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Abstract. We propose a computationally efficient framework to treat nonlinear partial differen-
tial equations having bifurcating solutions as one or more physical control parameters are varied. Our
focus is on steady bifurcations. Plotting a bifurcation diagram entails computing multiple solutions
of a parametrized, nonlinear problem, which can be extremely expensive in terms of computational
time. In order to reduce these demanding computational costs, our approach combines a continuation
technique and Newton’s method with a reduced order modeling (ROM) technique, suitably supple-
mented with a hyperreduction method. To demonstrate the effectiveness of our ROM approach, we
trace the steady solution branches of a nonlinear Schrodinger equation, called the Gross—Pitaevskii
equation, as one or two physical parameters are varied. In the two-parameter study, we show that
our approach is 60 times faster in constructing a bifurcation diagram than a standard full order
method.
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1. Introduction. We consider the problem of finding a solution X € V such
that

(1.1) G(X ()i ) = 0,

where g € D denotes a point in a parameter domain D C RM, V a given functional
space, G(-, p) a given nonlinear functional in X. We view problem (1.1) as the strong
form of a nonlinear partial differential equation (PDE) or a system of such equations
in which M parameters appear. We are interested in situations in which the solution
X of (1.1) differs in character for parameter vectors p in different subregions of the
parameter domain D. Such situations occur if X undergoes bifurcations as pu changes
from one subregion to another.

In general, one cannot solve (1.1) for X so that one instead seeks an approximation
of the solution in an Nj-dimensional subspace V;, C V. Such an approximation is
usually obtained using a so-called full order method (FOM), like, for example, the
finite element method, which is often expensive, especially if multiple solutions are
needed. For this reason, one is interested in finding surrogate methods that are much
less costly so that obtaining approximations to the exact solution X of (1.1) for many
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choices of the parameter vector u € D becomes feasible. Such surrogates, called
reduced order modeling (ROM) techniques, are constructed using a “few” solutions
computed with the FOM.

A practical way to realize a ROM is to organize the computation into two steps:

- An offline phase: approximation solutions corresponding to selected repre-
sentative parameter values/system configurations are computed with a FOM
and stored, together with other information about the parametrized prob-
lem. This is a computationally expensive step usually performed on high
performance computing facilities.

- An online phase: the information obtained during the offline phase is used to
compute the solution for a newly specified value of the parameters in a short
amount of time (ideally in real time), even on a relatively low power device
such as a laptop or a smartphone.

These split computational procedures are built in such a way that new parameter
dependent quantities are easily and quickly computed online, while representative
basis functions for selected parameter values and more demanding quantities are pre-
computed offline. Among all the possible ROMs, we choose the reduced basis (RB)
technique [18, 30, 36].

Recent developments of ROM techniques have focused on the reduction of com-
putational time for a wide range of differential problems [9, 37], while maintaining a
prescribed tolerance on error bounds [39, 18, 36]. ROMs in the setting of bifurcating
solutions are considered in the early papers [26, 27, 28, 29] for buckling bifurcations
in solid mechanics. More recently, in [40] it is shown that a proper orthogonal de-
composition (POD) approach allows for considerable computational time savings for
the analysis of bifurcations in some nonlinear dissipative systems. RB methods have
been used to study symmetry breaking bifurcations [15, 35] and Hopf bifurcations [34]
for natural convection problems. An RB method for symmetry breaking bifurcations
in contraction-expansion channels has been proposed in [33]. In [16], steady bifurca-
tions for both a natural convection problem and contraction-expansion channels are
investigated with a localized ROM approach. Yano and Patera [41] introduced an
RB method for the stability of flows under perturbations in the forcing term or in
the boundary conditions, which is based on a space-time framework that allows for
particularly sharp error estimates. Furthermore, in [41] it is shown how a space-time
inf-sup constant approaches zero as the computed solutions get close to a bifurcating
value. A recent work on ROMs for bifurcating solutions in structural mechanics is [31].
Finally, we would like to mention that machine learning techniques based on sparse
optimization have been applied to detect bifurcating branches of solutions in [5, 22] for
a two-dimensional laterally heated cavity and Ginzburg-Landau model, respectively.

The methodology we propose to plot a bifurcation diagram makes use of three
building blocks: (i) a continuation technique to properly follow each solution branch,
(ii) Newton’s method to deal with the nonlinearity of problem (1.1), and (iii) an RB
method to efficiently solve the linearized problem obtained from Newton’s method.
The novelty of this approach relies on the combination of well-known and assessed
methods to obtain a versatile and global approach to any kind of bifurcation prob-
lems modeled by parametric PDEs. We present technical insights to build a ROM
approach capable of approximating efficiently and accurately the whole bifurcation
diagram with the use of a unique RB method. As a concrete setting to illustrate our
methodology, we consider the Gross—Pitaevskii equation.

Often referred to as a nonlinear Schrodinger equation, the Gross—Pitaevskii equa-
tion models certain classes of Bose-Einstein condensates (BECs), a special state of
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matter formed by identical bosons at ultralow temperatures. It is well known that the
solutions of the Gross—Pitaevskii equation with a parabolic trap in two dimensions
exhibit a rich bifurcating behavior [24, 25, 7], which includes symmetry-breaking bi-
furcations and vortex-bearing states when a (sufficiently strong) rotational angular
momentum term is added [14]. The bifurcating behavior becomes even richer for
the two-dimensional coupled Gross—Pitaevskii equations [6]. However, for simplicity
we stick to the simple Gross—Pitaevskii equation and present a one-parameter study
(the chemical potential being the only varying parameter) and a two-parameter case
(varying chemical potential and the normalized trap strength). For both cases, we
show that our approach is able to capture the first six solution branches with high
accuracy. We stress the need to supplement the RB method with a hyperreduction
technique [4, 8] to enable significant computational time savings with respect to a
standard FOM. In particular, we show that if the RB method at the above point
(iii) is combined with the discrete empirical interpolation method (DEIM) [8], our
approach is up to 60 times faster in constructing a bifurcation diagram than a FOM,
making it an ideal tool to study the complex solution behavior of the Gross—Pitaevskii
equation and other nonlinear PDE problems.

The work outline is as follows. In section 2, we present the building blocks of
our approach to reduce the computational time requested by the construction of the
bifurcation diagrams. In section 3, we apply such an approach to the Gross—Pitaevskii
equation. Numerical results pertaining to the validation of the FOM, reconstruction
of bifurcation diagrams with our ROM approach with and without a hyperreduction
techniques are reported in section 4. Conclusions are drawn in section 5.

2. Numerical approximation of a problem with bifurcations. The nonlin-
earity in problem (1.1) can produce a loss of uniqueness for the solution, with multiple
solutions branching from a known solution at a bifurcation point. Our aim is to study
numerically the associated bifurcation diagrams with contained computational costs.
We restrict our attention to steady bifurcations.

The standard assumption for the map G in (1.1) is the continuous differentiability
with respect to X and p. Let (X, 1) € V x D be the known solution, i.e., G(X, 1) =
0. Let us denote by DxG(Z,u) : V. — V' and D,G(Z,pu) : D — V' the partial
derivatives of G on a generic point (Z,u) € V x D. A strong assumption usually
found in the literature in order to have a local branch of nonsingular solutions is
that DxG(X, ) : V — V' is bijective. Of course, this is not our case: we deal
with bifurcation points, which are singularities for the system. Moreover, we do not
require G to be affine in p, because of the nonlinearity of the problem. As we will see
later, this forces us to implement a hyperreduction technique, such as the empirical
interpolation method (EIM)/DEIM [4, 8], to recover efficiency.

2.1. Proposed approach for the branch reconstruction. For simplicity,
we present our approach for a scalar parameter p (i.e., M = 1) in parameter domain
D = [ui, puf], although it can easily be extended to a multiparameter setting (i.e.,
M > 1). Our algorithm is based on three building blocks:

1. A continuation technique: it permits us to reconstruct properly the bifurca-
tion diagram by following each branch and providing a suitable initial guess
for the nonlinear iterations (next building block). We use a slight modi-
fication of the continuation method in [2], which consists in a for loop in
D = [u1,...,px] C D, a discrete version of the parameter set with cardinal-
ity K. At each new cycle, we check if a bifurcation occurs, using a threshold
eprr that controls the norm of the solution. If a bifurcation does occur, we
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set that bifurcated solution as the initial guess for the next cycle in order to
capture the post-bifurcation behavior.

2. Newton’s method: each point in the bifurcation diagram requires the solution
of a nonlinear PDE problem for the corresponding value u. To deal with the
nonlinearity, we use the Newton—Kantorovich method [10].

3. A Galerkin finite element discretization: at each step of the Newton iteration,
we have to approximate the solution of a new linear weak formulation. For the
space discretization, we use the Galerkin finite element method as discussed
in section 2.2. This choice is made also in view of the numerical extension
towards the model order reduction.

Algorithm 2.1 summarizes the three steps for the generic nonlinear parametric prob-
lem (1.1).

Algorithm 2.1 A pseudocode for the online reconstruction of a branch.

1: for j=1: K do > Continuation loop on D
2 if || X,_1|lv < eprr then > Select initial guess
3 X;O) = Xguess > Chosen guess
4: else

5: X j(-O) =X, > Continuation guess
6 end if

7 while ||0X ||y > € do > Newton’s method
8 DxG(XD(u); 1)dX = G(X®(pu); 1) > Galerkin finite element method
9: X0 () = XD () - 6X
10: end while
11: Xj = Xso
12: end for

Let us clarify lines 2—6 in Algorithm 2.1. In order to also decrease the computa-
tional cost during a generic online phase (i.e., also in the case with no hyperreduction),
we avoid applying the continuation method when the bifurcated solutions do not exist
yet. To do this, we control the norm of the solution and we keep providing the pre-
bifurcation guess, which is different for each of the branches we want to approximate,
until the solver converges to a bifurcated solution. At this point, the continuation is
enabled and the computed solution becomes the new guess.

We have applied similar strategies for the numerical study of bifurcations arising in
different contexts, ranging from fluid dynamics [34, 33, 16, 17] to structural mechanics
[31].

2.2. Galerkin finite element method for a (generic) nonlinear problem.
In this section, we introduce some standard notion for the discretization of generic
problem (1.1) with the Galerkin finite element method.

Let V}, be a family of finite-dimensional spaces, such that V,, C V. Let N, =
dim(Vy). We first cast problem (1.1) in weak form and then for a given parameter
w € D seek X (1) € Vi, that satisfies

(2.1) (G(Xn(w); 1), Ya) = g(Xn(p), Yas ) =0V Yy € V.

To treat the nonlinearity in G, we apply the Newton—Kantorovich method [10, 36],
which reads as follows. Choose initial guess X (u) € Vj. Then, for every k = 0,1, ...,
we have the following:
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- Step 1: Seek the variation §X; € V), such that
(2.2) dg[ X5 ()] (0Xn, Yn; ) = 9(X5 (1), Yas ) ¥V Yi € Vi
- Step 2: Update the solution
Xp () = Xpy (1) = 6 X

Steps 1 and 2 are repeated until the L2-norm of the residual falls below a prescribed
tolerance e.
We denote with {E7 };V:hl a basis for Vj,. Newton’s method combined with the

Galerkin finite element method and applied to problem (2.1) reads find 6)_('h € RVn
such that

(2.3) J(XF (u); 1)0X5 = Gr(XF ()i )
where the Jacobian matrix in RV»*Nr ig defined as
(24) IXF () )iy = dglXE(WI(E), E'sp) Vi j=1,...,Ny.

2.3. The RB method. Once projected onto a suitable finite element space,
the parametrized discrete problem derived in the previous section leads to a very
large nonlinear system which has to be solved for every parameter y € D. The
solution computed with a finite element method represents the so-called high fidelity
approximation, which is computationally expensive. To reduce the computational cost
without compromising the accuracy, we choose to use a ROM technique called the
RB method [18, 30, 36]. Roughly speaking, this method consists in a projection of the
high fidelity problem onto a subspace of smaller dimension, constructed with some
properly chosen basis functions.

RB methods use the offline-online paradigm introduced in section 1. In the off-
line phase, we explore the parameter space D in order to construct a basis for the
low-dimensional manifold, which efficiently approximates the high fidelity space and
where the parametrized solutions lie. This entails solving Nyyqin times the Galerkin
high fidelity problem associated with Ni;.q;,, values of i in D. For the numerical results
in section 4, we chose {¢"}N*7s" to be an ordered sampling of the interval D. In the
online phase the solution is computed through the projection on the low-dimensional
manifold in an efficient and reliable way for every pu € D we are interested in. The
reduced computational cost comes from avoiding projecting onto the large finite el-
ement space. To be precise, we want to construct the reduced problem through the
projection on a subspace Vy C V}, spanned by a collection of the snapshots, i.e., so-
lutions of the full order problem for selected values of parameter i, obtained by, e.g.,
POD or Greedy techniques [18, 30, 36].

Let us provide some more details of the online phase for generic problem (1.1).
For a given p € D, we seek Xy (u) € Vi that satisfies

(25) g(XN(/L),YN;M) =0 VYye€e ‘/YN7

where g(-,-; 1) is defined in (2.1). Just like for the FOM in section 2.2, we apply the
Newton-Kantorovich method. We choose an initial guess X% (1) € Vi and then for
every k =0,1,..., we have the following:

- Step 1: Find the variation 6 Xy € Vi such that

(2.6)  dglXN(W)OXN,YNn;p) = g(XN (1), Ynsp) ¥V Yy € V.
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- Step 2: Update the solution
XN () = X§(p) — 6 XN

Steps 1 and 2 are repeated until the L?-norm of the residual falls below a prescribed
tolerance e.

Let {¥™}N_, be an orthonormal basis (with respect to the inner product defined
on the space V) for Vi, obtained through POD sampling and the Gram-—Schmidt
procedure during the offline phase. We remark that this basis will be optimal in the
¢? sense, minimizing over all possible N-dimensional orthonormal bases Wy the errors
between the snapshots and their projection through Wy .

Then, Vy = span{X',..., 3V} and we can write every Xy () € Vi as

N
(2.7) Xn(u) =Y X{ (s

We denote with Xy (1) = {X,(Vm)(,u)}%:l € RY the reduced solution vector.
By plugging (2.7) into (2.5) and choosing Yy = X" € Vy for 1 < n < N, we
obtain the following algebraic system

N
(2.8) 9(2 X§vm)(u)2m72";u> =0, n=1,...,N.
m=1

Let

N
(G (Xn (1) 1))n =g (Z X (s, um; u) :
m=1

be the residual reduced vector. We denote with V the Nj, x N transformation matrix
whose elements

(2.9) (V)jm = 57,

are the nodal evaluation of the mth basis function at the jth node. With this new
notation, we can rewrite problem (2.8) as

VI G (VXN ()i 1) = 0.

Finally, we combine Newton’s method and the RB technique. At every iteration
k of Newton’s method the problem that has to be solved reads as follows: find Xy €
RY such that

(2.10) In(XE () )Xy = G (XE (1); ),

RNXN

where Jy is the reduced Jacobian matrix

InN(XK(); 1) = VII(VXE (1) )V

We remark that (2.10) involves the degrees of freedom of the high fidelity problem.
Because of this, the repeated assembly of the Jacobian compromises the efficiency of
the reduced order method during the online phase. As we will see later, this issue
can be overcome by adopting an affine recovery technique, which allows a consistent
speedup of the method by interpolating the nonlinear part of the variational form.
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3. Application to the Gross—Pitaevskii equation. The Gross—Pitaevskii
equation models certain classes of BECs. A BEC is a special state of matter formed
by an unlimited number of bosons that “condense” into the same energy state at low
temperatures. A BEC is formed by cooling a gas of extremely low density, about
one-hundred-thousandth the density of normal air, to ultralow temperatures (close to
absolute zero).

A quantum system is the environment to be studied in terms of wave-particle
duality (i.e., all particles exhibit a wave nature and vice versa) and it involves the wave
function and its constituents, such as the momentum and wavelength. The Gross—
Pitaevskii equation describes the ground state of a quantum system of identical bosons
using two simplifications: the Hartree-Fock approximation and the pseudopotential
interaction model. In the Hartree-Fock approximation, the total wave function ®;.;
of a system of N bosons is taken as a product of single-particle functions ®:

N

(I)tot(rla rg,... er) = H (I)(I‘i),
=1

where r; is the coordinate of the ith boson. If the single-particle wave function satisfies
the Gross—Pitaevskii equation, the total wave function minimizes the expectation
value (i.e., the probabilistic expected value of the result of an experiment) of the
pseudopotential model Hamiltonian under normalization condition

(3.1) N[ pr. p=op
D

where D C R? is the domain under consideration and p is interpreted as the particle
density. The Gross—Pitaevskii equation reads: find the single-particle wave function
®(r,t) : D x Rt — C such that

1
(3.2) i0;® = —§A<I>+ |®|°® + W (r)® in D,

where i is the imaginary unit, r = |r| = /22 + 3?2 is the radial coordinate, and W (r) =
%QQTQ is the external potential with €2 being the normalized trap strength, i.e., the
ratio of trappings along and transverse to the plane. In this paper, we set 2 = 0.2
unless specified otherwise. Notice that we consider a single well potential. Equation
(3.2) is similar in form to the Ginzburg-Landau equation and is sometimes referred
to as a nonlinear Schrodinger equation. Obviously, (3.2) needs to be supplemented
with suitable boundary conditions.
The construction of the steady solution is based on the ansatz

(3.3) ®(r,t) = ¢(r) exp(—iut), o¢(r): D — C,

where p is the chemical potential, which has to satisfy u > Q. By plugging (3.3) into
(3.2), we obtain the nonlinear problem

. 1
(3.4) G(o;p) = —§A¢+|¢\2¢+W(T)¢—M¢=0~
It is well known that the solutions of the one-dimensional version of problem (3.4)

exhibit a bifurcating behavior [21, 20, 1, 11], which is not particularly rich though. The
bifurcations occurring in the two-dimensional problem (3.4) are far more interesting
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[24, 25, 7]. Indeed, several secondary bifurcations appear, which include symmetry-
breaking bifurcations and vortex-bearing states [14]. The bifurcation diagram plots
the number of bosons N in the BEC (3.1) as a function of the chemical potential
1. When N — 0, the nonlinearity of the problem becomes irrelevant and the states
bifurcate from the respective linear limit. Starting from this low-density context, we
are interested in exploring the solution modes for greater values of u, which make the
problem strongly nonlinear. Since an arbitrary potential can be approximated as a
harmonic potential at the vicinity of a stable equilibrium point, when N — 0 we can
decompose the linear eigenfunction ¢,, , in Cartesian form as being proportional to

2

(3'5) ‘man> = ¢m,nNHm(\/§x) (\/>y) 2 ,

where H; is the Hermite polynomial with j being the associated quantum number of
the harmonic oscillator. The critical value of the eigenvalue corresponding to linear
eigenfunction ¢p, n i perit = Emn = (m +n + 1)Q. Notice that the characteris-
tic eigenvalue parameter, i.e., the eigenvalue responsible for the bifurcation, is the
chemical potential. Thus, given an initial value p at the linear limit, we increase the
chemical potential (and therefore the number of atoms N) in order to approach the
strongly nonlinear regime that can lead to the discovery of new states originating from
secondary bifurcations.

For the numerical characterization of the stability (and possible classification of
the instability) for each state, we refer to [7].

3.1. Finite element discretization. In this subsection, we apply the method
presented in section 2.2 to problem (3.4). We recall that the solution ¢ to (3.4) is a
complex function. Let ¢ and 1 be its real and imaginary parts, respectively. Let us
introduce

a(X,Y) = /VX VYdx, b(X,Y):%Q/ |r|?X - Ydx,
D
d(X,Y;p) = /X Ydx, n(Y,Z):/ |Z|*Z - Y dx,
D
c(X,Y,Z) = / 2(X - Z2)Z + |Z|*X] - Ydx.
D

The generic kth iteration of Newton’s method (2.3) reads seek 6 X, = (d¢n, d9n) €
Vi, with V, C (H})?, such that

a(0Xn,Yn) + b(6Xp, Yn) — d(6Xn, Ya; 1) + (6 Xn, Vi, XJ)
(3.6) = a(XF, V) + b(X\, Ys) — d(XF, Y ) +n(Ya, Xp) VY, € Vi
Note that for simplicity of notation, we have not specified that the solution X} depends

on the parameter p.
Let us introduce the finite element discretization matrices:

(An)ij = a(E7,E") ,  (Bp)i; = b(E’,E"),

(3.7) A o
(Ch)ij = (B, X3, EY) s (Dn)(p))ij = d(E?, E% ) -
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The RN»*Nn Jacobian matrix J(X(1); 12) can be written as

J(XE(u); 1) = An + By — Dy () + Ch.

Next, we will apply the ROM technique presented in section 2.3.

3.2. Application of the RB method. We present the problem that has to
be solved in the online phase of the RB method applied to the Gross—Pitaevskii
equation. Given p € D, at every iteration k of Newton’s method (2.6) we seek
XNy = (5¢)N,51/1N) € Vi such that

a(0X N, YN)+b(6 XN, YN) — d(6Xn, Y 1) + c(6 XN, YN, XF)

(38) = a(XR, Yn) + (XK, Vi) = d(XR, Yiv; ) + n (Y, XY)
VYy € Vn. .
The reduced Jacobian Jn (X% (u); n) € RV*N can be written as
(3.9) IN(XR(); 1) = Ay + By — Dy (u) + Cu,
where

Ay =VTAV, By =V'B,V,
N
Dy(n) = V'Du(p)V, Cn =) X3 VICu(E"V

n=1

are the reduced matrices written in terms of finite element matrices (3.7) and the
transformation matrix (2.9).

In general, the time saving promised by the online-offline strategy are enabled by
the so-called affine decomposition [18], which makes the computations in the online
phase independent from the (usually very high) number of degrees of freedom Ny,.
Here, however, the reduced matrix Cy introduced above depends on p through the
solution computed at each step of Newton’s method. Thus, we will need an affine-
recovery technique called the EIM [4] in order to obtain substantial savings of the
computational time during the online phase, as demonstrated in section 4.3.

4. Results. The high fidelity (or full order) approximations used for the results
presented in this section were computed with FEniCS [13, 23, 3], while we used
RBniCS [38] for the reduced order approximations.

4.1. Validation of the FOM. To validate the FOM for the Gross—Pitaevskii
equation as described in section 3.1, we consider a test proposed in [7]. We approx-
imate the solution to (3.4) in domain D = (—12,12)? with homogeneous Dirichlet
boundary conditions on the entire boundary of D. We recall that we set {2 = 0.2 and
D = [0,1.2]. For the space discretization, we use P, finite elements and a mesh with
6889 elements.

Figure 1 displays the FOM bifurcation diagram in the u-N plane (left) and in the
p-|pllo Plane (right).

The full reconstruction of the bifurcation diagram requires a proper initialization
of our algorithm, in particular, for Newton’s method. For this purpose, we rely on the
linear limit of the system as specified in (3.5). Indeed, to approximate each branch in
Figure 1, we assign an initial guess proportional to the product of Hermite polynomials
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Fi1G. 1. Bifurcation diagram obtained with the FOM: number of bosons N (left) and infinity
norm of density p (right) plotted against the chemical potential . The labels (a)—(f) are referred to
solutions in Figure 2.

H,, and H,,, where m and n are chosen according to the value of the critical point
terit = (m+mn 4+ 1)Q. In the general case (i.e., no analytic information is available),
one can recover such an initial guess either from a linearized eigenvalue problem [31]
or thorough a deflation method [7, 32].

These diagrams show the first three bifurcation points and the relative non-
uniqueness of the solution with respect to the parameter p. As p is increased, the
sequence of events is as follows. The ground state |0,0) is the system’s simplest state.
Its linear eigenfunction ¢g ¢ has corresponding eigenvalue y = 2. The ground state is
generically stable, thus no further bifurcations occur from this state [19]. As expected,
a unique solution branch departs from g = Q in Figure 1. A representative density
function for this branch is shown in Figure 2(a). We see no further bifurcation for
Q < p < 2Q. The first interesting events in terms of bifurcation analysis occur for
= 2Q with n+m = 1: two branches, associated with |0, 1) and |1, 0}, bifurcate from
point (2€,0) in the u-N and p-||p|ls planes [24, 12]. Indeed, from point (2€2,0) in
Figure 1 we observe the two expected branches. Representative density functions for
these two branches are reported in Figures 2(b) and 2(c). The next, more compli-
cated, case of bifurcations emanates from point (3€2,0), with n4+m = 2. In Figure 1,
we see that three branches depart from this point, associated with |1,1), |0,2), and
|2,0). The corresponding representative densities are shown in Figures 2(f), 2(e), and
2(d). Finally, all the points without marker in Figure 1 correspond to the nonphysical
solution ¢ = 0 that exists since there are no external forces in (3.4).

Figure 2 displays the density functions associated with ;= 1.2 and all 6 solution
branches in Figure 1. We observe the richness of density patterns in order of decreasing
N. In particular, we see the ground state |0, 0) in Figure 2(a), the single charge vortex
|0, 1) in Figure 2(b), the 1-dark soliton stripe |1, 0) in Figure 2(c), the dark soliton cross
|1,1) in Figure 2(f), the ring dark soliton |0, 2) in Figure 2(e), the 2-dark soliton stripe
|2,0) in Figure 2(d). Notice that the 6 branches in Figure 1 are related to the first
three eigenvalues. For example, the second bifurcation stems from a double eigenvalue
and thus we have two branches. This phenomenon is called multiple bifurcations. The
stability property of these branches are different for each case, i.e., the single charge
vortex is always stable while the 1-dark soliton stripe is subject to multiple secondary
bifurcations. These properties can easily be studied using standard techniques (see,
e.g., [7]). The results in Figures 1 and 2 are in excellent agreement with the results
reported in [7], indicating that the mesh that we use is sufficiently refined for this
study.
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(a) ground state (b) single charge vortex (c) 1-dark soliton stripe

- OD

- 2\

0.0e+00 05 8.8e-01 00e+00 05 12e+00 0.0e+00 05 8.7e-01
| I |

(d) 2-dark soliton stripe (e) ring dark soliton (f) dark soliton cross

Fi1G. 2. Density functions computed with the full order method for u = 1.2. FEach plot is
associated with one of the 6 solution branches in Figure 1. From (a) to (f) the number of bosons N
is decreasing.

The overall simulation time required to complete the diagrams in Figure 1 is
roughly 96 minutes with continuation step Ap = 1.25- 1073,

4.2. Tracing bifurcation diagrams with the reduced order approach.

4.2.1. One-parameter study. In this section, we present the results obtained
with our reduced order method as described in section 2.3 and compare them with
the FOM results reported in section 4.1. The only parameter that varies is p in the
interval [0, 1.2].

Concerning the construction of the reduced manifold, we employed a training set
for the POD with cardinality Ng.q;n, = 160 for each one of the six branches. Setting
the POD tolerance to 10™?, we obtain a global basis of dimension N = 51. In the
online phase, we reconstruct the reduced bifurcation diagram for all the 961 equally
spaced points in D = [0,1.2] used in the high fidelity bifurcation diagram shown in
Figure 1. Such points correspond to continuation step Ay = 1.25- 1073,

Figure 3 shows reduced order errors

(4.1) En =|Np = Nn| and  E, = |||pallec = [lon ]l

i.e., the difference in absolute value between the branches of the bifurcation diagram
computed with the FOM and ROM in the u-N plane (top) and in the p-||p|| plane
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Fic. 3. Difference in absolute value between the branches of the bifurcation diagram computed
with FOM and ROM in the u-N plane (top) and in the p-||p||co plane (bottom), i.e., reduced order
errors En (top) and E, (bottom) defined in (4.1). The labels (a)—(f) refer to the solutions reported
in Figure 2.

(bottom). In Figure 3, we see that the largest peaks are associated with the |1, 1)
branch at 4 = 0.6. In general, it is expected to have larger errors at the bifurcation
points where differentiability with respect to the parameter y is lost. We infer that the
errors are largest at u = 0.6 due to the more complicated solution structure (compare
Figure 2(f) to the other panels in Figure 2). From Figure 3 (bottom), we see the
largest error is of the order of 10~* for the infinity norm of the density. However, we
observe larger errors over the interval [0.2,1.2] for u, as opposed to being localized at
1= 0.6 as in Figure 3 (top).

As further evidence of the accuracy of our ROM approach, we plot in Figure 4
the difference between X;, (FOM solution) and Xy (ROM solution) in the L? and
H} norms. Recall that X}, and Xy consist of both real and imaginary parts of the
computed solution of the Gross—Pitaevskii equation. As expected, for all the branches
the largest errors in both norms occur at the point where each branch departs from
the horizontal axis, i.e., p = 0.2 for branch |0,0), u = 0.4 for branches |1,0) and |0, 1),
and p = 0.6 for branches |1,1), |0,2), and |2,0). In addition, just like in Figure 3 the
largest errors are associated with branch |1,1).
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FiG. 4. Difference between X, (FOM solution) and Xn (ROM solution) in the L? and H}
norms for each of the siz solution branches.

Figure 5 reports the difference between the density function p computed with
FOM and ROM in the L? and H} norms. In the case of the density, the largest errors
for each branch occur for y larger than the critical value where the branch departs from
the horizontal axis. For a better understanding of how the ROM density compares
with the FOM density, Figure 6 displays the difference pp, — py for p = 1.2. We
observe larger errors for the 1- and 2-dark soliton stripe and the dark soliton cross,
i.e., for the solutions that do not have central symmetry.

Figures 3-6 show the ability of our ROM approach to accurately reconstruct
bifurcation diagrams as parameter p varies. Clearly, it makes sense to set up the ROM
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F1G. 5. Difference between py, (density computed with FOM) and pn (density computed with
ROM) in the L? and H& norms for each of the six solution branches.

machinery if there is a substantial gain in terms of computational time. Because of the
nonlinearity in the Gross—Pitaevskii equation, which makes the computations in the
online phase dependent on the number of finite element method degrees of freedom,
the computational speedup enabled by our ROM approach is only 1.1: it took 86
minutes to generate the data needed for the bifurcation diagrams, using continuation
step Ap = 1.25 - 1072, accounting only for the online phase computations. Recall
that it takes 96 minutes with FOM. These computational savings are not satisfactory,
especially if we were to include the cost for the offline phase. Before introducing an
affine recovery technique to drastically improve computational efficiency, we present
a two parameter study.
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F1G. 6. Difference between the density computed with FOM and ROM for the first siz branches
for p=1.2.

4.2.2. Two-parameter study. In this section, we plot the bifurcation diagram
as chemical potential y varies in the interval [0, 1.2] and trap strength 2 varies in the
interval [0.1,0.3].

First, we focus on the first bifurcation, i.e., branch |0,0). Figure 7 show such a
branch in a two-parameter bifurcation diagram obtained with the reduced order model
as p and ) are varied. As expected from the theory, we see that as {2 increases the
critical value of u for the first bifurcation increases linearly. Recall that p..;; = €, for
m =n = 0, and Figure 7 clearly shows it (see the black dotted line in the highlighted
red rectangle). For Figure 7, we used increment A2 = 0.01 and continuation step
Ap = 1.25-1073. The online phase computations for the graph in Figure 7 took
roughly 164 minutes. The corresponding time required by the FOM is approximately
249 minutes. So with our ROM approach we obtain a speedup of 1.5, which represents
an improvement over the 1.1 speedup for the one-parameter study but it is still not
enough to justify the computational costs of the offline phase.

Next, we focus on the first two bifurcations but restrict our attention to Q =
0.1,0.2,0.3. Figure 8 shows the first three branches, i.e., branches |0,0), |0,1), and
|1,0). We see that our ROM approach also successfully captures the critical u for
the second bifurcation: branches |0,1) and |1,0) depart from per: = 2. Just like
for Figure 7, we used continuation step Ay = 1.25-1073. The time required by the
online phase computations to plot the graph in Figure 8 is roughly 245 minutes.
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Fic. 7. First bifurcation in a two-parameter bifurcation diagram obtained with the reduced
order model: infinity norm of the density as chemical potential p and trap strength Q0 vary. The
black dotted line in the highlighted red rectangle shows the critical value of p for the first bifurcation:
Merit = Q.

0.4 l10lls

F1G. 8. First two bifurcations in a two-parameter bifurcation diagram obtained with the reduced
order model: infinity norm of the density as chemical potential p varies for trap strength Q =
0.1,0.2,0.3.

4.3. Hyperreduction techniques. In this section, we use two affine-recovery
techniques to reconstruct branch |0, 1) for the one parameter study. These techniques
are called EIM [4] and DEIM [8] and they makes the online phase computations
independent of the number of degrees of freedom of the finite element method.

As we have remarked earlier, if the affine dependence assumption is not fulfilled,
the speedup of the online reconstruction can be limited, thereby compromising the
whole methodology. With the hyperreduction techniques one aims at approximating
a general parametrized function g : D x D — R by a sum of affine terms:

Q
(4.2) 9(x, 1) ~ gl (%) =D cq()hq(x),
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where the basis functions h, are obtained by means of a linear combination of @
snapshots {guq} ~_, and the sample points are chosen through a Greedy approach. In
(4.2), the coefﬁments of such an expansion ¢,(u) are found by solving

I[g,)(x5) = gu(x;)

in some particular points {xj}??:1 of the domain D called magic points. Hence,
empirical interpolation strategies provide a discrete version of I[g,](z) as

g (p) = He(p), H = {hy(x;)}(j.q) € RO,

The main difference between EIM and DEIM is in the construction of H. In
fact, EIM embeds the construction of the basis inside the Greedy procedure, while
DEIM exploits a POD on a set of snapshots. Moreover, the DEIM strategy starts
with discretizing the nonlinearity, while EIM constructs the set of the magic points
and the basis functions before the discretization step.

Let us express residual (2.3) as

Gn(Xn; 1 Zeg )G (X),

where parameter affine dependency is guaranteed by the forms 69(u). The reduced
residual (2.10) can then be expressed as:

N(Xnip) = Zeg WIGL(VX y).

The hyperreduction techniques described above provide the following affine approxi-
mation of the reduced residual,

N(Xnip) & Zeg Yeq(Xns ) VTR,

where {hq} Z, represent a suitable basis and ¢, the interpolation coefficients. The
Jacobian matrix J N(X ;) is assembled in a similar fashion.

The purpose of this section is twofold: show that the branch is reconstructed
accurately and report on the substantial computational time savings enabled by the
hyperreduction strategies. Figure 9 shows reduced order errors En (right) and E,
(right) for branch |0,1). We see that the values of En for EIM and DEIM are
comparable over the entire [0,1.2] interval with a peak at u = 1.2 of the order of
107°. Error E,, is slightly larger for EIM with a peak of the order of 107%.

Finally, Figure 10 shows the difference between the FOM solution and the ROM
solution computed with EIM (left) and DEIM (right) in the L? and H} norms, again
for branch |0,1). We observe slightly larger error peaks than in the case of ROM with
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Fi1c. 9. Difference in absolute value between the branches of the bifurcation diagram computed
with FOM and ROM with EIM/DEIM in the pu-N plane (left) and in the p-||p|leo plane (right),
i.e., reduced order errors En (right) and E, (right) for branch |0,1).
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F1G. 10. Difference between Xy (FOM solution) and X (ROM solution) computed with EIM
(left) and DEIM (right) in the L% and H} norms for branch |0,1).

no affine-recovery technique: compare Figure 10 with Figure 4(b). These increased
errors are the price to pay for a considerable computational speedup. With EIM, it
takes only 55 s to construct branch |0, 1) while it takes 246 s with FOM. So, our ROM
approach coupled with EIM is almost five times faster than the FOM. As for DEIM,
the computational time savings are even better: it takes only 7 s for the construction
of branch |0, 1), which corresponds to a speedup factor of almost 32. This drastic
reduction of the computational time allowed by the DEIM is expected [8].

The hyperreduction techniques is especially effective in reducing the computa-
tional time needed for the two-parameter study presented in section 4.2.2. Our ROM
approach with DEIM takes only 6 minutes to reconstruct the graph in Figure 8. This
is a speedup factor of 40 with respect to our ROM approach without DEIM and a
factor 60 with respect to the FOM.

5. Conclusions and perspectives. We have exploited reduced order methods
to drastically reduce the computational time required to trace a bifurcation diagram.
We proposed a combination of different techniques to overcome the curse of dimen-
sionality, mostly when more than one physical parameter varies. In particular we used
the standard finite element method as a high fidelity solver for the offline phase and
a POD as a reduction technique to construct a basis for the approximation manifold.
Moreover, we implemented a simple continuation method to prevent the divergence
of the Newton-Kantorovich method.
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To demonstrate the effectiveness of our approach, we studied bifurcating phe-
nomena in quantum mechanics described by the Gross—Pitaevskii equation. We were
able to trace the full bifurcation diagram with high accuracy even when dealing with a
multiparameter context. We also highlighted the need for an affine recovery technique
(EIM/DEIM) in order to obtain important computational time savings.

There are several ways in which this work could be expanded. One can consider
different reduction strategies, such as POD-Greedy for the 2-parameters test case,
in order to understand how the bifurcating parameter varies and then discover new
branches at a reduced computational cost. In addition, a deflation method could
be implemented and paired with a more involved and smart continuation method.
Finally, an extension to the three-dimensional version of the same model or to multi-
component systems could be investigated.
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