SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

PHD COURSE IN THEORY AND NUMERICAL SIMULATION
OF CONDENSED MATTER

Cluster mean-field dynamics of the

long-range interacting Ising chain

A thesis submitted for the degree of Doctor Philosophice

Candidate Supervisor
Giulia P1ccrTTo Prof. Alessandro SILVA

SEPTEMBER 2020






“Piccitto, lo spin ¢ importante”

Marco Ruggieri






Contents

1__Introduction| 1
|2 Non-equilibrium quantum systems| 7
2.1 Quantum quenches and dynamical phase transitions| . . . .. . . .. 7
[2.1.1  Thermalization and quantum ergodicity| . . . . . . . . . ... 8

[2.1.2  Thermalization and integrability] . . . . . . .. ... ... .. 10

[2.1.3  Dynamical quantum phase transitions| . . . . . . . .. . ... 11

2.2 Open quantum systems| . . . . . . . . . .. ... .. 13
[2.2.1 The general problem| . . . . . .. ... ... ... ... ..., 13

[2.2.2 Dynamics: Lindblad master equations| . . . . . .. ... ... 14

[2.2.3  Vectorization of the Lindblad master equations| . . . . . . . . 15

22.4 Timecrystals| . . . . .. ... . o oo 16

[3 Long-range interacting systems| 19
[3.1 Algebraic decaying potentials| . . . . . . . ... ... ... 19
13.2  Fully connected quantum many body systems| . . ... .. ... .. 20
[3.2.1  Lipkin-Meskov-Glick model| . . . . ... ... ... ... ... 21

3.2.2 Atomsin cavitiesl . . . . . . . . ... 25

[3.3  Long-range interacting Ising chain - Theory| . . . . . . . . ... ... 28
|3.4  Long-range interacting Ising chain — Experiments] . . ... ... .. 29
[3.4.1 Rydbergatoms| . . . . . ... ... oo oo 29

3.4.2 Trappedions| . . . . . . . . . ... .. L 30

8.4.3 Polar molecules . . . . . ... ... ... ... . o 31

4 Long-range interacting Ising model — Cluster mean-field dynamics| 33
4.1  Cluster mean-field theory| . . . . . . ... ... ... ... .. .... 33
4.2 Dynamical phase diagram| . . . . . .. ... ... ... ... ... 37
[4.2.1  Chaotic region| . . . . . . . . . .. ... . 42

[4.2.2  Convergencel . . . . . . . . . . . e 44

[4.2.3  Linear quenchl. . . . . . ... ... o o 0o 47

[6 Dissipative dynamics| 51
.1 Cluster mean-field Lindblad equations| . . . . .. ... ... ... .. 51
5.2  LMG Glauber dissipative dynamics| . . . . ... ... ... ..... 52
[5.2.1  Mean-field dynamics| . . . . .. ... ... ... 52

5.3 Cluster mean-field dynamics| . . . .. ... ... ... .. ...... 58
6 Conclusions| 63



vi

|A° Phase space formalism|

|A.1 Coordinate-momentum representation| . . . . .. ... ..
|[A.2  Coherent state representation| . . . . . . . ... ... ...

B Spin-squeezing|

C G Tiza6 Fihe Did Tal

ID From classical to quantum chaos|

I[E Time-dependent spin waves approximation|

| Cluster mean-field Lindblad equation — Derivation|

Contents

71

73

...... 73
...... 73

79

83

89



1

Introduction

The problem of nonequilibrium dynamics in classical systems has been widely ad-
dressed since the seminal work by Boltzmann that in 1872 proved the H-theorem
[153]. The theorem claims that nonequilibrium classical gases, under the assumption
of “molecular chaos”, thermalize, i.e. equilibrate to the maximum entropy config-
uration ensuring the energy conservation. It was not clear how to reconcile the
macroscopic irreversibility and the reversibility of the microscopic dynamics. In
fact, empirically it had always been observed an evolution from some “atypical”
nonequilibrium configurations to “typical” ones described by the statistical ensem-
bles. In agreement with the second law of thermodynamics, the world, regardless
of to the microscopic reversibility, follows a well defined time direction that privi-
leges entropy-increasing processes, although entropy-decreasing ones are allowed by
the Newton’s law. This is because thermalization has to be understood as a typical
behavior: the equilibrium state is simply the most probable. Observing a nonequilib-
rium system for a time 7', the probability of a state is defined as limp_, o 7/7', with
7 the time the system spends in that state. The probability is strictly connected to
the volume occupied by the macrostate in the phase space, the bigger the volume,
the more probable the configuration. This connection leads to the well established
(in classical physics) relations between ergodicity and thermalization: in a ther-
mal system the long-time and the phase space average of the physical observables
coincide.

Classical thermalization is the result of the non-linearity of the equations of
motion; quantum dynamics is instead governed by the Schrodinger equation that is
linear, and this introduces difficulties in the definition of quantum thermalization
for isolated quantum many body systems. A generic quantum many-body state
is described by a density matrix p: for pure states Tr(p?) = 1 while for mixed
ones Tr(p?) < 1. The linearity of the Schrodinger equation ensures that a system
prepared in a pure state remains in a pure state for the whole dynamics ruling
out the possibility of becoming thermal, i.e. mixed. Despite this, thermalization
in closed many body quantum systems is observed. One of the first attempts of
extension of these concepts to the quantum world is due to Von Neumann who in
a work of 1929 [4] proved the H-theorem for quantum systems. This work does not
say anything about the thermalization of microscopic quantities |3} 5] that can relax
to equilibrium at the level of expectation values because of the canonical typicality:
a pure state that has small energy fluctuations is locally indistinguishable from the
microcanonical ensemble if the density of states is large [6, 7]. The paradox is solved
by giving a definition of quantum thermalization in terms of expectation values
of certain observables whose long-time limit tends to statistical predictions, i.e.
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macroscopic variables tipically thermalize because energy eigenstates already share
an essential character of thermal equilibrium, the so-called eigenstate thermalization
hypotesis (ETH) [3, |5, [8H12].

The eigenstate thermalization hypothesis is widely discussed in Chapter 2], where
we brefly review the principal results in the field of nonequilibrium quantum dynam-
ics, starting from the dynamics of thermally isolated quantum many-body systems
following a sudden quench, i.e. an instantaneous change in an Hamiltonian control
parameter. The relation between quantum thermalization and quantum ergodicity
is not simply established by imposing a correspondence between the classical statis-
tical ensembles and the asymptotic quantum states, because thermalization occurs
at the level of expectation values of macroscopic observables. An open question is
to determine the conditions for the existence of the stationary state, defined as the
density matrix describing the long-time behavior of the observables. For non inte-
grable models, in which the energy is the only conserved quantity, the stationary
state is a Gibbs ensemble at an effective temperature fixed by the quench. In inte-
grable models, because of the presence of conservation laws, the thermal behavior is
precluded and the stationary state is a Gibbs-like ensemble, the Generalized Gibbs
ensemble (GGE), that maximizes the information entropy under the constraint of
the conserved quantities. Once integrability is weakly broken the quantum system
usually displays a two-stage dynamics: first it attains a prethermal nonequilibrium
quasi-stationary state |13H21] (that can be thought of as a GGE constructed with
the approximate constant of motion of the nearly-integrable Hamiltonian) and then,
eventually, relaxes to a thermal one.

One of the most interesting features observed in nonequilibrium quantum many-
body systems is the possibility of undergoing a dynamical quantum phase transi-
tions, i.e. a relevant change in the dynamical behavior depending on the quench
parameters. Two different kinds of dynamical phase transitions have been identi-
fied, one related to the geometric properties of the evolved quantum state, the other
related to the long-time behavior of some physical observables [22-29]. Let us con-
sider an equilibrium critical system prepared in a state of broken symmetry and
let us assume to perform a quench. In analogy with the Landau paradigm for the
second order quantum phase transition, a dynamical critical point is defined as the
value of the quench parameter at which the dynamical order parameter, i.e. the
long-time average of the evolved order parameter, exhibits a qualitative change in
its behavior. These dynamical phase transitions are a consequence of the possibility
of sustaining long-range order at finite density energy and, thus, cannot be observed
in one dimensional short-ranged systems. Increasing the range of the interactions,
because of the correspondence between the universality class of long-range interact-
ing systems and short range ones with increased dimensionality, dynamical phase
transitions can take place.

In this thesis we will focus on systems with long-range interactions. There are
still open questions on the dynamics of long-range interacting systems due to tech-
nical difficulties in describing them because their non integrability. Moreover, the
exponential growth of the Hilbert space rules out the possibility of exact numerical
solutions. Approximate numerical techniques as the density matrix renormaliza-
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tion group (DMRG) have been adapted for long-range interacting models but the
simulation of large system sizes still remains challenging. Despite this, experimen-
tal development in the ultracold gases field has given the access to a variety of
quantum many-body long-range interacting systems renewing the interest in the
understanding of their dynamics.

A special case of analytically solvable systems with long-range interactions is
that of complete connected models, characterized by the permutational symmetry
that allows a classical (and affordable) description both of the equilibrium and of the
nonequilibrium physics. In Sec. we present two examples: the Lipkin-Meshkov-
Glick (LMG) model, describing a collection of N spin-1/2 particles with all-to-all
interactions, and the Dicke models, describing a two level system coupled with an
optical cavity. Both models exhibit an equilibrium quantum phase transition from a
symmetry broken to a symmetric phase and the related nonequilibrium dynamical
phase transition. Then we discuss three different experimental realizations with
ultracold gases of the Ising chain with power-law decaying interactions described by
the Hamiltonian

H:—N‘(Ja)%:yi—jw o j—h;af, (1.1)
with 4, j, site index and N(«) the normalization constant. The main work in this
thesis, presented in Chapter [4] contributes to the understanding of its dynamics by
means of the cluster mean-field theory. The basic idea is to divide the chain in Ny
clusters of £ spins and to solve the dynamics of a cluster in the mean-field generated
by the others. Mean-field models are exactly solved with £ = 1 while, increasing the
cluster dimension, short-range correlations are taken into account up to the limit
¢ — oo in which the exact dynamics is recovered.

We investigate the dynamics of the thermally isolated system following an in-
stantaneous change in the transverse field. The system is prepared in the polarized
state with all the spins aligned in the z direction, i.e. the ground state of the Hamil-
tonian in Eq. with h = 0. At time ¢t = 0 the transverse field is quenched to
a finite value h = 0 — h > 0. It turns out that the mean-field ¢ = 1 predicts a
sharp phase transition from a dynamical ferromagnet to a dynamical paramagnet
at a dynamical critical point h = 1. While this is exact in the truly long-range
regime o < 1, for @ > 1 the dynamics is expected to deviate from the mean-field
one by including the short range correlations. Increasing the cluster size, in fact,
the critical point spreads in a critical region exhibiting hypersensitivity to the ini-
tial conditions, revealed by the alternation of positive and negative values of the
dynamical order parameter. By virtue of a fine details analysis of the dynamical
phase diagram we show the analogy with the dynamics of the tossed coin that can
be predictable or truly random depending on the number of bounces the coin does.
This is encoded in the geometry of the phase diagram: in the predictable case the
transition from the phases, head and tail, is sharp while in the random regimes the
edge between the two disrupts and the two phases intermingle. The robustness of
the chaotic region can be investigated by quenching the transverse field with a finite
velocity. Depending on the velocity of the quench three regimes can be identified. If
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the quench is fast enough the dynamical phase diagram displays the same chaotic
features of the abrupt quench. In the adiabatic limit of vanishing velocities the sys-
tem follows the ground state and the chaotic region disappears. In the intermediate
regime the crossover between these two regimes occurs.

In the second part of the thesis we discuss the dissipative dynamics of open quan-
tum systems. In the last years a lot of effort has been devoted to derive a formalism
to describe the dynamics of a system in contact with an external bath, since this is
the more realistic modeling of the experimental setups. As explained in Chapter
the dynamics of open quantum systems is obtained integrating a master equation,
usually in a Lindblad form, for the density matrix p. Decoherence processes due
to the presence of the bath allow the proper thermalization of the quantum sys-
tems but, at the same time, increase the computational effort. An exception is that
of fully connected models whose mean-field nature reduces the complexity of the
equations giving access to the dissipative dynamics. The dynamics of open quantum
systems can be highly non-trivial. Recently it has been discussed the possibility of
the existence of a spontaneous breaking of the continuous time-translational sym-
metry. A no-go theorem [30] ruled out the chance of observe it in equilibrium closed
quantum systems but recent results have shown that such symmetry breaking is
possible in open ones. In particular, experiments and theoretical works |[31H38| have
shown that in presence of periodic driving the system can respond sub-harmonically
breaking the discrete time-translational symmetry. Recently, Russomanno and col-
laborators|39] have found that collective models, in presence of global dissipation
processes|40] conserving the total angular momentum, can spontaneous break the
continuous time-translational symmetry as a surface phenomenon, known as bound-
ary time-crystal. We decided to investigate the stability of the boundary time crystal
using the cluster mean-field theory. In Chapter [5| we derive the cluster mean-field
equation for the fully connected Ising chain in presence of dissipative processes gen-
erated by string of Glauber operators. We show that for finite string operators the
oscillations of the time-crystal are damped and the system eventually reaches a
paramagnetic stationary state. We also investigate the effects of the finite range of
the interaction solving the cluster mean-field dynamics increasing the power-law ex-
ponent «. The preliminary results suggest that for « > 1 time-crystalline behavior
cannot be sustained and the system settles in a stationary state that can be either
ferromagnetic or paramagnetic.

This thesis is organized as follows. In Chapter [2] we present a brief review of
quantum nonequilibrium dynamics. First we investigate the thermalization prob-
lem for thermally isolated quantum systems and then we describe the dynamics in
the presence of an external environments. In Chapter [3| we introduce the general
properties of the long range interacting quantum systems that are the focus of this
thesis. First we introduce the physics of fully connected systems exploiting permuta-
tional invariance, then we discuss the consequences of breaking this symmetry and
finally we propose three experimental realization of the power-law decaying interact-
ing Ising chain. In Chapter 4| we first introduce the cluster mean-field theory that is
used to investigate the dynamics of the long-range interacting Ising chain and then
we discuss the results we have presented above. This chapter is largely taken from
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our published works [41} |42]. In Chapter [5| we derive the cluster mean-field Lind-
blad equations in presence of dissipation processes generated by string of Glauber
operators. Then we present the mean-field dynamics of the Lipkin-Meshkov-Glick
model in the two limiting cases of local and global Glauber operators and we apply
the cluster mean-field to study the effects of the short correlations on this dynamics.
Finally we study the stability of the time-crystal in case of string operators with a
finite length Ny and in presence of finite range interactions « > 0.
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Non-equilibrium quantum systems
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In what follows we briefly introduce the general problem and the principal results of
the nonequilibrium quantum dynamics. First we discuss the case of isolated quantum
many-body systems with a particular focus on the thermalization problem and on
the definition of dynamical phase transition. Then we move to the dynamics of the
open quantum systems focusing on the technical details of its formulation and on
the concept of time crystal.

2.1 Quantum quenches and dynamical phase transitions

The simplest nonequilibrium problem that can be considered is that of a thermally
isolated quantum many-body system. The interest in these systems has been stim-
ulated by the recent progresses in cold atoms that have allowed the simulation of
quantum many-body systems that remain isolated for times longer than the relevant
time scales of the dynamics.

The general nonequilibrium protocol we consider is the quantum quench, i.e.
the abrupt change of one the Hamiltonian parameters. Let us consider a thermally
isolated system described by a Hamiltonian H(\), with A a tunable parameter,
prepared in the ground state [1g) of the fixed A = A\g. At time ¢ = 0 the parameter is
abruptly changed to a different value Ay — A. The energy provided to the system by
the quench can not be dissipated in the environment and, for thermalizing systems,
it plays the role of an effective temperature Tog fixed by the initial energy through
the equation (H)p = (vo|H|to), where (:)p is a thermal average [43]. The state at

time ¢ is unitarily evolved with the final Hamiltonian |¢(t)) = e *HMUP 4 (t = 0)).
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If the quench is performed with a finite velocity A(t) = Ao — vt and the velocity
v is small enough compared to the gap of the spectrum AE| the system follows
adiabatically the ground state. In case of quench across the quantum critical point
the closure of the gap does not allow adiabaticity and the state at time ¢ differs
from the ground state for the creation of some defects. This goes under the name
of Kibble-Zurek mechanism, firstly stated for classical systems [44-47] and then
extended to the quantum case [48-50].

2.1.1 Thermalization and quantum ergodicity

Classically the relation between thermalization and ergodicity refers to the equiva-
lence between microcanonical and long-time averages of the physical quantities. In
analogy to the classical case an intuitive generalization |11} [51} |52] to the quantum
case could be to require the equivalence of the long-time density matrix ﬁ and
the microcanonical one

@ m Pmc- (2.1)

Given an Hamiltonian H such that H |¢,) = Eq4 |1),), the microcanonical density
matrix is constructed by means of the eigenstates 1), € H(E), with H(FE) the Hilbert
subspace with a energy fixed between F and F + 0F

pme =20 O W) (al, (22)

Yo EH(E)

where N is the number of eigenstates in the shell H(F). Given a generic initial
condition in the microcanonical shell [¢)) =3~ 3/ (g Ca [¢a), With ca = (¥|¢q), the
density matrix at time ¢ is

plt) = > cacheFTEI ) (g (2.3)

o,BEH(E)

Assuming a non-degenerate spectrum, in the long time limit all the oscillating terms
average out and the long-time averaged density matrix reduces to the so-called
diagonal ensemble

p(t) = paiag = _ Ical® [tba) (thal - (2.4)

According to Eq. ergodicity would require |c,|? = %, Vo and thermalization
should be observed for a very restricted class of physical systems, contrary to what
happens in the reality. The key to understand ergodicity is to focus on the long-time
averageﬂ of the time evolution of a set of macroscopic quantum observables {Mz}
[5, (11} |12]: the system is ergodic whenever

(&) [Mplp(t)) = Tr (Mppdiag) = (Mp),,. - (2.5)

LA can be both a gap or an energy scale at which the spectrum qualitatively changes

2The definition is given in terms of long time average instead of asymptotic values since the
long time limit in finite systems is not well defined because of quantum revivals. Despite this, if
the expectation value of My relaxes to a well defined state this problem does not exist.
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In general, the observable Mg thermalizes if (i) after some relaxation time the aver-
age expectation value coincides with the microcanonical one (quantum ergodicity)
and (ii) temporal fluctuations of the expectation value about the microcanonical
prediction are small at later times Eﬂ All those requirements can be encoded in the

Thermal state

Initial state Initial state

Coherence

[ Eigenstate thermalization I

Figure 2.1: Schematic description (original in [12]) of the thermalization mecha-
nism in classical and quantum systems. On the left it is represented the classical
thermalization mechanism for which a well localized initial condition spreads on
the phase space because of the non-linearity of the dynamics. On the right, pic-
torial description of the eigenstates thermalization hypotesis: energy eigenstates
belong to the set of typical states and the dephasing induced by the dynamics
destroys the coherence between the eigenstates bringing out the thermal behavior.

eigenstate thermalization hypotesis (ETH) that claims that all the energy eigen-
states belong to the set of typical states and implicitly contain thermal states. As
illustrated in the figure Fig. [12], classical thermalization is due to the non-
linearity of the equations of motion that makes a well localized initial condition to
spread in the phase space, while quantum thermalization is due to the dephasing
induced by the dynamics that, destroying the coherence between the eigenstates,
brings out the thermal behavior. From an operative point of view, ETH is an ansatz
for the matrix elements of local’| observables O in the basis of the eigenstates of the
Hamiltonian

O = O(E)Smn + €5 fo(E, ) Ry, (2.6)

with £ = (E,, + E,)/2 and w = E,, — E,,. S(E) is the thermodynamic entropy at
the energy F, i.e. the logarithm of the number of eigenstates at that energy density,

3The validity of ETH has been proved for operators with support in up to 1/2 of the system

size
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and R, is a random number with zero mean and unitary variance. The heart of
the hypothesis is that O(E) (that is identical to the expectation value of the mi-
crocanonical ensemble at energy E) and fo(E,w) are two smooth functions in their
arguments. Once assumed the ETH ansatz, thermalization follows automatically.
There is not a rigorous proof of the validity of the ETH hypothesis, but many nu-
merical and experimental evidences have shown that it holds, for instance, in the
case of integrable Hamiltonians weakly perturbed or in the semi-classical limit of
quantum systems whose classical counterpart is chaotic [12].

2.1.2 Thermalization and integrability

Given a set of macroscopic observables { Mg}, the stationary state pg is the density
matrix that describes the long-time behavior of the observables

pss = ()| Ms|ip(t)) = Tr (Mppss) - (2.7)

It is not obvious what guarantees the existence of the stationary states and this is
still being debated in the scientific community. In a non integrable system, in which
the energy is the only conserved quantity, the stationary state is thermal [3, |5, |11}
12| 43, 51} 52]. A local observable O(t) approaches a thermal value at an effective
temperature Tog fixed by the initial energy

— Tr (e~ PH (1))

O(t) =Tr (Opss) = Tr (e_fBe“H) ’ (28)

with 1/Bes = Togr- In this case, the stationary state exists and is the Gibbs ensemble

at T -
e_ eff

Pss = PGibbs = W' (2‘9)

The locality of the operators can pictorially be thought as if the whole system
acts as reservoir for any finite subsystem. Locality is the key requirement to ob-
serve thermalization. As a simple argument, let us consider the asymptotic be-
havior of a non local operator Oy g = [¢a) (¥g] + [1g) (¥a|, its expectation value
(On5(t)) = elFa=Es)t/hex 0o 1 h.c. exhibits persistent oscillations in time ruling out
the possibility of a stationary value.

Integrable systems are an exception to the case discussed above. This was ob-
served in an experiment in 2006 by Kinoshita et al. [53], who simulated the dynamics
of trapped Bose gases both in the one-dimensional and the two-dimensional cases.
They found that, whereas the 2D case shows thermal behavior, the 1D case, that
is known to be integrable, does not approach thermal equilibrium. In fact, ther-
malization is not expected for integrable systems, i.e. systems with an extensive
number of conserved quantities in which ergodic behavior is inhibited. In this case,
analogously to the classical counterpart, the presence of the constants of motion
precludes the possibility to attain a stationary state losing memory of initial condi-
tions. Inspired by Jaynes works [54, |55], it has been understood [53], [56-64] that the
asymptotic state attained will instead be the one that maximizes the information
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entropy subject to all constraints set by the constant of motion. It can be thought
of as a generalization of the canonical ensemble that keeps trace of all conservation
laws, thus is has been named generalized Gibbs ensemble (GGE) pggr. Given an
extensive set of loca]lﬂ conserved quantities {I,} such that [I,, H] = 0, the GGE

reads
e_ Zn Mn I’n

PGGE = m, (2.10)

with u, the Lagrange multiplier associated to the operator I,,.

When integrability is explicitly broken ergodic behavior is expected to emerge.
It has been shown that quantum thermalization is strongly linked to the emergence
of quantum chaos [65, 66]. In the case of finite size many-body quantum system
this link emerges in the crossover between the Poisson spectral statistics (integrable
system) to the Wigner-Dyson one (chaotic system) [67-75]. The general hypothesis
for the emergence of thermal behavior is the eigenstate thermalization hypothesis
we discussed in Chapter 2.1.1] Once integrability is broken, the thermal state is
attained in a time set by the energy scales in the systems, but it has been observed
that sometimes the system stabilizes in an intermediate prethermal state. This
problem has been first addressed in the high energy context [17] and later on in the
condensed matter one [13416, 18-21]. The prethermal state can be thought of as a
GGEE constructed with the approximate constants of motion of the nearly integrable
model; then it will eventually reach the thermal state |76]. Prethermalization could
be interpreted in terms of fixed points of a renormalization-group flow. In this
framework (depicted in Fig. a prethermal state is a non-thermal (unstable)
fixed point that is approached in early times and then left in favor of the thermal
one. From this perspective, non thermal steady states attained by integrable models
can be thought as non thermal fixed points with an infinite lifetime [77].

2.1.3 Dynamical quantum phase transitions

Recently it has been asked whether the concept of quantum phase transition can be
extended to the nonequilibrium case. Two possible definitions of dynamical quantum
phase transitions have been proposed. The first kind (DQPTs-I) is identified by a
qualitative change in a dynamical order parameter [24-29, |41} 42], the second one
(DQPTs-II) is signaled by the singularities in the Loschmidt amplitude 22, 23], |78~
82].

Let us consider a quantum many body system prepared in the ground state
|tho) of an Hamiltonian Hy. At ¢ = 0 the Hamiltonian is suddenly quenched to a
different one Hy — H and the state at time ¢ [1(t)) = et |¢)y) is evolved with
the final Hamiltonian. The intuition of DQPTs-II is that the Loschmidt amplitude
G(t) = (p(t)| e |4h(t)), following a Wick rotation, i.e. z = —it, can be thought as
a boundary partition function, i.e. Z(z) = (¥(t)| e *H |)(t)) with z € C. Defining

4If non-local constant of motion were allowed (e.g. choosing the projectors on the Hamiltonian
eigenstates) we would obtain some tautological asymptotic state.

5The expectation values of the observables can be constructed by means of the perturbation
theory [76]
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w

different
initial
conditions

Figure 2.2: Schematic description of the prethermalization mechanism from the
renormalization-group flow perspective (original figure in |16]). Whenever the dy-
namics is thermal (for instance, in case of non-integrable systems), the flow goes
directly toward the stable thermal fixed points. Conversely, a near-integrable sys-
tem quickly approaches a prethermalized state that retains memory of the initials
conditions. This is a non-thermal unstable fixed points from which, after a certain
time, the system escapes to eventually reach the thermal state. In this perspec-
tive, non-thermal steady states can be though as non-thermal fixed point with an
infinite life-time.

the dynamical free energy density f(z) = —limz %ln Z(z), in direct analogy
with standard statistical mechanics, the dynamical phase transition is signalled by
the Fisher zeros in this boundary partition function, i.e. singularities in f(z). In
the temporal domain this leads to the emergence of critical times ¢} where the rate
function I(t) = — | (1(t)|tho) |* displays non-analyticities. Despite have been exper-
imentally observed [83], 84], their nature is essentially geometric and not connected
to physical observables.

A different fate is reserved to the Landau-type dynamical phase transition that
are, instead, connected to the existence of long-range order. Let us consider a quan-
tum many body system exhibiting a 7' = 0 phase transition. Let us assume to
prepare it in the ordered ground state [t¢)g) of the Hamiltonian Hy and to quench to
a different Hamiltonian Hy — H. If the system is thermalizing, the order parameter
will behave consistently with the equilibrium finite temperature phase diagram. In
absence of thermalization the quantum quench from a broken-symmetry phase can
give rise to a dynamical phase transition. DQPTs-I, that are the focus of this thesis,
are characterized by the value of the dynamlcal order parameter, that is defined as
the long-time average O = limr_,o0 7 fo dt (O(t)), with O(t) the evolved equilib-
rium order parameter. The dynamical critical point separates a dynamical ordered
phase, exhibiting a finite value of the dynamical order parameter, from a dynamical
disordered one in which the order parameter vanishes. Since short-ranged system in
small dimensions cannot sustain long-range order at a finite energy density, a key
ingredient for its survival in nonequilibrium systems is the presence of long-range
interactions, as we will discuss in Chapter [3] Although it is still under investiga-
tion the behavior of DQPTs-I is expected to be universal and its properties are
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expected to be different from the equilibrium counterpart [85]. These dynamical
phase transitions have been observed in recent experiments [86, 87| with ultracold
atoms.

2.2 Open quantum systems

Despite the technological progresses in the experimental implementations, closed
quantum system are rather an idealization and, in general, it is impossible to engi-
neer setups neglecting dissipation effects due to the external environment. To have
a more lifelike description it is necessary to imagine the quantum system connected
to an environment [88]. The environment, also named bath, is assumed to be very
large with respect to the quantum system and acts as a reservoir in the canonical de-
scription of statistical mechanics. In what follows we present the general formalism
to solve the dynamics of open quantum systems.

2.2.1 The general problem

Let us consider a many-body quantum system surrounded by an environment. The
Hamiltonian describing this universe contains three terms

H = Hsys + Hbath + Hint7 (2-11)

that, respectively, refer to the coherent dynamics of the isolated quantum systems,
to the dynamics of the reservoir degrees of freedom and to the interaction between
these two. Despite this formalism being rather general, both in quantum optics and
in condensed matter, usually the system is a collection of two level systems (e.g.
Ising-like spin chains) whose physics can be expressed in terms of Pauli operators.
The bath is usually modeled as a collection of harmonic oscillators

Hiwn = ; /O duoheob] ()b (), (2.12)

where b;(w) are bosonic annihilation operators for w frequency mode. [ indicates
multiple discrete modes at a given frequency, for instance a polarization index. The
operators obey the commutation relation [b;(w), blT, (W] = §(w — W)y . Notice that
in general the reservoir can have a frequency-dependent density of modes g(w). The
interaction Hamiltonian usually reads

Hiy = —éhzl: /000 dwky(w) (z;f + ;) (bl(w) - blT(w)> , (2.13)

where xli are system operators that couple to the mode w [—boson with a strength

ki(w). The operators xli depend on the system, e.g. for spin systems they are Pauli

matrices :L‘li = ¢, for harmonic oscillators they are bosonic operators T = af, but,
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usually, obey [Hsys,xli] ~ hwiz®, being w; a frequency comparable to the system
resonance frequency wsys. In general, all the processes present in the system are
dominated by these frequencies that are also much larger than the frequencies scale
of the dynamics due to the coupling with the environment. This allows to do the
following three needful approximations.

e The rotating wave approzimation (RWA): the energy non-conserving terms in
the interaction Hamiltonian are neglected

Hiy ~ —ihzl: /000 dwky(w) (xfbl(w) - xl_blT(w)) . (2.14)

This approximation is justified by the fact that in the interaction picture the
non-conserving terms acquire a time dependence rotating at twice the system
frequency, effectively averaging to zero on the dynamical timescales relevant for
the system.

e The Born approrimation: the system-environment dynamical timescale is as-
sumed to be much larger than the system one. This approximation holds when-
ever wgys < I', with I' the frequency scale corresponding to the system dynamics
induced by the environment.

e The Markov approrimation: the system-environment coupling is assumed to be
frequency/time independent on short timescales. Moreover, the bath relaxation
times are assumed to be short (with respect to the system dynamical one) enough
that the environment can be considered almost unchanged during the system
dynamics and the back-action can be neglected. In few words, the evolution of
the system does not depend on the history of the system.

The dynamics of the system is given by the evolution of the density matrix of the
system obtained from the total density matrix simply tracing away the environment
degrees of freedom p = Treny (protal). Because of the presence of the external en-
vironment the dynamics is not unitary anymore and a pure state initial condition
can equilibrate to a mixed state (for which Tr(p?) < 1). If on one hand this allows
the system to properly thermalize, on the other one it complicates a lot the formal
description of the equation of motion.

2.2.2 Dynamics: Lindblad master equations

Let us assume to have a quantum system living in the Hilbert space H whose
dimension is dy. We define p € S(H) the states of the system and A € Op(H)
the operators acting on it. We define the superoperators A € SOp(H) as a linear
map between operators. Under the three approximations presented in Sec. [2:2.1] the
Markovian evolution of the reduced system is generated by the Lindblad equation

s L) = L r Lo
= £0) =~ Hs )+ <meLm 2{LmLm,p}> S @)
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L is a superoperator (the so-called Lindbladian) acting on the state p. The opera-
tors L,, are called Lindblad or jump operators describing the dissipative dynamics
(including losses or decoherence processes) occurring at characteristic rate 7,,. The
master equation can be re-arranged as follows

i

)= —— T

with Heg = H — %Zm Lian an effective Hamiltonian for the dissipative system.
Because its non-hermitian structure, the effective Hamiltonian produces losses in
the systems that are replaced in other states by the remaining term that is, for this
reason, often called recycling term [88]. For example, in the case of a two level system
with decay from the excited to the ground state, the dissipative part contributes
to reduce the excited state amplitude while the recycling part reinstates this in the
ground state.

Eq. is a hermiticity-preserving equation, i.e. L(p") = (£(p))! that gen-
erates a family of completely-positive trace-preserving (CPTP) maps of the form
E(t) = exp(Lt). The latter is known as evolution map and is such that E(t +t') =
E(t)-E(t') and £(0) = I. The usual way to handle the master equation in Eq. (2.15))
is by virtue of a vectorization process that is described in Subsec. [2.2.3

2.2.3 Vectorization of the Lindblad master equations

The idea (more details can be found in [40]) is that linear operators form a vector
space, hence can be represented as vectors of an enlarged Hilbert space. Given a
basis {|i)} € H any operator can be written in this basis A = 3, a;; |i) (j| € Op(H).
The vectorization process replaces this operator with a vector

A |A) =D agliy@|)) e HOH (2.17)
ij
and superoperators A € SOp(H) with operators in the enlarged Hilbert space
A(A) — A|A)). (2.18)
The inner product is given by the Hilbert-Schmidt product ((A|B)) = Tr (ATB).
The adjoint A* of a superoperator A is defined as follows
((AlA(B))) = Tr(ATA(B)) = Tr(AN(B)A) = ((A'(B)|4) (2.19)

with A, B € Op(H).

The major benefit of this formalism is that the Lindbladian £ is treated as a
matrix that can be diagonalized. Since it is not hermitian, we have to define both
the left |l,,) and the right eigenvectors |r,)

{L|rm> = M |7m) s

2.20
LH ) = N |lm) - (2.20)

The spectrum of the Lindbladian contains much information on the dynamics of
the system:
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1. Eigenvalues are real or come by conjugate pairs. Because of the positivity
it always is Re(A\p,) < 0;

2. Ordinary eigenvectors corresponding to different eigenvalues are linearly
independent;

3. Ordinary eigenvectors are bi-orthogonal ((I;,|7)) = Omn, With 0.,y the
Kroneker delta;

4. The evolution maps £(t) shares the same left and right eigenvectors of L;

5. If £ is time-dependent there is always A\g = A\j = 0 with right eigenvector
7)) such that £(t) |ro)) = |ro)). This state is the steady state of the system
and it can be non-unique.

In general it is convenient to introduce the asymptotic subspace As(H) =
span{ry, : Re(A\p,) = 0}. The states |1)),, € As(H) are more properly non-decaying
states, in fact, whenever Im(?) # 0 they gain a time-dependent phase. The orthog-
onal subspace is the dissipative subspace D(H). The enlarged Hilbert space is the
direct sum of the asymptotic and dissipative subaspaces H @ H = As(H) @ D(H).
The last important concept is that of dissipative gap A

A := miny,|Re(Ap)| : Re(Am) # 0. (2.21)

This gap fixes the convergence to the asymptotic state time scale.
In order to implement the vectorized Lindblad equations it is necessary to gen-
eralize the left and right multiplication rules.

[H,p]— (I®H—-H"®1)|p)).

T
LEpLE o (L2 @ LE) o).
(2.22)
LitLip = (To LELE) o),

m

pLELE ((L;'ETL;.'E)T ® I) o))
This way the Lindblad operators reduces to

r 1
v _ g7 Bt R Bty B Bty B
L'=—-i(I®H—-H ®I)+B§i Em Ym [Lm ® L, 2<I®LmLm+(LmLm®I)}
(2.23)

2.2.4 Time crystals

One of the information contained in the Liouvillian spectrum is whether the system
is in a time crystal phase. Time-crystallinity is a concept that has been introduced
by Wilczek in the 2012 [89] in analogy with the concept of crystals, a phase of matter
emerging by the spontaneous breaking of the translational symmetry. A time crys-
tals, therefore, is a phase a matter that spontaneously breaks the time-translational
symmetry is spontaneously broken. This breaking is revealed by a non trivial time
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dependence of physical observables. A no-go theorem [30] ruled out the existence
of this state of matter in equilibrium systems in which the energy is conserved,
although time crystals are still allowed in non-equilibrium quantum systems. In
general, their existence is foretold by the Liouvillian spectrum that is expected to
have a vanishing gap in the real part (a degenerate nonequilibrium steady-state
with coherence decaying over an infinite time scale) and some non-zero imaginary
eigenvalues inducing the oscillations. A particular case of time crystals are that
emerging in Floquet (i.e. periodically driven) systems [37, 38], in which the discrete
time-translational symmetry imposed by the external driving is spontaneously bro-
ken[31-35| 40]. These time crystals, named Floquet time crystals, are revealed by
the dynamics of the physical observables that oscillate at a frequency multiple of
the driving one.

Time crystals are usually destroyed by the presence of dissipative processes.
In some cases [35], e.g. mean-field models with collective interactions [40], the
dissipation concurs to stabilize the time-crystallinity. In presence of dissipation a
continuous time-translational symmetry breaking can be observed as surface phe-
nomenon, the so-called boundary time-crystals (BTCs) [39]. Basically, the system
self-organizes in a time-periodic pattern only in a macroscopic fraction of itself (the
surface) on a period that depends only on the coupling with the rest of the system
(the bulk). Being O, an operator acting on the surface, the boundary time crys-
tal is observed if its expectation value (O4(t)), in the thermodynamic limit, is a
time-periodic function f(t)

O.0) = tim_Tr (Oupu(t)) = 110), (2.24)
N,/Ny—0

with Ng, Ny, the degrees of freedom of the surface and of the bulk respectively. The

correspondence between the dissipative dynamics and the unitary dynamics of an en-

larged system suggests that the existence of a BTC is correlated with the existence,

in the thermodynamic limit, of a time-periodic steady state in an open quantum

many-body system. Some reminiscence of this behaviour could be observed even in

finite systems with some early time oscillations of the boundary order parameter.
Further details can be found in the reviews [40, 90, |91].
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In this chapter we describe the physics of long-range interacting quantum systems
with a particular focus on the experimentally relevant case of algebraic decaying
potentials V(r) o« Jr~®. First we describe the general properties of this kind of
potentials, then we discuss the particular case of the completely connected mod-
els. Finally we introduce the long-range interacting Ising model and present some
experimental realizations.

3.1 Algebraic decaying potentials

Algebraic decaying potentials are long-ranged whenever the power law exponent «
is smaller than the dimensionality d. Long-range interactions lead to non-extensive
ground state energies and thermodynamics. This intuitively emerges calculating the
interaction energy of a particle placed at the center of a d-dimensional sphere of
radius R. In case of a power law decaying potential it goes as ¢ o R*® and is
finite provided a@ > d, while diverges otherwise implying a superlinear growth of the
total energy [92] . Extensivity can be formally recovered renormalizingﬂ the coupling
constant J — JV /41 (93],

Long-range interactions are non-additive. As a simple argument let us consider

the Curie-Weiss model How = —% Zg sisj, with s; = £1 spin variables act-
ing on the site i. The total energy of a bipartite configuration of L spins with
Si<rj2 = 1,8;5p2 = —1 is E = 0 although the energy of a single partition is

Tt is not obvious that the interaction depends on the numbers of the interacting particles, but
the normalization is necessary to obtain meaningful mathematical and statistical properties.

19
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Ey = E3 = —JN/2. The principal consequence of non additivity in case of clas-
sical long-range interacting systems is the lack of convexity in the thermodynamic
potential affecting the construction of the statistical ensembles and yielding pecu-
liar dynamical behavior. Long-range interactions imply also non trivial quantum
dynamics as a consequence of the ultrafast spreading of correlations violating the
Lieb-Robinson bound [94-102] or the counterintuitive slowdown of the growth of
the entanglement entropy becoming more pronounced as one increases the range of
the interactions [103} |104].

The most intriguing features exploited by long-range interacting systems is the
equivalence between the universality class of long-range interacting systems and
short-range ones with an increased dimensionality |[105] [106] that implies the pos-
sibility of sustaining long-range order at finite energy density in low-dimensions. In
the case of a 1D spin chain this can be understood by considering the Peierls argu-
ment that the long-range order at finite temperature is destroyed by the creation of
domain-wall excitations. Considering a long-range ordered state, the energy to cre-
ate a domain-wall separating two long-range ordered regions is AEqy, ~ > rl=e.
Thus, the formation of domain-walls is energetically accessible only for @ > 2 and
is prevented for o < 2 allowing long-range ordering at finite temperature. As a con-
sequence, long-range interacting systems can display a dynamical quantum phase
transition as the ones described in Sec. 2.1.3]

3.2 Fully connected quantum many body systems

A particular case of long-range interactions is that of fully connected quantum
many-body systems, i.e. power law potentials with exponent o = 0. These systems
are symmetric under permutations of any site and the dynamics is constrained
to the so-called totally-symmetric-subspace (TSS) [103, |107-109]. This introduces
huge simplifications because the dimension of the TSS, instead of growing exponen-
tially, grows just polinomially with the system size N. Moreover the Schrédinger
equation involves an effective Planck constant fieg ~ 1/ VN and, in the thermody-
namic limit, reduces to the Hamilton equation of few macroscopic variables [103}
107H110|. The classical description is obtained by mapping quantum operators on
their semi-classical counterpart [110], e.g. by virtue of the phase space formulation
of quantum machanics presented in Appendix [A] The semi-classical approximation
is valid only for the early stage of the dynamics and breaks down at the Ehrenfest
time tp [110-112], i.e. the time at which the wave packet spreads on scales at which
the quadratic approximation of the Hamiltonian fails.

In what follows we describe two prototypical, experimentally relevant, exam-
ples of completely connected systems exhibiting collective behavior: the Lipkin-
Meshkow-Glick model (Sec. describing the physics of a collection of N spin
1/2 with a all-to-all interaction and collections of two-level or three-level systems
coupled to a radiation field (Subsec. [3.2.2). The derivation of the effective Hamil-
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tonian both for the radiation field and for the two-level systems can be found in
[113].

3.2.1 Lipkin-Meskov-Glick model

The Lipkin-Meshkov-Glick (LMG) model was proposed in the 1965 [114] to describe
a system of N interacting bosons. By means of a Schwinger mapping, the bosonic
operators can be replaced by spin ones with total angular momentum S = N/2.
Alternatively |[115H117], it can be thought of as chain of N spin—% particles mutu-
ally interacting through an anisotropic XY-like Hamiltonian coupled to an external
magnetic field h:

2
H=-+ (7252 + W S;) — hS., (3.1)
with S, = Zfi 1S, and SY spin operators acting on the site i. Without loss of
generality we assume h > 0 and |yy| < ;. The spin operators obey the SU(2)
commutation relations [S7, Slﬁ | = ihéﬂsaygﬁkﬁ’;. The algebra of the collective spin
operators s* = S*/N

h
[s9, sﬁ] = zﬁéﬂaa,gﬁsy, (3.2)

reduces to a SU(2) algebra with an effective Planck constant heg = h/N. The
Hamiltonian in Eq. is invariant under permutations, hence the system is con-
strained in the total symmetric subspace. For the SU(2) algebra the T'SS is spanned
by the so-called Dicke states {|s,m)}, i.e. the standard basis of S? and S, with
S%|s,m) = s(s+ 1)|s,m) and S, |s,m) = m|s,m). The Hamiltonian in Eq.
conserves the number of excitations and the odd-m and even-m sectors are decou-
pled, making the model Z; symmetric. The total angular momentum is conserved
constraining the dynamics to the maximum angular momentum SeCtOIE| s = N/2.
The system is equivalent to a classical (N + 1)-level system whose dynamics is that
of the Bloch vector precessing on the Bloch sphere. It exhibits a quantum phase
transition explicitly breaking the Zs symmetry at the critical values h. = v, and
he = vy. The phase transition is recovered by the classical description obtained
posing

S¥ =sinfcosp, SY=sinfsingp, S°=cosb, (3.3)

and minimizing the Hamiltonian H
Hy = —(1+7)sin?6cos? ¢ — (1 — ) sin? §sin? ¢ — 2h cos b, (3.4)

with v, = 1+~ and 7, = 1 —~. The minimization yields two ground state solutions

ST =, /1— L — >0,
{ T+y 7 (3.5)

ST =0 < v<0.

2This choice is due to the fact that the ground state of Eq. (3.1)) belonging to the maximum
angular momentum sector.
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Figure 3.1: Equilibrium phase diagram of the infinite XY-model. The order pa-
rameter (S®) (color map) is plotted as a function of the interaction constant -y
and the transverse field h. The system undergoes a quantum phase transition from
a ferromagnetic (broken) to a paramagnetic (symmetric) one at a critical value

he(7)-

corresponding to the normal and the broken phase. The equilibrium phase diagram
is shown in Fig. where the order parameter S* (color map) is plotted as a
function of the coupling v and the transverse field h.

The dynamics of the LMG is obtained integrating the Hamilton equations for
the conjugate variables ¢, cos 6

drp(t) = —vsin? O sin(2p),

O cos O(t) = 2p(1 + v cos(2q)) — 2h. (3.6)

In the case of a quench from (y; = 1, h; = 0) to (7, h) the solution is analytical [115]

¢(t) = arctan <_K_3n (2tK+|(K—/K+)2)> |
2(v — 1)y + 1?2
 h— /h2 = 2ysin? g cos(2p) + 1)

cos (0(t)) = vcos(2p) + 1 ’

(3.7)

with K+ = \/—h2 +v2+ 9+ v/ (y+1)? —4h? and sn(u|m) one of the Jacobi
elliptic function. The collective dynamics is that of a macroscopic degree of freedom
preceding on the Bloch sphere. In Fig. [3.2] we show the phase space trajectories
for v = 1 and for the three final transverse fields h = 0.5 (left panel), h = 1.0
(right panel) and h = 1.5 (middle panel) for the initial condition ¢ = 0,cosf = 1.
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Figure 3.2: Trajectories of the order parameter S* on the Bloch sphere for v = 1.
The system, prepared in the ground state of the Hamiltonian with h = 0 (black
dots), is quenched toward three different values of the transverse field (from left
to right) h = 0.5 (dynamical ferromagnet), h = 1.5 (dynamical paramagnet) and
h = 1.0 (dynamical critical point). In the dynamical ferromagnetic phase the spin
precedes around the initial condition and the long-time averaged magnetization
has a finite value. In the dynamical paramagnetic phase the spin precedes around
the two ferromagnetic ground states and the order parameter vanishes. In the
right panel we plot the critical trajectory for h = 1: the spin slowly approaches the
paramagnetic point to eventually escape after a time increasing with the system
size. This trajectory is unstable under any perturbation.

When the transverse field is small the vector precedes close the initial condition
and is characterized by a finite long-time average magnetization, conversely when
the transverse field is large the precession follows the equator of the sphere imply-
ing a vanishing long-time average magnetization. The crossover between these two
regimes occurs at a critical value h, = 1. The associated phase space trajectory, that
approaches exponentially slowly the equilibrium paramagnetic point, is extremely
unstable under perturbations. The system undergoes a dynamical phase transition
from a dynamical ferromagnetic phase characterized by a finite value of the dy-
namical paramagnetic order parameter ST = limp_, % fOT dtS*(t), to a dynamical
paramagnetic one with S* = 0. The dynamical phase diagram is shown in Fig. |3.3
where the dynamical order parameter S* (color map) is plotted as a function of the
post-quench coupling v and the post-quench transverse field h.

The failure of the semi-classical approximation emerges by looking at the sta-
bility of the quadratic bosonic approximation obtained by means of the Holstein-
Primakoff transformation:

St =+2N —btbb,  S*=2N —b'b, (3.8)
with ST = S% +4SY. Expanding the roots we obtain:
S% ~ V2N +b) + O(1/V'N),

SY ~ivV2N(b" —b) + O(1/V'N), (3.9)
S* = 2N —b'b.
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Figure 3.3: Dynamical phase diagram for the infinite range XY-model, derived
by integrating the equations of motion in Eq. . The system, prepared in the
ground state of the Hamiltonian with h; = 0, is quenched toward a final value of
the transverse field h. It shows the dynamical order parameter S* (color map) as
a function of the interaction constant v and the final transverse field h.

Substituting, the Hamiltonian becomes
H=—N(h+.J)+2bb+ (b*"‘ + b2) , (3.10)
with e =~ — J, and A = —v. Neglecting the constant, it can be diagonalized
H=+/J(J—7)ala, (3.11)
performing a Bogoliubov rotation b = cosh o a — sinh v af, with cosh 2o = 526— e
ﬁ, The stability condition E? > 0 locates the critical point
at h. = v for v > 0 and confirms the absence of phase transitions for v < 0. The
quadratic approximation in Eq. 1} holds as long as b'b < N, namely up to the
Eherenfest time ¢z given by the relation ((bb)(tg)) ~ N. For collective spin systems
the Ehrenfest time grows as tg o« VN away from the critical point, while at the
dynamical critical point goes as tg  log N [118]. We evaluate the evolution of the

density of fluctuations by integrating of the equations of motion of the correlators
Ay = 26T, A, = (b +b)%, Ay = — (bT —b)°

and sinha = —

Ay = A0A;,
A, = —deN, (3.12)

A; = 4e, + 4A\A,,
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Figure 3.4: Trajectories of A, as a function of time for two different transverse
fields A = 0.5 (left panel) and h = 1.5 (right panel). The growth of the fluctuations
in time is responsible of the failure of the semi-classical approximations of the
dynamics.

In Fig. [3:4 we plot the trajectories of Ay as a function of time in the ferromagnetic
(left panel) and in the paramagnetic phase (right panel). We observe a growth
of the fluctuations in time that is responsible of the failure of the semi-classical
description of this model. As explained in Appendix [B] this growth is related to the
spin squeezing.

3.2.2 Atoms in cavities

The simplest example of collective phenomena in quantum optics is the Dicke’s
superradiance (also referred as superfluorescence), i.e. the coherent emission of light
by a set of N two-level systems coupled to a radiation field. A single two-level system
prepared in the excited state |1) if coupled to an electromagnetic environment could
relax to the ground state ||) emitting a photon with a rate ;. A collection of N two
level systems prepared in the excited state |1 ... 1) could relax to the ground state
|4 ... J) spontaneously emitting photons with a rate Nv,. In the 1954 Dicke [119]
showed that this model undergoes a phase transition (first described by Hepp and
Lieb [120] and then mathematically stated by Wang and Hioe [121]) from a normal
phase, in which the spontaneous emission is incoherent and occurs with an intensity
N, to a superradiant phase in which the measured radiation field is proportional to
N2. The system shows both a classical and a quantum (at 7' = 0) phase transition
from a normal to a superradiant phase that in the last years has been the focus
of many studies both at equilibrium [122-128] and out of equilibrium [126, 129~
131]. In particular, a strongly debated issue is the actual possibility of observing a
superradiant quantum phase transition.

The associated model is a collection of N two-level systems interacting via dipole
interaction with M bosonic modes within an ideal optical cavity, isolated from the
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Figure 3.5: Left panel: equilibrium phase diagram of the Dicke model. The ground
state value of ¢ (color map) is plotted as a function of the coupling constant A and
the cavity frequency € fixed w = 1. The black line is the critical value A, = v/Q/2.
Right panel: dynamical phase diagram of the Dicke model. The long-time average
@ (color map) is plotted as a function of the post-quench coupling constant A and
the cavity frequency ) fixed w = 1. The black line is the empirical critical value
A=)\ /2.

external environment. The relative quantum Hamiltonian reads

M M
z AZ _
H:ZQa a}ag—kwa —i-zﬁ(a}—l—ag) (et +07), (3.13)
J4 «@

with ag(a;) annihilation (creation) operators for the mode ¢ and o = ), 0% col-

lective spin operators with of' Pauli matrices acting on the site i-th and ot =
(0 £i0Y)/2. The coupling constant normalization is due to the fact that the dipole
strength is proportional to 1/ VV, with V.= N /p the volume of the cavity. In
the 1975 Rzazewski and collaborators observed that the Hamiltonian in the
Eq. is not invariant under gauge transformation of the electromagnetic field.
To recover the gauge invariance one needs a term proportional to the square of
vector potential whose strength, fixed by the Thomas-Reiche-Kuhm sum rule, is
such to inhibit the quantum phase transition, leading to a no-go theorem .
Successive works have shown that the superradiant quantum phase transition can
be observed in the nonequilibrium steady state (NESSEI) of the driven dissipative
version of the model . Physically, one can realize this transition by
looking at a Bose-Einstein condensate (BEC) posed in an ideal quantum optical
cavity, dressed by an external pump. Depending on the cavity and pumping param-
eters (see Appendix the BEC can arrange on a periodic structure of two-level
systems that, in a reference frame moving at the pump frequency, is described by the

3NESS superradiant quantum phase transitions are qualitatively similar to the equilibrium
quantum ones, but their universality class (that is the same of the classical superradiant phase
transition) differs from the quantum one [130]
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Hamiltonian in Eq. [130, 135-137]. The spin Hilbert space (see Subsec.
is the TSS spanned by the Dicke states {|j, m)}, with o2 |j,m) = j(j + 1) |7, m) and
o?|j,m) = m|j, m), while the bosonic Hilbert space is spanned by the Fock states
|n) of the radiation field. The total Hilbert space, spanned by the product basis
{|n) ® |7,m)}, is split into two subspaces reflecting the parity symmetry associated
to the operator II = exp (in), with N = > a;al + 0% 4+ j. The underlying sym-
metry group, spontaneously broken by the superradiant quantum phase transition,
is Zo. In what follows we fix j = N.

Let us now focus on the Dicke model, i.e. the case with a single cavity mode.
By virtue of the Holstein-Primakoff in Eq. (3.9)) the Hamiltonian can be written as

A
— T T T T — 9pt — bt
H—Qaa+wbb+f<a +a)(b \/N 2bb+\/N 2bbb). (3.14)

The system undergoes a quantum phase transition from a symmetric phase, char-
acterized by (a'a), (b'b) = 0, to a broken superradiant one with (afa), (b'b) ~ N.
The associated classical Hamiltonian

H/N = Qlof* + w|y|* + 4" o, (3.15)

is give by the substitution a — vV N¢ and b — N9 fixed g = /1 — /]2,
with ¢,9 € C [108]. The ground state, obtained by minimizing the Hamiltonian
with respect to the fields, is in the normal ¢,% = 0 or in the superradiant phase
©,1 > 0 if the coupling is smaller o bigger than the critical value A, = VwQ /2. The
equilibrium phase diagram is shown in the left panel of Fig. where the ground
state value of 2 (color map) is plotted as a function of the coupling constant A
and the cavity frequency  (fixed w = 1). The black line is the critical coupling
Ae = VO /2. Let us assume to prepare the system in the superradiant ground state
of some parameter \;,€2; and to quench the parameters to some final values A, 2.
The dynamical phase diagram, displayed in the right panel of Fig. shows the
dynamical order parameter ¢(t) = limp_, fOT dte(t) (color map) as a function of
the post-quench coupling A and the post-quench cavity frequency 2. The system
undergoes a superradiant dynamical phase transition at a critical coupling that is
empirically located at AY = \./2 (black line).

Including the fluctuations means to map a — ¢ + a and b — b+ 1, with
» = @, +ip; and ¥ = 1, + ;. The total Hamiltonian contains a quadratic term ho

r AT 2
hy = Qala + <w — 4%¢r> biy — Aprfr (w7“2Ab2+ @DzAb)
) | %o (3.16)
CAAG (7 = Y5) AL + i)

Yo ’

with A, = 22Tz, A7 = 2t + 2 and AL = i(z' — x). The equation of motions for the

4 Another possibility is to derive the classical Hamiltonian in terms of the conjugate variables
x and p as done in [127} |128]
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correlators
(A — 2/\Ai((¢3—¢i)oA£+wrwiAi)
Al =2QA%,
Afz = —2QA" + QA((wﬁ—wﬁ)onerwA};)
Ay = 2 A%wT%T—m)) ATAG 22, ﬁA A 2>\(¢3—$§)A2A27 (3.17)
A’":2 w—%)Ai—%,
Az _ (w _ /\smb ) A7 + (wﬁ;;bé)ﬁl

have a structure similar to those derived for the LMG model in Subsec. 3.2.1] and
actually the number of fluctuations A,, Ay grows in time causing the failure of the
semiclassical approximation at the Ehrenfest time.

Emary and collaborators 127} |128] have shown the correspondence between the
classical chaotic behavior of the Dicke model and the quantum chaotic behavior at
finite system size. More details on this are given in Appendix

I
3.3 Long-range interacting Ising chain - Theory

Let us now consider a chain of NV Spin—% described by the following Hamiltonian

H:Z J(r) JJ+T—}—hZT (3.18)

with 7¢ = 2S5° the Pauli matrices. J(r) is a generic coupling depending on the
relative distance r that can be short or long-ranged. The system undergoes a quan-
tum phase transition from a ferromagnetic to a paramagnetic phase at a critical
value of the transverse field that depends on the shape of the coupling J(r). The
non-homogeneity of the interactions breaks the permutational invariance making
this class of models (unless some exceptions) non-integrable.

Fourier-transforming the spin operators 7¢ = % Dok etki 71, the Hamiltonian in

J
Eq. (3.18) becomes

H=—Jory" —htg =Y Jerit™y, (3.19)
k0
with J, = %ny:l J(r)e’*". The zero-momentum part of the Hamiltonian in

Eq. (3.19) is that of the fully connected Ising model discussed in Subsec.
As long as J # 0 the total angular momentum is not conserved. This is evident in
the bosonic representation obtained by means of the Holstein-Primakoff mapping:

= VN (b bi) + O(1/VN),
=iV (b, = b_) + O(1/VN), (3.20)
T = Nopo — 25, bibgs.
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Up to the quadratic order the total angular operator reads

Pa | N=2) bl | [ N=2) bl +1, (3.21)
k#0 k40

i.e. the finiteness of the interactions contribute to decrease the total angular mo-
mentum generating spin waves.

In this thesis we focus on the case of power law decaying interactions J(r) o
J/r?, that are experimentally accessible in ultracold gases platforms. In what fol-
lows we describe three possible experimental setups to realize the Hamiltonian in

. @19,

3.4 Long-range interacting Ising chain — Experiments

The recent progresses in the cold atoms techniques has given the access to many
different platform to simulate the dynamics of quantum spin models. In what follows
we present three of the most promising platforms that have been used in the last
years.

3.4.1 Rydberg atoms

Arrays of Rydberg atoms are one of the most promising solution to
simulate quantum spin chains. Rydberg atoms have a very large principal quantum
number n. The basic idea is to trap these atoms with of optical microtraps with
arbitrary geometry and to dress them with tunable laser that couples the ground
state |g) to a selected Rydberg state |r). The dynamics is governed by the Ising-like
Hamiltonian

W .
H = ; TUi + ; V;jnmj, (3.22)

1,013 nm V. 420 nm

Figure 3.6: Schematic representation of the experimental setup with interacting
Rydberg atom arrays from Ref. [rydberg:1]
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with ©Q Rabi frequency of the laser coupling, of* the Pauli matrices acting on the
i-th site and n; = (1+07)/2. The term V;; arises from the van der Waals interaction
between the atom ¢ and the atom j when they are both in the Rydberg states and
scales as Vjj ~ [i—j |=6. For some specific Rydberg states the coefficient of Vij can be
anisotropic [139]. When the interaction Vj; exceeds the Rabi frequency €, multiple
Rydberg excitation are suppressed leading to the so-called Rydberg blockade. This
setup allows to simulate a chain of L ~ 50 spins.

3.4.2 Trapped ions

Another possible setup to simulate spin Hamiltonians is that of confined ions cou-
pled to laser beams |83, |86} |140-149]. Because of the Earnshaw’s theoremﬂ to trap
the ions is necessary to use an electric field combined with a magnetic one or to
use a time-dependent electric field. The first solution is that of the Penning traps
in which a strong homogeneous axial magnetic field confines particles radially while
a quadrupole electric one confines them axially. The second possibility is that of
the Pauli (or radio-frequency or quadrupole ion) traps, in which the charged par-
ticles experience an average confining force generated by a time-dependent electric
field. In particular, in the quadrupole geometry, the particles are surrounded by
four electrodes producing alternately a confining and an anti-confining force. The
switching rate between the two forces should be faster than the particle escape rate
and usually is at a radio frequency giving the name to trap.

Spin states are usually encoded in two hyperfine “clock” states of '"'YbT ions.
The ions are globally dressed along the principal axis of the transverse motion by
two off-resonant laser beams with a wavevector difference dk that stimulate Raman
transitions. The spin-spin interaction [86, |143] is generated by the pair of beatnote
frequencies in the beam that are symmetrically detuned by a frequency p from the
resonance frequency. In the Lamb-Dicke regime this results in a coupling of the form

Jo

o (3.23)
i =gl

Jij ~
and Jy depends on u,dk and on the Rabi frequency of the laser €2. The power law
exponent is generally varying in a wide range 0 < o < 3. By asymmetrically adjust-
ing the laser beatnote detuning p it is possible to generate and effective transverse
field A to obtain an Ising-like Hamiltonian.

Depending on the geometry of the apparatus it is possible to store up to L = 100
ions [141]. Experiments with trapped ions have allowed the observation of dynamical
quantum phase transitions in spin systems [83, 86]. Another important result is the
observation of the prethermal state attained by a long-range interacting Ising chain
after a sudden quench [143]. This kind of setups can also be used to follow the
dynamics of the correlations varying the range of the interactions to investigate the
validity of the Lieb-Robinson bound. An example of this can be observed in Fig.

5Tt is not possible to maintain a collection of point charges in a stable stationary equilibrium
configuration solely by the electrostatic interaction of the charges
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Figure 3.7: Evolution in time of the correlations between distant sites (from
[142]) for different values of the power law exponent a obtained with trapped ions
experiments.

(taken from Ref. [142]) that shows the evolution in time of the correlations between
distant sites for different values of the power law exponent «.

3.4.3 Polar molecules

Finally, an interesting possibility to simulate more complex quantum many-body
systems is to use polar molecules, molecules with a long-range anisotropic electric
dipole-dipole interaction , . The first step is to create a quantum degenerate
gas of polar molecules, which is not easy to obtain because of ultralow temperatures
and high phase-space densities required. A solution is that of creating heteronuclear
molecules, for instance the KRb?6, starting from the quantum degenerate atomic
gases and creating the ultracold molecules in the absolute rotovibrational ground
state via a coherent process in two steps. First pairs of free atoms are weakly
bounded via Fleshbach resonance, then these molecules are transferred
coherently to the rotovibrational ground state via STimulated Raman Adiabatic
Passage (STIRAP) [156]. In the simplest cases STIRAP involves two lasers and
three levels. The first laser couples the Flashbach molecule state |f) to a (usually
lossy) excited state |e), the second couples this excited state to a deeply bounded
state |g). This way the entire population is transferred from the Flashbach state
to the bounded one without populating the lossy one. The molecules inherit from
the nuclei the hyperfine structure and angular momentum selection rules allow to
populate just one of the two creating a spin-polarized sample. The dipole-dipole
interaction could be generated by dressing the molecules with electric fields. By
trapping the molecules in deep optical lattices in which both tunneling and collision
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processes are suppressed is possible to simulate spin-1/2 Hamiltonian of the form
=l 5 )L (St 4SSt
= §Zvdd(7’i - rj)? i +5; Sj ) (3-24)
1#]
where Vyq(7 — 7)) = (1 — 3cos?0;;)/ |7 — 7|3, 7 is the position of the molecule i

and 60;; the angle between 75 — 7. Sj =) is the rising (lowering) spin-1/2 operator
acting on the i-th site.



4

Long-range interacting Ising model — Cluster
mean-field dynamics

CONTENTS

4.1 Cluster mean-field theory ........ ... i 33

4.2 Dynamical phase diagram .......... ..., 37
4.2.1  Chaotic region ..........c..oiiiiiiiiiiiiiiii i 42
4.2.2  CONVETZEIICE ...ttt ettt e 43
4.2.3 Linear quench ......... ... 46

In this chapter we introduce the cluster mean-field theory (CMFT) and its appli-
cation to the dynamics of the long-range interacting Ising chain. In particular, we
show that the dynamics following a sudden quench can exhibit hypersensitivity to
the initial conditions leading to a non trivial chaotic dynamics. Reducing the ve-
locity of the quench the chaotic dynamics disappears and the equilibrium phase
diagram is recovered. The results in this section have been derived using the open
sources C++ library Armadillo [157, |158] for the linear algebra part and the Gnu
Scientific Library routines for the integration of the differential equations.

4.1 Cluster mean-field theory

The cluster mean-field theory is a generalization of the mean-field theory that ac-
counts for short-range correlations. The standard mean-field solves the exact dy-
namics of a single particle in the mean-field generated by the other particles, the
cluster mean-field generalization, instead, solves the exact dynamics of a cluster of £
particles in the mean-field generated by the other identical clusters. In what follows
we derive the cluster mean-field equations for spin models. Let us consider a chain
of N spins with power law decaying interactions described by the Hamiltoniarﬂ

N 2 2
J ;07
H=— I —hY of 4.1
M@ &g " .
with N the length of the chain and N (a) = Zf,vzl r~% the normalization constant.

The chain is divided in Ny = N/{ clusters of length ¢ (as shown in Fig. [4.1).

!Contrarily to what done in the previous section, we assume the coupling to be along the z
direction.

33
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Figure 4.1: Schematic description of the cluster mean-field theory. The chain of NV
spins is divided into N, = N// clusters of length ¢. Each cluster evolves according
to the exact Hamiltonian (light-blue arrows) in the mean-field generated by the
other clusters (orange arrows).

Rearranging the terms, the Hamiltonian reads

Ncl Z K Ncl K
H = —Z Z JijO'fU;—i-hZO'f-l- Z ZJ@jO’fO’j (4.2)
B\ i#jep icf B'#B 1€b

Jep’

with 8 and ' two cluster indices and J;; = The first term

J 1
N(e) Ti=gl=

Z Jijoio hZa (4.3)

i#jEL ief

describes the dynamics inside the clusters, while the second term

Hyut = Z Z Jijoi O’ (4.4)

B'#B icp
Jjep’
describes the dynamics among the cluster. In the cluster mean-field approach the
first one is exactly solved, while the second one is rewritten posing o} = mpj + Oss
with m§ = ¢ Zle 5 {0f) the mean value of the magnetization inside the cluster /3
and §; = o7 —mj 3 the ﬂuctuatlons around it. Substituting in H,y we obtain

Hout = — Z Z Jij (mf; + (51) (mg, + (5J)
§#6 ieh
J

==Y Ty (mpo +mpof — mimp) + o(8%).
B#£B i€
jep’

(4.5)

Up to the first order in the fluctuations, neglecting the constant and assuming all the
clusters to be equivalent (mean-field hypothesis: mg=mp = m?*) the Hamiltonian

reduces to o2
m N s
Hout /¢ ;ﬁ J(Z)Ui . (46)
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with

cl_1 Z

ZZ Z]Zh— n£+g| (4.7)

,3 7&5]6,3/

The cluster equivalence also implies that the mean-field coupling is independent of
the site index, i.e. j =1 = %, thus

VA
J(i) = Jogg = Na) 7; v (4.8)

This way we can write the mean-field inter-cluster Hamiltonian

2m*Jeg o*

Hye=— 7 , (4.9)
with % = Zf o7 . Intuitively, in the limit / — N, namely one single cluster, the

Hamiltonian is exact and actually Hy,¢ ~ o7 0. In Fig. Eﬂ we plot the behavior
1>
J

of the effective longitudinal field Jeg(or) = W 271:7;[1 nT as a function of the
cluster size for the two different power law exponents a = 0.9 (left panel) and

a = 1.2 (right panel) and for the three different system sizes N = 105,107, 10%. The
dashed line is the numerical fit interpolating the data. It emerges that for o < 1
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Figure 4.2: Behavior of Jog(a) as a function of the cluster size ¢ for o = 0.9
(left panel) and o = 1.2 (right panel) and system sizes N = 10°,107,10%. In
the case a < 1 the cluster mean-field coupling approaches in the thermodynamic
limit the mean-field one, confirming the equivalence between the LMG-model and
the generic case with o < 1. As long as a > 1 the cluster mean-field coupling
approaches zero as Jog(a) ~ (271, For a < 2 the decreasing is sub-linear and, also
for big cluster sizes, mean-field effects are present.

in the thermodynamic limit the effective field, as expected, goes towards the mean-
field value Jeg(0) = 1. The closer is the power law exponent to a = 1, the slower
the effective coupling converges to the mean-field value (and the more the finite size
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effects are relevant). For a > 1, the effective coupling goes as Jog(a) ~ £*~ 1, thus
the mean-field effects are expected to disappear in the big cluster size limit. It is
worth to notice that for 1 < a < 2 the mean-field coupling Jog(«) decrases with a
very slow power law and even at large cluster sizes (¢ ~ 400) the mean-field effects
are still present.

The CMFT can be used to derive the equilibrium phase diagram solving self-
consistently for the ground state the cluster mean-field Hamiltonian

CMFT : z_z ’ T 2mZJ8ff o*
i#jeS 1€

In Fig. we show the value of the ground-state magnetization m* = %Zf (o7)
as a function of the transverse field A and the power law exponent « for a cluster
length ¢ = 5 obtained with a precision on the ground state energy ¢ = le — 5. We
observe that for o < 1, with the exception of a small deviation close to & =1 (due
to the finite cluster sizes effects discussed above) the system exhibits the mean-field
transition at hel(a = 0) = 2 [115]. In the regime o > 1 we observe that the quantum
critical point h.(a)) assumes a non trivial dependence on the power law exponent.
For large «, instead of recovering the nearest-neighborhood Ising quantum phase
transition at h(a = 0o) = 1, the phase transition moves toward smaller values of
the transverse field to eventually disappear. This result is related to the non mean-
field nature of short ranged models. In fact, as mentioned above, the mean-field
Hamiltonian for o > 2 vanishes as Hy,s < 1/ ¢*~1 and the dynamics reduces to the
exact dynamics of a ¢ spin chain.
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Figure 4.3: Equilibrium phase diagram for the quantum long range Ising model
obtained with solving self-consistently for the ground state the cluster mean-field
Hamiltonian HMFT with a cluster size £ = 5 and a precision on the ground state
energy £ = 107°. The order parameter m* = + Zf (07) (color scale) is plotted as a
function of the transverse field h and the power law exponent o. A quantum phase
transition from a ferromagnetic to a paramagnetic phase occurs at a critical value
he(a). For a < 1 the critical point coincides with the mean-field one, while for o > 1
it assumes a dependence on the power law exponent. The nearest neighborhood
quantum phase transition at h. = 1 is not recovered because of finite size effects.

|
4.2 Dynamical phase diagram

Let us now analyze the post-quench dynamics of the system. The system is initially
prepared in the broken phase with all spins polarized along the z axis, i.e. the
ho = 0 ground state. At time ¢ = 0 the transverse field h is suddenly quenched
to a finite value. The dynamical order parameter we consider is the asymptotic
value of the longitudinal magnetization m* = limz_,oo 7 fOT dt (o*(t)), with % =
Zf o7. In what follows we pose h = 1. To derive the dynamical phase diagram for
the long-range Ising chain at each instant ¢ we integrate the Schrédinger equation
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i0; [ (t)) = H |3(t)), directly integrating the 2¢ coupled differential equations using
a fourth order adaptive ste}tﬂ Runge-Kutta method.
The second term of the cluster mean-field Hamiltonian that evolves the system

Hine = Hie(t) = —2m*() Jeg 07, m*(t) = - (¥(t)[07[4(1)) , (4.11)

&IH

displays a self-consistence time-dependence due to the instantaneous averaged mag-
netization. Being the time dependence of the Hamiltonian self-consistent the energy
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Figure 4.4: Top panels: post-quench dynamics of the dynamical order parameter
as a function of time fixed o = 1.2 and different updating times dt = 103 (red
lines) and dt = 10* (blue lines). The system, prepared in the ferromagnetic state,
is quenched toward three final values of the transverse field (from left to right)
h =0.5,1.0,1.5, @ = 1.2. We chose ¢ = 3. Bottom panels: the relative behavior of
the energy expectation values as a function of time for the same parameters. We
observe that for small updating times the expectation value of the Hamiltonian is
not conserved and the mean-field approximation introduces an effective dissipation.

is in average conserved thus the system can be considered unitary. It turns out that
for small updating times dt the energy is not conserved. In the top panels of Fig. [4.4]
we show the behaviour of the dynamical order parameter as a function of the time
for three different quenches h = 0.5,1.0, 1.5 in the cases a = 1.2 for the two different
updating times dt = 1073,107* with ¢ = 3. In the bottom panels we show the ex-
pectation values of the energy as a function of time for the same parameters. While
for dt = 10~* the energy expectation value oscillates around an almost constant

2The algorithm attempts to determine the optimal step-size for a user-specified level of error.
Further details on: https://www.gnu.org/software/gsl/doc/html/ode-initval.html
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mean value, for dt = 1073 the mean-field approximation introduces and effective
dissipation that causes the damping at long time of the order parameter.

We want to derive the dynamical phase diagram showing the dynamical order
parameter as a function of the power law exponent « and the final transverse field
h. For numerical reasons we have access to the dynamics only up to a finite time
T (expressed in unit of J) and the order parameter m?*(T") will explicitly depends
in this time. To average out the effects of the transient dynamics we evaluate the

1.6 1
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0.4
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h

Figure 4.5: Dynamical phase diagram of the post-quench dynamics. The system,
prepared in the ferromagnetic ground-state, is quenched toward a final value of
the transverse field h. The figure shows the sign of the dynamical order parameter
m*(T) as a function of a and h: blue points indicate positive magnetization, red
points indicate negative magnetization, white points indicate zero magnetization.
The critical value a = 1 (dashed line) divides the phase diagram in two regions:
for a < 1 the system displays the mean-field sharp phase transition, for a > 1
the critical point spread in a critical region featuring hypersensitivity to the initial
conditions.

dynamical order parameter by averaging the longitudinal magnetization in a finite
time window. In particular, we chose a posteriori (checking that most of the trajec-
tories have converged at that times) to average in t = [80, IOO]El The main result
is the phase diagram in Fig. [{.5] It has been obtained with a cluster size ¢ = 5,

3The convergence time strongly depends on the initial conditions (Hamiltonian parameters,
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Figure 4.6: Top panels: trajectories of the longitudinal magnetization as a func-
tion of time for a = 0.0, h = 1.00,1.01, T = 100 and dt = 1073 (red line) and 10~
(blue line). Bottom panel: Phase diagram for a = 0.0. The figure shows the dynam-
ical order parameter as a function of the final transverse field h for the two cases
dt = 1073 (red line) and 10~* (blue line). In both cases we chose an integration
time T = 100. For small updating time the effective dissipation introduced by the
mean-field approximation causes spurious ferromagnetic behaviors that disappear
with an increased sensitivity.

integration time 7' = 100, updating time dt = 1072 and resolution o = 1072,
§h = 1073, It shows the siglﬁ of the dynamical order parameter m?*(1") (color map)
as a function of « and of the final value of the transverse field h. The line o = 1
(dashed line) divides the phase diagram into two different regions.

cluster dimension..) and it is not ensured that all the trajectories are converged in this time windows,
thus this approximation introduce some noise in the final results.

4We are interested in the asymptotic dynamics of the systems, in particular on the sign of
the magnetization. To improve the readability of the phase diagram and to reduce the transient
dynamics effects, we decided to not plot the order parameter but to focus on its sign.
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Figure 4.7: Top panels: trajectories of the longitudinal magnetization as a func-
tion of time for o = 1.2, h = 1.04,1.06, T = 100 and dt = 1073,10~4,10~5,1076.
Bottom panel: Phase diagram for o = 1.2. The figure shows the dynamical order
parameter as a function of the final transverse field h for the two cases dt = 1073
(red line) and 10~ (blue line). In both cases we chose an integration time 7' = 100.
In the case o > 1 the ferromagnetic stationary states attained by the system sur-
vive even improving the approximation suggesting that they are not numerical
noise.

For o < 1, except for some spurious ferromagnetic (both negative and positive)
points that appear very close to the dynamical critical point, we recover the mean-
field sharp dynamical quantum phase transition at A = 1. This deviation could be
understood looking at the trajectories of the order parameter as a function of time.
In the top panel of Fig. we plot the value of the longitudinal magnetization as a
function of time in the case e = 0.0 and A = 1.00, 1.01 for the two different values
of the update time dt = 1073 (red line) and dt = 10~* (blue line). It is evident
that the critical value is very sensitive to the simulation parameter and the small
dissipation introduced by the mean-field approach causes the destruction of the
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orbit and a unphysical ferromagnetic behavior. This anomaly disappears reducing
the updating time dt = 107, In the bottom panel of Fig. we plot the phase
diagram (asymptotic magnetization as a function of the final transverse field) for
a = 0.9 in the two cases dt = 1073 (red line) and dt = 10~* (blue line). It is evident
that in the latter approximation the mean-field quantum phase transition at h =1
is recovered.

At the mean-field level (¢ = 1) the sharp quantum phase transition is perfectly
recovered even for o > 1. However, accounting for short-range correlations by in-
creasing cluster size makes the dynamical critical point spread out in a dynamical
critical region that exhibits hypersensitivity of the dynamical order parameter to
the model details revealed by the alternation of points with positive and negative
magnetization. In analogy with the work Ref. [25] we will refer to this region as
the chaotic region. This unstable behaviour resembles the one we observed in the
case a < 1 for dt = 1073, but as shown in Fig. in this case it is robust to the
updating time. In the top panels of Fig. [£.7] we plot the trajectories of the longitu-
dinal magnetization as a function of time for « = 1.2, h = 1.04,1.06 and different
dt = 1073,1074,107°,107%. We observe that there is not a well established con-
vergence but the hypersensitivity persists even with very small update times. The
same conclusion can be drawn looking at the phase diagram in the bottom panel of
Fig. [£.7) that shows the hypersensitivity to be persistent for both the two different
updating time dt = 1073,107%. The trajectories in the top panels of Fig. also
suggest that the spurious paramagnetic points within the chaotic region in Fig.
are points that are not settle yet in a stationary state because of the finiteness of
the simulation time. As we will show later, increasing either the cluster size and the
simulation time the density of the spurious paramagnetic points decrease systemat-
ically.

4.2.1 Chaotic region

The dynamics within the chaotic region is extremely rich. It appears already with
cluster sizes ¢ = 2, suggesting that it is strictly connected to the presence of short-
range correlations. Despite this, the form of its boundaries appears to stabilize
only for larger cluster sizes (¢ > 5). The most interesting feature of the chaotic
region is that moving toward the paramagnetic region, the phase diagram becomes
increasingly complex analogously to what happens when we toss a coin [159]. A
tossed coin that is not allowed to bounce has a trivial dynamics and the possible
outcome is easily predicted just knowing the initial conditions. Conversely, if the
coin is allowed to bounce the dynamics become more complicated. Depending on the
number of bounces the process could exhibit hypersensitivity to the initial conditions
to eventually become, in the limit of infinite bounces, purely random. In the latter
case the outcome would be totally unpredictable. Strzalgo and collaborators [159]
have shown that the nature of the process can be encoded in the geometry of the
phase diagram in which the principal axis correspond to different initial conditions
and the colors are the possible outcome (head or tail). Whenever the coin displays
a trivial dynamics, the two phases (head or tail) are well separated and it always
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Figure 4.8: Left panel: experimental phase diagram from [159] of the tossed coin
as a function of different initial conditions in the case of predictable outcome
(left panel) or random process (right panel). In the first case, the two phases
head (white points) and tail (black points) are well separated and it is possible
to find a neighborhood of size e (orange square) containing points of the same
phase. Conversely, in case of a random processes, the two phases intermingle and
the phase diagram fractalizes. In this case it is not possible to identify a finite
neighborhood of point of the same phase and € — 0.

exists an edge between the two as shown in the left panel of Fig. Conversely, in
the chaotic regime, as shown in the right panel of Fig. the phases intermingle
and it is not possible to find a division between them. Moreover, it is possible to
observe the formation of new structures leading to the fractalization of the phase
diagram. A way to capture this feature is by defining the maximum size ¢ (orange
square in Fig. of the neighborhood of points of the same phase. This way, chaos
is defined by the condition € = 0.

At a first look, a fractalization of the phase diagram is observed also in the
dynamical phase diagram in Fig. To investigate in more details the emergence of
non-trivial structures we performed simulations with higher and higher resolutions.
In Fig. we show the results obtained, from the left to the right, with da =
Sh =5x1073,1073,5 x 1074,10*, within a portion of the chaotic region defined
by 1.3 < a < 1.5 and 0.9 < h < 1.1. To be more quantitative, in the bottom
panels we show the behavior of the maximum neighborhood size e(h) evaluated for
a fixed value o = 1.4 (dotted line). To make a comparison between the data with
different resolutions possible, we plot the normalized quantity £(h) = €(h)/emax,
with emax = maxy e(h). As expected, it takes a maximal value in the ferromagnetic
region and then shrinks to zero in the chaotic phase, independently on the resolution.
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Figure 4.9: A portion of the phase diagram (blue square in Fig. for £ =5
with increasing resolution of daw = dh = be — 3, 1le — 3,5e — 4, le — 4. In the critical
region the phases strongly intermingle giving rise to new structures whenever the
resolution is increased. Bottom panels: size of the maximum neighbourhood € con-
taining point of the same phase evaluated for o = 1.4 (dotted line) as a function
of the post quench transverse field h normalized to the valued ey.x = maxye.
Independently on the resolution €/ep,x shrinks to zero for increasing h.
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Figure 4.10: (Left panel): Dynamical phase diagram for « = 1.2 obtained by
CMFT combined with TDVP. We show the dynamical order parameter as a func-
tion of the final h. At small final fields, the dynamical order parameter is close to
the mean field value (gray dashed line). Close to h = 1 we observe that the final
magnetization becomes very sensitive to the quench parameter and alternates be-
tween positive and negative values. At large transverse fields, the dynamical order
parameter vanishes. The data are obtained with the bond dimension D = 64. The
region in red denotes the range of parameters for which convergence is attained
at times longer than the one accessible by the MPS-TDVP.The order parameter
is obtained by averaging over the green colored region in the left panel. (Right
panel). Convergence of the time-dependent longitudinal magnetization m?(t) with
the cluster size in the dynamical critical region at o = 1.2. Relatively large system
sizes (around £ = 200, D = 64) are necessary to observe convergence.

4.2.2 Convergence

In the stable phases (ferromagnetic and paramagnetic), the fluctuations are weak
and the final value of the order parameter is very close to the mean-field one, hence
convergence is reached even with small cluster size. Instead, in the critical region,
bigger cluster sizes are necessary to observe trajectory collapse. To investigate the



Long-range interacting Ising model — Cluster mean-field dynamics 45

convergence, we have used a Matrix Product State-Time Dependent Variational
Principle (MPS-TDVP) with a second-order integrator. These results are summa-
rized in Fig. where we display the dynamical order parameter as a function
of the transverse magnetic field 4 and in Fig. [£.10] where we show the convergence
of a representative trajectory. The presented data are converged with bond dimen-
sion D = 64 and cluster size ¢ = 200 (unless specified otherwise). We calculate the
dynamical order parameter as a time average of the time-dependent longitudinal
field in the time window ¢t = [20.J,30.J] (significantly smaller than the one used for
Fig. . Starting at small transverse fields, as expected, we observe a fast conver-
gence of the dynamical order parameter (already at ¢ = 5). Upon increasing the
transverse magnetic field, in the vicinity of the mean field dynamical critical point,
we observe a region with interchangeably positive and negative values of m?. In
this region, trajectories converge for relatively large cluster sizes 200 < ¢ < 400
(see left panel of Fig. and are sensitive to the final magnetic field. At large
transverse fields, in the paramagnetic region, we observe very fast convergence with
cluster size. Although we can reliably assess a large portion of the dynamical chaotic
region, a small portion close to the transition to the paramagnetic phase remains
elusive. The reasons are the slower convergence with the system size and the slower
relaxation to a long-lived state with a well defined dynamical order parameter. As
for the phase diagram in Fig. we expect that in this region the trajectories
to become even more sensitive to the control parameter and the initial condition.
As shown in Fig. the large-cluster-size simulations (¢ = 400) agree well with
the small-cluster-size simulations (¢ = 5) also very close to the dynamical chaotic
region. Therefore, these data suggest that the boundaries of the dynamical chaotic
region can be estimated by simulations with small cluster sizes. Also, the tendency
of e(h) to decrease in the chaotic region for increasing h, discussed above for £ =5
is qualitatively observed for bigger cluster sizes as could be observed in Fig.
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Figure 4.11: Top panels: A portion of the phase diagram for different cluster sizes
(from left to right) ¢ = 4,5, 6,7 with resolution of §ov = §h = 1072, Bottom panels:
Relative size of the maximum neighbourhood e containing point of the same phase
evaluated for a = 1.4 (dotted line) as a function of the post quench transverse
field h normalized to the valued e, = maxy . Independently on the cluster size
€/Emax shrinks to zero for increasing h.

Let us investigate more in depth the problem of the data convergence both with
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the time and the cluster size. The convergence of the cluster mean-field method is
subtle. If in the stable phase it is reached with relatively small cluster in relatively
small time, in the chaotic phase the convergence strongly depends on the initial
conditions. First we studied the convergence with the integration time. In the left
panel of Fig. we show the phase diagram for a = 1.2. In the left panel we plot
the long-time averaged magnetization as a function of the transverse field h, in the
right panel the sign of the latter for three different simulation times 7: T = 100
(red points), T" = 200 (yellow points), 7' = 300 (blue points). The average are
evaluated in the three different time windows ¢ € [80,100], [180, 200], [280, 300]. A
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Figure 4.12: Left panel: dynamical phase diagram for o = 1.2. We plot the
dynamical order parameter as a function of the post-quench transverse field h
for three different integration times T = 100,200,300 fixed ¢ = 5. The dy-
namical order parameter is obtained averaging respectively in the time windows
t € [80,100], [180, 200], [280, 300]. The dynamical phase diagram shows a little sen-
sitivity to the integration time. Right panel: percentage of white point in the
portion of the phase diagram delimited by 1 < o < 1.6 and 0.8 < h < 1.2 as a
function of the cluster size £. Increasing the cluster size the density of paramag-
netic points in the chaotic region reduces suggesting that the chaotic region is an
alternation of positive and negative ferromagnetic phases.

good quantity to control to check the convergence is the percentage of spurious
paramagnetic points in the chaotic region of the phase diagram. It emerges that
in the case of the simulations with £ = 5 and T' = 100 the percentage of these
white spots in the portion of the phase diagram in Fig. with 1 < a < 1.6 and
0.8 < h < 1.2 is the 41% of the total area. This percentage reduces to 39% increasing
the simulation time up to T' = 300. A faster decreasing can be observed increasing
the cluster size, as shown in the right panel of Fig. In this figure the percentage
of the paramagnetic points is plotted as a function of the cluster length. It emerges
that, as expected, this percentage reduces while increasing ¢ supporting the thesis
of the total convergence in the limit of an infinite cluster.
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4.2.3 Linear quench

To investigate the robustness of the chaotic region we study the post linear quench
dynamics, considering the Hamiltonian with a transverse field varied according to

if ¢
ht) = it <0, (4.12)
htanh(At) ift > 0.

The limit A — oo coincides with the sudden quench dynamics we have already
described. Jaschke and collaborators have shown that the physics of the Kibble-
Zurek mechanism holds despite the long range interactions, thus we expect to find
in the adiabatic limit A — 0 the same phase diagram as in Fig. For intermediate
values of the slope we expect to obtain information on the crossover between the
chaotic and regular dynamics. To this purpose, we simulated the linear quench

Figure 4.13: Post linear quench dynamical phase diagram. The plot shows the
sign of dynamical order parameter (color scale) as a function of the power law
exponent « and the final transverse field h for the different slopes A = 1,0.5,0.05
(respectively from left to right). Blue points indicate positive magnetization, red
points indicate negative magnetization, white points indicate zero magnetization.
Three different regimes can be observed. In the left panel we observe a dynamics
that is very close to the post (sudden) quench one and the chaotic behavior is
still present. In the right panel we observe the limit A — 0 and the dynamics
becomes adiabatic, in fact the equilibrium phase diagram is recovered. Finally, in
the central panel we can observe an intermediate regime in which the dynamics is
going towards the equilibrium despite some some reminiscent chaotic region.

dynamics using the cluster mean field approach. As we have done for the sudden
quench, the system is initially prepared in the ground state of the Hamiltonian
Hy=— Zij Jijafoj, i.e. all spins polarized along the z direction, and at time t = 0
the transverse field h(t) = htanh(At) is turned on.

The main result can be summarized in the phase diagram in Fig. that
shows the sign of m?*(T") as a function of the power law exponent o and the final
transverse field h(T') for three different value of A = 1,0.5,0.05. The simulations
have been run with ¢ = 5 evolving the dynamics up to a time 7' = 200 with
dt = 1073, a = 6h = 1073. The order parameter has been evaluated averaging in
the time window ¢ € [180, 200] after the asymptotic state has been reached.

From the result in Fig. we deduce that there are three different regimes.
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Figure 4.14: a) Upper panels: a portion of the phase diagram (1.3 < a < 1.5
and 1.1 < h < 1.3) for three different resolutions (from the left to the right:
da = dh =5 x 1073,1073,5 x 10~%). Bottom panels: normalized neighborhood
g(h)/ maxp e(h) evaluated at @ = 1.4 (red dotted line). For these values of the
power law exponent € — 0 and the system preserve the chaotic features displayed
in the case of the sudden quantum quench. b) Upper panels: a portion of the phase
diagram (1.1 < a < 1.3 and 1.4 < h < 1.6) for three different resolutions (from
the left to the right: da = 6h = 0.005,0.001,0.0005). Bottom panels: normalized
neighborhood e(h)/ maxy, e(h) evaluated at o = 1.15 (red dotted line). For this
value of the power law exponent the region in which € — 0 shrinks, sign of a
regularization of the dynamics.

The first (left panel) is the one of the sharp ramp in which, except for a small
shift of the dynamical critical point, we recover the same dynamical phase diagram
and the same chaotic features of Fig. 4.5, The second one (right panel) is the limit
A — 0 in which the chaos is absent and the phase diagram, except for a slight
shift in the critical point, starts to resemble the equilibrium one. The last regime
is set for an intermediate value of the ramp slope, as could be observed in the
central panel of Fig. In this regime the system is slowly moving towards the
equilibrium phase diagram but still displays a chaotic phase. From this analysis it
is still not clear how the crossover between the sudden quench and the adiabatic
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regime occurs. However, we can carry the same fine details analysis we did for the
sudden quench to study the chaotic region of the phase diagram. In the upper panels
of Fig. ) we plot simulations obtained with increasing resolutions (from the
left to the right: da = dh = 0.005,0.001, 0.0005) of a portion of the phase diagram
(1.3 < a < 1.5 and 1.1 < h < 1.3). In the lower panels we plot the respective
normalized neighborhood e(h)/ maxy, ¢(h) evaluated at a = 1.4 (red dotted line). It
emerges that for these values of the power law exponent € — 0 the system preserves
the chaotic features displayed in the case of the sudden quantum quench. When
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Figure 4.15: Behavior of the critical value A, at which the chaotic behavior
disappear as a function of the power law exponent a.. The blue points are the data
extrapolated from the numerical results. The red line is the best fit interpolating
the data. We observe a linear trend confirming the claim that the higher the power
law exponent the slower the ramp should be to obtain a sharp phase transition.

we move toward smaller values of a we can see that the chaotic region shrinks.
This can be observed in the Fig. ) where the portion of the phase diagram
with 1.1 < @ < 1.3 and 1.4 < h < 1.6 is plotted as a function of a and h. In the
bottom panels the quantity £(h)/ maxye(h), evaluated along the line o = 1.15, is
plotted as a function of the final transverse field. It emerges that the region in which
€ — 0 is smaller, sign that chaos is slowly breaking down. From this analysis we can
qualitatively argue that the bigger the power law exponent the more robust is chaos.
Therefore, we can conclude that the crossover between the chaotic and the regular
dynamics will start first from small power law exponents and will move toward the
bigger ones. A quantitative analysis of this behavior can be obtained by looking at
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the critical value A. of the slope, at fixed «, below which the transition is sharp. In
Fig. we plot A. as a function of the power law exponent. What emerges is a
linear relation between A. and «. This result confirms the intuition that the bigger
a the smoother has to be a quench in order to observe a sharp phase transition.
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In this chapter we extend the cluster mean-field theory introduced in Chapter {4| to
the dynamics of open quantum systems with a particular focus on the dissipative
dynamics of the long-range interacting Ising chain. First we derive the cluster mean-
field Lindblad equations for two different dissipative processes. Then we study the
dynamics of the LMG model to investigate whether the decoherence due to the
external environment affects the validity of the mean-field description. Finally we
reduce the range of the interactions increasing the power law exponent o > 1. In
what follows we analyze the dissipative dynamics following a quantum quench: we
prepare the system in the ground state of some initial transverse field h; and at the
time t = 0 we quench it to a value h.

5.1 Cluster mean-field Lindblad equations

As explained in Chapter the system is described by the evolution of the density
matrix p in the Lindblad form

i[H, p| + Z (QCApc,\ — C)\c;p pc,\cD (5.1)

with ¢) jump operators with associated rate I'y. The cluster mean-field equations
for the cluster density matrix are obtained assuming that it is a product of single
cluster density matrices p = ®]BV1 pp and tracing out all the degrees of freedom but
one

pp = 0iTrzp(p) = TregL(p) (5.2)

In what follows we focus on the dynamics of the long-range interacting Ising chain
described in Sec. B3]

Jo? a
ZN hZa (5.3)

z—J\“

o1
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with a dissipation generated by strings of Glauber operators o = va : JZTJE with

S

associated rate I'y /Ng. In what follows we will show that the length N of the string
of Glauber operators plays an important role in the dynamics. In particular we will
show that as long as Ny < N, with N the system size, the system attains a stationary
state with a finite or vanishing magnetization depending on the initial conditions.
In the case of global dissipative processes N; = IV, namely jump operators acting on
the whole chain, the system attains an asymptotic state characterized by persistent
oscillations in time featuring a time-crystalline behavior.

The Glauber operators choose a favourite alignment (positive or negative for o
and o respectively ) explicitly breaking the natural Zs symmetry of the model.
The associated master equation is

o r, [ _ 1. r_ 1
p= =i+ 5 (o5 00 = ylotor o) + i (oo = lozornt). 6)

The cluster mean-field equation (full derivation in Appendix [F]) is then

 Tin~( - +_ Lo 4 o I~ (- T
=N 0, po; _i{ai o;,p} —}—EZ 0; poj = 51 o;,p}
i i (5.5)
olq <U+>cl [01_7 P] <0—7>c1 [p7 O—z—i_]
SR (e ),

i

with T = T4 +T_ and 0Ty = (T4 — ) (Ns — ¢) O(Ns — £), with 6(z) the Heaviside

function. The self-consistent expectation values (o&) = Cot

= (), 0;") are evaluated on
the cluster.

5.2 LMG Glauber dissipative dynamics

Let us derive the mean-field equations for & = 0 (i.e. the fully connected case). First
we derive the mean-field equations both for local (Ng = 1) and global (Ny = N)
jump operators, then we present the cluster mean-field results for the general string
operator.

5.2.1 Mean-field dynamics

Let us consider two local dissipative processes (that do not preserve the total angular
momentum) associated to the local jump operators UZ-i = of +io] with associated
rate 4*. The Lindblad master equation reads

. . e} (6% —Q 1 - __ U b
p=—ilHpl+> > v <0i po; = S{oi %0 ,p}> ="+ (5.6)
a=+ 1
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The dissipative contribution to the equations of motion is given by

(Joy! = VZ T TN+ I 1, D)

(5.7)
72 T2, [T, THY = {2, 172, 7)),

where ¥ = vT ++~ and §y = y© —~7. As a result of the anticommutation relations

{o2, af } = 0 we finally get the equation for the normalized spin components o =
(%) /N with 6® =", oy

X =2(pzF 'Y —7X),
YV =-2pZ°'X - hZ +7Y), (5.8)
Z = —2(hY + 277 — 257).

The total angular momentum is not conserved thus the dynamics is not constrained
on the Bloch sphere, as emerges by solving the equations of motion in terms of the
spherical coordinates R = (7 sin cos ¢, rsin 0 sin ¢, r cos 6)

\/\ K ' ' SIN——————————————————————— Yu= 01vd 007
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Figure 5.1: Dissipative mean-field trajectories of Z = (J*) /N as a function of
time for three different values of the post-quench transverse field (from left to
right) h = 0.5,1.0, 1.5 and three different combination of the jumping rate values.

7 = 2r*5(1 + cos® §) — 4révy cos b,
_ 2cosf(hcosp — 2rsinf)

sin 6 ’ (5.9)
- r7 sin 20 4 2rhsin ¢ + 4§y sin 0
= . )
There are two possible solutions of the first equation
24 0
r=0, r= _~OVeosT (5.10)

(1 + cos? )

and, depending on the dissipation details, the system can either collapse on the
center of the sphere or can sustain a finite magnetization. In Fig. [5.1] we show the
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trajectories of Z as a function of time for three different values of the final transverse
field h = 0.5,1.0, 1.5 and three different combination of the jumping rate values.

Let us now consider two global dissipative processes J+ =), a with associated
jumping rate TF/N. Since the [J2,J*] = 0 this dissipation preserves the total
angular momentum. The Lindblad master equation is

p=—ilH.pl+ 5 Z T (2J%pJ = = {J %% p}) = p* + ¢, (5.11)

with g% describing the unitary evolution p? the dissipative one. The mean-field
equations of motion for the normalized spin components, up to order o(1/N) reduce
to

xd — % {Jzs o, Jyl} = {Jys [T, 2] }) = _% {Js, . })
¥ O (e Uy} = e Ly Ja1)) = =g (L 23) (512
Zd_ ;212 <{J$’[J37Jy]}_{Jy7[JZ7Ja:]}> 26F <J2+J2>

Assuming (0%0”) = (¢) (0?) the full equations are

X =27 (ZY —I'X),
Y = —2Z(ZX — h+0TY), (5.13)
7 = —2hY +20T(X? +Y?).

with 60’ =TT —T'~.
It is possible to analytically derive the stationary states. There are four possible
fixed points of the Eq. (5.13]), two paramagnetic

or? or

and two ferromagnetic

o%h 6T h h2
Fo=(x=—"_ y- 2" z_4/1-—"2 . 1
+ ( 41T 41T 4+5r2> (5.15)

The existence of these states is subject to the constrain |X|, |Y|,|Z| < 1. The last
condition implies g < v/4 + 6I'2 automatically implying the other two constraints.
Looking at the eigenvalues of the Jacobian J(X,Y, Z) of the linear system in cor-
respondence of the fixed points it is possible to infer the stability of the solutions

—6TZ 2Z 2Y — 6TX
J(X,Y,Z2)=2| —2Z —6TZ —-2X+h—4oTY |. (5.16)
0 —h —26TZ
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The eigenvalues associated to P, are

A=0, AL=+h2—oI2 (5.17)

that are real because of the constrain h? < 4 4 ¢T. Since A_ < 0 < A, this solution
corresponds to a saddle point. Conversely, the eigenvalues associated to P_

A=0, Ay =+ivh2— T2

(5.18)

are purely imaginary, thus it is a marginal fixed point. In the proximity of the
ferromagnetic fixed points F the eigenvalues are

cos(0)
cos(8)

c0s(0)
cos(0)

Figure 5.2: Phase portrait of the dynamical system in Eq. for post-quench
values of the transverse field h = 0.5, 1.0, 1.5, 2.0. The red dots are the steady states
of the systems. As long as h < 2 the system has two ferromagnetic fixed points,
one stable and one unstable, a paramagnetic saddle point and a paramagnetic
marginal point that acts as generator of periodic orbits.

A=—20T, A=F0T+2, (5.19)
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suggesting that the stability of the positive or negative fixed point depends on the
sign of 61", according with the breaking of the Z, symmetry we have discussed above.
The equations in spherical coordinates read

7 = 2rél cosf (1 — r2) ,

b= 2cosf (hcosp — 2rsinf)

sin 6 ’ (5.20)
i 2(rhsingp — dI'sin )
. .

We observe that r = 1 is a solution hence the dynamics is easily visualized on the
Bloch sphere. In Fig. [5.2] we show the phase portrait for four different values of the
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Figure 5.3: Critical value of the transverse field h (color map) at which the
closed (left panel) and the dissipative (right panel) dynamical phase transition are
observed as a function of the initial conditions in terms of polar and azimuthal
angles.

final transverse field: g = 0.5,1.0,1.5,2.0 fixed I'" = 0.4 and I'” = 0.2. The red dots
correspond to the fixed points. Until g < 2 the system has a positive ferromagnetic
attractor and a negative ferromagnetic repellor divided by a positive paramagnetic
saddle point. The paramagnetic marginal fixed point acts as a generator of non-
attractive periodic orbits dividing the phase space in two regions whose stationary
state is respectively characterized by a finite or a vanishing magnetization. Crossing
the critical point A = 2 the system does not have stable solutions anymore and
always remains stacked in one of the periodic orbits. The system, thus, exhibits
a driven dissipative dynamical phase transition from a dynamical symmetric to a
dynamical broken phase as function of h. We can compare this value of h with the
value of the transverse field at which the closed version of this system exhibits a
dynamical quantum phase transition. In figure [5.3| we show the value of the critical
transverse field (color map) as a function of the initial conditions both for the closed
dynamics and for the driven dissipative ones. Despite the similarity between the two
pictures there is no hint that there could be a correspondence between the closed
dynamical phase transition and the dissipative one.
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cos()
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Figure 5.4: Phase portrait of the dynamical system in Eq. for post-quench
values of the transverse field h = 0.5,1.0,1.5,2.0 in presence of a dissipation that
does not explicitly break the Z; symmetry. The red dots are the steady states of
the systems. The two ferromagnetic fixed points are, according with the symmetry
of the problem, both stable. The paramagnetic fixed points are, respectively, a
saddle and a repellor and the periodic orbits have disappeared in favour of limit
cycles appearing for big value of the transverse field.

The Zs symmetry can be restored by assuming a state-dependent rate
0I'(t) = dl'sign(z(1)). (5.21)

As it can be seen in Fig. where we show the phase portrait in case of symme-
try preserving dissipative processes, the two ferromagnetic points are both stable.
Moreover it appears a limit cycle that differs from the previous periodic orbit since
it attracts the trajectories.
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5.3 Cluster mean-field dynamics

The periodic orbits generated by the marginal fixed points are the boundary time-
crystals described in first introduced by Russomanno et al. in [39]. In
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Figure 5.5: Dissipative cluster mean-field trajectories of Z = (J%) /N as a func-
tion of time for three different values of the cluster size ¢ = 1,2,3 fixed @ = 0.
We simulated the dissipative dynamics in presence of local (left panel) and global
(right panel) jumping operators. The post-quench transverse field is h = 1.1, the
jumping rates are in both cases 't = 0.4,I'~ = 0.2.

Riera-Campeny and collaborators have found that collective interactions are not
a crucial feature for time-crystalline behavior. The presence of collective decay
processes, instead, is relevant to observe subharmonic oscillations. In this section
we study the stability of these time-crystals. First we investigate the validity of
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Figure 5.6: Dissipative cluster mean-field trajectories of Z = (J#) /N as a func-
tion of time for three different values of the cluster size ¢ = 1,2, 3 fixed a = 0. We
simulated the dissipative dynamics in presence of string Glauber operators involv-
ing (from left to right) Ny = 2,50, 100 sites. The post-quench transverse field is
h = 1.1, the jumping rates are in both cases I'" = 0.4,I'~ = 0.2. Sistema label

the mean-field approximation solving the cluster mean-field Lindblad equations in
Eq. (5.5). Eq. have been derived assuming that (0%0?) = (0®) (¢#). In this ap-
proximation the conservation of the total angular momentum implies (62) = ()2,
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enforcing the trajectories on the surface of the Bloch sphere. In collective mod-
els with a unitary dynamics this approximation is exact and the trajectories are
insensitive to the cluster size. Local dissipative processes do not introduce the cor-
relations among spins and the mean-field is expected to be exact. Despite this, it is
not obvious whether, in presence of global dissipative processes, mean-field is still
valid. We simulated the dynamics of the LMG model in presence of dissipation using
the cluster mean-field theory for three different cluster sizes ¢ = 1,2, 3. We prepare
the system in the ground state of the Hamiltonian with hg = 0 and at time t = 0
we quench to a final value h = 1.10. In Fig. [5.5] we show the trajectories of the
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Figure 5.7: Maximum values (per period) of the mean-field trajectory of the nor-
malized component Z(t) in presence of dissipative processes generated by string of
Glauber operators with different Ng. The dots are the numerical data extrapolated
from Fig. [5.6] while the dashed lines are the numerical fit f(t) = exp(—0.45 t/Ns).

normalized Z component of the magnetization as a function of time in presence of
local (left panel) and global (right panel) dissipation fixed I'" = 0.4,T~ = 0.2 . As
expected, the local dissipation is exactly mean-field. The three trajectories overlap
also in presence of global dissipation, suggesting that the dynamics is insensitive to
the short range correlations.

We can investigate whether the time crystals in collective models survive to
a finite string operators with Ny < N. To this purpose we simulated the post-
quench dynamics described above in presence of three different dissipative processes
characterized by different string lengths. In Fig. [5.6]we show the trajectories for Ny =
2,50,100 and three different cluster sizes £ = 1,2,3. The first trivial observation
is that the dynamics is insensitive to the cluster sizes confirming the mean-field
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nature of the model. More interestingly, increasing the string size Ny, some damped
oscillations appear. We observe that the strength of the damping reduces increasing
Ns. This can be quantified by looking at the behavior in time of the maximum values
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Figure 5.8: Dissipative cluster mean-field trajectories of Z = (J*) /N as a func-
tion of time for three different values of the cluster size ¢ = 1,2,3 fixed a = 1.2.
We simulated the dissipative dynamics in presence of local (left panel) and global
(right panel) jumping operators. The post-quench transverse field is h = 1.1, the
jumping rates are in both cases ' = 0.4, I'” = 0.2. We observe that the time-
crystalline structure can not survive in presence of short range interactions.

(per period) of Z(t) for different Ngite. In Fig. [5.7| we plot max(Z(t)) as a function
of time for increasing values of Ngtring. The red dots are the numerical data, the
dashed lines are the numerical fit f(t) = exp (—0.45 t/Ns). We observe that in the
limit of global dissipation processes Ny — N the damping is infinitely slow and the
oscillations persist in time. This result confirms the intuition by Riera-Campeny and
collaborators [40] that global dissipation processes are a key ingredient to observe
the boundary time crystal described in [39].

Finally, we can investigate how this scenario changes increasing the power law
exponent . As discussed in Chapter [3.3] in the thermodynamic limit, for o < 1 the
system is expected to exhibit the mean-field dynamics and, actually, the trajectories
at a = 0.5 overlap with that at @ = 0. A more interesting behavior can be observed
for @ > 1.2. In this case, in fact, the introduction of short range correlations can
dramatically affect the dynamics depending on Ng. We simulated the same dynamics
of Fig. with a = 1.2. The results are summarized in Fig. We observe that in
presence of local dissipations the finite range of the interactions does not affect the
dynamics and the spin collapses at the center of the Bloch sphere. In case of global
dissipation at the mean-field level £ = 1 the boundary time crystal survives. As soon
as the cluster size is increased the quantum fluctuations destroy the time order and
the dynamics collapses toward a ferromagnetic fixed point. The same fate is reserved
to operators with Ny as shown in Fig. It emerges that for o > 1 time order
can not be sustained for any Ng, in fact, increasing the cluster size, the oscillations
damp and the system reaches a stationary value characterized by a vanishing or
finite value of the magnetization whose sign depends on the sign of §I" (inhibiting
the emergence of chaotic behavior). An interesting question to answer is whether it
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Figure 5.9: Dissipative cluster mean-field trajectories of Z = (J%) /N as a func-
tion of time for three different values of the cluster size £ = 1,2, 3 fixed o = 1.2.
We simulated the dissipative dynamics in presence of string Glauber operators in-
volving (from left to right) Ny = 2,50, 100 sites. The post-quench transverse field
is h = 1.1, the jumping rates are in both cases 't = 0.4,'~ = 0.2. The system
seems to reach a stationary states with a value of magnetization that is vanishing
or finite depending on Nj.

exists a critical size N at which the system undergoes a dynamical phase transition
from a dynamical paramagnetic to a dynamical ferromagnetic phase.






6

Conclusions

In this thesis we investigated the dynamics of the long-range interacting Ising model
by virtue of the cluster mean-field theory.

The general problem of the non-equilibrium dynamics of quantum many body
systems has been widely investigated in the past years. In Chapter [2] we summa-
rized the principal results of the post-quench dynamics for both isolated and open
quantum systems. In the first part of this excursus we focused on the dynamics of
isolated quantum many body systems and on the problem of quantum thermaliza-
tion. Special attention has been dedicated to the concept of dynamical quantum
phase transitions that constitutes the main argument of this thesis. A critical sys-
tem prepared in the broken phase and quenched out of equilibrium can sustain
long-range order at finite energy density. This is revealed by the expectation value
of a dynamical order parameter that assumes a vanishing or finite value depending
whether the quench is above or below a dynamical critical value. In the second
part we discussed the dynamics of quantum many body systems in contact with an
external bath, that is a more realistic modeling of the experimental setups. The dy-
namics of open quantum systems is given in terms of a master equation, usually in a
Lindblad form, for the density matrix p. We also discussed the existence of the phase
of matter that spontaneously breaks the time-translational symmetry, the so-called
time crystals. A possibility to observe time crystal is as surface phenomenon in
quantum many body systems connected to an external bath. Recent works [39, 40|
have shown that an essential features to observe boundary time-crystalline behavior
is the presence of global dissipative processes.

In this thesis we concentrated on the dynamics of long-range interacting systems.
In Chapter [3] we introduced the principal properties of algebraic decaying interact-
ing systems. A peculiar case is that of complete connected models displaying a
collective dynamics. Among these, we particularly focused on the fully interacting
Ising model whose collective dynamics exhibit a dynamical phase transition from a
dynamical ferromagnetic phase to a dynamical paramagnetic one. The first part of
the thesis is dedicated to investigate the effects on the dynamics of the fluctuation
introduced reducing the range of the interactions. The main problem is related to
the exponential growth of the Hilbert space that does not allow the access to the
dynamics. For this reason we approach the problem by virtue of the cluster mean-
field theory, a generalization of the mean-field theory that includes the short-range
correlations.

In Chapter [f] we showed the post-quench dynamical phase diagram for the
power-law decaying Ising chain. Depending on the power law exponent two differ-
ent regimes can be identified. In the case of the truly long-range model, the system
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undergoes the mean-field dynamical phase transition displayed by the complete con-
nected one. Reducing the range of the interactions the critical point spreads in a
critical region exhibiting hypersensitivity to the initial conditions. This region, that
we named “critical region”, shares the same physics of a tossed coin that, bouncing
on the floor, displays a random dynamics with an unpredictable outcome. We elab-
orated on this analogy performing simulations with higher resolution and revealing
the fractal structures of the phase diagram. We also investigated the stability of
this chaotic phase in the case of linear quench. We found that reducing the veloc-
ity of the quench the chaotic features disappear and the system, for infinitely slow
quenches, follows adiabatically the ground states.

There are still open question to answer. In particular, it would be interesting
to access the long-range Ising chain dynamics to understand whether the hyper-
sensitivity is a property of the system or is due to the non-linearity introduced by
the cluster mean-field approach. Despite many experimental realizations have been
proposed, chaos is expected to be incredibly sensitive to finite-sizes effects and to
survive only in the thermodynamic limit. It would also be interesting to investigate
different models with different symmetries to establish a possible relation between
the symmetry group and the chaotic behavior.

In the second part of the thesis we consider the dynamics of the long-range inter-
acting Ising chain in presence of Glauber dissipation processes by solving the cluster
mean-field Lindblad equation. First we focused on the fully connected Ising model
whose dynamics, in presence of global dissipative processes, exhibits persistent os-
cillations in time revealing the existence of a boundary time-crystal. In particular,
we studied the stability of the boundary time-crystal performing simulations with
string of Vg operators. We found that the oscillations of the order parameter decay
following the exponential behavior f(t) = exp(—0.45 t/Nj), suggesting that bound-
ary time crystals can survive only in presence of global dissipative processes. Lastly,
we simulated the dynamics reducing the range of the interactions. The preliminary
results suggest that time-crystalline structures are not allowed in short ranged sys-
tems that, for any value of Ny, always reach a stationary state characterized by a
finite or vanishing value of the magnetization. Future perspectives of this works are
directed to the understanding of the dissipative dynamics of the long-range Ising
chain. A possible interesting question regarding the characterization of the steady
states is whether it exists a critical value of Ny at which the stationary states exhibits
a phase transition from a ferromagnetic to a paramagnetic one. Another interesting
possibility is to extend this work to different kinds of dissipative processes, for in-
stance order parameter preserving ones, to better understand which symmetries are
responsible of non-trivial dynamical behavior. Moreover, we plan to use the cluster
mean-field formalism to the dynamics of the periodically driven long-range interact-
ing Ising chain to investigate the fate of the non-trivial dynamical phase observed
by Lerose and collaborators in [161].



A

Phase space formalism

In this appendix we describe the phase space formalism of the quantum mechanics,
that uses the language of deterministic (classical) trajectories together with stochas-
tic quantum jumps. In what follows we present both the coordinate-momentum
representation (connected to the corpuscular or Newtonian classical limit) and the
coherent state representation (connected to the wave limit). To this purpose it is
important to introduce some concepts. It is defined Weyl symbol the one to one
map between quantum operators and phase space functions. In case of hermitian
operators this map is real. The Weyl symbol of the density matrix is called Wigner
function and it could also be not positive definite, thus it referred as Wigner quasi-
probability distribution. The knowledge of the Wigner function and of the Weyl
symbols of various operators gives the complete description of a system. To eval-
uate the Weyl symbol it is possible to introduce the Bopp operators. Finally, the
Moyal product defines the Weyl symbol of the product of two operators.

A.1 Coordinate-momentum representation

This is the formalism that naturally emerges from the path integral description of
quantum dynamics and gives the most intuitive connection between classical and
quantum realm. In this formalism the conjugate phase space operators & and p are
treated symmetrically. Given a generic operator Q(a%, p) the relative Weyl symbol is
defined as follows

Q5)E+ Shew (- E/0).  (A)

DO [y

O, p) > Qw (7,5) = / de (7 —

The vectorial notation reminds that we are dealing with a generic d-dimensional
multi-particles phase space of dimension 2D (for a N-particles system D = Nd,
with d dimensionality). Some simplifications could be done:

e If the operators in Q(a}, p) is such that the coordinate operators are on the left of
the momentum ones the Weyl symbol reduces to

déd 3 l -
(s = [ et (2= 5 1w (€2, (a2)
with Q(z,p) = Q& — Z,p — P).
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e If the operator Q(aﬁ, p) is written in the symmetrized form or is such that Q(i, p) =
A(z) + B(p) the Weyl symbol is obtained with the simple substitution Q(z,p) =
Q(ﬁu — Z,p — p). To symmetrize non-symmetric operators is a goo strategy to
write the Weyl symbols. For example, let us consider the operator zp

. Ip+pT  [T,P ih
Tp =~ —l—[2]:xp+2. (A.3)

By virtue of the definition above, the Wigner function is shortly given

Al =

plz +

DO [y
DO [y

o &€ o
Yexp (ip- &/h) = /d{p <x— 5,1‘4— 5 ) exp (ip-&/n).
(A4)
The knowledge of the Wigner function gives access to the expectation values of a
generic operator

W)= [ dt(o-

205 = [[ et W @ n) 0w (@.0) (A5)

To evaluate the Weyl symbol is useful to introduce the Bopp operators, pseudo-
differential operators that allow to map the quantum operators on the relative Weyl

m? ih @

simbols:

I =1 h=p— ——— A6
that are equivalent (it can be seen 1ntegrated by part) to
o _ihD . ihD A7
T=T— —— = —— .
2 Op’ p=p+ 2 Ox

Using the first definition it is possible to evaluate
_>
. ihd\ ([ ihd if
(zp)w = (zpl) = (:c + ) (p - 2(‘9) =ap+ 5 (A.8)

Similarly using the second definition

e
A rraa _th 9 ih 0\ ih
(Zp)w = (Izp) = (ac 2(917) (p—i— an> =xp+ 5" (A.9)

The Moyal product of two operators Ql and Qg is defined as follows

(1922)w (7,p) = aw (7, p) exp (—ihA/2) Qow (2, D), (A.10)
h A 1 defined A =, .00 _ 0 7 7 h to ob
wit a simplectic operator define > j dp; dz; — 9z, Op; - t is worth to observe

that —AAB = {A, B},, being {...}, the Poisson brackets. From this it is possible
to write the definition of the Moyal product

(1 Q2)w (7, p) = Qw (7, p) exp (iR4. .. }/2) Qow (T, P)- (A.11)
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For example it will be

h ih ih
(2p)w = xexp <—ZA> =ap — —A =xp+ % (A.12)

The Moyal product could be used to derive the expression for the commutator of
two operators

Ql, Qgt = —Qiglw sin <ZA> QQW (A13)

h
= _2Z.QIW sin <2{ e }p) QQW

= ih{Q1, W }us,
and we have defined the Moyal braket

(ot = Zsin (). (A.14)

From this definition it is possible to observe that {...}yB — {...}p and the
T—r

correspondence principle naturally arises. It is also possible to derive the expression
for the evolution of any quantum operator

o= _ﬁ'[o A= {0, H}xs — {0, H),, (A.15)

that is the classical equation of motion.

A.2 Coherent state representation

A coherent state is by definition an eigenstate of a bosonic annihilation operator
Y |), = ¢ ). The most natural coherent state is the vacuum, from this the

generic coherent state can be constructed |¢), = expyht|0) = 3 % |n), with
In) = \/—Tni' |0) the generic Fock state. The action of the creation operator on the co-

herent state ¢ [4),. = Oy |1), resembles the conjugate structure in the coordinates-
momentum representations. Despite this, the set of coherent states are not orthog-
onal nor normalized (. (1|¢), = exp1*1)), thus they form an over-complete basis

- / dpdipe P 1), o (). (A.16)

It is possible to shortly generalize all the concepts given in the previous subsection.
The Weyl symbol of the operators

w (¥, 97) N//dndn w—fm( DN + > —Jp|2— 122 /20 F-70)
(A.17)
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with A Hilbert space dimension. The ¢ = {;} are the complex amplitudes corre-
sponding to single-particle eigenstates. The subscripts j could denote coordinates,
momenta, different internal spin states, etc. Analogously to the previous case, in
case of symmetrically ordered operators the Weyl symbol is obtained by substitu-
tion Qu (¢, ¥*) = Q(& — )t ¥*). In case of normally ordered operators it
would be

il 1 o T | 2
9) = — [ [ ddiQ (0* — L 4 2 ) el Al
w0 = 5 [[anare (5= o+ 1) (A1)
The Wigner function is simply given by definition

) e lP=1E 12 g-nd) (A 1)

N |3

W) = 5 [ [ dndi (6= gt +

and it holds that

O = [ [ abas Wb, 00w 6,5) (A-20)
The Bopp operators could be generalized as follows
. 13 19 . . 1d 19
wj:¢j+§8w;:¢j_§8¢;a ¢=¢j—§%:¢j+§f%~ (A21)

The Moyal product could be written as follows

(21Q22)w (¥, 97") = Quw (1, 1") exp (—ihAc/2) Qow (¢, "), (A.22)

: 9 9 _ 9 3 : -

with A, = Z]. 30, 907~ Bur ouy- This defines the coherent state Poisson brakets
{A, B}, = AA.B such that in the limit of big occupation numberitis[...] — {... }..
The choice of the A constant in the definition of the coherent brackets has been done
in order to have in the wave limit the classical equation of motion ihdy; = v, H .
Notice that in the case of bosonic systems with two body interactions this equation

reduces to the Gross-Pitaevskii one. Finally we can introduce the coherent Moyle
brakets by the definition of the commutator

A (A
[QlQQ]W = QQIW smh <2> QQW = {Qlw, QQW}MBC- (A23)

To conclude it is worth to underline that these two representation correspond
to the dual descriptions of the phase space (corpuscular and wave) that is available
only for bosonic system due to the lack of a classical counterpart of the Grassman
variables needed to the coherent state description of the fermionic systems.

Some words must be spent to the spin operators case. All the discussion above
could be generalized to the spin case with some caveat. Let us assume to consider a
spin systems described by the collective spin variables S¢. From the algebra of the
collective spin variables

So gB h S e S
[N’ N] = iycesy = Mo (4.24)
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naturally emerges an effective Planck constant 7% = /i/N suggesting that, in the
thermodynamic limit, the system is perfectly classical and the phase space repre-
sentation should work. The Bopp operators defined as follows

2
07

Go— go %Sﬁeaﬁv (A.25)
could be used to evaluate the Weyl symbols of the operators. To evaluate the dy-
namics it is needed the definition of the spin Poisson brackets

of g o

{fa.g}Ps = Eaﬁ’y@@ . (A-26)

This way the equation of motion for the spin variables is given, in the first approx-
imation, to

S = {H,S5% ps. (A.27)

It is important to observe that this mapping could describe the semi-classical
dynamics of collective systems in the thermodynamic limit, namely it holds only in
the Holstein-Primakoff validity regime when the system behaves as a collection of
harmonic oscillators.






B

Spin-squeezing

In the last decades spin squeezing has attracted considerable attention, both theo-
retically and experimentally, due to its versatility in the applications (a full review
in [162]). For example, it can be used to detect quantum entanglement, in fact Téth
and collaborators [163],/164] have proved a close relation between spin-1/2 entangled
states and spin squeezed states. The relevance of this result relies in the fleetness
of experimental realization and detection of spin squeezed state |165-167|. Beside
this, spin squeezing is also useful for quantum computation [168} 169] and quantum
simulation [170] and provides a good instrument to improve the precision of the
measurements, e.g. in the Ramsey spectroscopy [171, [172] or in gravitational-wave
interferometers [173].

Despite its feasibility, the definition of the spin squeezing and of the spin-
squeezing parameters is not unique and depends on the contest it is considered.
The definition of squeezing has been given in the contest of quantum optics |174}
175 and it is usually referred to bosonic particles. Given the bosonic operator a and
a' obeying the canonical commutation relations [a,a'] = 1, we can introduce the
coordinate momentum operators given by x = (a+a')/2 and p = (a — a')/2i, with
[x,p] =i and h = 1. The Heisenberg uncertainty relation states that AzAp > 1/2,
with AA = y/(A2) — (A)2. In literature a coherent state is an eigenstate |o) of the
destruction operator a|a) = « o) (e.g. the vacuum state). Coherent states sat-
isfy the relation Az = Ap = 1/4/2 thus they are also defined minimum uncertainty
states. Whenever the variance on one of the two directions becomes smaller than the
coherent one, the coherent state becomes squeezed. The so-called principal quadra-
ture squeezing can be quantified introducing the parameter C%. Defined a generic
operator on the x — p plane

ok » A
Tp = ez@a Are i0aTa _ ae 0 + aTew’ (Bl)
whose special case are © = xg and p = x /2, we can introduce

2 — . A 2
(B ee%l,%r)( 9)

= 1+2((ala) ~ | (@) P~ | (a®) ~ (@)°]).
This way, the condition C]23 < 1/2 indicates bosonic principal squeezing.

The generalization of this parameter in the case of spin systems is not straightfor-
ward. Let us consider a system of N spin-1/2 interacting particles. We can introduce

71



72 Cluster mean-field dynamics of the long-range interacting Ising chain

the angular momentum operators J, = % >, 0 that obey to the SU(2) commuta-
tion relations [Jy, Jg] = i€qpyJy. This results in the Heisenberg uncertainty

AJoATs > | (J5) /2. (B.3)

We can also introduce the coherent spin states (CSS) as a direct product of single

spin states
N

0 - 0

0, ¢) = ® <COS 3 |0), + €' sin 3 |1>l) , (B.4)
=1

with 0, |0); = |0), and oy, |1); = — |1),. Another definition could be given in terms

of Dicke states |s,m), eigenstates of S and S* with eigenvalues s(s + 1) and m

respectively,

la) = (1 +]al?)~® Z ( 25 ) a*™|s,m), a € C, (B.5)

s s+m

with o = — tan(0/2) exp(—i¢p).
The spin-squeezing could be defined by analogy with the bosonic case introduc-
ing the following squeezing parameter

2 2(AJ_)1
=)

2

f_l—mmmy (B.6)

|7l - 72|
with 7, 711, 72 orthogonal unit vectors. However, this is not a desirable definition
since it turns out that (% < 1 on a CSS. This is due to the fact that, unlike the

bosonic systems, the variance of a CSS is not equal in all the directions but depends
on the mean-spin direction (MSD) 71y defined as

ﬁ:ﬂ. B.7
ETYY (B7)

We can define n the axis perpendicular to the MSD. It can be proved that for a
CSS (Aj,)? = j/2, with j eigenvalue of the total angular momentum. This way it
is possible to introduce the spin squeezing parameter (not unique)

5 min(AJ%L) 4min(AJ§L)
S=p N

(B.8)

This parameter is such that for the pure uncorrelated CSS |0,¢) it is £& = 1.
Whenever correlations arise in the system, namely entanglement is generated, one
direction squeezes and the spin squeezing parameter reduces to 5?9 < 1.



C

Generalization of the Dicke model

In this appendix we describe the experimental realization of non-equilibrium sta-
tionary states of the Dicke model and its possible generalization to more complex
models.

C.1 NESS realization of the Dicke model

The idea behind the NESS realization of a Dicke is that a condensate of atoms
(usually a Bose-Einstein condensate (BEC)), into a cavity, for some values of the
coupling with the radiation field, self-organizes on a pattern where the atoms are
separated by an integer multiple of the wavelength and the atom scatter light coher-
ently if lighted with a strong enough pump. This is a pump-cavity scattering driven
process: first a pump photon is virtually absorbed by an atom, this way the atom
gains one photon momentum along the pump axis in the direction of the pump pho-
ton; then the photon is scattered into a cavity mode and the atom gains momentum
along the cavity axis in the opposite direction of the emitted photon. This processes
allow the ground state of a BEC, naturally a zero momentum state, to be excited to
a finite momentum one. Depending on the relative geometry between the cavity and
the pump, it is possible to realize different models. A single cavity lighted orthog-
onally is the prototype of a two level system interacting with the electromagnetic
field. If we assume the cavity to be single mode, in an opportune time dependent
frame rotating with the pump frequency, this set up is described by the Hamiltonian
in Eq. (3.13). Varying the cavity-pump angle is a way to achieve different models.
For example, if the single mode cavity is dressed by a pump with an angle of 27/3,
the effective model is that of a three levels system interacting with a bosonic mode
[176,177]. By adding cavities it is possible to enhance the symmetries of the model,
as has been done by Donner and collaborators.

C.2 Three-levels system in two optical cavities

Donner and collaborators |[178] consider two optical cavities with a crossing angle of
%“ sourrounding a BEC of N = 2 x 10° 8"Rb atoms dressed by an external pumping

that is not orthogonal with the cavities. All the atoms in the BEC start in the state
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|p = 0) and, by virtue of the pump-cavity scattering described above, can be excited
to the level | £k, & k.) depending on the scattering direction. The reverse process is
equally probable: the excited states form a pair of equal absolute momentum with
opposite direction, in order to have the ground state connected with two excited
states: the less energetic w_ = w, and the more energetic wy = 3w,, being w, the
recoil energy due to the pumping. For symmetry reasons the two eigenstate are

Figure C.1

superposition of the equal absolute momentum states:
1
2

|ﬁ=;§%%+M+H%—h»

The Hamiltonian of this system is the sum of three terms H = Hy + Ho + Hio with
1, 2 cavity indices. The latter term describes the interaction among the cavities that

is experimentally negligible with respect to the cavity terms. Thus, in what follows
we assume His = 0. The cavity Hamiltonian reads

+) (IHkp + ke) + [—kp — ke)),

(C.1)

-

)\.
H; = Qala; +w AT +w A" + Z(al + a; <A°i+A+.+A9i+A—,>,
i +4 — \/N( i ) =+, 0,2 s 0,7
(C.2)

with A7, = Zjvzl 1r)9) (5], being 4, s; € {0, 4, —}. We also pose Q; = wp —w; <0
the detuning between resonance frequency of cavity ¢ and pump laser frequency. In
general —; € [2,5]. This Hamiltonian describes a three-level system (sketched in
Fig. [C.1)), in which the two excited level |+),|—) are connected with the ground
state |0), interacting with two ideal optical cavities.

In what follows we assume the experimental parameters w_ = 27 x 3.7 kHz and
w4+ = 3w_ and we express all the energies in unit of the recoil frequency defined
in Appendix [C| By virtue of a generalized Holstein-Primakoff transformation [176
177, |179] it is possible to map the generator A7 ; of the group U(Ny), with N, the

number of levels, onto a combination of creation and annihilation operators bl, by
of Ny — 1 Holstein-Primakoff bosons, fulfilling the canonical commutator relations.
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Given a reference level m the map is
AS = b] b
AT =] O i(N)
A3y = Omi(N)bs,i
Al = Oni(N)?,

r,s #m, (C.3)

with O i(N) = \/N = 3, b b, (0] bri) < N and 3,.,,,, (bl jbr) < N. Posing
m = 0 the Hamiltonian becomes

Ai
H=Y Fhayu+-w+@+m++ww_@;m_+- <az+wu>(ﬂg@OUV)+bLf}mAU—%hc>]

i=1,2 VN

(C.4)
This model has a Z; symmetry generated by the operator C' = agai + bi,ib'hi +
bT_J-b_J. Under the assumption of identical cavities the model exhibits an extra U(1)
symmetry. This is evident from Fig. where the mean-field energy landscape
(color map) is plotted as a function of the cavities fields for different values of the
cavities frequencies 1 = 1, Qo = 4 (top left panel), Q1 = 4, Qy = 1 (top right
panel), Q3 = Qy = 1 (bottom panel). The equilibrium phase transition can be

P2
P2
P2

—
~—

21 21 21

Figure C.2: Mean-field energy landscape of the model in Eq. (C.4) for Q; =
1, Qo = 4 (left panel), Q1 = Qo = 1 (central panel) and Q; =4, Qs = 1 (right
panel), fixed wy =1 and A = 10.3w,..

recovered minimizing the classical Hamiltonian

H=N Z [Qup? +wih?, +w_pE + Ao (Vi +¥_i)] (C.5)
i=1,2

obtained by substituting a; = v Ne;, by = \/Nwi,i, bo; = \/NI/J()’Z‘, under the
constrain g = \/ 1— le?ﬂ + ¢—_;). The equilibrium phase diagram is shown in

Fig. where the ground state photonic population <a1ai>0 (color map) is plotted

as a function of the cavities detuning €21, (29 for both cavities. Each cavity undergoes
a quantum phase transition from a normal to a superradiant phase at the critical
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Cavita 1 Cavita 2
-2 0.16 0.16
25 0.14 0.14
0.12 0.12
3 0.1 0.1
& &
*~ 3.5 0.08 N 3.5 0.08
@] ]
4 0.06 4 0.06
0.04 0.04
-4. -4.
5 0.02 5 0.02
-5 0 -5 0
-5 -4.5 -4 -3.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
Qq/2n Qq/2n

Figure C.3: Equilibrium phase diagram of the ”Donner Hamiltonian” obtained
with a mean-field analysis for A = 13 w,, red and blue indicate, respectively,
photons in cavity one and two. Dark blue lines are the mean-field critical lines.

point A\.; = v/w$;/2, with ol = w;l + w='. Only in the case of identical cavities,
i.e. the case in which the system is also U(1) symmetric, superradiance is observed
in both cavities simultaneously.

- 0.1 - 0.1
: 2
) 0.08 3 0.08
- 4
0.06 0.06
- 5
- 6
— 0.04 0.04
7 7
-8 H 0.02 -8 0.02
-9 -9
10 Lo 10 0
09 8 7 -6 5 4 3 -2 -

10 9 -8 -7 6 -5 -4 -3 -2 - -1

Qo/2n
Qo/2m

Q/2n Q,/2n

Figure C.4: Dynamical phase diagram for the two cavities with A = 10.3w,- and
Q1 = Qo = 1. The plot shows the value of the cavity fields respectively in cavity 1
and in cavity 2 as a function of the quenched cavity frequencies £2; and 2. Black
line is obtained inverting the relation for the empirical dynamical critical value

AL Q)
5

Posing ¢; = ¢} + up; and Y45 = ¢ ; + Z'I/J;itj, the classical dynamics is given by
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this set of coupled differential equations

¢ = —Ql,

&, = Qg+ 2000 (v, + 07,

P = —wati,; 42X @l L Zj(;bjﬁw:j), (C.6)
Py = wetlh; +2X ¢ (1/)0 - % Zj(ff”wrf)) :

being j = 1,2 the cavity index and g = \/1 - ijl’Q(’”L/J;—P + 95 [3).

Let us assume to prepare the system in the ground state of 1 = Q9 = 1 (broken
phase) and to quench the values of the cavities detuning €;,2s. The dynamical
phase diagram is shown in Fig. [C4] where we plot the values of the cavity field ¢;
for both the cavities as a function of the post-quench detuning. We show the value
of ; = limp_, % fOT dt ¢;(t) for the two cavities as a function of the post-quench
detuning. The black line /\g = \¢/2, empirically chosen, locates the dynamical phase
transition.






D

From classical to quantum chaos

In the thermodynamic limit the Dicke Hamiltonian is exactly integrable. Moving
toward finite sizes the integrability breaks and the system is allowed to display quan-
tum chaotic effects. A possible signature of the quantum chaos is the character of
the nearest-neighborhood energy level distribution P(.S), as conjectured by Bohigas
. Classical integrable systems have high degrees of freedom resulting in many
conserved quantum numbers in their quantum counterpart that allow level crossing
in the spectrum that is expected to be peaked on S = 0. Once the integrability
is broken and the system behaves chaotically, the quantum energy spectrum is ex-
pected to be highly correlated and absent of crossing leading to a P(S — 0) — 0.
The precise form of the P(.S) for such systems strongly depends on the symmetries of
the model, but one of the most popular (that turns out to be the relevant one in the

case of the Dicke model) is the Wigner-Dyson distribution P(S) = g exp (—”fz).

More details can be found in 75).
Emary and collaborator [127,[128] have shown that the finite size Dicke Hamilto-

nian displays such a crossover in the quantum energy spectrum exactly at the critical
point A.. To this purpose they diagonalize exactly the Hamiltonian to evaluate the
distribution function P(S) on the unfolded spectrum [70]. In Fig. we show our
reproduction of their results. They have been obtained diagonalizing the Hamilto-
nian in a Hilbert space product of the total pseudospin Hilbert space with N = 10
and the truncated (we chose the maximum number of bosons n = 100) bosonic
one. The diagonalization is performed in the even parity sector of the Hilbert space.
It is evident the crossover from a Poisson distribution to a Wigner-Dyson one. In

Figure D.1: Nearest-neighborhood level distribution for the Dicke model for the
three different values of the coupling (from left to right) A = 0.4\, 1.0A., 1.6\.. The
spectrum has been derived assuming N = 10 and truncating the bosonic Hilbert
space to n = 100. The orange line represents the Wigner-Dyson distribution, while
the green line is the Poisson one. The coupling A = 1.0\, is the critical value at
which the distribution qualitative changes.
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80 Cluster mean-field dynamics of the long-range interacting Ising chain

this work the authors verify that this signature is, according with the conjecture
of Bohigas, the counterpart of a classical chaotic behaviour. The classical Hamilto-
nian is obtained first expressing the quantum Hamiltonian in Eq. in terms of
coordinate-momentum operators &, p |127, 128] and then assuming [z, p] = 0. This
way the Hamiltonian becomes

o L. 9o o 2, .2 _w%:cg—kpg
H® = —Nuwp + 5 (w'z; + pi + woxy + pp) + 2A/wwoTazpy [ 1 AN (D.1)
0

that in the limit N — oo reduces to Eq. (3.15)). The Hamilton equations for the
conjugate variables (fixed A = 2)\,/wwy) are easily derived

2.2 2
. ~ wHTy +p
pa:_WQl‘a_)\fEbwl_Wa

Lo = Da
2.2 2 3 2
. 9 ~ wy Ty, + P ATqWoTy, (D.2)
pb:—woxb—)\xa 1-— INw 22+2,
0 _ WoZp TPy
4N4/1 TNwo
. AT TPy
Ty = Py — 2,24 2 .
_ WoTy TPy
4NC¢J0 1 INw,

A

\/1-1/4N"

A trivial solution is z, = o, = p, = pp and it is stable for A < \) =

When the coupling crosses this critical value two other fixed points
(xa = :txiv,pa =0,2p = :l:xév,pb = O) (D.3)
appear, with xé\{b) some function of w, A\, N that can be analytically derived. The

interesting result is that the system undergoes a rapid change at A = A\Y from a
simple quasi periodic behaviour to an intricate chaotic behaviour. This is shown
in Fig. where we reproduce the phase space projection (p, = p, = 0) for
the classical Dicke Hamiltonian. The trajectories are obtained choosing N = 100,
w = wy = 1 for the different values of the coupling A = 1.0\, 1.06A, 1.2A., 1.6).
The initial condition is z,(0) = x4(0) = 1, p,(0) = pp(0) = 0.

The same result could be obtained in the case of the two cavities model presented
by Donner and collaborators [17§]. In terms of conjugate variables the Hamiltonian
reads

H :% > (Pl +pl +wiat + Y w4 )

7

2 .2 2 2 .2 2
wizl,; +pl;  wixl;+pl;

2 1_ _ ) . T
A e DA

J

(D.4)
namely a set of six coupled harmonic oscillators whose classical limit is well defined.
The trajectories in the projected phase space of the associated classical equation of
motions display the same chaotic behaviour discussed above.



From classical to quantum chaos

A=A —— A=1.068A, ——

Xa
o
T
1

T
=120 ——

Figure D.2: phase space projection (p, = pp = 0) for the classical Dicke Hamil-
tonian. The trajectories are obtained choosing N = 100, w = wg = 1 for the
different values of the coupling A = 1.0\, 1.06\., 1.2)., 1.6\.. The initial condi-
tion is 24(0) = 24(0) = 1, p,(0) = pp(0) = 0.
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E

Time-dependent spin waves approximation

The time dependent spin-waves approximation [180] is a generalization of the spin
waves expansion in a time-dependent framework aligned with the mean-spin direc-
tion (MSD) defined in Appendix First it is necessary to perform a time-dependent
change of frame according to the right-handed Cartesian triple

sin 6 cos ¢ cos 0 cos ¢ —sing
Z:= | sinfsin¢ X := | cosfOsing Yi=| cosé (E.1)
cosf —sinf 0

implemented by the unitary operator
%0 10
V =exp 520’; exp 520}’ : (E.2)
J J
The spin operators in the rotating frame ¢® are obtained by applying the rotation
to the Pauli matrices in the fixed one 7
X =VrVi=X.7, ol =VVi=Y.7, o/ =VrVi=Z.7.  (E3)
The total spin operator is
5}:)3-03?(4-}7-0}/—%2‘0]-2. (E.4)

In this new reference frame the Hamiltonian is time-dependent, hence the dynamics
of the operators should account for an additional term (analogous to the apparent
forces in classical mechanics) due to the rotation. The equation of motion for the
generic operator O reduces to

O =i[H, 0], (E.5)
with /I = H +iVV1 and
iWVVT = —%w -0, (E.6)
defined
wWwX=X-w=—-sinbp, W =Y -w=0, wf/=7 w=cosho. (E.7)

The motion of the frame can be deduced imposing the mean-spin direction «, namely
(@) =("(t)=0  (07(0) = (o7(0)) =0, (E.8)
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and it is equivalent to require 67,57 = O(1).

Let us apply the time-dependent spin wave approximation to study the nonequi-
librium dynamics of the long-range interacting Ising chain in Eq. . In the frame
rotated according to Eq. the Hamiltonian reads

f{ VXng(—‘rVyg;Ja/—i-VZxUOZ 2 VXzU() —‘rVszO +VZzUQ
= —h

N N
Vxxdi( + Vny}; + VZxUkZ VXLEO-i(k- + VY:rUz/k + Vnggk
-2
N N
k40
sin 6 q&&éf 0 68 cosf (;'S&OZ
2 N 2 N 2 N

(E.9)
We perform the Holsteln—Prlmakoff on the real space operators choosing o = Z as
the mean spin d1rect10 the motion of the frame is given imposing o, to be
non-extensive. Solving the Heisenberg equation we have

bbb )b,
o =] ;- MR
gt (et _p \p.
of =1 (b; - bj) _ Bl (E.10)
o7 =1—2blb;.

The Fourier-transformation reads

o = VN (bl + ) — Zunlamicalittalt

2\F
, oo (BI=b_4 )by
O.}C/ — Z\/N (bL _ b—k;) _ qu p+ 2\/L ) (E].l)
of = Nojo— 23, bhbgir.

with b; = \/—IN Dok e’*iby,. Up to quadratic order in the fluctuations, the total spin

2 2 2 . .
02205( +O'(})/ +U()Z is given by

ot m [N =2 bfbe | [N =2 bfop+1], (E.12)
k#£0 k#0

that means that the spin waves, i.e. fluctuations with a finite momentum, are re-
sponsible for the destruction of the mean field directionﬂ The Holstein-Primakoff
approximation is valid as long as the MSD is not destructed, i.e. as long as the
density of spin waves ¢ = 2 >, £0 (bzb—k> remains small.

! Actually the MSD can not be totally arbitrary. The parametrization is singular in the ferro-
magnetic fixed point and it is not allowed to chose that as mean-spin direction.

2The zero momentum fluctuations do no contribute to the destruction of the MSD but con-
tributes to the dynamics of the spin squeezing (see Appendix . For this reason the dynamics
of the correlator (bibo) grows for time larger than the Ehrenfest time. Since in what follows we
assume to work in the thermodynamic limit, we neglect its dynamics for the rest of the discussion.
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Being Hg the 0-mode part of the Hamiltonian, we have H = Hy+ V. The first
one reads

X Y Z X Y Z\ 2
~ g g g g g g
Hy = x(t)r +y(t) 3 +2(0) 3 = Jo <me]@ + Vyar + VZx]3> . (E13)

with
x(t) = hsin @ + sin s, y(t) = —s0, 2(t) = —hcos@ — cosfsp. (E.14)

We observe that this term preserves the number of bosons, in fact the terms with
an odd number of bosons Hgdd

HY = ( 2(t) — 2Jy sin 0 cos 6 cos? @ﬁ ﬁ—i— y(t) + 2Jo sin 6 cos p sin cpﬁ ﬁ =
0 N) N N) N
(E.15)

are vanishing by virtue of the frame equations of motion. In accordance with the
conservation of the total angular momentum this implies o*°* to contain even power
of the boson operators. The effect of the zero momentum part of the Hamiltonian
on the motion of the frame is obtained imposing

'X—E{X *H}—N —Q+2J in ¢ ¢in¢f f+O(N0)
oY == 7. H| = 5 osinfcos¢s ~ |~ )

1 ~ sin 0¢ 5\ 6¢
Y_ly.zgl=n |- _ hsi 2 ysing 20 | %0 0
o = [Y T,H} N ( 5 hsin @ + 2.Jy cos 6 cos® ¢ sin 6 N) N + O(N”).

(E.16)
to be non-extensive _
gi)z 4.J cos 6 cos? qﬁ% — 2h,
, (E.17)

0 = 4.J sin 0 cos ¢ sin gb%.

To see the effect of the fluctuations we first write k £ 0 part of the hamiltonian
v

<

J
=— Z F]; (cos? @ cos® ¢ o o), +sin® ¢ o) 0¥}, + sin® O cos® ¢ of oZ))
k
J]
_ Z Vk? sin 0 (60890052 b (a,fa{k + akZai(k) — cos ¢sin ¢ (J{U{k + akzafk))
k0
J
+ Z Fk? sin ¢ cos ¢ cos (ai(afk + o}:ai(k) )
k

(E.18)
To account for the effects of the spin-waves in the frame equations of motion adding
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we impose the following terms

XY Y X Y Y
V.od] =23 (f(0,¢) (G’“ T2 7 Ok U’f) +20(0. ) ”ﬁf) Lo (;N)

B 2;; Tk (f (0,9) (W) - 9(0.9) (- b"“>N<ka - bk))
k0
ol
[Vob] = kZﬂJk <2f )75 JX’“ ~9(0.9) (U’f “y’“;f’“y "X’“>> +0 (jﬁ)
=5 (fw, MU b_k>N<ka )y (lﬁ’“bz’;bkb’“»
k=0
()
(E.19)

where f(0, ¢) = cos? ¢sin(20) and g(6, ¢) = sin(2¢) sin f. to be non-extensive. This
leads to

r __ Ab
0(t) = 2Jysin 0sin(2¢)(1 — ) 42 Iy <cos gbsm(gg)A + sin(2¢) sin 0 AAk) 7

k0 N
. A" Ab AT
d(t) = —2h 4 4Jo(1 — €) cos O cos® ¢ + 4 Z Jk <cos2 ¢ cos GL (2¢>)k>
k#£0
(E.20)

defined

Ab = (blby + byl ), AL = (b + 05T, AL =i (bgb_y —bLbT,).
(E.21)
The equations of motion for the correlators are given by the quadratic Hamiltonian

HY =37 & (bbe + 40l ) + Meblbl + Kby + const + O(1/VN),  (E.22)
k+£0

with

~ 2 4 a2

€ = cos” ¢sin“ 0(Jx — 2Jg) — Jp,
°h ¢ 2 ( Qk: 0) = Jk (£.23)
A = Ji (cos” ¢sin®§ — 1 + isin(2¢) cos ) .

This gives ' '
AY = 4Re(N\) AL + 4Im()\)

AT = —4ep AL 4 4Tm(\) AL, (E.24)
Aé = 4ep A} + 4Re(\,) AL
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The stability of the approximation is determined by the instantaneous dispersion
relation of the spin waves, i.e. the quasi-energies of the Hamiltonian nged fixed

0=¢=0

Hfq = =D ek (b} + b1y ) + Abgb—p + AT b (E.25)
k=0
with
| ““““‘l‘i'::::!::::!

0 1 2 3 4 5 6 0

phi phi phi

Figure E.1: Square of the dispersion E} (color map) as a function of the azimuthal
angle ¢ and cosf for the three different transverse fields h = 0.5,1.0,1.5 fixed
« = 1.2. The blue line is the mean-field trajectory in the phase space at that final
value of the transverse field.

er, = J(cos® ¢ cos? O + sin® ¢) — 2.Jj cos? ¢sin @ — hcos ¥,

o (E.26)
Ay = Ji(cos ¢ cos @ + isin ¢p)”.

The dispersion relation reduces to

E, = \/<2j0 cos? ¢ + hcos «9) (2 cos? ¢ (jo — J}, cos? 0) + hcos — 2Jj sin® ¢>,

(E.27)
where Jy = Jysin® ¢. In the correspondence of the ferromagnetic point the approx-
imation is always stable independently on the transverse field value Ey(0 = 5,¢ =
0) = +2Jy. As expected, in the paramagnetic point (in which ¢ is not well defined)
the energy does not depend on the azimuthal angle Ex(0 = 0,¢) = \/h (h — 2Jy).
Whenever we have Jj.o = 0 since

EX(Jrz0=0) = (2Jo cos® ¢sin? @ + h cos 0)2 >0 Vh, (E.28)

the approximation is stable. This means that in the thermodynamic limit the spin
waves expansion is valid for @ < 1. The stability of the spin waves approximation
for @ > 1 could be studied numerically. In Fig. [EI] we plot the square of the
dispersion E,% (color map) as a function of the azimuthal angle ¢ and of cos@ for
three different transverse fields h = 0.5,1.0, 1.5 fixed o« = 1.2. The blue line is the
mean-field trajectory in the phase space. Every time the classical trajectory crosses
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an instability region the spin waves density increases leading to the failure of the
approximation. This result suggests that the spin-waves expansion is stable only for
quenches that are below the mean-field dynamical critical point h = 1 and can not
be used to study the dynamics after critical quench.



F

Cluster mean-field Lindblad equation — Derivation

In this appendix we derive the cluster mean-field equation for the density matrix
for the power law decaying Ising chain in presence of dissipation.

The cluster mean-field equations of motion are obtained assuming the density
matrix to be a product of cluster density matrices p = ®g pg, with 3 a cluster

index and pg of dimension 2¢ x 2¢ with ¢ the cluster dimension. The effective master
equation is obtained tracing out all the cluster egrees of freedom but one

pﬂ = 8Tr;ébeta(p) = Tr;ébetaﬁ(p)- (Fl)

In this derivation we use the following properties of the Kronecker product

1. (A® B)(C® D)= AC ® BD,
2. Tr(A® B) =Tr(B® A) = Tr(A)Tx(B).

F.1 Glauber dissipation

Let us consider jump operators of the form o = " Ul , where Ue =L®. 05 ®
..In are single site operators. The master equation reads

=2 v ( ) v )
= o 0' ——{o , + o po., o , . (F.2
p Xm: el e {l P} )+ (' {l mpy) . (F2)

We consider a product density matrix of the form p = ®]5V ' pg with pg single cluster
density matrices of dimension 2¢ x 2¢, with £ the length of the cluster 8. The spin
operators acting on the cluster S are defined O'Bl =0 ®.0..% 1 with [ € 8. Let
us focus on the first term and then the other follows automatically.

Ny 1 N
S o @ psor - §{UZ+U;1’®pﬁ}
B B

lm
+ - + -
03,93 mP8  PBOZ 0
+ 5vl /87m ﬁJ B’m
Z ( T81PBOBm — 9 B 9 ) (F.3)
m
¢ + - + —
031P8 O OamPa PBI3; D Palam
57l ) B7l )
+Z(G lp6®100£ am_ 2 - 2 )
lym

89



90 Cluster mean-field dynamics of the long-range interacting Ising chain

where, for simplicity of notation, we pose

TG 1PBT o = PL® - 0519507 - @ PN,y

(F.4)
O iPo @ PROG 1 = PL® - O po O+ @ pgof, -+ ® PN,

Tracing out the degrees of freedom we obtain

N Ncl 1 NC]
Trey Y | o7 Q) psot, — §{Ul+07%,®pﬁ}
B B

_ 05108 ® OampPa PBOS, @ paa;,m>

¢

+ - + -
— 4 _981%mPB _ PB9B1%8m
T6,1PB9 3,m 9 2

PR SRR Sl ENARE by SLATRIR) D iteS

7 7

¢ + - + -
+> 0yt — Ty %ymPy PrIy1%ym
’7,[ Y ¥,m 2 2 )

(F.5)
where we have used the identit Try <a;l Pald m — %{a; 1 am> pa}> = 0 Assuming
that all the clusters are equivalent we obtain the Lindblad equation for the cluster
density matrix

L

. f _ + 1 _ 6FC1 <U+>cl [0—7,'_7 p] <0—7>Cl [p7 O—:_]
" N ZJ: <gi Py 3l ’p}> * N 2 ! |

(F.6)
with f = F+ —&—F, and 6Fd = (FJr — F,) (Nsiti — E) O(Nsiti — 5), with 9(1‘) the Heav-
iside function. The self-consistent expectation values (oF) = (Zf oF) are evaluated
on the cluster.

ntuitively it is a consequence of the Lindblad form of the master equation that preserve the
trace of the density matrix.
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Post Scriptum

C’¢ qualcosa che vuole essere scritto, qualcosa che deve essere scritto, ma non e
questo il modo. La Signora Giulia strappo I’ennesimo foglio con I’ennesimo tentativo
fallito di trovare una conclusione degna.

Sette piani. A fidarsi di Buzzati non un presagio di buona ventura. La Signora
Giulia fisso l'ingresso dell’ex sanatorio e si lascio pervadere dalla malinconia.

Leggeva e rileggeva l'incipit, I'unica cosa che forse davvero funzionava, abbastanza
ironico, leggero, lineare. Ma come andare avanti? Ogni tentativo diventava un am-
masso di parole scontate e retoriche, di una banalita degna di un romanzetto da
quattro soldi. Quindi, secondo la critica, esattamente come tutto il resto della sua
produzione, pff... stereotipi di genere. La verita € che ogni conclusione sarebbe stata
riduttiva ed esclusiva, non & possibile tirare fuori un racconto che soddisfi le es-
igenze di tutti. Eppure la Signora Giulia non poteva accettare di darsi per vinta:
¢’era bisogno di una conclusione. Fosse stata una favola sarebbero vissuti felici e con-
tenti, ma questa non era una favola, era I’Accademia, quindi probabilmente sareb-
bero vissuti stressati e alienati fino al raggiungimento di un rtd-qualcosa intorno
ai quarant’anni, proprio quando tutto sembrava perduto. Una storia agghiacciante,
quasi peggiore dei documentari naturalistici della BBC.

La soluzione doveva stare altrove, non nel futuro lavorativo. Fosse stata un po’ piu
arguta, probabilmente lo avrebbe potuto intuire dalla divergenza del rapporto ore
passate al bar-ore passate in ufficio. Ma certo! La soluzione stava nella dimensione
umana di quel posto che I'aveva ospitata negli ultimi quattro brevemente infiniti
anni della sua vita. In quel posto di passaggio, in quel posto in cui ogni fine era
sancita dal suo stesso inizio, ogni nuovo inizio una nuova fine, affezionarsi, crescere,
continuare e poi salutarsi. Non ¢ un addio, ci rivedremo sicuramente!, un palliativo
per brindare all’effimerita.

Ecco, era proprio questo il punto. La Signora Giulia aveva ancora un dubbio che
la attanagliava, ovvero se continuare a torturare le persone con questo vacuo mag-
niloquio da biscotto cinese della fortuna, o magari provare a essere piu caritatevole
limitandosi a qualcosa di piu personale della faccenda che coinvolgesse soltanto i
“congiunti”. Ripercorse con la mente quei corridoi, dall’ala est all’ala ovest. Ancora
nessuna stampante funzionante. Ma andando da una scala all’altra, su per ogni pi-
ano, si accorse dell’incredibile numero di porte e persone affacciate sul corridoio e
sulla sua v... (pericolo retorica!) eranda. Sulla sua veranda, gia. Forse troppe per
poter essere riassunte in un unico racconto. Inizialmente la Signora Giulia si lascio
tentare dall’eventualita di trascurare tutte quelle persone ormai fuori dalla sua vita,
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per demeriti, meriti, o eventualita. Ma in uno slancio di inusuale saggezza realizzo
che sarebbe stato scorretto non riconoscere loro la partecipazione, consapevole o
meno, alla creazione del personaggio della Signora Giulia. Stette li a pensare, dund-
edun... Come procedere, anche perché il tutto sarebbe dovuto essere pronto al pilt
tardi il giorno della consegna. Ah, se solo ci fosse stato [Giorgino] ad aiutarla, lui
si che avrebbe saputo cosa fare. Si verso un bicchiere di vino e rimase ad ascoltare
il fischio del vento, di li a poco sarebbe arrivato un temporale.

Effettivamente questo avrebbe potuto accorciare di molto il processo di menzione, un
bicchiere di vino sotto la pioggia ¢ una situazione tale da abbracciare un ampissimo
spettro di persone che arrivate a questo punto avrebbero potuto dire, soffocando un
risolino imbarazzato: “parla di me!”. Lasciando il meteo variabile e generalizzando
I’alcolico e presto fatto. Un bicchiere sincero e alpino, inusuale e filosofico, pettegolo
e leggero, femminile con Filippo, analcolico e ambiguo, minorenne (18 a dicembre!)
e presente, “tinto” e impegnativo, deludente e amaro, intimo e giocoso, salato e
confortante, duraturo e stabile, paziente e litigarello, adulto e infantile, sportivo e
collegiale, esagerato e galvanizzante. E molti di questi bicchieri andrebbero sommati
a diventare bottiglie da riempirci una cantina intera a cui attingere dopo un gol
di testa, dopo un pranzo in silenzio, dopo una serata al mare, dopo un pianto
ininterrotto quando 'unica cosa che ti serve & un abbraccio, durante i post-prandiali
su un letto a svuotarsi delle ansie o durante le nottate che, confuse sul loro ruolo,
invece di portare consiglio, le portavano le ansie. E, continuando con l’analogia,
molte di quelle bottiglie si potevano riversare a loro volta in botti piu grandi, cosi
pesanti da non poter essere spostate facilmente, ci sono sempre, qui e ora. Una
prospettiva piuttosto rassicurante.

La Signora Giulia si fermo un attimo a rileggere le ultime frasi. La conclusione della
conclusione era decisamente pit difficile della conclusione in sé, un climax ascendente
di cliché (probabilmente anche questo continuo riferimento alla sua banalita stava
diventando un cliché, molto meta, punto interessante da poter approfondire). Si ver-
gogno per il sentimentalismo e decise che I’'unico modo possibile per salvare la faccia
sarebbe stato risparmiare le parole per un qualche scopo piu nobile (ringraziare le
bariste, trovarsi un lavoro, inneggiare alla morte del capitale...). Un ultimo sguardo
alle conclusioni (e alle conclusioni delle conclusioni, seppure ancora in fieri). Non che
fosse molto soddisfatta del suo operato, il risultato finale si allontanava parecchio
dal testo palindromo in versi che aveva sperato di produrre, ma a volte & necessario
saper riconoscere i propri limiti, poteva bastare cosi.

Ringraziando cortesemente tutti, fece un inchino e si dissolse.
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