in wavenumber
with ∆ ln k = 2.0. We also show for
comparison the other tensor spectrum
models adopted in this work (dashed
lines).

fi and σ2
i its variance in the same bin. For the CMB, we adopt instead

the standard Gaussian likelihood (Perotto et al., 2006), with noise and
foregrounds C` spectra determined from the LiteBIRD specifications
(see Section 5.2.2).

We adopt for the fiducial model r = 0.01 and nT = −r/8 given by
the inflationary consistency relation, while the values for the other
cosmological parameters are taken from Ref. (Planck Collaboration,
2018). We show in Figure 5.26 the 1D and 2D marginal distributions
of the nS, r and nT parameters for four possible observational con-
figurations: (i) constraints from LiteBIRD alone (red contours); (ii)
constraints from LiteBIRD and LISA (grey contours), (iii) constraints
from LiteBIRD and BBO (blue contours); and (iv) constraints from
LiteBIRD and BBO assuming the fiducial signal in the LiteBIRD
range but no signal in the BBO range, that is Ω̂i = 0 in every bin
fi (orange contours). This configuration is chosen to quantify possi-
ble deviations from the consistency relation in the eventuality of a
detection at ∼ 5σ by LiteBIRD, but no detection in BBO.

For (i) we recover the following best-fitting parameters with 1σ

uncertainties: nS = 0.9665+0.017
−0.018, r = 0.013+0.003

−0.006 and nT = 0.09+0.18
−0.20;

thus, a test of the consistency relation is out of discussion using the
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Figure 5.19: Same as Figure 5.18 but
for the DECIGO. Note that we show
two different cases for the error bars
with foregrounds: the very light shaded
areas correspond to the case in which
we we only use the spectral dependence
to subtract the foreground, while the
light shaded error bars assume instead
multi-band cleaning with σf g ∼ 10−3.

CMB alone: only extreme deviations from the consistency relation
(e.g., axion-SU(2) models) can be detected in this case.

For (ii) the addition of LISA impacts mainly the error on nT

by limiting the range of allowed blue-tilted models, but this is
still not enough to distinguish the consistency relation from the
scale-invariant case. In this case the recovered parameters are
nS = 0.9669± 0.017, r = 0.0109± 0.003 and nT = 0.026+0.18

−0.10. The
further inclusion of the ground-based interferometer ET jointly with
LISA does not improve significantly the constraints with respect to
LISA alone because of the large foreground contamination affecting
this experiment.

For (iii) the effect of adding BBO is evident in Figure 5.26: the
constraints on r and nT become significantly tighter and also the
maxima of the marginal distributions for the recovered parameters
are very close to their fiducial values. Using the LiteBIRD+BBO
configuration, we recover the following parameters: nS = 0.9649+0.016

−0.017,
r = 0.0100 ± 0.0011 and nT = −0.00125+0.011

−0.007. Also in this case,
however, the error on the tensor spectral index, although remarkably
smaller than the LiteBIRD only case, does not allow to distinguish the
consistency relation from a scale-invariant case.
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Figure 5.20: Same as Figure 5.18 but for
the BBO.

For (iv) we recover nS = 0.96559+0.018
−0.016, r = 0.0076+0.0017

−0.0016 and
nT = −0.15+0.12

−0.05. As it can be argued from Figure 5.26, the recovered
tensor-to-scalar ratio shows a bias: this is because, to have an unde-
tectable signal at interferometers scales, the spectrum must have a
large red tilt, so large that it affects also the CMB scales. Therefore,
even in the absence of a consistency relation detection, if we do not
detect a signal in BBO, the red tilt in the power-law model of tensor
power spectrum has to be so large that we can detect its departure
from the single-field slow-roll consistency relation.

5.6 Chapter summary

We have calculated in this Chapter the sensitivities of CMB, PTA, and
interferometers for SGWB from the primordial GW across 23 decades
in frequency. Not only we do provide the sensitivity curves for the
GW energy density parameter ΩGW (Figure 5.12) as commonly done
in the literature, but also we provide the binned 1σ error bars on the
model predictions for ΩGW from two representative classes of sources
of the primordial SGWB: the quantum vacuum fluctuation in the
metric tensor (i.e., the homogeneous solution of Einstein’s equation)
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Figure 5.21: Same as Figure 5.13 but
for the AX3 model, with a logarithmic
binning of ∆ ln k = 2.0.from single-field slow-roll inflation models with r = 0.01 and 0.001

and the tensor tilt given by the consistency relation nT = −r/8, and
the source-induced primordial GW from the spectator axion-SU(2)
model (i.e., from the stress energy tensor in the right hand side of
Einstein’s equation).

For CMB and PTA we considered the most ambitious future exper-
iments LiteBIRD and SKA, respectively, while for interferometers we
considered a host of funded and proposed space (LISA, µAres, DO,
AEDGE, DECIGO, BBO) and ground-based (ET) GW observatories
covering a wide range of frequencies from 10−7 to 103 Hz. We took
into account the instrumental noise, the response functions, and most
importantly the contamination of the astrophysical foregrounds in
the forecasts. We have presented all the details in our computation
with homogeneous assumptions for all experiments in one place,
which should provide convenient resources for the experiments in
search of the primordial SGWB.

We showed that it is possible to tune the axion-SU(2) model pa-
rameters to have detections with high significance in multiple fre-
quency bins in the CMB, PTA and space interferometers frequency
ranges, even when accounting for the foreground contamination
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Figure 5.22: Expected 1σ error bars
on ΩGW for the single-field slow-roll
model with r = 0.01 and nT = −r/8
(the solid red line) for the LiteBIRD
(green) and DECIGO (blue). Dark
shaded areas correspond to error bars
without foregrounds. Concerning error
bars with foregrounds, we show two
different cases: the very light shaded
areas correspond to the case in which
we only use the spectral dependence
to subtract the foreground, while the
light shaded error bars assume instead
multi-band cleaning with σf g ∼ 10−3.
We use the logarithmic binning in
wavenumber with ∆ ln k = 2.0. We also
show for comparison the other tensor
spectrum models adopted in this work
(dashed lines).

(Figures 5.13-5.17), while remaining consistent with all current up-
per limits. We also showed that the parameters of the axion-SU(2)
model can be chosen in such a way that the signal is out of reach for
CMB experiments, while being detectable by the most sensitive space
interferometers, i.e., µAres, DECIGO and BBO (Figures 5.18-5.20).
Conversely, the model parameters can be tuned in order to obtain
a signal detectable by CMB and PTA experiments, while remaining
outside the reach of space-borne interferometers LISA, DO, AEDGE
and DECIGO and the ground-based one, ET (5.21). This motivates
the search of a signal in a multi-frequency approach, such as the
one we adopted in this work: for a complete characterization of the
primordial SGWB, it is necessary to cover all three CMB, PTA and
interferometers ranges.

On the other hand, the situation is different for future ground-
based interferometers, for which the current estimates for the fore-
ground contamination prevent detections of the axion-SU(2) model. It
is indeed difficult to obtain a tensor spectrum detectable by the ET ex-
periment when taking into account foregrounds while still complying
with the BICEP2/Keck/Planck upper bound on CMB scales (Figure
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Figure 5.23: Same as Figure 5.22 but for
the BBO.

5.13). This is due to the attractor behavior of the axion-SU(2) model,
posing an upper limit on the width of the spectrum bump for a given
peak scale kp.

For what concerns the single-field slow-roll power spectrum, we
showed that the r = 0.01 model can be detected comfortably and
simultaneously by LiteBIRD, by BBO (Figures 5.23, by µAres (but
only in the case without foregrounds, see Figure 5.24), but not by
DECIGO in its standard design (Figure 5.22). We also found that
the lower tensor-to-scalar ratio r = 0.001 can be detected only by
LiteBIRD, while not even the ultra-sensitive BBO can detect such a
signal on the interferometers side (Figure 5.25).

Finally, we presented updated constraints on r and nT combining
LiteBIRD with LISA and LiteBIRD with BBO, to leverage on the scale
dependence of the tensor spectrum. We conclude that distinguishing
the single-field slow-roll consistency relation from the scale-invariant
case remains out of reach even for LiteBIRD+BBO. However, if we
detect tensors in the CMB but not in BBO, we would detect a signif-
icant deviation from the consistency relation in the context of the
power-law primordial spectrum.
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Figure 5.24: Same as Figure 5.22 but for
the µAres. Note that the error bars with
foregrounds are computed assuming a
multi-band cleaning with σf g ∼ 10−3.
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Figure 5.26: 1D and 2D marginal distri-
butions of the nS, r and nT parameters
for four possible observational configu-
rations: LiteBIRD alone (red contours),
LiteBIRD+LISA (grey), LiteBIRD+BBO
(blue), and LiteBIRD+BBO assuming
the fiducial signal in the LiteBIRD range
but no signal in the BBO range (orange).
The contours show the 68% and 95%
CL, the dashed lines show the fiducial
parameters, and the solid black line
shows the consistency relation.



6
Conclusions and prospects

The primordial SGWB is a window on quantum gravitational ef-
fects at extreme energies, probing the boundaries of our current
knowledge of quantum mechanichs and Gravity. This sought-after
signal contains, indeed, a unique wealth of information on the very
early Universe physics and could allow us to probe energy scales
unreachable by terrestrial particle colliders.

Because of the major impact that this discovery would have on cos-
mology, we want to assess what is the ultimate information we can
get on this signal. To do so, in this Thesis, we studied the possibility
of obtaining precision measurements on the shape of the spectrum
of the primordial GWs, taking two main steps while pursuing this
major goal:

1. first, we develop a model-independent treatment for characterizing
the shape of the primordial tensor power spectrum, including an un-
precedented level of realism in our analyses which reflects the current
knowledge concerning present and future CMB B-mode experiments;

2. second, we provide forecasted constraints across ∼ 23 decades in
frequency on the shape of the primordial tensor spectrum considering
all the probes and all configurations, especially the ultimate and
most ambitious CMB B-mode probes, space-borne and ground-based
interferometers and PTA surveys.

In addition to the ultimate experiments, we also consider those
operating now or imminently, with the purpose of showing how our
knowledge of physics and our targets will change depending on the
progresses of observations.

For the same reason, we particularly refine our analyses for CMB
B-mode experiments: as highlighted by our work, they currently
represent the most promising channel for near future detection, and
therefore they will be of the utmost importance in shaping the future
of SGWB observations.
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The first step in our study has been assessing the potential of
future B-mode experiments in constraining the shape of the SWGB
spectrum: we applied PCA to the tensor primordial power spectrum
and investigated the capability of three future CMB B-mode experi-
ments (namely LiteBIRD, SO and CMB-S4) to detect deviations from
scale-invariance in a model-independent way (see Chapter 4 and the
work in Campeti et al. (2019b)).

In order to be as realistic as possible, our forecasts included the
contributions of gravitational lensing, instrumental noise and – for
the first time in this type of literature – the astrophysical foreground
residuals due to Galactic thermal dust and synchrotron emissions.
We found that residuals undoubtedly have a substantial effect on
the uncertainty on r and on the PCA modes, are relevant for both
satellite and ground-based experiments, and cannot be neglected in
any treatment which aspires to be realistic.

Studying the PCA modes and their associated uncertainty, we
characterized the wavenumber-range for which each of the three
experiments will be most sensitive to features in the power spectrum:
the SO and CMB-S4 sensitivities peak around the recombination
bump, while LiteBIRD proved to be sensitive also to the reionization
bump.

In the construction of the PCA basis, we used a reference angular
power spectrum with no tensor contribution, since r is still unde-
tected: therefore, we had to implement a technique to chose the
number of PCA modes to retain in our basis, in order to properly
represent cases with nonzero tensor contributions. Moreover, we
removed the tensor-to-scalar ratio r from the parametrization of the
tensor power spectrum, expressing the latter exclusively as a linear
combination of PCA modes.

We found, by comparing our Fisher and MCMC predictions on the
PCA modes uncertainties, that the main limitation when applying
PCA to the tensor power spectrum is represented by the physicality
prior on PT , that is the condition that it must be positive definite.
In this respect, we also found that including r in the tensor power
spectrum parametrization worsen the impact of the physicality prior
on the PCA modes, hence our choice of parametrizing the spectrum
solely as a linear combination of PCA modes.

We provided also two examples of application of PCA to pri-
mordial GWs. We first apply it to a red-tilted toy model of tensor
spectrum, resulting in a successful performance of the PCA formal-
ism, and then we use it to test the inflationary consistency for an
r = 0.05 and an r = 0.01 model, with the expected result that neither
LiteBIRD nor CMB-S4 will be able to test this relation even in the
r = 0.05 case.
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The second step of our study was to extend the analysis by includ-
ing, beside B-mode probes, the constraining power on the shape of
the SWGB of GW laser and atomic interferometers and PTA surveys
(see Chapter 5 and the work in Campeti et al. (2020)).

We provided sensitivity curves for the GW energy density param-
eter ΩGW with binned 1σ error bars on the model predictions for
two models of primordial SGWB: the standard single-field slow-roll
inflation model and the spectator axion-SU(2) model.

We performed our forecasts for a wide array of experiments: we
chose as representative of future CMB B-mode probes the LiteBIRD
satellite mission, for PTA the SKA survey, and for interferometers we
considered the proposed space missions LISA, µAres, DO, AEDGE,
DECIGO, BBO and ground-based observatory ET.

While in the literature the astrophysical foreground contribution
is often overlooked, in favor of a more simplified and sometimes too
optimistic approach, we included them in our analysis for each of the
considered experiments, using the state-of-the-art simulations for the
LiteBIRD foregrounds and approximate analytical fitting formulas for
interferometers and PTA. Furthermore, we introduced and applied
into our pipeline a new filter Q( f ) for direct detection experiments,
maximizing the SNR ratio with and without foregrounds.

We get the most comprehensive picture of the status of SGWB
observations, by considering a variety of scenarios: concerning the
axion-SU(2) model, we found that its parameters can be tuned in
order to obtain a signal with simultaneous detections at high signif-
icance in multiple bins in the CMB, PTA and space interferometers
frequency ranges, even when accounting for the foreground contami-
nation, while remaining consistent with all current upper limits. We
also found that another choice of parameters can produce a signal
unreachable by CMB experiments and, at the same time, detectable
by the most sensitive space interferometers. Similarly, an appropri-
ate tuning of the model parameters can produce a signal detectable
by CMB and PTA experiments, but not by most of the space-borne
and the ground-based detectors. We conclude that a complete char-
acterization of the primordial SGWB requires extensive frequency
coverage, such as the one provided by the combination of CMB, PTA
and interferometers.

The single-field slow-roll power spectrum with r = 0.01, on the
other hand, can only be detected by LiteBIRD, BBO and µAres (but
only in the case without foregrounds). Moreover, the r = 0.001 can
be detected only by LiteBIRD among all the experiments considered
in this work: the CMB remains therefore the most powerful tool for
detection within the framework of the single-field slow-roll scenario.

We also updated the constraints on r and nT parameters for the
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standard single field slow-roll scenario with r = 0.01: we combine
LiteBIRD with LISA and LiteBIRD with BBO, fully exploiting to lever
arm created by the scale dependence of the tensor spectrum. We ex-
tended then the test of the consistency relation previously performed
using the PCA technique solely for CMB experiments: we include
in this case the space interferometers LISA and BBO in addition to
LiteBIRD. This analysis showed that, although distinguishing the
single-field slow-roll consistency relation from the scale-invariant
case is not achievable even with the powerful combination of Lite-
BIRD and BBO, if we detect tensors in the CMB but not in BBO, we
would detect a deviation from the consistency relation.

We consider now the future perspectives of our work, starting with
the possibilities offered by our model-independent analysis of the
tensor spectrum. From a theoretical point of view, we stress that the
PCA formalism can be applied to any scenario of Early Universe to
quantify possible departures from the simplest inflationary scenarios,
as we do in a toy example of a red-tilted model. Moreover, this
model-independent formalism could be applied in a systematic
exploration of the models present in the literature, in order to quickly
assess the detectability by future CMB experiments of the features in
the tensor power spectrum introduced by each specific model.

From the observational perspective, our analysis highlighted the
complementarity of ultimate B-mode experiments over the next
decade, probing large scales interested by the reionization power in
the B-modes, uniquely accessed from space (LiteBIRD), and smaller
ones from ground based probes (SO, CMB-S4), jointly looking at the
degree scales, where the signal from cosmological gravitational waves
is imprinted at recombination. The high level of complementarity
between ground-based and satellite CMB experiments in terms of
their multipole range and capability to detect information on the
primordial universe physics, is currently a subject of interest in
the literature (see 3.1.2 and references therein). There is indeed the
possibility of creating a synergy between them: we could exploit the
extended frequency coverage of LiteBIRD to remove foregrounds
from the data of CMB-S4, obtaining high resolution CMB data, and
then profit from the small scales coverage and delensing capabilities
of CMB-S4 to clean the lensing contamination from LiteBIRD data.

As we discussed above, the constraints on the SGWB obtained
from the CMB alone can be significantly improved by adding infor-
mation from several other probes in different frequency intervals.
Moreover, our results concerning the extensions of the analysis to the
PTA and interferometers ranges could have a significant impact on
the way we think about future measurements. In fact, if the primor-
dial SGWB is discovered during the next decade by ground-based
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CMB observatories or LiteBIRD, characterizing the power spectrum
beyond the value of r and testing chirality and Gaussianity would
be of utmost importance for deciphering the origin of the SGWB. If
the discovered SGWB were found to be nearly scale-invariant, parity
even and Gaussian, it would set a target for the DECIGO and BBO
to test the prediction of single-field slow-roll inflation models. On
the other hand, if the SGWB were found to be blue-tilted, chiral or
non-Gaussian, it would give excellent prospects for direct detection
by LISA in the 2030s as well as by other proposed post-LISA direct
detection experiments at any frequencies, opening up a new window
to particle physics during inflation.

Concerning future work, a direct extension would be to apply the
PCA formalism to the extensive landscape of experiments described
in Chapter 5, thus characterizing the frequency ranges – across ∼ 23
decades – in which the combination of CMB and direct detection
experiments would be more sensitive to features in the tensor power
spectrum. Also in this case a systematic exploration of the parameter
space could be performed, just as in the CMB-only case.

The problem of foreground cleaning for direct detection exper-
iments is also a very relevant subject on which further research is
needed: as we approach the launch date of LISA, more realistic
assessment of the performance of interferometers under the effect
of astrophysical SGWB foregrounds is needed. In this regard, the
foreground treatment and cleaning strategy we adopted for inter-
ferometers and PTA, can be improved in some ways, although this
is neither an easy nor a quick task: we could use full simulations
to produce the foregrounds contributions instead of approximate
fitting formulas, and develop foreground cleaning algorithms (such
as the one in Pieroni and Barausse, 2020), adapting them to each of
the considered experiments configurations. We could also improve
the realism of some assumptions in our foreground treatment: for
instance, the possibility of subtracting the GWD and EGWD should
be assessed with detailed simulations and calculations from first prin-
ciples for each of the considered experiment configurations (Adams
and Cornish, 2014).

On a final note, my involvement as a member of the LiteBIRD
collaboration has also been one of the driving forces behind some
of the analyses presented in this work: our results, as we outlined
throughout this Thesis, strengthen the scientific case for this ultra-
sensitive future B-mode mission.
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A
Interferometers Designs and Response Functions

A necessary ingredient to compute the sensitivity curve of a GW
direct SGWB experiment (Eq. 5.30) is the overlap reduction function
RI J( f ) of the detector pair I J (Eq. 5.23) (Flanagan, 1993), which is
computed from the response function TI( f , n̂) of each of the detector
involved in the cross-correlation (Eq. 5.20). We summarize here
the formalism necessary to compute it, following Ref. (Smith and
Caldwell, 2017) to which we refer the reader for further details.

The overlap reduction function depends on the design of the
detector and the combination of laser signals from the interferometer
arms that we choose to form at the detector output. The response
of space interferometers can also depend on time because of the
orbital motion of the spacecrafts composing the detector; however, for
simplicity we ignore this dependence.

Let us start by considering the response of a single arm of the
interferometer, from which we build the response of the full detector.
The physical principle behind the detection of GWs in a laser inter-
ferometer is simple: the passage of GWs changes the proper distance
between two freely moving test-masses at the opposite ends of an
interferometer arm, causing phase-shifts in the laser beams which
are traveling back-and-forth in each arm. It can be shown (Smith and
Caldwell, 2017) that the phase change due to light traveling from the
test-mass i to the test-mass j along a single interferometer arm is

∆ϕij(t) =
∫ +∞

−∞
d f
∫

d2n̂ ∑
P=+,×

h̃P( f , n̂)ei2π f ti eP
ab(n̂)T

ab(l̂ij · n̂, f ),

(A.1)
where L is the arm length, the test-masses i and j are located at ~xi

and ~xj + Ll̂ij, respectively, ti is the time at which light left the mass i, t
is the time of arrival at the mass j and Tab is the single-arm response
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function given by

Tab(l̂ · n̂, f ) = l̂a l̂b T (l̂ · n̂, f ) e−i2πn̂·~xi , (A.2)

T (l̂ · n̂, f ) =
1
2

sinc
[

f
2 f ∗

(1− l̂ · n̂)
]

ei f
2 f ∗ (1−l̂·n̂), (A.3)

where f ∗ = 1/(2πL). To measure the SGWB it is necessary to
correlate the phase differences from different arms or paths around
the interferometer. For example, we write the correlation between the
i→ j and the k→ l paths as

〈∆ϕ̃ij( f )∆ϕ̃∗kl( f ′)〉 = 1
2

δ( f − f ′)Rij,kl( f )Ss( f ), (A.4)

where Rij,kl is the overlap reduction function defined in Eq. 5.23,
which we rewrite in this case as

Rij,kl( f ) =
∫ d2n̂

4π
Tab(l̂ij · n̂, f ) Tab∗(l̂kl · n̂, f ). (A.5)

To build the detector responses for the experiments we consider
in this work, we start from the simplest design adopted for the LISA
mission. The current proposal for LISA showcases three spacecrafts,
each occupying a vertex ~xi with i = A, B, C of an equilateral triangle
ABC of side L = 2.5× 109 m; laser beams (six in total) travel back
and forth along each of the triangle sides. We compute the response
function for LISA using the standard Time-Delay Interferometry
(TDI) signals. In this particular case (Smith and Caldwell, 2019), the
interferometer response function at the detector vertex A reads

Tab
ABC(n̂, f ) =

1
2

e−i2π f n̂·~xA
[
(l̂AB ⊗ l̂AB)T (l̂AB · n̂, f )− (l̂AC ⊗ l̂AC)T (l̂AC · n̂, f )

]
,

(A.6)

T (l̂ · n̂, f ) =
1
2

W( f , f ∗)
(

sinc
[

f
2 f ∗

(1− l̂ · n̂)
]

e−i f
2 f ∗ (3+l̂·n̂)

+ sinc
[

f
2 f ∗

(1 + l̂ · n̂)
]

e−i f
2 f ∗ (1+l̂·n̂)

)
, (A.7)

where W( f , f ∗) = 1 for the Michelson signals and W( f , f ∗) =

1− e−2i f / f ∗ for the TDI signals we are interested in. Specifically, the
TDI A and E modes overlap reduction function1 for LISA (the blue 1 The three TDI signals are constructed

by diagonalizing the signal covariance
matrix and are named the A, E and T
modes. Note that Eq. A.8 is valid only
for the A and E TDI modes, which are
the most sensitive to the SGWB, while
the T mode is much less sensitive and is
used instead to remove noise from the
A and E modes (Smith and Caldwell,
2019).

curve in Figure A.1) will be

RA,E = RABC, ABC −RABC, BCA, (A.8)

where RABC, ABC is the response for the auto-correlation at the vertex
A and RABC, BCA is the one for the cross-correlation between the
signals at the vertices A and B (Smith and Caldwell, 2019).

We use TDI signals to compute the overlap reduction function also
for DO (green curve in Figure A.1), which has been proposed as a
LISA-like interferometer with shorter arms of lenght L = 108 m.
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Differently from the LISA and DO detectors, BBO will feature
six spacecrafts forming two independent triangular LISA-like in-
terferometers ABC and A′B′C′ with sides L = 5× 107 m. The two
interferometers will be co-planar with one being rotated by 180° with
respect to the other, creating the so-called “hexagram” configuration.

In this case, it is convenient to introduce another signal combi-
nation that we can form from the Michelson signals smich,A(t) and
smich,C(t) at the vertices A and C of one interferometer, respectively
(Smith and Caldwell, 2017)

sX(t) = smich,A(t) + 2smich,C(t). (A.9)

The detector response function for the Michelson signal smich,A(t) at
the vertex A takes the form in Eq. A.6, while the one for the sX(t)
signal combination is given by

Tab
X (n̂, f ) = Tab

ABC(n̂, f ) + 2Tab
CAB(n̂, f ), (A.10)

and for both responses the transfer function T (l̂ · n̂, f ) is given by
Eq. A.7 with W( f , f ∗) = 1.

Now, to compute the overlap reduction function for the BBO hex-
agram configuration, we cross-correlate the Michelson signal smich,A

at the vertex A on the interferometer ABC and the combination
sX′(t) = smich,A′(t) + 2smich,C′(t) on the other interferometer A′B′C′

(Smith and Caldwell, 2017) (the black curve in Figure A.1). As shown
in (Smith and Caldwell, 2017), it is convenient then to correlate the
Michelson signal smich,A(t) with the signal combination s

′
X(t), be-

cause the total noises for these two signals will be uncorrelated over
the frequencies at which space-based interferometers are typically
most sensitive. The final overlap reduction function for this signal
combination (Smith and Caldwell, 2017) will be

RHexagram = RABC, ABC +RX′ ,X′ + 2RABC, X′ . (A.11)

The DECIGO design is similar to the BBO, with two indepen-
dent triangular interferometers with arms L = 106 m disposed in
the hexagram configuration. Unlike BBO, however, the current DE-
CIGO design envisages Fabry-Pérot (hereafter FP) interferometers;
the response function at the vertex A (Kudoh et al., 2006) becomes
therefore

Tab
FP(n̂, f ) =

1
2

e−i2π f n̂·~xA
[
(l̂AB ⊗ l̂AB)− (l̂AC ⊗ l̂AC)

]
, (A.12)

and – similarly to what we do for BBO – we cross-correlate it with
the response at the vertex A′ on the second interferometer, obtaining
the overlap reduction function depicted in the orange curve in Figure
A.1.
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Figure A.1: Absolute value of the
overlap reduction functions |RI J |
normalized to 1, computed for the
interferometers LISA, DECIGO, DO,
BBO, µAres and CE.

The µAres experiment will be composed, similarly to DECIGO
and BBO, by two identical triangular LISA-like constellations with
arms L = 430× 109 m. However, in this case one of the two triangular
interferometer would be trailing Mars orbit within the ecliptic plane
while the other would be in the same orbit but 90 degrees tilted with
respect to the ecliptic plane (Sesana et al., 2019). In order to compute
the overlap reduction function for µAres, we adopt again the same
method employed for BBO, taking into account the design differences.
We show the resulting curve in the purple line in Figure A.1.

Finally, we take into consideration the ET ground-based experi-
ment. The current proposal consists of a network of three interferom-
eters with arm opening of 60 degrees, arranged in a such a way to
form an equilateral triangle. For the ET experiment there is no need
to compute the overlap reduction function, since the strain sensitivity
curves (as defined in Eq. 5.31) are publicly available2. 2 http://www.et-gw.eu/index.php/

etsensitivities

http://www.et-gw.eu/index.php/etsensitivities
http://www.et-gw.eu/index.php/etsensitivities


B
Interferometers Noise Models

To compute the sensitivity curve in Eq. 5.30 we need not only the
overlap reduction function, but also the noise power spectral density
Sn( f ) for each detector (Eq. 5.17). Let us start from the LISA mission.
Following Ref. (Smith and Caldwell, 2019), we use the noise models
reported in the LISA Science Requirements Document1: the two main 1 https://www.cosmos.esa.int/web/

lisa/lisa-documentsnoise sources are acceleration noise and optical metrology noise, with
spectra

SLISA
acc ( f ) =

(√
(δa)2/L

)2

(2π f )4

(
1 + ( f1/ f )2

)
Hz−1, (B.1)

SLISA
opt =

(√
(δx)2/L

)2
Hz−1, (B.2)

where
√
(δa)2 = 3× 10−15 m s−2 and

√
(δx)2 = 1.5× 10−11 m are

the rms amplitudes for acceleration and optical metrology noise,
respectively, and f1 = 0.4 mHz. The noise spectra for the TDI A and
E signals that we used to compute the response function for LISA in
Appendix ?? are

SA,E
n ( f ) = |W( f , f ∗)|2

[
(4 + 2 cos( f / f ∗))SLISA

opt + 8(1 + cos( f / f ∗)) + cos2( f / f ∗)SLISA
acc ( f )

]
.

(B.3)
Combining the A and E modes, we reduce the noise power by a
factor

√
2 to obtain (Smith and Caldwell, 2019)

SLISA
h =

[(RA

SA
n

)2
+

(RE

SE
n

)2
]−1/2

. (B.4)

For BBO (Crowder and Cornish, 2005a) we use

SBBO
acc ( f ) = 2.3× 10−52(1 Hz/ f )4 Hz−1, (B.5)

SBBO
opt = 8× 10−50 Hz−1, (B.6)

https://www.cosmos.esa.int/web/lisa/lisa-documents
https://www.cosmos.esa.int/web/lisa/lisa-documents
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and the noise model for one of the two identical triangular interfer-
ometers proposed in (Smith and Caldwell, 2017)

SBBO
n =

5
2

[
SBBO

opt ( f ) + 2SBBO
acc ( f )(1 + cos2( f / f ∗))

]
. (B.7)

For DECIGO we use the noise model (Kuroyanagi et al., 2015):

SDECIGO
n = SDECIGO

shot ( f ) + SDECIGO
rad ( f ) + SDECIGO

acc ( f ), (B.8)

with shot noise, radiation pressure noise and acceleration noise given
by

SDECIGO
shot ( f ) =

h̄πλ

Pe f f

(
1

4 f L

)2
[

1 +
(

f
f ∗

)2
]

, (B.9)

SDECIGO
rad ( f ) =

h̄P
πλ

(
16F
ML

)2 ( 1
2π f

)4
[

1 +
(

f
f ∗

)2
]−1

, (B.10)

SDECIGO
acc ( f ) =

h̄P
πλ

(
16F

3ML

)2 ( 1
2π f

)4
, (B.11)

where P = 10 W is the laser output power, λ = 532 nm is the laser
wavelenght, M = 100 kg is the mirror mass, R = 0.5 m is the mirror
radius, F = 10.18 is the FP cavity finesse and Pe f f = 6.68 W is the
effective laser output power.

For DO we use the noise curves shown in Ref. (Sedda et al., 2019)
and kindly provided by Christopher Berry. Also for µAres we use
the noise curves kindly provided by Alberto Sesana, as shown in
Ref. (Sesana et al., 2019). For AEDGE we use the strain sensitivity
curve shown in Ref. (El-Neaj et al., 2019) and kindly provided by
the AEDGE collaboration. For ET we use the strain sensitivity curve
available from Ref. (Hild et al., 2011) (see also website in footnote 2).



C
Derivation of a new filter for foreground mitigation

We will demonstrate in this Appendix that the new filter Q( f )
(Eq. 5.42) we introduced in Section 5.4.2 maximizes the noise-only
SNR (Eq. 5.28) and also SNRŶ (Eq. 5.38), which takes foregrounds
into account (Poletti D. in preparation).

We first simplify the notation by defining the dot product:

A · B =
∫ +∞

−∞
d f A∗( f )B( f )S2

n. (C.1)

We also define for convenience the following quantities (dropping all
the f dependences)

P =
2SsRI J

S2
n

and F =
2S f gRI J

S2
n

. (C.2)

With this notation, we can rewrite the square of Eq. 5.38 as

SNR2
Ŷ =

(Q · P)2

(Q ·Q) + σ2
f g(Q · F)2

. (C.3)

Note that:

1. SNRŶ does not depend on the normalization of Q;

2. if P ∝ F (i.e. the foregrounds and the primordial signal have the
same shape), maximizing SNRŶ or the noise-only SNR (Eq. 5.28) is
equivalent;

3. thanks to point 1 above, instead of maximizing the whole fraction
appearing on the right-hand side of Eq. C.3, we can just mini-
mize its denominator under the constraint that its numerator is
constant.

The Lagrangian therefore reads:

L(Q, λ) = (Q ·Q) + σ2
f g(Q · F)2 + λ(Q · P + const.); (C.4)
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note that the function is strictly convex: local minima are also global.
Let’s look for them:

∇QL(Q, λ) = 2Q + 2σ2
f g(Q · F)F + λP = 0. (C.5)

We now make the ansatz Q ∝ P− xF and see if this is a solution for
some x,

xF− σ2
f g(Q · F)F ∝ P. (C.6)

Assuming that F is not parallel to P, we can rewrite this last equation
as

x− σ2
f g(P · F− xF · F) = 0, (C.7)

leading to

x =
P · F

σ−2 + F · F . (C.8)

Noting that the Hessian is 2 + σ2
f gFFT , which is positive defined, the

expression

Q ∝ P− P · F
σ−2 + F · F F (C.9)

is a (global) minimum and therefore maximizes SNRŶ. Spelling out
this last equation for Q in terms of the quantities Ss, Sn, S f g and RI J

we get the expression for the filter reported in Eq. 5.42.
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