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Abstract
Approximations of the Dirac delta distribution are commonly used to create sequences
of smooth functions approximating nonsmooth (generalized) functions, via convolu-
tion. In this work we show a-priori rates of convergence of this approximation process
in standard Sobolev norms, with minimal regularity assumptions on the approxima-
tion of the Dirac delta distribution. The application of these estimates to the numerical
solution of elliptic problems with singularly supported forcing terms allows us to pro-
vide sharp H1 and L2 error estimates for the corresponding regularized problem. As
an application, we show how finite element approximations of a regularized immersed
interface method results in the same rates of convergence of its non-regularized coun-
terpart, provided that the support of theDirac delta approximation is set to amultiple of
the mesh size, at a fraction of the implementation complexity. Numerical experiments
are provided to support our theories.

Mathematics Subject Classification 65N15 · 65N30

1 Introduction

Singular source terms are often used in partial differential equations (PDE) to model
interface problems, phase transitions, or fluid-structure interaction problems. The
immersed boundary method (IBM, [29]) is a good example of a model problem where
a Dirac delta distribution supported on an immersed fiber or surface is used to capture
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complex dynamics that are happening on possibly moving interfaces. Similar forcing
terms can be used, for example, to model fictitious boundaries in the domain [13], or
to couple solids and fluids across non-matching discretizations [17].

When the discretization scheme is based on variational principles, singular sources
may be incorporated exactly in the numerical scheme by the definition of their action
on test functions [3,4,17]. However, if the discretization scheme is based on finite
differences [29] or finite volumes [27], this procedure is cumbersome, and a typical
alternative is to regularize the source term by taking its convolution with an approx-
imation of the Dirac delta distribution, or by modifying the differential operators
themselves to incorporate the knowledge about the interface [22].

Several works are dedicated to the design of good Dirac approximations [19,34] to
use in this regularization process, and their convergence properties are well known in
the literature of immersed boundary methods [14,21].

When the source term is a single Dirac distribution, [19] proved convergence in
both the weak-∗ topology of distributions, as well as in a weighted Sobolev norm,
provided that certain momentum conditions are satisfied.

Inmany applications, however, the Dirac distribution is not used directly as a source
term, but only in formal convolutions to represent the coupling between overlapping
domains. In this context, the resulting source termmay or may not be singular, accord-
ing to the co-dimension of the immersed domain itself. To fix the ideas, consider a
source term of the kind

F(x) :=
∫
B

δ(x − y) f (y) dy, x ∈ Ω ⊆ R
d , B ⊂ Ω.

The above formalism is used in immersed methods to represent a (possibly singular)
coupling between B and Ω . Here δ is a d-dimensional Dirac distribution. If the co-
dimension of the immersed domain B is zero, then the above forcing term reduces
to

F(x) = χB(x) f (x),

where χB is the indicator function of B, owing to the distributional definition of δ.
However, if the co-dimension of B is greater than zero, the integration over B does
not exhaust the singularity of the Dirac distribution: the resulting F is still singular,
and it should be interpreted as the distribution whose effect on smooth functions ϕ is
given by:

〈F, ϕ〉 :=
∫
B
f (y)ϕ(y) dy, for all ϕ ∈ C∞

c (Ω).

In the three dimensional case, assuming that f ∈ L2(B), the regularity of F goes from
being L2(Ω) when the co-dimension of B is zero, to a negative Sobolev space which
cannot be smoother than H−1/2(Ω), H−1(Ω), and H−3/2(Ω) when B is a Lipschitz
surface, Lipschitz curve, or point, respectively.
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A priori error estimates of regularized elliptic problems

In all cases, a regularization of F is possible by convolution with an approximate
(possibly smooth) Dirac function. In most of the literature that exploits this technique
from thenumerical point of view, pointwise convergence, truncation, andTaylor expan-
sions are used to argue that high order convergence can be achieved in L p(Ω)norms for
the numerical approximation of the regularized problem, provided that some specific
conditions are met in the construction of the approximate Dirac function [23,24,28].
Convergence of the regularized solution to the exact solution of the original problem
is usually left aside, with the notable exceptions of the work by [19], where only the
degenerate case of B being a single point is considered, and the work by [30], where
suboptimal estimates in W−1,p(Ω) norm for some p ∈ [1, d

d−1 ) are provided for
finite element discretizations of the immersed boundary method applied to the Stokes
problem.

Even though the mollification (also known as regularization) technique is widely
used in themathematical analysis community, very little is knownabout the the speed at
which regularized functions converge to their non-regularized counterparts in standard
Sobolev norms, when non-smooth approximations of the Dirac delta distribution are
considered.

In this work we provide convergence results in standard Sobolev norms that mimic
closely the a-priori estimates available in finite element analysis, andwe investigate the
performance of the finite element method using regularized forcing data, in the energy
and L2(Ω) norms, for a class of singular source terms commonly used in interface
problems, fluid structure interaction problems, and fictitious boundary methods.

We start by providing an a priori framework in standard Sobolev spaces for
unbounded domains, to study the convergence of regularized functions to their non-
regularized counterparts, with minimum requirements on the regularization kernel.

We extend this framework to bounded domains, assuming that the support of the
forcing data is away from the physical domain (see the definition in (14)), andwe study
the convergence speed of elliptic problems with regularized forcing terms to their non-
regularized counterparts, with minimum requirements on the support of the forcing
term. For compactly supported kernels, in Theorem 5, we provide sharp convergence
estimates in the energy norm in terms of powers of the radius of the support. We also
provide an L2(Ω) error estimate by following a duality argument (or Aubin–Nitsche
trick) and using the H2 interior regularity of a dual problem; we refer to Theorem 6 for
more details. We note that although we only consider Dirichlet boundary conditions
in this paper, the convergence results that we derive for the regularized problem can
be also applied to elliptic problems with other boundary conditions; see Remark 2.

As an application, we investigate how the regularization affects the total error of the
finite element approximation of an interface problem via immersed methods, and we
show that all the estimates we obtain are sharp. Even though a regularization in this
case is not necessarywhen using the finite elementmethod [3], the biggest advantage of
using regularization comes from the fact that its numerical implementation is trivial;
see Remark 6. Theorems 7 and 8 show that the regularization does not affect the
overall performance of the finite element approximation in both energy and L2(Ω)

norms when choosing the regularization parameter to be a multiple of the maximal
size of the quasi-uniform subdivision of Ω .
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The rest of the paper is organized as follows. We first introduce some notations in
Sect. 2, and provide general results in both bounded and unbouned domains in Sect. 3.
These results are applied to a general model elliptic problem in Sect. 4, where we use
the results of Sect. 3 to derive sharp error estimates in energy and L2(Ω) norms. An
application to immersedmethods is provided in Sect. 5, where we apply the theory to a
finite element approximation of an interface problem. Finallywe discuss the numerical
implementation of the singular forcing data (with and without regularization) and
validate our findings via numerical simulations in Sect. 6.

2 Notations and preliminaries

In what follows, we set Ω to be a bounded Lipschitz domain in R
d with d = 2 or 3.

We write A 	 B when A ≤ cB for some constant c independent of regularization and
discretization parameters (mentioned in Sect. 1) in A and B. We indicate A ∼ B when
both A 	 B, and B 	 A. For a ∈ R, we denote with a− (or a+) any real number
strictly smaller (or greater) than a.

For x ∈ R
d , we use |x | to indicate the euclidean normof x , and given a normed space

X , we denote by X ′ and 〈·, ·〉X ′,X its dual space and the duality pairing, respectively.
We also denote by ‖ · ‖X and ‖ · ‖X ′ the norm of X and the operator norm of X ′, i.e.,

‖v‖X ′ := sup
v∈X ,‖v‖X �=0

〈v,w〉X ,X ′

‖w‖X .

2.1 Sobolev spaces

For s ∈ N and p > 1, we denote by Ws,p(Ω), Hs(Ω) and L2(Ω) the usual Sobolev
spaces. For convention we set H0(Ω) = L2(Ω) and denote with (·, ·)Ω the L2(Ω)

inner product. We denote with | · |Hs (Ω) the usual semi-norm of Hs(Ω), and we set
| · |H0(Ω) := ‖ · ‖L2(Ω). Let H

1
0 (Ω) be the set of functions in H1(Ω) vanishing on

∂Ω . It is well known that H1
0 (Ω) is the closure of the space of infinitely differentiable

functions with compact support in Ω (denoted by C∞
c (Ω) or D(Ω)) with respect to

the norm of H1(Ω). For s ∈ (0, 1), Hs(Ω) denotes the space of functions whose
Sobolev–Slobodeckij norm

‖v‖Hs (Ω) :=
(
‖v‖2L2(Ω)

+
∫

Ω

∫
Ω

(v(x) − v(y))2

|x − y|d+2s dx dy
)1/2

is finite. Similarly, for s ∈ (1, 2), the norm of Hs(Ω) is

‖v‖Hs (Ω) = (‖v‖2L2(Ω)
+ ‖∇v‖2Hs−1(Ω)

)1/2
.

It is well known that for s ∈ (0, 2), Hs(Ω) = [L2(Ω), H2(Ω)]s , where [X ,Y ]s
denotes the interpolation space between X and Y using the real method. For s ∈ [0, 2],
we denote H−s(Ω) = Hs(Ω)′.
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2.2 Distributions

We indicatewithD(Rd) orD(Ω) the spaces of smooth functionswith compact support
in R

d or in Ω , i.e., D(Rd) := C∞
c (Rd) and D(Ω) = C∞

c (Ω), and with D′(Rd) and
D′(Ω) their dual spaces (also known as the spaces of distributions). The d-dimensional
Dirac delta distribution centered in x is defined as the linear functional δx in D′ such
that

〈δx , v〉D′(A),D(A) =
∫
A

δ(x − y)v(y) dy := v(x) for all v ∈ D(A), for all x ∈ A,

where A is either R
d or Ω .

3 Regularization

In the mathematical literature, mollifiers were introduced by Sobolev [33], and for-
malized by Friedrichs [12], to provide an effective way of regularizing non smooth
or singular functions by performing the convolution with a smooth and compactly
supported function that integrates to one (the kernel, or mollifier).

The outcome of the procedure is a function that has the same regularity property
of the kernel, normally taken to be C∞. In this section we relax the requirements of
the kernel, and we provide some basic results that can be obtained by regularizing
with approximated Dirac distributions that are not necessarily C∞. In particular, we
consider functions ψ that satisfy the following assumptions:

Assumption 1 Given k ∈ N, let ψ(x) in L∞(Rd) be such that

1. Compact support
ψ(x) is compactly supported, with support supp(ψ) contained in Br0 (the ball
centered in zero with radius r0) for some r0 > 0;

2. k-th order moments condition

∫
Rd

yα
i ψ(x − y) dy = xα

i i = 1 . . . d, 0 ≤ α ≤ k, for all x ∈ R
d ; (1)

Lemma 1 (Convergence to δ) A functionψ that satisfies Assumption 1 for some k ≥ 0,
defines a one-parameter family of Dirac delta approximations, i.e., define

δε := 1

εd
ψ

( x
ε

)
(2)

then

lim
ε→0

δε(x) = lim
ε→0

1

εd
ψ

( x
ε

)
= δ(x),
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where δ(x) is the Dirac delta distribution and the limit must be understood in the
space of Schwartz distributions.

Notice that Assumption 1.2with k = 0 implies that bothψ and δε have unit integral.
Moreover, we make no additional assumptions on the global regularity of ψ , except
from requiring it to be in L∞(Rd).

Any functionψ that satisfies Assumption 1 defines a one-parameter family of Dirac
delta approximations δε, through which it is possible to define a regularization in both
R
d and Ω:

Definition 1 (Regularization) For a function v ∈ L1(A) we define its regularization
vε(x) in the domain A (either Ω or R

d ) through the mollifier ψ by

vε(x) :=
∫
A

δε(x − y)v(y) dy, for all x ∈ A, (3)

where δε is defined as in Eq. (2), i.e.,

δε := 1

εd
ψ

( x
ε

)
,

and ψ satisfies Assumption 1 for some k ≥ 0.
For functionals F in negative Sobolev spaces, say F ∈ H−s(A), with s ≥ 0, we

define its regularization Fε by the action of F on vε with v ∈ Hs(A), i.e.,

〈Fε, v〉H−s (A),Hs (A) := 〈F, vε〉H−s (A),Hs (A).

Lemma 2 (L1 growth control) A Dirac approximation δε constructed from a function
ψ that satisfies Assumption 1 (irrespective of k ≥ 0), also satisfies the following
polynomial growth condition:

‖|x |mδε(x)‖L1(Rd ) 	 εm, 0 ≤ m ∈ R (4)

where the hidden constant depends on m, d and the choice of ψ .

Proof By considering the change of variable x = ξε, we observe that

‖|x |mδε(x)‖L1(Rd ) =
∫
Bεr0

||x |mδε(x)| dx

=
∫
Bεr0

∣∣∣∣|x |m 1

εd
ψ

( x
ε

)∣∣∣∣ dx

=
∫
Br0

∣∣|εξ |mψ(ξ)
∣∣ dξ

≤ ‖ψ‖L∞(Rd ) ‖ |ξ |m ‖L1(Br0 ) εm .

��
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We shall consider two common methods for choosing ψ(x). In the first case we
choose a one dimensional function ψρ ∈ L∞(R) so that ψρ is supported in [0, 1], and
we define the function ψ as

ψ(x) := Idψρ(|x |), (5)

where Id is a scaling factor, chosen so that ψ(x) integrates to one. With this choice, ψ
satisfies Assumption 1 with k at least equal to one (i.e., it satisfies the first moments
conditions).

The second construction method is usually referred to as tensor product construc-
tion. We start from a L∞(R) function ψ1d that satisfies Assumption 1 for some k in
dimension one. Then we define ψ(x) in dimension d by

ψ(x) :=
d∏

i=1

ψ1d(xi ), for x = (x1, · · · , xd) ∈ R
d . (6)

The tensor product approximation ψ(x) satisfies Assumption 1 with r0 = √
d and

the same k of ψ1d . In particular k = 0 if ψ1d is not symmetric, and k is equal to at
least one if ψ1d is symmetric. We refer to [19, Section 3] for an in depth discussion
on other possible choices of Dirac approximation classes ψ(x) with possibly higher
order moment conditions.

3.1 Unbounded domains

Webegin by providing some results that follow froman application ofYoung’s inequal-
ity for convolutions:

Lemma 3 (Young’s inequality for convolutions [35]) Given f , g ∈ L2(Rd) and
h ∈ L1(Rd),

∣∣∣∣
∫
Rd

∫
Rd

f (x)g(y)h(x − y) dx dy

∣∣∣∣ ≤ ‖ f ‖L2(Rd )‖g‖L2(Rd )‖h‖L1(Rd ), (7)

Lemma 4 For 0 ≤ s ≤ k + 1, let v ∈ Hs(Rd), and let vε be defined by Definition 1.
Then there holds

‖v − vε‖L2(Rd ) 	 εs‖v‖Hs (Rd ), 0 ≤ s ≤ k + 1. (8)

Proof 1 We start by considering v ∈ C∞
c (Rd), and the case where s is integer, and

1 ≤ s ≤ k + 1. By Taylor expansion, it is possible to expand v(y) around an arbitrary
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point x in a polynomial part px and a residual part rx , i.e.:

v(y) = px (y) + rx (y)

=
∑

|α|≤s−1

Dαv(x)

α! (y − x)α

︸ ︷︷ ︸
px∈Ps−1(Rd )

+
∑
|β|=s

Rβ(y)(y − x)β

︸ ︷︷ ︸
rx

,

Rβ(y) := |β|
β!

∫ 1

0
(1 − t)|β|−1Dβv

(
x + t(y − x)

)
dt .

Here α and β are multi-indices. If we regularize v, since the regularization is a linear
operator, we obtain:

vε(y) = pε
x (y) + rε

x (y) = px (y) + rε
x (y),

where in the last equality follows from Assumption 1.2 so that pε
x = px for any

polynomial of order up to k.
Given any θ ∈ L2(Rd), we deduce

(v − vε, θ)Rd =
∫
Rd

(
v(x) −

∫
Rd

δε(x − y)v(y) dy

)
θ(x) dx

=
∫
Rd

⎛
⎝rx (x)︸ ︷︷ ︸

=0

−
∫
Rd

δε(x − y)rx (y) dy

⎞
⎠ θ(x) dx,

= −
∫
Rd

∫
Rd

δε(x − y)rx (y)θ(x) dy. dx

Applying the definition of rx (y), Fubini’s theorem, and by the change of variable
ξ = x + t(y − x) for a fixed x ∈ R

d , and t ∈ (0, 1), we have:

(v − vε, θ)Rd = −
∫ 1

0

∫
Rd

∫
Rd

∑
|β|=s

(1 − t)|β|−1 |β|
β!

Dβv
(
x + t(y − x)

)
(y − x)βδε(x − y)θ(x) dy dx dt

= −
∫ 1

0

∫
Rd

∫
Rd

∑
|β|=s

(1 − t)|β|−1 |β|
β!

Dβv(ξ)

(
ξ − x

t

)β

δε

(
−ξ − x

t

)
θ(x)

1

td
dξ dx dt .

Applying Lemmas 3 and 2 we get

(v − vε, θ)Rd ≤ |v|Hs (Rd )‖θ‖L2(Rd )

∫ 1

0

(1 − t)s−1

td(s − 1)!
∥∥∥
∣∣∣ x
t

∣∣∣s δε
(
− x

t

)∥∥∥
L1(Rd )

dt

	 εs |v|Hs (Rd )‖θ‖L2(Rd ).
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2 To show (8) for s = 0, we note that the regularization operator is L2-stable, i.e.,
for any θ ∈ L2(Rd),

(vε, θ) ≤
∫
Rd

∫
Rd

|v(y)δε(x − y)θ(x)| dy dx
≤ ‖v‖L2(Rd )‖δε‖L1(Rd )‖θ‖L2(Rd ) 	 ‖v‖L2(Rd )‖θ‖L2(Rd ).

Here we applied again Young’s inequality (Lemma 3) together with Lemma 2 for
m = 0. Hence, ‖vε‖L2(Rd ) 	 ‖v‖L2(Rd ), and ‖v − vε‖L2(Rd ) 	 ‖v‖L2(Rd ) follows
from the triangle inequality.

3 Taking the sup over θ with unit L2(Rd) norm, and applying interpolation esti-
mates between s = 0 and s = k + 1, the proof is complete by a density argument.

��

The above lemma immediately implies the following convergence result in R
d :

Theorem 2 (Regularization estimates in R
d ) Let F ∈ Hm(Rd), m ∈ [−k − 1, 0]. For

−k − 1 ≤ s ≤ m ≤ 0, there holds

‖F − Fε‖Hs (Rd ) 	 εm−s‖F‖Hm (Rd ). (9)

Moreover, let v ∈ Hm(Rd), m ∈ [0, k+1]. For s ∈ [−k−1,m] so that m−s ≤ k+1,
there holds

‖v − vε‖Hs (Rd ) 	 εm−s‖v‖Hm (Rd ). (10)

Here we identify v in the negative Sobolev space by the duality pairing: 〈v, ·〉 =
(v, ·)L2(Rd ).

Proof Let us show the desired estimates in three steps.
1 For v ∈ C∞

c (Rd), the definition of the weak derivative of Dαδε for |α| ≤ k + 1
yields that for x ∈ R

d ,

Dαvε(x) =
∫
Rd

v(y)Dαδε(x − y) dy

=
∫
Rd

Dαv(y)δε(x − y) dy = (Dαv)ε(x).

Hence, we apply Lemma 4 to (
∑

|α|=k+1 D
αv)ε with s = 0 to get

‖v − vε‖Hk+1(Rd ) 	 ‖v‖Hk+1(Rd ). (11)

Interpolating the estimates between (8) and (11) implies (10) for 0 ≤ s ≤ m ≤ k + 1.
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2 For F ∈ Hm(Rd) with −k − 1 ≤ m ≤ 0, we have

‖F − Fε‖Hm (Rd ) := sup
w∈H−m (Rd )

〈F − Fε, w〉
‖w‖H−m (Rd )

:= sup
w∈H−m (Rd )

〈F, w − wε〉
‖w‖H−m (Rd )

	 sup
w∈H−s (Rd )

‖F‖Hm (Rd )‖w − wε‖H−m (Rd )

‖w‖H−m (Rd )

	 ‖F‖Hm (Rd ).

(12)

Similarly, for F ∈ Hm(Rd) with −k − 1 ≤ m ≤ 0,

‖F − Fε‖H−k−1(Rd ) 	 sup
w∈Hk+1(Rd )

‖F‖Hm (Rd )‖w − wε‖H−m (Rd )

‖w‖Hk+1(Rd )

	 εk+1+m‖F‖Hm (Rd ).

(13)

So the first assertion follows from the interpolation between (12) and (13).
3 For v ∈ Hm(Rd), m ∈ [0, k + 1], interpolating the result (s ≤ 0) between

‖v − vε‖Hs (Rd ) 	 ε−s‖v‖L2(Rd ) and ‖v − vε‖L2(Rd ) 	 εm‖v‖Hm (Rd ) concludes the
proof of the second desired estimate, with m − s ≤ k + 1. ��

3.2 Bounded domains

The generalization of the previous results in bounded domains is non-trivial, due to
the presence of boundaries. We start by providing some results that work well when
restricting v to a region which is strictly contained in Ω . Let this region be defined by
a Lipschitz domain ω ⊂ Ω , and assume that there exists a positive constant c0 such
that

dist(∂ω, ∂Ω) > c0. (14)

The following result relies on the interior regularity of v. More precisely, according
to (14), we assume that the regularization parameter satisfies ε ≤ ε0 ≤ c0 for some
fixed ε0, and we set

ωε =
⋃
x∈ω

Bε(x) ⊂ Ω. (15)

Assuming that v ∈ Hs(ωε0) ∩ L1(Ω) with s ∈ [0, k + 1], we next provide similar
error estimates comparedwith the unbounded case in the previous section.We note that
results below are instrumental to our error estimates for the numerical approximation
of the model problems in the next section.
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Lemma 5 (L2(ω) estimate) For 0 ≤ s ≤ k + 1, and ε ≤ ε0 ≤ c0, let v ∈ L1(Ω) ∩
Hs(ωε0), and let vε be defined as in Definition 1. Then there holds

‖v − vε‖L2(ω) 	 εs‖v‖Hs (ωε0 ). (16)

Proof We denote by ·̃ the zero extension from ω, ωε0 or Ω to R
d . Since ε <

dist(∂ω, ∂Ω), for any x ∈ ω, Bε(x) ⊂ Ω and

∫
Ω

δε(x − y) dy =
∫
Bε(x)

δε(x − y) dy =
∫
Rd

δε(y) dy = 1.

For any θ ∈ L2(ω) and v ∈ C∞
0 (ωε0), we follow the proof of Lemma 4 to get

(v − vε, θ)ω =
∫

ω

v(x)θ(x)

( ∫
Ω

δε(x − y) dy

)
dx

−
∫

ω

∫
Ω

v(y)δε(x − y)θ(x) dy dx

= −
∫

ω

∫
ωε0

(v(y) − v(x))δε(x − y)θ(x) dy dx

= −
∫

ω

∫
ωε0

rx (y)δ
ε(x − y)θ(x) dy dx

	
∫ 1

0

∫
Rd

∫
Rd

|D̃βv(ξ)|
∣∣∣∣
(

ξ − x

t

)β

δε

(
−ξ − x

t

) ∣∣∣∣|θ̃ (x)| 1
td

dξ dx dt .

(17)

Here we apply again Assumption 1.2 for the last equality above. When it comes to the
last inequality in (17), we note that for a fixed x ∈ ω and for any y ∈ ωε0 , the change
of variable ξ = t(y − x) + x belongs to ωε0 for any t ∈ (0, 1). Hence we proceed
following the proof of Lemma 4, Step 1 and apply Lemma 3 again to conclude the
proof for a positive integer s. Replacing v and θ with ṽ and θ̃ in the Proof of Lemma 4,
Step 2, we obtain (16) with s = 0. The assertion for any s ∈ [0, k + 1] follows from
the interpolation between s = 0 and s = k + 1. ��
Corollary 1 (Hs(ω) estimate) For 0 ≤ s ≤ m ≤ k + 1, and ε0 ≤ c0, let v ∈
L1(Ω) ∩ Hm(ωε0), and let vε be defined by Definition 1. Then there exists ε1 > 0
small enough so that for ε < ε1,

‖v − vε‖Hs (ω) 	 εm−s‖v‖Hm (ωε0 ). (18)

Proof Let m be a positive integer. Integration by parts yields that for v ∈ C∞
c (ωε0)

with x ∈ ωε0/2 and for ε < ε0/2,

Dvε(x) =
∫

Ω

Dxδ
ε(x − y)v(y) dy =

∫
Ω

−Dyδ
ε(x − y)v(y) dy

=
∫

Ω

δε(x − y)Dyv(y) dy = (Dv)ε(x).
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Repeating the above argument shows that given a multi-index β so that |β| = m,
Dβvε(x) = (Dβv)ε(x) for x ∈ ωε0/2m when ε < ε0/2m . We then apply (16) in
Lemma 5 with s = 0 to (

∑
|β|≤m Dβv)ε and a density argument to obtain that

‖v − vε‖Hm (ω) 	 ‖v‖Hm (ωε0/2m )
≤ ‖v‖Hm (ωε0 ).

Interpolating the above estimate with (16) yields the desired estimate. ��

Given a functional F ∈ Hs(Ω) with −k − 1 ≤ s ≤ 0, we say suppm(F) ⊆ ω for
some m ∈ [s, 0] if F ∈ Hm(ω) for some s ∈ [−k − 1,m] so that

〈F, w〉Hs (Ω),H−s (Ω) 	 ‖F‖Hm (ω)‖w‖H−m (ω), for all w ∈ H−s(Ω).

Lemma 6 Let F ∈ Hs(Ω) with −k − 1 ≤ s ≤ 0, and suppm(F) ⊆ ω for some
m ∈ [s, 0]. Then, there holds

‖F − Fε‖Hs (Ω) 	 εm−s‖F‖Hm (ω). (19)

Proof The proof is identical to the Proof of Theorem 2, replacing the application of
Lemma 4 with that of Lemma 5 and Corollary 1. ��

The above results are summarized in the following theorem:

Theorem 3 (Regularization estimates in Ω) Let ω be such that (14) holds, i.e.

dist(∂ω, ∂Ω) > c0.

Define the extension of ω as in (15), i.e.,

ωε =
⋃
x∈ω

Bε(x) ⊆ Ω,

and let ε ≤ ε0 ≤ c0. For 0 ≤ s ≤ m ≤ k + 1 where k is the order of the moments
conditions satisfied by δε as in Assumption 1.2, we have:

– If v ∈ Hm(ωε0) ∩ L1(Ω), then

‖v − vε‖Hs (ω) 	 εm−s‖v‖Hm (ωε0 ).

– If F ∈ H−m(Ω) and supp−s(F) ⊆ ω, then

‖F − Fε‖H−m (Ω) 	 εm−s‖F‖H−s (ω).

123



A priori error estimates of regularized elliptic problems

4 Model problem

We are now in a position to apply the results of Theorem 3 to a model elliptic problem.
Let A(x) be a symmetric d × d matrix. We assume that all entries of A(x) are in
C1(Ω), uniformly bounded, and that A(x) is positive definite, i.e., there exist positive
constants a0, a1 satisfying

a0|ξ |2 ≤ ξ
ᵀ
A(x)ξ ≤ a1|ξ |2, for all ξ ∈ R

d and x ∈ Ω.

We also set c(x) to be a nonnegative function in C0,1(Ω). We now define the forcing
data for ourmodel problem.We set F ∈ H−1(Ω).We assume that for some s ∈ (0, 1

2 ],
supps−1(F) ⊂ ω.

Based on the above definitions, our model problem reads: find the distribution u
satisfying

−∇·(A(x)∇u) + c(x)u = F, in Ω,

u = 0, on ∂Ω.
(20)

To approximate Problem (20) using the finite element method, we shall consider its
variational formulation: find u ∈ V := H1

0 (Ω) satisfying

A(u, v) = 〈F, v〉V ′,V , for all v ∈ V , (21)

where

A(v,w) =
∫

Ω

∇v
ᵀ
A(x)∇w + c(x)vw dx, for v,w ∈ V .

Regularity

Our error estimates rely on standard regularity results for elliptic problems: given
g ∈ V ′, let T : V ′ → V be the solution operator satisfying

A(Tg, v) = 〈g, v〉V ′,V , for all v ∈ V . (22)

We first note that if g ∈ L2(Ω), we identify 〈g, ·〉V ′,V with (g, ·)Ω and hence Tg has
the H2 interior regularity, i.e., given a subset K such that K ⊂ Ω , Tg ∈ H2(K ) and

‖Tg‖H2(K ) 	 ‖g‖L2(Ω), (23)

where the hiding constant depends on K andΩ; we refer to [11, Theorem 1 of Section
6.1] and [7, Theorem 5.33] for a standard proof. The following assumption provides
the regularity of Tg up to the boundary
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Assumption 4 (elliptic regularity) There exists r ∈ (0, 1] and a positive constant Cr

satisfying

‖Tg‖H1+r (Ω) ≤ Cr‖g‖H−1+r (Ω).

As an example, consider the case where Ω is a polytope, A(x) is the identity matrix,
and c(x) = 0, i.e., A becomes the Dirichlet form

A(v,w) =
∫

Ω

∇v
ᵀ∇w dx, for all v,w ∈ V . (24)

Based the regularity results provided by [6], r in Assumption 4 is between 1
2 and 1

and can be decided by the shape of Ω . Assumption 4 also implies that the solution u
in (21) belongs to H1+min{s,r}(Ω) ∩ H1

0 (Ω).

4.1 Analysis of a regularized problem

Now we are ready to define a regularized problem of (21): find uε ∈ V satisfying

A(uε, v) = 〈Fε, v〉V ′,V , for all v ∈ V . (25)

Remark 1 Notice that we denote with uε the solution to Problem 25, and in this case
the superscript ε does not denote a regularization (hence the different font used for
uε).

In order to bound the error between u and uε, we use the boundedness and coercivity
of A(·, ·), and obtain that

‖u − uε‖2H1(Ω)
	 A(u − uε, u − uε)

	 〈F − Fε, u − uε〉V ′,V
≤ ‖F − Fε‖H−1(Ω)‖u − uε‖H1(Ω).

This implies that

‖u − uε‖H1(Ω) 	 ‖F − Fε‖H−1(Ω).

Applying Lemma 6 yields

Theorem 5 (H1(Ω) error estimate)Under the assumptions in Proposition 6, let u and
uε be the solutions of problem (21) and (25), respectively. Then, there holds

‖u − uε‖H1(Ω) 	 εs‖F‖Hs−1(ω).
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4.2 L2(Ä) error estimate

We next show the convergence rate for uε in L2(Ω) norm. To this end, we additionally
assume that δε satisfies the moments conditions in Assumption 1.2 with k ≥ 1.

Theorem 6 (L2(Ω) error estimate) Under the assumptions of Lemma 6, and Assump-
tion 1.2with k ≥ 1, let u anduε be the solutions of problems (21)and (25), respectively.
For a fixed ε0 < c0 and ε < ε0/2, there holds

‖u − uε‖L2(Ω) 	 εs+1‖F‖Hs−1(ω).

Proof We consider the following dual problem: find z ∈ V such that

A(v, z) = (u − uε, v)Ω, for all v ∈ V .

Hence, we choose v = u − uε and obtain that

‖u − uε‖2L2(Ω)
= A(z, u − uε)

= 〈F − Fε, z〉V ′,V = 〈F, z − zε〉H−1(Ω),H1(Ω).
(26)

Due to the interior regularity of z, u − uε ∈ H1
0 (Ω) ⊂ L2(Ω) implies that

‖z‖H2(ωε0 ) 	 ‖u − uε‖L2(Ω).

We continue to estimate the right hand side of (26) by

〈F, z − zε〉H−1(Ω),H1(Ω) 	 ‖F‖Hs−1(ω)‖z − zε‖H1−s (ω)

	 εs+1‖F‖Hs−1(ω)‖z‖H2(ωε0 )

	 εs+1‖F‖Hs−1(ω)‖u − uε‖L2(Ω), (27)

where in the second inequality, we invoke Lemma 5 for z. Combing (26) and (27)
concludes the proof of the theorem. ��
Remark 2 We have to point out that the estimates in Theorems 5 and 6 also hold
for Problem (20) with other boundary conditions. These error estimates depend on
the smoothness of the test function and of the solution for the dual problem in the
neighborhood of ω while ω is away from the boundary. The analysis of the case where
ω is attached to the boundary ∂Ω is left aside for future investigation.

5 Application to immersedmethods

The general results presented in the previous section can be applied immediately to
immersed interface and immersed boundary methods [2,15,16,18]. In this section, we
consider an interface problem whose variational formulation can be written as in the
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Fig. 1 Domain representation

model problem (21), and we shall consider its finite element approximation using the
regularization of the forcing data given by the application of Definition 1 to functions
in negative Sobolev spaces.

5.1 An interface problem via immersedmethods

Let Γ ⊂ Ω be a closed Lipschitz interface with co-dimension one. We set ω be the
domain inside Γ , and we assume that ω satisfies the assumptions introduced in Sect. 2
(see Fig. 1).

Given f ∈ Hs−1/2(Γ )with s ∈ [0, 1
2 ], we consider the following Poisson problem

−Δu = 0, in Ω\Γ ,

�u� = 0, on Γ ,
�

∂u

∂ν

�

= f , on Γ ,

u = 0, on ∂Ω.

(28)

For x ∈ Γ , ν(x) denotes the normal vector and ∂u
∂ν

denotes the corresponding normal
derivative.We also use the notation �·� for the jump acrossΓ .More precisely speaking,
letting u− = u

∣∣
ω
and u+ = u

∣∣
Ω\ω, the jump across Γ is defined by

�u� = u+∣∣
Γ

− u−∣∣
Γ

.

The above problem can be reformulated in the entire domain Ω using a singular
forcing term that induces the correct jump on the gradient of the solution. (cf. [20]).
The variational fomulation of the new problem is provided by (21) where A is the
Dirichlet form (24) and
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F = M f :=
∫

Γ

δ(x − y) f (y) dσy . (29)

Here δ denotes the d-dimensional Dirac delta distribution, and Eq. (29) should be
interpreted variationally, i.e.,

〈F, v〉V ′,V := 〈M f , v〉V ′,V :=
∫

Γ

f v dσ, for all v ∈ V . (30)

We note that for any s in [0, 1
2 ),M is a boundedmap from Hs−1/2(Γ ) to Hs−1(ωε1)∩

H−1(Ω) and hence the variational formulation makes sense. In fact, for v ∈ H1(Ω),

∣∣∣∣
∫

Γ

f (y)v(y) dσy

∣∣∣∣ ≤ ‖ f ‖Hs−1/2(Γ )‖v‖H1/2−s (Γ )

≤ ‖ f ‖Hs−1/2(Γ )‖v‖H1−s (ω) ≤ ‖ f ‖Hs−1/2(Γ )‖v‖H1(Ω).

Herewe apply the traceTheorem (e.g. [26, Theorem1.5.1.2]) for the second inequality.
The above estimate together with (30) shows that F ∈ V ′. It also implies that F ∈
Hs−1(ωε1) and hence supp(F)s−1 ⊆ ω. So F satisfies the setting in Sect. 4 and we
can apply the results from Theorems 5 and 6 to the interface problem to get

‖u − uε‖L2(Ω) + ε‖u − uε‖H1(Ω) 	 εs+1‖ f ‖Hs−1/2(Γ ). (31)

We note that Fubini’s Theorem yields that

〈F, vε〉H−1(Ω),H1(Ω) =
∫

Γ

f (x)
∫

Ω

v(y)δε(x − y) dx dσy

=
∫

Ω

v(y)
∫

Γ

f (x)δε(x − y) dσy dx

and hence

Fε(x) =
∫

Γ

f (y)δε(y − x) dy

(
=

∫
Γ

f (y)δε(x − y) dy if k ≥ 1
) (32)

which is the classical formulation of Fε that can be found in the literature of the
Immersed Boundary Method [29], where δε is always taken to be even (i.e., k ≥ 1),
and Fε is introduced as the regularization of f on Γ , via the d-dimensional Dirac
approximation δε.

5.2 Finite element approximation of the regularized problem

In this section, we consider a finite element approximation of the regularized problem
(25). Assume that Ω is polytope and let {Th(Ω)}h>0 be a family of conforming sub-
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divisions of Ω made of simplices with h denoting their maximal size. We assume that
Th(Ω) are shape-regular and quasi-uniform in the sense of [5,10].

Let Vh be the space of continuous piecewise linear functions subordinate to Th(Ω)

that vanish on ∂Ω . Let Ih : H1
0 (Ω) → Vh be the Scott–Zhang interpolation [32]

which has the following approximation property

‖v − Ihv‖H1(Ω) 	 hs‖v‖H1+s (Ω), for v ∈ H1+s(Ω) ∩ H1
0 (Ω). (33)

The discrete counterpart of the regularized problem (25) reads: find uε
h ∈ Vh

satisfying

A(uε
h, vh) = 〈Fε, vh〉V ′,V , for all vh ∈ Vh . (34)

For vh ∈ Vh , 〈Fε, vh〉V ′,V can be computed by using a quadrature formula on Γ and
a quadrature formula on τ ∈ Th(Ω). We refer to the next Section for the details of the
implementation.

The following theorem shows the error between u and its final approximation uε
h .

Theorem 7 (H1(Ω) error estimate) Let u and uε
h be the solutions to (21) and (34),

respectively. Under Assumptions 4 and 1, we have

‖u − uε
h‖H1(Ω) 	 (hmin{s,r} + εs)‖ f ‖Hs−1/2(Γ ).

Proof The coercivity ofA(·, ·) implies thatA(·, ·) is alsoVh elliptic. The first Strang’s
Lemma (see, e.g. [5, Theorem 4.1.1]) yields

‖u − uε
h‖H1(Ω) 	 inf

vh∈Vh
‖u − vh‖H1(Ω) + sup

wh∈Vh

〈F − Fε, wh〉H−1(Ω),H1(Ω)

‖wh‖H1(Ω)

Setting vh = Ihu and invoking (33) together with Assumption 4 and Lemma 6, we
conclude that

‖u − uε
h‖H1(Ω) 	 ‖u − Ihu‖H1(Ω) + εs‖ f ‖Hs−1/2(Γ )

	 hmin{s,r}‖u‖H1+min{s,r}(Ω) + εs‖ f ‖Hs−1/2(Γ )

	 (hmin{s,r} + εs)‖ f ‖Hs−1/2(Γ ).

��
We next show a L2(Ω) error estimate between u and uε

h .

Theorem 8 (L2(Ω) error estimate) Following the settings from Theorem 7, we addi-
tionally assume that δε satisfies Assumption 1.2 with k ≥ 1. Then we have

‖u − uε
h‖L2(Ω) 	 (hr+min{s,r} + hrεs + ε1+s)‖ f ‖Hs−1/2(Γ ).
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Proof We first provide a bound on the error between uε and uε
h under the regularity

assumption of f . In fact, the triangle inequality togetherwith Theorems 6 and 7 implies
that

‖uε − uε
h‖H1(Ω) ≤ ‖u − uε‖H1(Ω) + ‖u − uε

h‖H1(Ω)

	 (hmin{s,r} + εs)‖ f ‖Hs−1/2(Γ ).

Next we bound ‖uε −uε
h‖L2(Ω) using a duality argument. Let Z ∈ H1

0 (Ω) satisfy that

A(Z, v) = (uε − uε
h, v)Ω, for all v ∈ H1

0 (Ω).

Hence Z ∈ H1+r (Ω). Applying Galerkin orthogonality

A(uε − uε
h, vh) = 0, for all vh ∈ Vh,

we obtain that

‖uε − uε
h‖2L2(Ω)

= A(Z,uε − uε
h)

= A(Z − IhZ,uε − uε
h) ≤ ‖Z − IhZ‖H1(Ω)‖uε − uε

h‖H1(Ω)

	 hr‖Z‖H1+r (Ω)(h
min{s,r} + εs)‖ f ‖Hs−1/2(Γ ).

This, together with the regularity estimate ‖Z‖H1+r (Ω) 	 ‖uε −uε
h‖L2(Ω), shows that

‖uε − uε
h‖L2(Ω) 	 (hr+min{s,r} + hrεs)‖ f ‖Hs−1/2(Γ ).

The triangle inequality ‖u − uε
h‖L2(Ω) ≤ ‖u − uε‖L2(Ω) + ‖uε − uε

h‖L2(Ω) together
with the above estimate and the L2(Ω) estimate in Theorem 6 concludes the proof of
the theorem. ��
We end this section with some remarks to further explain the error estimates and also
for the numerical experiments in the next section.

Remark 3 (knowing the regularity of the solution) If the regularity of the solution is
known, e.g., u ∈ H1+β(Ω) for some β ∈ (0, 1], we can apply the interpolation
estimate (33) with s = β in Theorems 7 and 8 to get

‖u − uε
h‖H1(Ω) 	 (hβ + εs)‖ f ‖Hs−1/2(Γ )

and

‖u − uε
h‖L2(Ω) 	 (hr+β + hrεs + ε1+s)‖ f ‖Hs−1/2(Γ ).

Remark 4 (choices of ε) Usually we can choose ε = chq for some q ∈ (0, 1] and for
a fixed factor c. Hence, error estimates in the above remark become

‖u − uε
h‖H1(Ω) 	 hmin{β,sq}, ‖u − uε

h‖L2(Ω) 	 hmin{β+r ,r+sq,(1+s)q}.

123



L. Heltai, W. Lei

6 Numerical illustrations

We implement the linear system of discrete problem (34) using the deal.II finite
element Library [1,25,31]. Before validating our error estimates given by Theorems 7
and 8 via a series of numerical experiments, we want to make some remarks on the
computation of the right hand side vector in discrete linear system.

Remark 5 (Approximation of the surface Γ )We shall compute the right hand side data
on an approximation of a C2 interface Γ using the technology of the surface finite
element method for the Laplace–Beltrami problem [8,9]. Let Γh0 be a polytope which
consists of simplices with co-dimension one, where h0 denotes the maximal size of
the subdivision. All vertices of these simplices lie on Γ and similar to Th(Ω), we
assume that this subdivision of Γh0 , denoted by Th0(Γ ), is conforming, shape-regular,
and quasi-uniform.We compute the forcing data at Γh0 with f e(x) = f (p(x)), where
p(x) = x − d(x)∇d(x) ∈ Γ and d(x) is the signed distance function for Γ . The
error analysis for how the finite element approximation of u in (28) is affected by Γh0
is out of the scope of this paper. In what follows, we assume that h0 is small enough
compared with h so that the error from the interface approximation does not affect the
total error of our test problems.

Remark 6 (Comparing with the usual approach) Based on the previous remark and
given a shape function φh ∈ Vh , we can approximate the right hand side data
〈Fε, φh〉V ′,V using quadrature rules on both τ1 ∈ Th(Ω) and τ2 ∈ Th0(Γ ), i.e.,

〈Fε, φh〉V ′,V ≈
∫

Ω

∫
Γh0

δε(x − y) f e(y)φh(x) dσy dx

≈
∑

τ1∈Th(Ω)∩supp(φh)

∑
τ2∈Th0 (Γ ),τ2∩τ ε

1 �=Ø

Jτ1∑
j1=1

Jτ2∑
j2=1

w j1w j2δ
ε(q j1 − q j2) f

e(q j2)φh(q j1).

Here τ ε
1 follows from the definition (15) and supp(φh) denotes the support of φh .

{w j1, q j1}Jτ1j1=1 and {w j2 , q j2}Jτ2j2=1 are pairs of quadratureweights and quadrature points
defined on τ1 ∈ Th(Ω) and τ2 ∈ Th0(Γ ), respectively. On the other hand, letting Q
be the collection of quadrature points for all τ2 ∈ Th0(Γ ), the finite element method
allows one to approximate directly 〈F, vh〉V ′,V by

〈F, φh〉V ′,V ≈
∫

Γh0

f e(y)φh(y) dσy ≈
∑

τ2∈Th0 (Γ )

Jτ2∑
j2=1

w j2 f
e(q j2)φh(q j2)

=
∑

τ1∈Th(Ω)∩supp(φh)

∑
q j2∈Q,q j2∈τ1

w j2 f
e(q j2)φh(q j2).

We note that we usually compute φh(q j1) by using a transformation Bτ1 mapping from
the reference simplex τ̂ to τ1 ∈ Th(Ω) and set q j1 = Bτ1 q̂ j1 and w j1 = ŵ j1 | det Bτ1 |,
where {ŵ j1, q̂ j1} is the pair of quadrature weights and quadrature points for τ̂ . In the
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implementation, we store the reference shape function φ̂h , the shape values φ̂h(q̂ j1) =
φh(q j1) and w j1 offline (and similar implementations for τ2) but we have to compute
φh(q j2) online by φ̂h(B−1

τ1
q j2).

We finally note that searching for q j2 ∈ Q and τ2 ∈ Th0(Γ ) intersecting with
τ1 can be accelerated by creating R-trees for q j2 and bounding boxes of τ2, respec-
tively. Then we use the searching algorithms for intersection with the bounding box
of τ1 ∈ Th(Ω). In our implementation, we use the searching algorithms from the
Boost.Geometry.Index library.

6.1 Tests on the unit square domain with different ı"(x)

We test the interface problem (28) on the unit square domain but with a non-
homogeneous Dirichlet boundary condition, following the examples provided in [18].
We set Ω = (0, 1)2 and solve

−Δu = 0, in Ω\Γ ,

�u� = 0, on Γ ,
�

∂u

∂ν

�

= f , on Γ ,

u = g, on ∂Ω,

(35)

where Γ = ∂B0.2(c) with c = (0.3, 0.3)
ᵀ
, f = 1

0.2 and g = ln(|x − c|). The analytic
solution is

u(x) =
{

− ln(|x − c|), if |x − c| > 0.2,

− ln(0.2), if |x − c| ≤ 0.2.

In view of Assumption 4 and Remark 4, r = 1, s = 1
2 and u ∈ H3/2−

(Ω). Hence
setting ε = h yields

‖u − uε
h‖H1(Ω) 	 h1/2 ∼ #DoFs−0.25 ‖u − uε

h‖L2(Ω) 	 h3/2 ∼ #DoFs−0.75,

where #DoFs stands for the number of degree of freedoms and we used the fact that
h ∼ #DoFs−1/d for quasi-uniform meshes. We shall compute uε

h on a sequence of
unstructured, quasi-uniform, quadrilateral meshes: we start to compute uε

h1
on a coarse

mesh of Ω in Fig. 2. Then we compute the next approximated solution in a higher
resolution based on the global refinement of the previous mesh. In the meantime, we
also take the global refinement of approximated interface according to Remark 5. The
right plot in Fig. 2 shows the approximated solution on the mesh produced from the
coarse mesh with six-time global refinement (744,705 degree of freedoms).

In Fig. 3 we report L2(Ω) and H1(Ω) errors against #DoFs using the following
types of δε(x):

– Radially symmetric C1: use (5) with ψρ(x) = (1+ cos(|πx |))χB1(0)(x)/2, where
χB1(0)(x) is the characteristic function on B1(0);
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Fig. 2 (Left) the coarse mesh of the unit square domainΩ in black and the interface Γ in red and (right) the
approximated solution on the six-time-global-refinement mesh using the regularization type Tensor product
C1 and ε = h

Fig. 3 L2(Ω) and H1(Ω) errors against the number of degree of freedoms (#DoFs) using different types
of δε

– Tensor product C1: use (6) with ψ1d(x) = (1 + cos(|πx |))χ(−1,1)(x)/2;

– Tensor product C∞: use (6) with ψ1d(x) = e1−1/(1−|x |2)χ(−1,1)(x);
– Tensor product L∞: use (6) with ψ1d(x) = 1

2χ(−1,1)(x).

The predicted rates are observed in all four types. Errors in the first three types
behave similar while errors for the last type are larger than those in the other cases.

6.2 Tests on a L-shaped domain

Let Ω be the L-shaped domain (−1, 1)2\([0, 1] × [−1, 0]) and Γ = ∂B0.2(c) with
c = (−0.5,−0.5)

ᵀ
. We use the polar coordinates (r(x), θ(x)) to define u by

u(x) = r(x)
1
3 sin( θ(x)

3 ) + 0.3

{
− ln(|x − c|), if |x − c| > 0.2,

− ln(0.2), if |x − c| ≤ 0.2
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Fig. 4 (Left) the coarse mesh of the L-shaped domain Ω in black and the interface Γ in red and (right) the
approximated solution on the six-time-global-refinement mesh

so that u ∈ H4/3−
(Ω) is the solution to the test problem (35) with f = 1.5 on Γ and

g = u on ∂Ω . Assumption 4 and Remark 4 imply that r = 2
3 , s = 1

2 and β = 1
3 . So

letting ε = hq , q ∈ (0, 1], we should expect that

‖u − uε
h‖H1(Ω) 	 #DoFs−min{1/6,q/4}

and

‖u − uε
h‖L2(Ω) 	 #DoFs−min{1/2,1/3+q/4,3q/4}.

Figure 4 provides the coarse mesh of the numerical test and also the solution on the
mesh with six-time global refinement (1,574,913 degrees of freedoms). In Fig. 5 we
also report L2(Ω) and H1(Ω) errors against #DoFs with q = 0.2, 0.4, 0.6, 0.8, 1
using the δε(x) with the type Tensor product C1. We again observed the predicted
convergence rates from Fig. 5.

6.3 Tests on the unit cube

We finally test the interface problem (35) in the three dimensional space by setting
Ω = (0, 1)3, Γ = B0.2(c) with c = (0.3, 0.3, 0.3)

ᵀ
, f = 1/0.22 and g = 1/|x − c|.

Then the analytical solution is given by

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

|x − c| , if |x − c| > 0.2,

1

0.2
, if |x − c| ≤ 0.2.

Figure 6 shows the unstructured coarse mesh of the unit cube as well as the approxi-
mated solution on the mesh after the forth-time global refinement (2,324,113 degrees
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Fig. 5 L2(Ω) and H1(Ω) errors against the number of degree of freedoms (#DoFs) using the type Tensor
product C1 for δε . For each fixed type of δε we plot the error decay with the setting ε = hq for q =
0.2, 0.4, 0.6, 0.8, 1. For each error plot, the last slope of the segment togetherwith the predicted convergence
rate are reported

Fig. 6 (Left) clip of the coarse mesh (0 ≤ x1 ≤ 0.3) of the unit cube Ω together with the subdivision of
the interface Γ in red and (right) the approximated solution computed on the three-time global refinement
mesh using the regularization with the type Tensor product C1

Fig. 7 Plots of L2(Ω) error decay (left) and CPU time for right hand side assembling against the number of
degree of freedoms using with or without regularization according to Remark 6. We regularize the forcing
data using the type Tensor product C1 with ε = h
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of freedoms). In Fig. 7 we plot the L2(Ω) error decay by setting ε = h and the error
decay without using Dirac delta approximations as mentioned in Remark 6. We also
plot the CPU time for the computation of the right hand side vector against #DoFs
with or without regularization in Fig. 7. We note that the the computer we use has
2.2GHz Intel Core i7 with 16GB memory. Figure 7 shows that both the computation
time for the right hand side assembling and error using the regularization approach are
comparable to those using the usual method. We have to point out that according to
Remark 6, we cannot evaluate B−1

τ1
explicitly when the mesh is unstructured and here

we use the Newton iteration instead. So if the geometry of each element is simple such
as cube, the computation time without regularization can be reduced significantly.
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