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Introduction

Motivated by a description of lower bounds on Ricci curvature not relying on any smooth-
ness assumption (i.e. synthetic), the theory of metric spaces (X, d) endowed with a reference
measure m (i.e. metric measure space, or m.m.s. for short) has aroused great interest in the
last twenty years. The latter theory has grown more and more, addressing several issues:
the study of functional and geometric inequalities in structures which are very far from being
Euclidean (therefore requiring new non-Riemannian tools), the description of the closure of
classes of Riemannian manifolds under suitable geometric constraints, the stability of analytic
and geometric properties of spaces.

This thesis is devoted to the study of geometric and structural properties of metric measure
spaces satisfying curvature-dimension bounds; this will done by means of Optimal Transport.

Building on the metric structure of the space, optimal transport provides a natural way to
introduce a geometric distance between probability measures, which reflects well the metric
properties of the base space. In particular, the W2-Wasserstein distance arises when consider-
ing the optimal transport problem with quadratic cost (L2-optimal transport) and it is defined
on the space P2(X) of Borel probability measures on X with finite second moment

P2(X) =

{
m ∈ P(X) :

ˆ
X
d2(x, x0)m(dx) < +∞, for some x0 ∈ X

}
.

In his pioneering paper [67], McCann pointed out the interest of convexity along constant
speed geodesics of P2(X) of integral functionals in Euclidean spaces, introducing the notion
of displacement convexity, i.e. convexity along Geo(P2(X)) (the set containing the geodesics
of P2(X)). After the works of Cordero-Erausquin–McCann–Schmuckenshläger [45], Otto–
Villani [79] and von Renesse–Sturm [86], it was realized that having Ricci curvature bounded
from below by K in the smooth setting could be equivalently formulated synthetically as a
displacement convexity property of an entropy functional along W2-Wasserstein geodesics.
This idea led Lott–Villani [66] and Sturm [93, 94], to propose the definition of CD(K,∞);
the latter being a dimension independent concept. In order to obtain more precise estimates,
the strategy was to reinforce the curvature lower bound to a curvature-dimension condition
CD(K,N), involving two real parameters K and N , N ≥ 1 playing in some generalized sense
the roles of a lower bound for the Ricci curvature and an upper bound for the dimension
respectively. This resulted into a successful (and compatible with the classical one) synthetic
definition of CD(K,N) for a complete and separable metric space (X, d) endowed with a
locally-finite Borel reference measure m (“metric-measure space”, or m.m.s.) [66],[93, 94].

The CD(K,N) condition is formulated in terms of displacement convexity of the Renyi
entropy SN (·|m); the latter being defined on P2(X) as follows

SN (µ|m) := −
ˆ
X
ρ−1/N dµ,

where ρ denotes the density of the absolutely continuous part of µ with respect to m (see Def-
inition 1.33). A Riemannian manifold (M, g) has a natural structure of metric measure space,
when endowed with the Riemaniann distance induced by g and the volume measure. In this
case, the curvature-dimension condition CD(K,N) will be satisfied if and only if dim(M) ≤ N
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and RicM (η, η) ≥ K|η|2 for all η ∈ TM . Beyond this consistency with the smooth case,
another remarkable property about Curvature-Dimension condition is its stability under mea-
sured Gromov-Hausdorff convergence. Several geometric properties can be derived directly
from the curvature-dimension condition; among them we recall the Bishop-Gromov theorem
on the volume growth of concentric balls, the Bonnet-Myers theorem on the diameter of metric
measure spaces with positive lower curvature bounds and Brunn Minkowski inequality [94].
The theory of curvature-dimension bounds has been extensively developed, leading to a better
understanding of the geometry of m.m.s.’s by means of Optimal Transport.

A completely different approach to generalized curvature-dimension bounds was set forth
in the pioneering work [13] of Bakry and Émery in the 1980’s; the latter was introduced in the
context of diffusion generators, having in mind primarily the setting of weighted Riemannian
manifolds, i.e. smooth Riemannian manifolds whose volume measure has been multiplied by
a smooth, positive and integrable density function. In the Bakry-Émery theory the starting
point is Bochner-Lichnerowicz formula

1

2
∆g(|∇f |2)− 〈∇f,∇∆gf〉 = |Hessf |2 + Ric(∇f,∇f)

valid for Riemannian manifold. In the framework of Dirichlet forms and Γ-calculus there is
still the possibility to write Bochner-Lichnerowicz formula in the weak form of an inequality,
leading to the definition of the BE(K,N) condition.

We mention that Curvature-Dimension condition has been recently investigated also in
the case in which the generalized dimension N is negative; we refer to [77] for an extension of
the range of N to negative values in the curvature-dimension condition CD(K,N) for general
m.m.s.’s and to [71] for a proof of isoperimetric, functional and concentration properties of
n-dimensional weighted Riemannian manifolds satisfying the Curvature-Dimension condition
CD(K,N) for N ∈ (−∞, 1).

One of the greatest achievements of the theory of curvature-dimension bounds is due to
the introduction in [7, 8, 46, 11] of a more restrictive condition that still retains the sta-
bility properties under measured Gromov-Hausdorff convergence. One considers the Sobolev
space W 1,2(X) of functions on X and requires the latter, that is always a Banach space,
to be a Hilbert space or, equivalently, the Laplace operator on X to be linear (infinitesimal
Hilbertianity). The notion of a lower Ricci curvature bound coupled with this last Hilber-
tian condition is called Riemannian Curvature Dimension bound, RCD for short. Contrary
to what happens in the CD(K,N) case, the RCD(K,N) condition does not allow for Finsler
structures, which are known not to appear as limits of smooth manifolds with Ricci curvature
bounds. Several results have been obtained in this setting, leading to an extensive literature
[7, 8, 10, 53, 11, 72, 55, 63, 25]. In particular, we mention [8], [10] for a proof of the
equivalence of RCD(K,∞) and BE(K,∞). Combining the results obtained in [46], [11] and
[35], also the equivalence of RCD(K,N) and BE(K,N) with N <∞ follows.

On the other hand, one can also consider a weaker variant of CD(K,N), namely the
Measure Contraction Property MCP(K,N), independently introduced by Ohta in [75] and
Sturm in [94]. Roughly, the idea is to only require the CD(K,N) condition to hold along any
W2-Wasserstein geodesic ending at a Dirac delta centered at any o ∈ supp(m). Still retaining
a weaker synthetic lower bound on the Ricci curvature, an upper bound on the dimension
and stability in the measured Gromov-Hausdorff sense (see also [76] for further properties),
MCP(K,N) includes a larger family of spaces than CD(K,N). It is now well known for instance
that the Heisenberg group equipped with a left-invariant measure, which is the simplest sub-
Riemannian structure, does not satisfy any form of CD(K,N) and does satisfy MCP(0, N)
for a suitable choice of N , see [65]. It is worth mentioning that MCP was first investigated
in Carnot groups in [65, 87], see also [16]. The theory of curvature-dimension bounds has
indeed strongly influenced the research in sub-Riemannian geometry; in particular, we point
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out that interpolation inequalities à la Cordero-Erausquin–McCann–Schmuckenshläger [45]
have been recently obtained, under suitable modifications, by Barilari and Rizzi [17] in the
ideal sub-Riemannian setting and by Balogh, Kristály and Sipos [15] for the Heisenberg group.

An important turning point for the development of the theory was represented by the fine-
tuning of a localization technique for nonsmooth spaces. The localization paradigm, initially
developed by Payne–Weinberger [82], Gromov–Milman [58] and Kannan–Lovász–Simonovits
[60], permitted to reduce various analytic and geometric inequalities to appropriate one-
dimensional counterparts. The original approach by these authors was based on a bisection
method, and thus inherently confined to Rn. In 2015 [64], Klartag extended the localization
paradigm to the weighted Riemannian setting, by disintegrating the reference measure m on
L1-Optimal Transport geodesics associated to the inequality under study, and proving that the
resulting conditional one-dimensional measures inherit the Curvature-Dimension properties of
the underlying manifold. Nevertheless, Klartag’s approach heavily made use of the smoothness
of the ambient space; to overcome this difficulty, the strategy pursued in [20], [30], [31] was
to use the structural properties of geodesics and of L1-optimal transport in metric measure
spaces.

Cavalletti and Mondino in [36] extended the localization paradigm to the framework of
m.m.s.’s (X, d,m) verifying the local version of CD(K,N) (namely CDloc(K,N), Definition
1.36) for N ∈ (1,∞) coupled with an assumption on the behaviour of the geodesics (i.e.
essentially non-branching property): the Curvature-Dimension information encoded in the
W2-geodesics was transferred to the individual rays along which a given W1-geodesic evolves.
This permitted to obtain several new results in the field: an isoperimetric inequality á la Levy-
Gromov-Milman [36] (after a while obtained also in a quantitative form in [34]) and several
functional inequalities such as the p-spectral gap (or equivalently the p-Poincaré inequality)
for any p ∈ [1,∞), the log-Sobolev inequality and the Talagrand inequality [37].
The use of L1-Optimal transport was then encoded in the CD1(K,N) condition; the latter
was introduced for the first time in [35] to solve the long standing problem of the so-called
local-to-global property of CD(K,N). The approach of [35] to the local-to-global problem
was to demonstrate that CDloc(K,N) implies CD1(K,N) and then that CD1(K,N) implies
CD(K,N).
Despite of all the results mentioned above, several fundamental questions have not an answer
yet. The aim of this thesis is to contribute to the development of the theory of curvature-
dimension bounds for metric measure spaces, exploiting the localization method. The next
sections of this introduction will be devoted to the presentation of the main results of this
thesis.

Isoperimetric inequality under Measure-Contraction Property

In this section we briefly introduce the results obtained in [43]; they will be presented
with all the details in Chapter 2.

The isoperimetric problem is one of the most classical problems in mathematics; it ad-
dresses the following natural question: given a space X, find the minimal amount of area
needed to enclose a fixed volume v. If the space X has a simple structure or has many sym-
metries the problem can be completely solved and the optimal shapes (i.e. the isoperimetric
regions) can be explicitly described (e.g. Euclidean space and the sphere). In the general
case however one cannot hope to obtain a complete solution to the problem and a comparison
result is already completely satisfactory. Probably the most popular result in this direction is
the Lévy-Gromov isoperimetric inequality [57, Appendix C] stating that if A is a (sufficiently
regular) subset of a Riemannian manifold (M, g) of dimension n = N and Ricci bounded
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below by K > 0, then

(1)
|∂A|
|M |

≥ |∂B|
|S|

,

where B is a spherical cap in the model sphere S, i.e. the N -dimensional round sphere with
constant Ricci curvature equal to K, and |M |, |S|, |∂A|, |∂B| denote the appropriate N or
N − 1 dimensional volume, and where B is chosen so that |A|/|M | = |B|/|S|.

The Lévy-Gromov isoperimetric inequality has been then extended to more general set-
tings; the case N = +∞, where the model space is Gaussian, was addressed by Bakry and
Ledoux in [14]. For the scope of this presentation, the most relevant progress was the one
obtained by E. Milman [70] for weighted Riemannian manifolds verifying the Curvature-

Dimension condition CD(K,N) introduced in the 1980’s by Bakry and Émery [12, 13]. E.
Milman discovered a model isoperimetric profile ICDK,N,D such that if a Riemannian manifold

with density verifying CD(K,N) has diameter at most D > 0, then the isoperimetric profile
function of the weighted manifold is bounded from below by ICDK,N,D. Finally the extension to

the case N < 0 was obtained in [71].
Regarding the m.m.s.’s setting, it is clear that the volume of a Borel set A can be replaced by
its m-measure, m(A); for what concerns the boundary area of the smooth framework, it can
be replaced by the Minkowski content of A

(2) m+(A) = lim inf
ε→0

m(Aε)−m(A)

ε
,

where Aε is the ε-enlargement of A given by Aε = {x ∈ X : d(x,A) < ε}. Minkowski content
turns out to be a reasonable notion to consider in our setting: it coincides with the classic
boundary area if the set is sufficiently smooth and its definition just involves the ambient
measure and the distance. Building on the work by Klartag [64] and the localization par-
adigm, Cavalletti and Mondino [36] managed to extend Lévy-Gromov-Milman isoperimetric
inequality to a class of essentially non-branching m.m.s.’s (see Definition 1.28) with m(X) = 1
and verifying the CD(K,N) condition; in particular [36] proves that

(3) m+(A) ≥ ICDK,N,D(m(A)).

The isoperimetric inequality (3) is equivalent to the following inequality

I(X,d,m)(v) ≥ ICDK,N,D(v),

for all v ∈ (0, 1). Here I(X,d,m) denotes the isoperimetric profile function of the m.m.s. (X, d,m)
and it is defined as follows

I(X,d,m)(v) := inf{m+(A) : A ⊂ X Borel, m(A) = v}.

In some cases, given a one-dimensional density h defined on the real interval (a, b) integrat-
ing to 1, we will adopt the shorter notation Ih to denote the isoperimetric profile function
I((a,b),|·|,hL1).

Thanks to the influence of the theory of curvature-dimension bounds in the context of
sub-Riemannian geometry, an increasing number of examples of spaces verifying MCP and
not CD is currently at our disposal, e.g. the Heisenberg group, generalized H-type groups,
the Grushin plane and Sasakian structures (for more details, see [17]). In all the previous
examples a sharp isoperimetric inequality is not at disposal yet; due to lack of regularity of
minimizers, sharp isoperimetric inequality has been proved just for subclasses of competitors
having extra regularity or additional symmetries; in particular, Pansu Conjecture [80] is still
unsolved. For more details we refer to [74, 88, 89, 28] and references therein. In this regard,
we stress here that one of greatest advantages of the localization technique lies in the fact that
it does not require any a priori regularity assumption on the optimizer.
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In Chapter 2 we address the isoperimetric inequality à la Lévy-Gromov-Milman within
the class of spaces verifying MCP. In particular, we identify a family of one-dimensional
MCP(K,N)-densities, each for every choice of K,N , volume v and diameter D, not verifying
CD(K,N), and having optimal isoperimetric profile for the volume v; we thus denote the
model isoperimetric profile at volume v by IK,N,D(v) and obtain the following result:

Theorem 1. [Theorem 2.15] Let K,N ∈ R with N > 1 and let (X, d,m) be an essentially
non-branching m.m.s. verifying MCP(K,N) with m(X) = 1 and having diameter less than D

(where D ≤ π
√

(N − 1)/K if K > 0). For any A ⊂ X,

(4) m+(A) ≥ IK,N,D(m(A)).

Moreover (4) is sharp, i.e. for each v ∈ [0, 1], K,N,D there exists a m.m.s. (X, d,m) with
m(X) = 1 and A ⊂ X with m(A) = v such that (4) is an equality.

We stress again that estimate (4) is sharp in the class of MCP(K,N) spaces as equality is
attained on the 1-dimensional model densities.

Via localization paradigm for MCP-spaces (see Section 1.4 for details), following [64, 36],
the proof of Theorem 1 is reduced to the proof of the corresponding statement in the one-
dimensional setting. However, contrary to the CD framework, due to lack of any form of
concavity, the isoperimetric problem for a general one-dimensional MCP(K,N)-density seems
to be out of reach. We instead directly exhibit, for each K,N,D and v, an optimal one-
dimensional MCP(K,N)-density, denoted by hK,N,D,v that will be optimal only for that choice
of K,N,D and v.
In order to detect the family of one-dimensional densities hK,N,D,v, we first prove the existence
of a lower bound fK,N,D for any MCP(K,N) density integrating to 1. Then we define hK,N,D,v
as the density touching the lower bound in a certain point (depending on the parameters
K,N,D, v) and moving away from it in the steepest way allowed by the MCP(K,N) condition.
Moreover, we show that the lower bound fK,N,D enjoys a rigidity property: if some MCP(K,N)
density integrating to 1 touches the lower bound, then it must be equal to hK,N,D,v for a certain
value of v.
Once the family of one-dimensional densities hK,N,D,v has been introduced, one can prove
that:

(5) IK,N,D(v) =

{
hK,N,D,v(aK,N,D(v)), K ≤ 0,

min
D′≤D

hK,N,D′,v(aK,N,D′(v)), K > 0,

where aK,N,D(v) is the unique point of [0, D] such that
´

[0,aK,N,D(v)] hK,N,D,v(x) dx = v; in

particular

IhK,N,D,v(v) = hK,N,D,v(aK,N,D(v)),

for allK,N,D and v. To explain (5), we underline that for eachK,N,D and v, hK,N,D,v(aK,N,D(v))
is the optimal perimeter when minimization is constrained to all one-dimensional MCP(K,N)-
densities (integrating to 1) having support of exactly length D, see Theorem 2.7. Denoting the

optimal value of the latter minimization problem by ĨK,N,D(v), the previous sentence reads
as

(6) ĨK,N,D(v) = IhK,N,D,v(v).

Hence (5) is a direct consequence of the following fact: ĨK,N,D(v) is strictly decreasing as a
function of D only if K ≤ 0, showing a remarkable difference with the CD-framework [70].

The geometric strength of Lévy-Gromov isoperimetric inequality lies in its rigidity prop-
erty: if a Riemannian manifold verifies the equality case in (1) then it is isometric to the round
sphere of the correct dimension [57]; if equality is attained in (3) and the metric measure space
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verifies the stronger RCD(K,N) condition (see [7, 8, 46, 11, 53, 35] and references therein),
then it is isomorphic in the metric-measure sense to a spherical suspension (see [36] for de-
tails). At the present generality, i.e. the class of m.m.s.’s verifying MCP(K,N), competitors
are less regular and a weaker rigidity is valid.

In particular, the proof of Theorem 2.7 is sufficiently stable to imply one-dimensional
rigidity (Theorem 2.12), valid for each choice of K,N,D and v. Building on this and on

the monotonicity in D of ĨK,N,D(v), we show that whenever K ≤ 0 the optimal metric
measure space has a product structure in a measure theoretic sense (see Theorem 2.16 for
the precise result). Finally, we mention the recent paper by Han and Milman [59], where
the 1-dimensional density hK,N,D,1/2 is used to deduce a sharp Poincaré inequality in m.m.s.’s
satisfying MCP(K,N) and having diameter upper bounded by D ∈ (0,∞).

Independence of synthetic Curvature Dimension conditions on transport
distance exponent

In this section we introduce the results obtained in [2]; a comprehensive presentation of
the latters will be given in Chapter 3.

The idea of Lott-Sturm-Villani synthetic approach is to analyse weighted convexity prop-
erties of the Renyi Entropy along geodesics in the space of probability measures endowed with
the quadratic transportation distance. As the CD(K,N) condition for smooth manifolds is
equivalent to a joint lower bound on the Ricci curvature and an upper bound on the dimen-
sion, it is a natural question to consider whether the squared-distance function plays a special
role in the theory or not.

Among all the possible transport cost functions, the power distance costs, namely dp with
p > 1, are related to the geometry of the underlying space. Moreover, the latters have already
appeared in the literature in the definition of the p-Wasserstein distance Wp that turns the

space of probability measures with finite pth-moments into a complete and separable metric
space (Pp(X),Wp). Another natural setting for such spaces can also be seen in the case of
doubly-degenerate diffusion dyanamics [78], [1].

Accordingly, the modified displacement convexity of the entropy functional can be con-
sidered with respect to Wp-geodesics – and this in turn furnishes a straightforward and legit-
imate extension of the definition of CD(K,N) condition proposed by Kell [62] and denoted
by CDp(K,N). The notation CD(K,N) will be reserved for the classical case p = 2. While
Kell established the equivalence of all CDp(K,N) in the smooth setting via the use of Ricci
curvature, no previous results are known in the context of nonsmooth metric measure spaces.

In Chapter 3 we will attack this problem with a strategy relying on the CD1(K,N) condi-
tion. More precisely, we will use the same point of view of [35] to link two different curvature
dimension conditions: we will demonstrate the equivalence of CDp(K,N) and CDq(K,N) for
a general m.m.s. (X, d,m), for 1 < p, q and K,N ∈ R with N > 1, provided suitable restric-
tions are placed on X. In particular, we will require that (X, d,m) is either non-branching or
at least satisfies appropriate versions of the essentially non-branching condition of Definition
1.29. More specifically, we obtain the following results:

Theorem 2. [Theorem 3.44] Let (X, d,m) be such that m(X) = 1. Assume it is p-
essentially non-branching and verifies CDp(K,N) for some p > 1. If (X, d,m) is also q-
essentially non-branching for some q > 1, then it verifies CDq(K,N).

As we will extend the strategy used in [35] to powers other than p = 2, also the local-to-
global property will be established for the CDp(K,N).

Corollary 1. [Corollary 3.45] Fix any p > 1 and K,N ∈ R with N > 1. Let (X, d,m)
be a p-essentially non-branching metric measure space verifying CDp,loc(K,N) from Definition
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1.36 and such that (X, d) is a length space with supp(m) = X and m(X) = 1. Then (X, d,m)
verifies CDp(K,N).

In Theorem 2 and Corollary 1 we are assuming m(X) = 1. This assumption is also used in
[35] but we believe that it is most likely a purely technical assumption. At the moment, the
main obstacle to the case of a general Radon measure m is the lack of a canonical disintegration
theorem once a “measurable” partition is given. For some preliminary results in this direction
we refer to [41].

Another motivation to studying distance costs with powers other than p = 2 comes from
the recent works of McCann [68] and Mondino-Suhr [73], where the authors analyze the
relation between optimal transportation and timelike Ricci curvature bounds in the smooth
Lorentzian setting. Analogously to the Riemannian setting, timelike Ricci curvature lower
bounds can be equivalently characterised in terms of convexity properties of the Bolzmann-
Shannon entropy functional along `p-geodesics of probability measures, where `p denotes the
causal transport distance with exponent p ∈ (0, 1]. This point of view has been pushed
forward in [42] and [69] where the authors proposed a synthetic formulation of the Strong
Energy condition, denoted by TCDp(K,N), which is valid for non-smooth Lorentzian spaces.
Unlike the Riemmannian case, the Lorentzian setting does not have a distinguished p; and
one of the next steps of the theory will be to address whether TCDp(K,N) depends on p or
not.

Displacement convexity of the Entropy and the distance cost Optimal
Transportation

In this section we briefly introduce the results obtained in [33]; they will be presented
with all the details in Chapter 4.

The formulation of an appropriate version of Ricci curvature lower bounds valid for pos-
sibly singular spaces has been a central topic of research for several years.

As we have observed, the theory by Lott-Villani [66] and Sturm [93, 94] is formulated
in terms of displacement convexity of the Renyi entropy; in rough terms, a space will satisfy
the CD(K,N) condition if the entropy evaluated along W2-geodesics is more convex than
the entropy evaluated along W2-geodesics of the model space with constant curvature K and
dimension N in an appropriate sense (see Definition 1.33). This approach had a huge impact,
leading to the establishment of a rich and robust theory.
On the other hand, substantial recent advancements in the theory (localization paradigm
and local-to-global property) have been obtained considering the different point of view of
L1-Optimal transport problems yielding a different curvature dimension condition CD1(K,N)
[35] formulated in terms of one-dimensional curvature properties of integral curves of Lips-
chitz maps. As a means to establish the local-to-global property for the curvature-dimension
condition, it has been shown in [35] that a metric measure space (X, d,m) verifies CD(K,N)
if and only if it satisfies CD1(K,N), provided X is essentially non-branching (see Definition
1.28) and the total space has finite mass (i.e. m(X) <∞).

It remained however unclear if the CD1(K,N) condition could be equivalently formulated
in terms of displacement convexity of the Entropy functional along W1-geodesics.

In Chapter 4 we show that this is the case and the two approaches produce the same
curvature-dimension condition, reconciling the two definitions; we report here the main result
of the chapter:

Theorem 3. Let (X, d,m) be an essentially non-branching metric measure space and
further assume m(X) = 1. Then (X, d,m) satisfies the CD1(K,N) condition if and only if it
satisfies the CD1(K,N) condition.



viii INTRODUCTION

The CD1(K,N) condition is formulated, in analogy with the classical CD(K,N), as dis-
placement convexity of the Renyi entropy along W1-geodesics; its precise formulation is given
in Definition 4.1.

Hence, combining this result with the one described in the previous section, we establish
that for any p ≥ 1, all the CDp(K,N) conditions, when expressed in terms of displacement con-
vexity, are equivalent, provided the space X satisfies the appropriate essentially non-branching
condition.



CHAPTER 1

Preliminaries

In this chapter we recall some basic notions that we will use throughout the thesis. First of
all, we will start collecting some concepts of the Optimal transport Theory; being these results
classical, we will refer for proofs and in-depth analyses to [6], [97]. Next, we will briefly recall
the synthetic notions of lower Ricci curvature bounds we will deal with; we will focus just on
their main ideas and properties, referring to [66],[93],[94],[75] for further details. Finally, we
will present a brief overview of L1-optimal transport and localization technique, the latters
being fundamental ingredients of the new results collected in this thesis.

1.1. The Optimal Transport Problem

1.1.1. Monge and Kantorovich formulation. Let X, Y be two complete and sepa-
rable metric spaces, T : X → Y a Borel map and µ ∈ P(X); the measure T]µ ∈ P(Y ), called
the push forward of µ through T , is defined by

T]µ(E) = µ(T−1(E)), ∀E ⊂ Y, Borel.

Let us fix a Borel cost function c : X × Y → R ∪ {+∞}. The Monge version of the Optimal
trasport problem can be stated as follows:

Problem 1 (Monge’s Optimal Transport Problem). Let µ ∈ P(X), ν ∈ P(Y ). Minimize

T 7→
ˆ
X
c(x, T (x)) dµ(x)

among all transport maps T from µ to ν, i.e. all maps T such that T]µ = ν.

Depending on the choice of the cost function c, Monge’s problem can be ill-posed: indeed,
the existence of admissible maps is not a priori guaranteed and the constraint T]µ = ν turns
out to be not sequentially closed. To overcome such difficulties, Kantorovich proposed the
following new version of the problem:

Problem 2 (Kantorovich’s formulation). Minimize:

π 7→
ˆ
X×Y

c(x, y)dπ(x, y)

in the set Adm(µ, ν) of all transport plans π ∈ P(X × Y ) from µ to ν, i.e. the set of Borel
Probability measures on X × Y such that PX] π = µ, P Y] π = ν, where PX , P Y are the
projections from X × Y onto X and Y respectively.

This formulation has several advantages:

(1) since at least µ× ν belongs to Adm(µ, ν), the latter set is always not empty,
(2) the set Adm(µ, ν) is convex and compact with respect to the narrow topology in
P(X × Y ) (see below for the definition) and the functional π 7→

´
cdπ is linear,

(3) to any transport map T from µ to ν, it is naturally associated the plan π = (Id ×
T )]µ ∈Adm(µ, ν).

1
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Definition 1.1. We say that a sequence (µn) ⊂ P(X) narrowly converges to µ providedˆ
ϕdµn 7→

ˆ
ϕdµ, ∀ϕ ∈ Cb(X),

Cb(X) being the space of the continuous and bounded functions on X.

Existence of minimizers for Kantorovich’s formulation of the transport problem now comes
from a standard lower-semicontinuity and compactness argument:

Theorem 1.2. If the cost c is lower semicontinuous and bounded from below, there exists
a minimizer for the Problem 2.

We will denote by Opt(µ, ν) the set of optimal plans from µ to ν, i.e. the set of all
minimizers for the Problem 2.

Remark 1.3. It is possible to prove that if the cost c is continuous and µ is non atomic,
then the infima of Monge and Kantorovich problems coincide [50], [4]. Hence, Kantorovich
formulation can be seen as a ”relaxation” of the Monge’s Problem.

1.1.2. Necessary and sufficient optimality conditions. According to the previous
results, one needs a way to detect optimal plans; in order to do so, it is useful to provide some
characterizations of this notion. Let’s start from the following definitions:

Definition 1.4. (c-cyclical monotonicity) We say that Γ ⊂ X×Y is c-cyclically monotone
if given (xi, yi) ∈ Γ, 1 ≤ i ≤ N , it holds:

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)),

for every permutation σ of {1, . . . , N}.

Definition 1.5. (c-transform) Let ψ : Y → R ∪ {±∞} be any function. Its c-transform
ψc : X → R ∪ {−∞} is defined as

ψc(x) := inf
y∈Y

c(x, y)− ψ(y).

Similarly, given ϕ : X → R ∪ {±∞}, its c-transform ϕc : Y → R ∪ {±∞} is defined as

ϕc(y) := inf
x∈X

c(x, y)− ϕ(x).

Definition 1.6. (c-concavity) We say that ϕ : X → R∪{−∞} is c-concave if there exists
ψ : Y → R ∪ {−∞} such that ϕ = ψc. Similarly, ψ : Y → R ∪ {−∞} is c-concave if there
exists ϕ : X → R ∪ {−∞} such that ψ = ϕc.

Definition 1.7. (c-superdifferential) Let ϕ : X → R ∪ {−∞} be a c-concave function.
The c-superdifferential ∂cϕ ⊂ X × Y is defined as

∂cϕ := {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)}.
Moreover, we define the c-superdifferential ∂cϕ(x) at x ∈ X as the set of y ∈ Y for which
(x, y) ∈ ∂cϕ.

Remark 1.8. Observe that y ∈ ∂cϕ(x) if and only if holds

ϕ(x) = c(x, y)− ϕc(y),

ϕ(z) ≤ c(x, y)− ϕc(y), ∀z ∈ X.
In particular, it turns out that

ϕ(x)− c(x, y) ≥ ϕ(z)− c(z, y), ∀z ∈ X.
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From this it follows that the c-superdifferential of a c-concave function is always a c-cyclically
monotone set; indeed, if (xi, yi) ∈ ∂cϕ, it holds∑

i

c(xi, yi) =
∑
i

ϕ(xi) + ϕc(yi) =
∑
i

ϕ(xi) + ϕc(yσ(i)) ≤
∑
i

c(xi, yσ(i))

for any permutation σ of the indexes.

Theorem 1.9 (Fundamental Theorem of Optimal Transport). Assume that c : X×Y → R
is continuous and bounded from below and let µ ∈ P(X), ν ∈ P(Y ) be such that

(1.1) c(x, y) ≤ a(x) + b(y),

for some a ∈ L1(µ), b ∈ L1(ν). Moreover, let π ∈Adm(µ, ν). Then the following are equiva-
lent:

(1) the plan π is optimal,
(2) the set supp(π) is c-cyclically monotone,
(3) there exists a c-concave function ϕ such that max{ϕ, 0} ∈ L1(µ) and supp(π) ⊂ ∂cϕ.

Remark 1.10. In particular, it follows that the optimality depends only on the support
of the plan.

1.1.3. Dual Problem.

Problem 3. (Dual Problem) Let µ ∈ P(X), ν ∈ P(Y ). Maximize the value of the
functional ˆ

X
ϕ(x) dµ(x) +

ˆ
Y
ψ(y)d ν(y),

among all functions ϕ ∈ L1(µ), ψ ∈ L1(ν) such that

(1.2) ϕ(x) + ψ(y) ≤ c(x, y), ∀x ∈ X, y ∈ Y.

Theorem 1.11. Let µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R be continuous and bounded
from below. If the condition (1.1) holds, then

inf
π∈Adm(µ,ν)

ˆ
c(x, y) dπ(x, y) = sup

ϕ,ψ

ˆ
ϕ(x)dµ(x) +

ˆ
ψ(y) dν(y)

where the supremum is taken among all ϕ,ψ that satisfy (1.2). Moreover, the supremum of
the Dual Problem is attained and the maximizing couple (ϕ,ψ) is of the form (ϕ,ϕc) for some
c-concave function ϕ.

Definition 1.12. (Kantorovich potential) A c-concave function ϕ such that (ϕ,ϕc) is a
maximizing pair for the dual problem 3 is called c-concave Kantorovich potential for the couple
µ, ν.

1.1.4. Existence of Optimal Maps. So far the problem of existence of Optimal trans-
port maps reduces in looking for Optimal plans π that are induced by a map T , i.e. such that
π = (Id, T )]µ. In this regard, it is useful the following characterization:

Lemma 1.13. Let π ∈ Adm(µ, ν). The plan π is induced by a map if and only if there
exists a π-measurable set Γ ⊂ X × Y on which π is concentrated, such that for µ-a.e. x there
exists only one y = T (x) for which (x, y) ∈ Γ. In this case π is induced by the map T .

Hence, combining what has been deduced so far, the Optimal Transport Problem reduces
to understand ”how often” the c-superdifferential of a c-concave function is single valued.
There is no general answer to this question but particular cases can be studied, such as:

(1) X = Y = Rd and c(x, y) = |x− y|2/2,
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(2) X = Y = M , where M is a Riemaniann manifold and c(x, y) = d(x, y)2/2, where d
is the Riemaniann distance.

Concerning the first case, crucial is the following characterization of c-concavity and c-superdifferential:

Lemma 1.14. Let ϕ : Rd 7→ R ∪ {−∞}. Then ϕ is c-concave if and only if x 7→ ϕ̄(x) =
|x|2/2 − ϕ(x) is convex and lower semincontinuous. In this case, y ∈ ∂cϕ(x) if and only if
y ∈ ∂−ϕ̄(x).

Thus, in this setting, being concentrated on the c-superdifferential of a c-concave map
turns out to be equivalent to being concentrated on the graph of the subdifferential of a convex
function. The latter condition has been already studied in literature and can be related with
the following notion.

Definition 1.15. A set E ⊂ Rd is called c − c hypersurface if, in a suitable system of
coordinates, it is the graph of the difference of two real valued convex functions.

The following result holds true:

Theorem 1.16. Let E ⊂ Rd. There exists a convex function ϕ̄ : Rd 7→ R such that E is
contained in the set of points of non differentiability of ϕ̄ if and only if E can be covered by
countably many c− c hypersurfaces.

Definition 1.17. A measure µ ∈ P(Rd) is called regular if µ(E) = 0 for any c − c
hypersurface E ⊂ Rd.

Now we are ready to state the celebrated Brenier Theorem, which concerns the problem
of existence and uniqueness of optimal maps. Actually, we state an improved version of the
latter, anticipated in a footnote by Gangbo–McCann [51] and stated by Gigli in [6]. We refer
to [97] for further bibliographical remarks.

Theorem 1.18. Let µ ∈ P(Rd) be such that
´
|x|2dµ(x) < ∞. Then the following are

equivalent:

(1) for every ν ∈ P(Rd) with
´
|x|2dν(x) <∞, there exists a unique transport plan from

µ to ν and this plan is induced by a map T ,
(2) µ is regular.

If one of the two equivalent conditions holds, the optimal map T is the gradient of a convex
function.

Remark 1.19. When X = Y = Rd and c(x, y) = θ(x − y) with θ strictly convex and
µ absolutely continuous with respect to Ld, duality methods yield that any optimal plan is
induced by a transport map; thus, the optimal map exists and is unique (see [26], [51]).

We now spend few words concerning the case X = Y = M with M smooth Riemannian
manifold and c(x, y) = d(x, y)2/2. The latter case shares some similarities with the Euclidean
one; indeed, the concepts of semiconvexity (i.e. second derivatives bounded from below) and
semiconcavity also make sense on manifolds, since these properties can be read locally and
change of coordinates are smooth. The main difference is in the fact that Lemma 1.14 doesn’t
hold anymore.

Proposition 1.20. Let M be a smooth, compact Riemann manifold without boundary. Let
ϕ : M → R∪{−∞} be a c-concave function not identically equal to −∞. Then ϕ is Lipschitz,
semiconcave and real valued. If y ∈ ∂cϕ(x), then exp−1

x (y) ⊂ −∂+ϕ(x). Conversely, if ϕ is
differentiable at x, then expx(−∇ϕ(x)) ∈ ∂cϕ(x).

Definition 1.21. (Regular Measures in P(M)) A measure µ ∈ P(M) is called regular
if it vanishes on the set of points of non-differentiability of ψ, for any semiconvex function
ψ : M → R.
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By Proposition 1.20 , it is possible to derive a result about existence of optimal transport
maps on manifolds which closely resembles the Brenier Theorem.

Theorem 1.22 (Mc Cann). Let M be a smooth, compact Riemannian manifold without
boundary and µ ∈ P(X). The following are equivalent:

(1) for every ν ∈ P(M) there exists a unique transport plan from µ to ν and this plan is
induced by a map T .

(2) µ is regular.

If one of the two equivalent conditions holds, the optimal map T can be written as x →
expx(−∇ϕ(x)) for some c-concave function ϕ : M → R.

1.2. Geodesics and measures

A triple (X, d,m) is called a metric measure space if (X, d) is a Polish space (i.e. a complete
and separable metric space) and m is a positive Radon measure over X. In what follows we
will always deal with m.m.s. in which m is a probability measure, i.e. m(X) = 1; we will
denote with P(X) the space of all Borel probability measures over X.

Definition 1.23. A curve γ ∈ C([0, 1], X) is called a constant speed geodesic if

d(γs, γt) = |s− t|d(γ0, γ1), ∀s, t ∈ [0, 1].

From now on the set of all constant speed geodesics will be denoted with Geo(X) while
et : Geo(X)→ R will denote the evaluation map defined as follows

et(γ) = γt.

Definition 1.24. A metric measure space (X, d,m) is called geodesic if, for any choice of
x, y ∈ X, there exists γ ∈ Geo(X) with γ0 = x, γ1 = y.

Fixed p ≥ 1, we will denote with the symbol Pp(X) the space of probability measures with
finite p-moment, i.e.

Pp(X) = {m ∈ P(X) :

ˆ
X
dp(x, x0)m(dx) < +∞, for some x0 ∈ X}.

The subspace of m-absolutely continuous probability measures will be denoted by Pp(X, d,m).
The space Pp(X) will be endowed with the Lp-Wasserstein distance Wp defined by

(1.3) W p
p (µ0, µ1) = inf

π

ˆ
X×X

dp(x, y)π(dxdy),

where the infimum is taken in the class of all probability measures in P(X×X) with first and
second marginal given by µ0 and µ1 respectively. As (X, d) is a complete and separable metric
space, so is (Pp(X),Wp). Also, it is known that (X, d) is geodesic if and only if (Pp(X),Wp)
is geodesic.
The following theorem holds true:

Theorem 1.25 (Theorem 3.10,[6]). If (X, d) is geodesic, (Pp(X),Wp) is geodesic too.
Moreover, the following are equivalent:

(1) [0, 1] 3 t 7→ µt ∈ Pp(X) is a geodesic;
(2) ∃ ν ∈ P(Geo(X)) s.t. (e0, e1)]ν realizes the minimum in (1.3), µt = et]ν.

Remark 1.26. The measures ν ∈ P(Geo(X)) verifying (2) are called dynamical op-
timal plans; the set containing all dynamical optimal plans from µ0 to µ1 is denoted by
OptGeop(µ0, µ1). Notice that if ν ∈ OptGeop(µ0, µ1), then also (et, es)]ν is p-optimal between
its marginals.
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Definition 1.27. A set A ⊂ Geo(X) is called a set of non-branching geodesics if for any
γ1, γ2 ∈ A

∃ t̄ ∈ (0, 1) : γ1(s) = γ2(s), ∀s ∈ [0, t̄] =⇒ γ1(t) = γ2(t), ∀t ∈ [0, 1].

Finally we recall the classical definition of essentially non-branching. This notion has been
firstly introduced in [85] and considers only the case p = 2.

Definition 1.28 (Essentially non-branching). Let (X, d,m) be a m.m.s.. We say that
(X, d,m) is W2-essentially non-branching if for any µ0, µ1 ∈ P2(X, d,m) any element of
OptGeo2(µ0, µ1) is concentrated on a set of non-branching geodesics.

The previous notion has been later generalized in [61], resulting in the following:

Definition 1.29 (p-essentially non branching). (X, d,m) is called p-essentially non-branching
if for all µ0, µ1 ∈ Pp(X, d,m), any ν ∈ OptGeop(µ0, µ1) is concentrated on a Borel non-
branching set G ⊂ Geo(X), in agreement with the terminology of [85] when p = 2.

Being p-essentially non branching for a m.m.s. is strictly related to the uniqueness of
optimal plans for the Lp transport; in order to state more precisely the result we refer to, we
need to introduce the so-called qualitatively non-degenerate property [61, Lemma 5.14]. The
latter asserts that for each ball BR(x0), there is a ratio f(t) ∈ (0, 1] with lim supt→0 f(t) > 1/2
which bounds the decrease in measure whenever any Borel set A ⊂ BR(x0) is contracted a
fraction t of the distance towards any x ∈ BR(x0):

(1.4) m(et(G)) ≥ f(t)m(e0((G))

for G = (e0 × e1)−1(A× {x}). The following theorem holds true:

Theorem 1.30 ([61]). Let (X, d,m) be a metric measure space with m qualitatively non-
degenerate. Then the following properties are equivalent:

(1) (X, d,m) is p-essentially non-branching;
(2) for every µ0, µ1 ∈ Pp(X) with µ0 � m there is a unique ν ∈ OptGeop(µ0, µ1).

Moreover, the p-optimal coupling (e0, e1)]ν is induced by a transport map and every
interpolation µt = (et)]ν, t ∈ [0, 1), is absolutely continuous with respect to m.

1.3. Several notions of synthetic Ricci curvature bounds

Starting from the pioneering papers of Lott-Villani [66] and Sturm [93],[94], synthetic
and abstract notions of lower Ricci curvature bounds were introduced in the class of complete
and separable metric spaces (X, d) endowed with a locally finite Borel measure m.

The first attempt was done prescribing a certain convexity property of an entropy func-
tional along W2-Wasserstein geodesics, leading in this way to the well-known definition of the
Curvature Dimension condition CD(K,N) that we now briefly recall.
Given a metric measure space (X, d,m) and N ∈ R, N ≥ 1, we define the Renyi entropy
functional SN (·|m) : P2(X, d)→ R as follows

SN (µ|m) := −
ˆ
X
ρ−1/N dµ,

where ρ denotes the density of the absolutely continuous part of µ with respect to m.

Definition 1.31 (σK,N -coefficients). For every K,N ∈ R with N ≥ 1, we set

DK,N :=

{
π√
K/N

K > 0 , N <∞

+∞ otherwise
;
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in addition, given t ∈ [0, 1] and 0 ≤ θ < DK,N , we define the so called distortion coefficients

σ
(t)
K,N (θ) as follows:

σ
(t)
K,N (θ) :=



∞ if Kθ2 ≥ Nπ2,
sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 < 0 andN = 0, or if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N)

if Kθ2 ≤ 0 andN > 0.

Definition 1.32 (τK,N -coefficients). Given K ∈ R, N ∈ (1,∞] and (t, θ) ∈ [0, 1]× R+,
define:

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N .

When N = 1, set τ
(t)
K,1(θ) = t if K ≤ 0 and τ

(t)
K,1(θ) = +∞ if K > 0.

We are now in a position to give the following :

Definition 1.33. Given two numbers K,N ∈ R with N ≥ 1 we say that a metric measure
space (X, d,m) satisfies the curvature-dimension condition CD(K,N) if and only if for each
pair of µ0, µ1 ∈ P2(X, d,m) there exist an optimal coupling π of µ0 = ρ0m and µ1 = ρ1m and
a W2-geodesic {µt} interpolating the two such that

(1.5) SN ′(µt|m) ≤ −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(x, y))ρ

−1/N ′

0 (x) + τ
(t)
K,N ′(d(x, y))ρ

−1/N ′

1 (y)
]
π(dx, dy)

for all t ∈ [0, 1] and all N ′ ≥ N .

For Riemannian manifolds, the curvature-dimension condition CD(K,N) will be satisfied
if and only if dim(M) ≤ N and RicM (η, η) ≥ K|η|2 for all η ∈ TM . Beyond this consistency
with the smooth case, another fundamental property about Curvature-dimension condition
that is worth to mention is its stability under measured Gromov-Hausdorff convergence.

Remark 1.34. A relevant case for our purposes (due to the crucial use of the localization
technique) is the one of one-dimensional spaces (X, d,m) = (I, | · |, hL1), where I ⊂ R is an
interval, h ∈ L1(I) and positive. In this case the density h has to satisfy

(1.6)
(
h1/(N−1)

)′′
+

K

N − 1
h1/(N−1) ≤ 0,

in the sense of distribution. In particular, by (1.6), there exists a (locally Lipschitz) continuous
representative of h - that we shall continue to denote by h - and it satisfies

h((1− t)R0 + tR1)
1

N−1 ≥ σ(1−t)
K,N−1(R1 −R0)h(R0)

1
N−1 + σ

(t)
K,N−1(R1 −R0)h(R1)

1
N−1 ,

for any R0, R1 ∈ I, R0 ≤ R1, and t ∈ [0, 1].

One can also prescribe the convexity inequality (1.5) to hold along a Wp-geodesic, getting
to the more general definition of CDp(K,N).

Definition 1.35. Given two numbers K,N ∈ R with N ≥ 1 we say that a metric measure
space (X, d,m) satisfies the CDp(K,N) if and only if for each pair of µ0, µ1 ∈ Pp(X, d,m) there
exist an optimal coupling π of µ0 = ρ0m and µ1 = ρ1m and a Wp-geodesic {µt} interpolating
the two such that

(1.7) SN ′(µt|m) ≤ −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(x, y))ρ

−1/N ′

0 (x) + τ
(t)
K,N ′(d(x, y))ρ

−1/N ′

1 (y)
]
π(dx, dy),

for all t ∈ [0, 1] and all N ′ ≥ N .
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When we omit the subscript p from CDp(K,N), we tacitly mean the classical p = 2, as
introduced independently by Lott-Villani in [66] and Sturm in [93, 94].

As a natural curvature notion, CDp(K,N) has a local version that is denoted by CDp,loc(K,N).

Definition 1.36 (CDp,loc(K,N)). Given K,N ∈ R with N ≥ 1, (X, d,m) is said to satisfy
CDp,loc(K,N) if for any o ∈ supp(m), there exists a neighborhood Xo ⊂ X of o, so that for
all µ0, µ1 ∈ Pp(X, d,m) supported in Xo, there exists ν ∈ OptGeop(µ0, µ1) so that for all
t ∈ [0, 1], µt := (et)]ν � m, and for all N ′ ≥ N , (1.7) holds.

Note that (et)]ν is not required to be supported in Xo for intermediate times t ∈ (0, 1) in the
latter definition.

We will also consider a weak variant of the curvature-dimension condition encapsulating
generalized Ricci curvature lower bounds coupled with generalized dimension upper bounds,
namely the measure contraction property MCP(K,N) [75].

Definition 1.37 (MCP(K,N)). A m.m.s. (X, d,m) is said to satisfy MCP(K,N) if for
any o ∈ supp(m) and µ0 ∈ P2(X, d,m) of the form µ0 = 1

m(A)mxA for some Borel set A ⊂ X

with 0 < m(A) <∞, there exists ν ∈ OptGeo(µ0, δo) such that:

(1.8)
1

m(A)
m ≥ (et)]

(
τ

(1−t)
K,N (d(γ0, γ1))Nν(dγ)

)
∀t ∈ [0, 1].

If (X, d,m) is a m.m.s. verifying MCP(K,N), then (supp(m), d) is Polish, proper and it is a
geodesic space. With no loss in generality for our purposes we will assume that X = supp(m).
Many additional results on the structure of W2-geodesics can be obtained just from the MCP
condition together with the essentially non-branching assumption (see [38]).

To conclude, referring to [75, 94] for more general results, we report the following impor-
tant fact [75, Theorem 3.2]: if (M, g) is n-dimensional Riemannian manifold with n ≥ 2, the
m.m.s. (M,dg, volg) verifies MCP(K,n) if and only if Ricg ≥ Kg, where dg is the geodesic
distance induced by g and volg is the volume measure.

If (X, d,m) = (I, | · |, hL1), it is a standard fact that the m.m.s. (I, | · |, hL1) verifies
MCP(K,N) if and only if the non-negative Borel function h has a continuous representative
(still denoted by h) which satisfies the following inequality:

(1.9) h(tx1 + (1− t)x0) ≥ σ(1−t)
K,N−1(|x1 − x0|)N−1h(x0),

for all x0, x1 ∈ I and t ∈ [0, 1], see for instance [20, Theorem 9.5]. We will call h an
MCP(K,N)-density. Inequality (1.9) implies several known properties that we recall for
readers convenience. To write them in a unified way, we define for κ ∈ R the function
sκ : [0,+∞)→ R (on [0, π/

√
κ) if κ > 0)

(1.10) sκ(θ) :=


(1/
√
κ) sin(

√
κθ) if κ > 0,

θ if κ = 0,

(1/
√
−κ) sinh(

√
−κθ) if κ < 0.

For the moment we confine ourselves to the case I = (a, b) with a, b ∈ R; hence (1.9) implies
(actually is equivalent to)

(1.11)

(
sK/(N−1)(b− x1)

sK/(N−1)(b− x0)

)N−1

≤ h(x1)

h(x0)
≤
(
sK/(N−1)(x1 − a)

sK/(N−1)(x0 − a)

)N−1

,

for x0 ≤ x1. In particular, h is locally Lipschitz in the interior of I and continuous up to
the boundary. The next lemma was stated and proved in [35, Lemma A.8] under the CD
condition; as the proof only uses MCP(K,N) we report it in this more general version.
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Lemma 1.38. Let h denote a MCP(K,N) density on a finite interval (a, b), N ∈ (1,∞),
which integrates to 1. Then:

(1.12) sup
x∈(a,b)

h(x) ≤ 1

b− a

{
N K ≥ 0

(
´ 1

0 (σ
(t)
K,N−1(b− a))N−1dt)−1 K < 0

.

In particular, for fixed K and N , h is uniformly bounded from above as long as b − a is
uniformly bounded away from 0 (and from above if K < 0).

As one would expect, CDp(K,N) implies MCP(K,N); it is sufficient indeed to repeat
the same argument presented in [35, Lemma 6.11] for the case p = 2 noticing that Wp-
geodesics ending in a delta measure are also W2-geodesics. When coupled with essentially
non-branching condition, MCP yields nice properties for Wp-geodesics. In particular, MCP
implies the qualitatively non-degenerate property, thus Theorem 1.30 holds true.

Remark 1.39. It is worth also recalling that the local version of CD(K,N), denoted by
CDloc(K,N) is known to imply MCP(K,N) provided the (X, d) is a non-branching length
space, see [44]. Since any CDp,loc(K,N) gives the very same information when considered for
Wasserstein geodesics arriving at a Dirac mass, we can conclude that the same argument of
[44] implies that CDp,loc(K,N) implies MCP(K,N), provided (X, d) is a non-branching length
space.

Moreover, it has already been observed and used in literature that the non-branching as-
sumption can be weakened to essentially non-branching for p = 2: the non-branching property
in [44] was used to get a partition of X formed of all geodesics arriving at the same point
o ∈ X and subsequently to unsure uniqueness of a dynamical optimal plan connection µ0 to
µ1 with µ0 � m. Both properties can be deduced from p-essentially non-branching together
with Theorem 1.30; for more details see Section 3.4.1. Hence we will take for granted that
given any p > 1, a metric measure spaces satisfying CDp,loc(K,N) and being a p-essentially
non-branching length space also verifies MCP(K,N).

1.4. L1-Optimal Transport and Localization Technique

To be precise, the original formulation of Monge’s transport problem handled with the
cost c(x, y) = |x− y| on Rd; the latter case is quite different from the one just discussed and
needs a separate discussion. Indeed, due to the lack of strict convexity of the cost, in this
setting it is typically not true that optimal plans are unique or that they are induced by maps.
For example, considering on R any two probability measures µ, ν such that µ is concentrated
on the negative half-line and ν on the positive one, it turns out that any admissible plan is
optimal for the cost c(x, y) = |x− y|.

Nevertheless, even in this case existence of optimal maps can be shown but, in order to
find them, one has to use a selection principle. The first attempt to solve this problem came
with the work of Sudakov [95], who claimed to have a solution for any distance cost function
induced by a norm. Sudakov’s approach consisted in using a disintegration principle to reduce
the d-dimensional problem to a family of problems on R; anyway, the original argument
presented in [95] was flawed and needed to be fixed. This was done in [4] in the case of
the Euclidean distance; meanwhile several proofs of existence of optimal maps were proposed
([48],[96],[27]).

1.4.1. Sudakov’s approach to Monge Problem. Besides being interesting in its own,
Sudakov’s approach to Monge problem permits to figure out how L1-Optimal Transport nat-
urally yields a reduction of the problem to a family of one-dimensional problems. For this
reason we will briefly present here its main ideas working in the Euclidean setting; we refer to
[32] for futher details.
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First of all it is crucial to note that, when the cost c is given by the distance, the notion of c-
concavity is equivalent to 1-Lipschitz continuity. Thus, for a plan π being optimal is equivalent
to ask that π(Γ) = 1 where Γ = {(x, y) ∈ R2d : ϕ(x) − ϕ(y) = |x − y|} for some 1-Lipschitz
function ϕ. Almost by definition, the set Γ is | · |-cyclically monotone and whenever (x, y) ∈ Γ,
we have that (zs, zt) ∈ Γ for any s ≤ t where zs := (1 − s)x + sy for any s ∈ [0, 1]. Hence,
Γ produces a family of disjoint lines of Rd along which the optimal transportation moves.
Roughly speaking, Rd can be decomposed up to a set of measure zero as T ∪ Z where Z is
the set of points not moved by the optimal transport problem and T , the so called transport
set, is such that

T = ∪α∈QXα

where Xα are disjoint lines and Q is a set of indices. Using this partition of the space,
it is possible to obtain via Disintegration Theorem (see subsection 1.4.2) a corresponding
decomposition of marginal measures:

µ0 =

ˆ
Q
µ0,αq(dα), µ1 =

ˆ
Q
µ1,αq(dα);

where q is a Borel probability measure over the set of indices Q ⊂ Rd. If Q enjoys a measurabil-
ity condition, the conditional measures µ0,α and µ1,α are such that µ0,α(Xα) = µ1,α(Xα) = 1
for q-a.e. α ∈ Q. Having done this, one can construct an optimal transport map first con-
sidering an optimal map Tα associated to the transport of µ0,α to µ1,α and then defining the
transport map T as Tα on each Xα. In this way the original Monge Problem has been reduced
to a family of one-dimensional problems.

Anyway, Monge Problem can be actually stated and solved, in a much more general
framework. See [29] for a complete Sudakov approach to Monge problem when the Euclidean
distance is replaced by any strictly convex norm and [21] where any norm is considered. More
generally, given two Borel probability measures µ0, µ1 over a complete and separable metric
space (X, d), the notion of transport map still makes sense and the optimality condition can
be naturally formulated using the distance d as a cost function; the strategy proposed in the
Euclidean case can be adopted as well. It is important to notice that, besides the regularity of
µ0, the regularity of the ambient space plays a crucial role. More precisely, together with the
localization of the Monge problem to Xα, it should come a localization of the regularity of the
space; this is the case when the metric space (X, d) is endowed with a reference probability
measure m and the resulting metric measure space verifies a weak Ricci curvature lower bound.
We will investigate this topic in the subsection 1.4.3.

1.4.2. Disintegration theorem. Here we provide the version of the Disintegration The-
orem we will use (for a self-contained approach and a proof, we refer to [19]).

Let (X,F ,m) be a measure space. Given a function Q : X → Q, it is possible to construct
another measure space (Q,D , q) where q = Q]m and D is the biggest σ-algebra on Q for which
Q is measurable i.e.

C ∈ D ⇐⇒ Q−1(C) ∈ F .

This general scheme fits well with the following situation: given a measure space (X,F ,m)
and a partition {Xα}α∈Q of X, then Q is the set of indices and the quotient map Q : X → Q
is such that

α = Q(x) ⇐⇒ x ∈ Xα.

Hence, following the previous scheme, it is possible to consider the quotient measure space
(Q,D , q).

Definition 1.40. A disintegration of m consistent with Q is a map Q 3 α 7→ mα ∈
P(X,F ) such that the following hold:
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(1) ∀B ∈ F , Q 3 α 7→ mα(B) is q-measurable;
(2) ∀B ∈ F , ∀C ∈ D , m(B ∩Q−1(C)) =

´
C mα(B) q(dα).

The measures mα are called conditional probabilities.

Definition 1.41. A disintegration is called strongly consistent with respect to Q if in
addition for q-a.e. α ∈ Q, mα(X −Q−1(α)) = 0.

Theorem 1.42. (Theorem A.7, Proposition A.9 of [19]) Let (X,F ,m) be a countably
generated probability space. Take {Xα}α∈Q partition of X and let Q be the quotient map.
Then the measure space (Q,D , q) obtained as before is essentially countably generated and
there exists a unique disintegration α 7→ mα consistent with Q.
Moreover, the disintegration is strongly consistent if and only if there exists a m-section S ∈ F
of the partition such that the quotient σ-algebra S obtained pushing forward the σ-algebra F
on S via the map x ∈ Xα 7→ xα ∈ S ∩Xα contains B(S).

We now recall all the notions needed to clarify the statement of the Theorem 1.42. In the
measure space (Q,D , q), the σ-algebra D is essentially countably generated if, by definition,

there exists a countable family of sets Qn ⊂ Q such that for any C ∈ D there exists Ĉ ∈ D̂ such
that q(C ∆ Ĉ) = 0, where D̂ is the σ-algebra generated by {Qn}n∈N. A set S is a section for
the partition X = ∪αXα if for any α ∈ Q there exists a unique xα ∈ S ∩Xα; a set S is called
a m-section if there exists Y ⊂ X with m(X \Y ) = 0 such that the partition Y = ∪α(Xα ∩Y )
has section S.

Remark 1.43. For what concerns uniqueness, it is understood in the following sense:
given α 7→ m1

α and α 7→ m2
α two disintegrations consistent with respect to Q (hence q is fixed)

then m1
α = m2

α for q-a.e. α ∈ Q.

1.4.3. Transport Set. To any 1-Lipschitz function u : X → R can be naturally associ-
ated a d-cyclically monotone set Γu defined in the following way:

Γu := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)}.

Thus Γu can be interpreted as the set of couples between which u has maximal slope. We write
x ≥u y if and only if (x, y) ∈ Γu; the 1-Lipschitz condition on u implies ≥u is a partial-ordering.
Accordingly, we call Γu transport ordering. Moreover, we define the transport relation Ru and
the transport set Tu in the following way:

(1.13) Ru := Γu ∪ Γ−1
u , Tu := P1(Ru \ {x = y}),

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y}, Pi the projection onto the i-th
component and Γ−1

u = {(x, y) ∈ X ×X : (y, x) ∈ Γu}.
Since u is 1-Lipschitz, Γu,Γ

−1
u and Ru are closed sets, and so are Γu(x) and Ru(x) (recall that

Γu(x) = {y ∈ X ; (x, y) ∈ Γu} and similarly for Ru(x)). Consequently Tu is a projection of a
Borel set and hence it is analytic; it follows that it is universally measurable, and in particular,
m-measurable [92].

The transport “flavor” of the previous definitions can be seen in the next property that is
immediate to verify: for any γ ∈ Geo(X) such that (γ0, γ1) ∈ Γu, then

(γs, γt) ∈ Γu, ∀ 0 ≤ s ≤ t ≤ 1.

Finally, recall the definition of the sets of forward and backward branching points intro-
duced in [30]:

A+,u := {x ∈ Tu : ∃ z, w ∈ Γu(x), (z, w) /∈ Ru},
A−,u := {x ∈ Tu : ∃ z, w ∈ Γu(x)−1, (z, w) /∈ Ru}.
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Once branching points are removed, one obtains the non-branched transport set and the
non-branched transport relation,

(1.14) T bu := Tu \ (A+,u ∪A−,u), Rbu := Ru ∩ (T bu × T bu );

the following was obtained in [30] and highlights the motivation to remove branching points.

Proposition 1.44. The set of transport rays Rbu ⊂ X ×X is an equivalence relation on
the set T bu .

Noticing that once we fix x ∈ T bu , for any choice of z, w ∈ Ru(x), there exists γ ∈ Geo(X)
such that

{x, z, w} ⊂ {γs : s ∈ [0, 1]},

it is not hard to deduce that each equivalence class is a geodesic. The next step consists in
proving that branching happens on rays with zero m-measure. Already from the statement
of this property, it is clear that some regularity assumption on (X, d,m) should play a role.
Indeed, in [30], it was proved that under RCD(K,N) condition the measure of the sets of
branching points is zero. As observed several times in the literature, the proof only requires
all optimal plans to be induced by maps, and so the same argument works for any p > 1:

Theorem 1.45 (Negligibility of forward and backward branching points). Let (X, d,m)
be a m.m.s. such that for any µ0, µ1 ∈ Pp(X) with µ0 � m any optimal transference plan for
Wp is concentrated on the graph of a function. Then

(1.15) m(A+,u) = m(A−,u) = 0.

From Theorem 1.30, the p-essentially non-branching hypothesis implies that for every
µ0, µ1 ∈ Pp(X) with µ0 � m there exists a unique p-optimal plan and it is induced by a map.
Hence, the assumptions of Theorem 1.45 are satisfied, and therefore the equation (1.15) holds
true for any u : X → R 1-Lipschitz function.

Once this partition of the transport set made of equivalence classes is established, one
wants to deduce a corresponding decomposition of the ambient measure m restricted to T bu ;
Disintegration Theorem will be the appropriate technical tool to use. In order to apply it,
one needs to build a m-measurable quotient map Q for the equivalence relation Rbu over T bu ;
for its construction, by now classical, we refer to [36]. It is worth stressing that the quotient
set will be identified with a subset of T bu containing a point for each equivalence class, i.e. for
each geodesic forming T bu . In particular, there will be a m-measurable quotient set Q ⊂ T bu ,
image of Q. The Disintegration Theorem then implies the following disintegration formula:

(1.16) mxT bu=

ˆ
Q
mαq(dα),

with q = Q]mxT bu and for q-a.e. α ∈ Q we have mα ∈ P(X), mα(X \ Xα) = 0, where we

have used the notation Xα to denote the equivalence class of the element α ∈ Q (indeed
Xα = R(α)). Observe that from the m-measurability of Q it follows that q is a Borel measure.

Remark 1.46. It is worth mentioning here that the map Q 3 α 7→ mα ∈ P(X) is essen-
tially unique (meaning that any two maps for which (1.16) holds true have to coincide q-a.e.)
thanks to the assumption m(X) = 1, while mα(X \Xα) = 0 (also called strongly consistency
of the disintegration) is a consequence of the existence a m-measurable quotient map Q.

In order to deduce regularity properties of the conditional measures mα it will be necessary
to make some assumptions on the geometry of the space [20], [30], [31]. For this purpose,
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it will be useful to introduce the following ray map g : Dom (g) ⊂ Q × R → T bu , defined as
follows:

graph(g) :=
{

(α, t, x) ∈ Q× [0,+∞)× T bu : (α, x) ∈ Γu, d(α, x) = t
}

∪
{

(α, t, x) ∈ Q× (−∞, 0]× T bu : (x, α) ∈ Γu, d(x, α) = t
}
.

(1.17)

The ray map g enjoys several properties already obtained in [30, Proposition 5.4]:

(1) g is a Borel map;
(2) t 7→ g(α, t) is an isometry. If s, t ∈ Dom (g(α, ·)) with s ≤ t, then (g(α, s), g(α, t)) ∈

Γu;
(3) Dom (g) 3 (α, t) 7→ g(α, t) is bijective on Q−1(Q) ⊂ T bu .

First of all, observe that Dom (g(α, ·)) is a convex subset of R (i.e. an interval), for any
α ∈ Q. Moreover, since t 7→ g(α, t) is an isometry, it holds H1x{g(α,t):t∈R}= g(α, ·)]L1.

Using the ray map g one can prove that q-almost every conditional measure mα is abso-
lutely continuous with respect to the 1-dimensional Hausdorff measure considered on the ray
passing through α, provided (X, d,m) enjoys weak curvature properties. In order to present
such topics, we will follow the approach of [32] that collects results spread across [20], [30],
[31], [36].

First of all, given a compact set C ⊂ X, we define the t-translation Ct of C by

Ct := g({(α, s+ t) : (α, s) ∈ g−1(C)})

The following general property holds true:

Theorem 1.47 (Theorem 5.7, [20]). Assume that for any compact C ⊂ T bu with m(C) > 0,
it holds m(Ct) > 0 for a set of t ∈ R with L1-positive measure. Then, for q-a.e. α ∈ Q the
conditional measure mα is absolutely continuous with respect to g(α, ·)]L1.

Observe that, since C ⊂ T bu is compact, g−1(C) ⊂ Q × R is σ-compact and the same holds
true for {(α, s+ t) : (α, s) ∈ g−1(C)}. Since

Ct = P3(graph(g) ∩ {(α, s+ t) : (α, s) ∈ g−1(C)} × T bu ),

it follows that Ct is σ-compact. Moreover, being the set {(t, x) ∈ R× T bu : x ∈ Ct} Borel, the
map t 7→ m(Ct) turns out to be Borel.

We stress that the assumption of Theorem 1.47 deals with the regularity of the set Γu
(therefore with the Monge problem itself) and not with the smoothness of the space.
Under MCP(K,N), the assumption of Theorem 1.47 is satisfied, hence every conditional mea-
sure mα is absolutely continuous with respect to g(α, ·)]L1; we will denote with hα its density.
In particular, it holds that

{t ∈ Dom (g(α, ·)) : h(α, t) > 0} = Dom (g(α, ·));

furthermore, such set is convex and the map t 7→ h(α, t) is locally Lipschitz continuous.
The last result we want to state concerns the property shared by the conditional proba-

bilities of inheriting the synthetic Ricci curvature bounds of the ambient space.
We will now sketch the strategy used in [36] to prove the localization of the CD(K,N) con-
dition. Actually, it is enough to assume the space to verify such a lower bound only locally
to obtain globally the synthetic Ricci curvature lower bound on almost every 1-dimensional
metric measure space. Since under the essentially non-branching assumption CDloc(K,N)
implies MCP(K,N), all the properties deduced until now still hold true. In [36, Lemma 3.9]
it is shown that the quotient set Q, labelling the various transport rays, can be covered by
a countable collection of sets {Qi}i∈I where each Qi is contained in a rational level set of u;
for each Qi one can consider the transport of one uniform measure to another, of possibly
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differing size, along the transport rays of u. More specifically, the countable decomposition is
constructed to provide for each i a uniform subinterval

(a0, a1) ⊂ dom(g(α, ·)) for all α ∈ Qi
as well as real numbers A0, A1 ∈ (a0, a1) and L0, L1 ∈ (0,∞) such that

A0 + L0 < A1 and A1 + L1 < a1.

This allows us to consider the measures

µ0 =

ˆ
Qi

g(α, ·)]
(

1

L0
L1

[A0,A0+L0](dt)

)
q(dα), µ1 =

ˆ
Qi

g(α, ·)]
(

1

L1
L1

[A1,A1+L1](dt)

)
q(dα).

Transporting these measures allows to get the concavity information of the density hα of q-a.e.
mα from the entropic concavity (1.5) asserted by CD(K,N). We collect here the main results
concerning the localization in spaces satisfying CD(K,N).

Theorem 1.48. Let (X, d,m) be an essentially non-branching metric measure space verify-
ing the CDloc(K,N) condition for some K ∈ R, N ∈ [1,∞) and let u : X 7→ R be a 1-Lipschitz
function. Then the corresponding decomposition of the space in rays {Xα}α∈Q produces a
disintegration {mα}α∈Q of m such that for q-a.e. α ∈ Q

(Dom (g(α, ·)), | · |, hαL1) verifies CD(K,N).

Localization for MCP(K,N) was, partially and in a different form, already known in
2009, see [20, Theorem 9.5], for non-branching m.m.s.. The case of essentially non-branching
m.m.s.’s and an effective reformulation (after the work of Klartag [64]) has been recently
discussed in [41, Section 3] to which we refer for all the missing details (see in particular [41,
Theorem 3.5]). For future references we collect in the next statement the main results we will
use:

Theorem 1.49. If (X, d,m) is an essentially non-branching m.m.s. with supp(m) = X
and satisfying MCP(K,N), for some K ∈ R, N ∈ (1,∞), then, for any 1-Lipschitz function
u : X → R, the non-branching transport set T bu associated with u admits a disjoint family
of unparametrized geodesics {Xα}α∈Q such that m(T bu \ ∪αXα) = 0 and the corresponding
disintegration of m is as follows

(1.18) mxT bu=

ˆ
Q
mα q(dα), q(Q) = 1, q−a.e. mα(X) = mα(Xα) = 1.

Moreover, q-a.e. mα is a Radon measure with mα = hαH1xXα� H1xXα and (Xα, d,mα)
verifies MCP(K,N).

We now recall the definition of the CD1(K,N) condition introduced in [35] and based
on the localization of Ricci curvature lower bounds along integral curves associated to the
gradient of a 1-Lipschitz function.

Definition 1.50. (CD1
u(K,N) when supp(m) = X) Let (X, d,m) be a metric measure

space such that supp(m) = X and m(X) = 1. Let us consider K,N ∈ R, N > 1 and let
u : (X, d)→ R be a 1-Lipschitz function. We say that (X, d,m) satisfies the CD1

u condition if
there exists a family {Xα}α∈Q ⊂ X such that :

(1) There exists a disintegration of mxTu on {Xα}α∈Q:

mxTu=

ˆ
Q
mα q(dα), wheremα(Xα) = 1, for q-a.e.α ∈ Q.

(2) For q-a.e. α ∈ Q, Xα is a transport ray for Γu.
(3) For q-a.e. α ∈ Q, mα is supported on Xα.
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(4) For q-a.e. α ∈ Q, the metric measure space (Xα, d,mα) satisfies CD(K,N).

Following [35, Definition 7.7], a maximal chain R in (X, d,≤u) is called a transport ray if
it is isometric to a closed interval I in (R, |·|) of positive (possibly infinite) length.

Remark 1.51 (The assumption m(X) = 1). It is worth mentioning here that the assump-
tion m(X) = 1 is most probably purely technical. In the framework of general Radon measure,
Disintegration Theorem does not furnish a unique family of conditional measures and one has
to consider an additional normalization function; for additional details we refer to [41] where
a localization of synthetic lower Ricci curvature bounds has been obtained also for general
Radon measure.

Remark 1.52. It is well known that the last condition of Definition 1.50 is equivalent to
ask mα ∼ hαL1x[0,|Xα|] where |Xα| denotes the length of the transport ray Xα (∼ means up
to isometry of the space) and hα satisfies (1.6); hence Remark 1.34 applies.

Finally, we will say that the metric measure space (X, d,m) satisfies CD1
Lip(K,N) if

(supp(m), d,m) verifies CD1
u(K,N) for all 1-Lipschitz functions u : (supp(m), d) → R and

satisfies CD1(K,N) if (supp(m), d,m) verifies CD1
u(K,N) where u is a signed distance func-

tion defined as follows: given a continuous function f : (X, d)→ R such that {f = 0} 6= ∅, the
function

(1.19) df : X → R, df (x) := dist(x, {f = 0})sgn(f),

is called the signed distance function (from the zero-level set of f). Notice that df is 1-Lipschitz
on {f ≥ 0} and {f ≤ 0}. If (X, d) is a length space, then df is 1-Lipschitz on the entire X.





CHAPTER 2

Isoperimetric inequality under Measure-Contraction property

In this Chapter we address the isoperimetric inequality à la Lévy-Gromov-Milman within
the class of metric measure spaces verifying MCP. In particular, we identify a family of one-
dimensional MCP(K,N)-densities, each for every choice of K,N , volume v and diameter D,
not verifying CD(K,N), and having optimal isoperimetric profile for the volume v. Denoting
the model isoperimetric profile at volume v and the Minkowski content defined in (2) by
IK,N,D(v) and m+ respectively, we will prove the following result:

Theorem 2.1 (Theorem 2.15). Let K,N ∈ R with N > 1 and let (X, d,m) be an essentially
non-branching m.m.s. verifying MCP(K,N) with m(X) = 1 and having diameter less than D

(with D ≤ π
√

(N − 1)/K if K > 0). For any A ⊂ X,

(2.1) m+(A) ≥ IK,N,D(m(A)).

Moreover (2.1) is sharp, i.e. for each v ∈ [0, 1], K,N,D there exists a m.m.s. (X, d,m) with
m(X) = 1 and A ⊂ X with m(A) = v such that (2.1) is an equality.

Via localization paradigm for MCP-spaces (see Section 1.4 for details), following [64, 36],
the proof of Theorem (2.1) is reduced to the proof of the corresponding statement in the
one-dimensional setting. For this purpose, Section 2.1 will be devoted to a careful analysis
of one-dimensional MCP(K,N) spaces while Section 2.2 will be dedicated to the solution
of the isoperimetric problem for a one-dimensional density h verifying MCP(K,N) for some
K,N ∈ R and N > 1. Finally, in Section 2.3 a proof of Theorem (2.1) will be provided.

2.1. One-dimensional analysis

In this section we will introduce a family of MCP(K,N) densities, depending on four
parameters, that will be the model one-dimensional isoperimetric densities.
Let us consider a one-dimensional density h verifying MCP(K,N) for some K,N ∈ R and
N > 1; without loss of generality we can assume h to be defined over [0, D′] (recall that

D′ ≤ DK,N−1 = π
√

(N − 1)/K, whenever K > 0). Observe that the case K > 0 and

D′ = π
√

(N − 1)/K is trivial as (1.11) forces the density to coincide with the model density

sinN−1(t) (that in particular is also a CD(K,N)-density).

Proposition 2.1 (Lower Bound). Define the following strictly positive function

fK,N,D′(x) :=

(ˆ
(0,x)

(
sK/(N−1)(D

′ − y)

sK/(N−1)(D′ − x)

)N−1

dy +

ˆ
(x,D′)

(
sK/(N−1)(y)

sK/(N−1)(x)

)N−1

dy

)−1

for x ∈ (0, D′) and equal 0 for x = 0, D′. Then

i) fK,N,D′ is strictly increasing over (0, D′/2);
ii) fK,N,D′(x) = fK,N,D′(D

′ − x);
iii) if h : [0, D′]→ R is an MCP(K,N)-density integrating to 1, then h(x) ≥ fK,N,D′(x).

Proof. The second claim is straightforward to check. For the first one, being fK,N,D′ a
smooth function, strictly positive in (0, D′), it will be enough to show that f ′K,N,D′(x) = 0 has

17
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no solution for x ∈ (0, D′/2). Imposing f ′K,N,D′(x) = 0 is equivalent to

s′K/(N−1)(D
′ − x)

sNK/(N−1)(D
′ − x)

ˆ
(0,x)

sN−1
K/(N−1)(D

′ − y) dy =
s′K/(N−1)(x)

sNK/(N−1)(x)

ˆ
(x,D′)

sN−1
K/(N−1)(y) dy,

that can be rewritten as

s′K/(N−1)(D
′ − x)

sNK/(N−1)(D
′ − x)

ˆ
(D′−x,D′)

sN−1
K/(N−1)(y) dy =

s′K/(N−1)(x)

sNK/(N−1)(x)

ˆ
(x,D′)

sN−1
K/(N−1)(y) dy.

Since D′ − x ≥ x, the previous identity implies

(2.2)
|s′K/(N−1)(D

′ − x)|
sNK/(N−1)(D

′ − x)
>
|s′K/(N−1)(x)|
sNK/(N−1)(x)

.

For K = 0, (2.2) becomes
1

(D′ − x)N
>

1

xN
,

giving a contradiction. For negative K = −(N − 1) (the other negative cases follow similarly)
(2.2) implies

cosh(D′ − x)

sinh(D′ − x)N
>

cosh(x)

sinh(x)N

forcing

cosh(D′ − x)

sinh(D′ − x)
>

(
sinh(D′ − x)

sinh(x)

)N−1 cosh(x)

sinh(x)
>

cosh(x)

sinh(x)
,

giving a contradiction with monotonicity of tanh. Finally, for K = N − 1, (2.2) becomes

cos(D′ − x)

sin(D′ − x)N
>

cos(x)

sin(x)N
, sgn(cos(D′ − x)) = sgn(cos(x));

the second identity implies that x < D′−x < π/2 or π/2 < x < D′−x. The second case would
imply that D′ > 2x > π giving a contradiction. Hence we are left with x < D′ − x < π/2:

1 >
cos(D′ − x)

cosx
>

(
sin(D′ − x)

sinx

)N
,

giving a contradiction.
The third claim follows simply observing that (1.11) gives

1 =

ˆ
(0,x)

h(y) dy +

ˆ
(x,D′)

h(y) dy

≤ h(x)

sN−1
K/(N−1)(D

′ − x)

ˆ
(0,x)

sN−1
K/(N−1)(D

′ − y) dy +
h(x)

sN−1
K/(N−1)(x)

ˆ
(x,D′)

sN−1
K/(N−1)(y) dy,

and the claim is proved. �

Starting from the lower bound of Proposition 2.1, we define a distinguished family of
MCP(K,N) densities, depending on four parameters, that will be the model one-dimensional
isoperimetric density:

(2.3) haK,N,D′(x) := fK,N,D′(a)



(
sK/(N−1)(D

′ − x)

sK/(N−1)(D′ − a)

)N−1

, x ≤ a,

(
sK/(N−1)(x)

sK/(N−1)(a)

)N−1

, x ≥ a.
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Notice that hD
′−a

K,N,D′(D
′ − x) = haK,N,D′(x) and

haK,N,D′(zD
′/D′′) = h

aD′′/D′

(D′/D′′)2K,N,D′′
(z),

showing that it will not be restrictive to assume for some of the next proofs K = N − 1 or
K = −(N − 1), letting D′ vary.

Corollary 2.2 (Rigidity of lower bound). Let h : [0, D′] → R be a MCP(K,N)-density
integrating to 1. Assume h(y) = fK,N,D′(y) for some y ∈ (0, D′); then h = hyK,N,D′.

Proof. From the proof of Proposition 2.1, point iii), and (1.11) one deduces that

h(x) = h(y)



(
sK/(N−1)(D

′ − x)

sK/(N−1)(D′ − a)

)N−1

, x ≤ a,

(
sK/(N−1)(x)

sK/(N−1)(a)

)N−1

, x ≥ a.

The claim then follows. �

To avoid cumbersome notation, the dependence of haK,N,D′ on K,N,D′ will be omitted
and we will use ha.

Lemma 2.3. For every a ∈ (0, D′), the function ha integrates to 1 and it is an MCP(K,N)-
density.

Proof. Each ha has by definition integral 1. To check MCP(K,N) it will be enough to
verify that the inequality (1.11) is satisfied.

We start observing that the function

(2.4)
sK/(N−1)(D

′ − · )
sK/(N−1)(·)

is decreasing in [0, D′]; this will be proved showing its first derivative to be negative:

s′K/(N−1)(D
′ − a)

sK/(N−1)(a)
+
sK/(N−1)(D

′ − a)s′K/(N−1)(a)

s2
K/(N−1)(a)

≥ 0.

The previous inequality is straightforward for K ≤ 0; for K > 0, assuming without loss of
generality K = N − 1, it reduces to sin(a) cos(D′ − a) + sin(D′ − a) cos(a) = sin(D′) ≥ 0,
that is always verified with the strict inequality except for the trivial case D′ = π (where the
function (2.4) is identically equal to one).
Using the result just obtained, we are able to check (1.11) distinguishing three cases.
If x0 ≤ x1 ≤ a: (

sK/(N−1)(D
′ − x1)

sK/(N−1)(D′ − x0)

)N−1

=
ha(x1)

ha(x0)
≤
(
sK/(N−1)(x1)

sK/(N−1)(x0)

)N−1

.

If a ≤ x0 ≤ x1: (
sK/(N−1)(D

′ − x1)

sK/(N−1)(D′ − x0)

)N−1

≤ ha(x1)

ha(x0)
=

(
sK/(N−1)(x1)

sK/(N−1)(x0)

)N−1

.

If x0 ≤ a ≤ x1:

ha(x1)

ha(x0)
=

(
sK/(N−1)(x1)

sK/(N−1)(a)

)N−1

.

(
sK/(N−1)(D

′ − a)

sK/(N−1)(D′ − x0)

)N−1

;

using again the fact that (2.4) is decreasing, we get the claim. �
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Lemma 2.4. For every choice of K, N and D′, except the case in which K > 0 and
D′ = π

√
(N − 1)/K, the density ha defined in (2.3) does not verify CD(K,N).

Proof. By Remark 1.52, a non-negative Borel function h defined on an interval I ⊂ R
is called a CD(K,N) density if for every t ∈ [0, 1] and for all x0, x1 ∈ I such that x0 < x1, it
holds:

(2.5) h((1− t)x0 + tx1)
1

N−1 ≥ σ(1−t)
K,N−1(x1 − x0)h(x0)

1
N−1 + σ

(t)
K,N−1(x1 − x0)h(x1)

1
N−1 .

In order to prove our claim we will discuss several cases.

If K = 0, the inequality (2.5) simply reduces to the concavity of h
1

N−1 . We will prove now
that (2.5) fails for the density ha(·) exactly for convex combinations that give out the point
a. Pick x0 < a < x1 and let t ∈ (0, 1) be such that a = (1− t)x0 + tx1. It follows that

(1− t)ha(x0)
1

N−1 + tha(x1)
1

N−1 = f0,N,D′(a)
1

N−1

[
(1− t)

(
D′ − x0

D′ − a

)
+ t

(
x1

a

)]
> f0,N,D′(a)

1
N−1 = ha(a)

1
N−1 ,

hence(2.5) is not satisfied.
If K 6= 0, we argue as follows. Since a = (1 − t)x0 + tx1, it should be t = a−x0

x1−x0
and

1− t = x1−a
x1−x0

. Hence, we can rewrite the second member of the inequality (2.5) in this form

(2.6)

fK,N,D′(a)
1

N−1

[
sK/(N−1)(x1 − a)

sK/(N−1)(x1 − x0)
·
sK/(N−1)(D

′ − x0)

sK/(N−1)(D′ − a)
+

sK/(N−1)(a− x0)

sK/(N−1)(x1 − x0)
·
sK/(N−1)(x1)

sK/(N−1)(a)

]
;

using now that (2.4) is a strictly decreasing function, we get that the quantity above is strictly
greater than

(2.7) fK,N,D′(a)
1

N−1

[
sK/(N−1)(x1 − a)

sK/(N−1)(x1 − x0)
·
sK/(N−1)(x0)

sK/(N−1)(a)
+
sK/(N−1)(a− x0)

sK/(N−1)(x1 − x0)
·
sK/(N−1)(x1)

sK/(N−1)(a)

]
.

If K < 0, assuming without loss of generality that K = −(N − 1), we get that (2.7) can be
rewritten in the following way

f−(N−1),N,D′(a)
1

N−1

[
sinh(x1 − a) sinh(x0) + sinh(a− x0) sinh(x1)

sinh(a) sinh(x1 − x0)

]
= f−(N−1),N,D′(a)

1
N−1 ,

by straightforward computations. Arguing in the same way in the case K > 0 ( assuming as
usual that K = N − 1), we get that (2.7) can be rewritten in this form

fN−1,N,D(a)
1

N−1

[
sin(x1 − a) sin(x0) + sin(a− x0) sin(x1)

sin(a) sin(x1 − x0)

]
= fN−1,N,D(a)

1
N−1 .

Hence the claim follows also in this case. �

2.2. One-dimensional isoperimetric inequality

To properly formulate the one-dimensional minimization problem, let us consider the fol-
lowing set of probabilities

F̃K,N,D′ = {µ ∈ P(R) : µ = hµL1, hµ : [0, D′]→ R, MCP(K,N) density},

and consider the following “restricted” minimization: for each v ∈ (0, 1)

ĨK,N,D′(v) := inf{µ+(A) : A ⊂ [0, D′], µ(A) = v, µ ∈ F̃K,N,D′}.
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The term “restricted” is motivated by the choice of fixing the domain of the MCP(K,N)
densities. For the “unrestricted” one-dimensional minimization we will adopt the classical
notation

(2.8) IK,N,D(v) := inf{µ+(A) : A ⊂ [0, D], µ(A) = v, µ ∈ FK,N,D},

where FK,N,D = ∪D′≤DF̃K,N,D′ .
The final claim will be to prove that each ha is a minimum of the isoperimetric problem

for the volume equal to
´

(0,a) ha(x) dx. We will therefore show that each volume v ∈ (0, 1) is

reached in this manner.

Lemma 2.5. The map

(0, D) 3 a 7−→ v(a) :=

ˆ
(0,a)

ha(x) dx ∈ (0, 1),

is invertible.

Proof. It will be convenient to rewrite the function in the following way

(2.9) v(a) =
fK,N,D′(a)

sN−1
K/(N−1)(D

′ − a)

ˆ
(0,a)

sN−1
K/(N−1)(D

′ − x) dx

implying differentiability. Given the strict monotonicity of the integral with respect to the
variable a, it is sufficient to prove that also the other factor is an increasing function. Since(

sN−1
K/(N−1)(D

′ − a)

fK,N,D′(a)

)′
=

[(
sK/(N−1)(D

′ − a)

sK/(N−1)(a)

)N−1
]′ ˆ

(a,D′)
sN−1
K/(N−1)(x) dx,

it follows that the previous derivative has the same sign of the derivative of (2.4), thus it is
non positive and the claim follows. �

Hence for each K,N,D′ it is possible to define the inverse map of v(a) from Lemma 2.5:

(0, 1) 3 v 7−→ aK,N,D′(v) ∈ (0, D′),

with aK,N,D′(v) the unique element such that

(2.10)

ˆ
(0,aK,N,D′ (v))

haK,N,D′ (v)(x) dx = v.

For ease of notation we will prefer in few places the shorter notation av to denote aK,N,D′(v).

Remark 2.6. The function v 7→ av enjoys a simple symmetry property: by definition we
have that

1− v =
fK,N,D′(av)

sN−1
K/(N−1)(av)

ˆ
(av ,D′)

sN−1
K/(N−1)(x) dx

=
fK,N,D′(D

′ − av)
sN−1
K/(N−1)(av)

ˆ
(0,D′−av)

sN−1
K/(N−1)(D

′ − x) dx

= v(D′ − av),

where the last identity follows from (2.9). Since there exists a unique value a1−v ∈ (0, D′)
such that v(a1−v) = 1− v, it turns out that a1−v = D′ − av.

The first main result of this chapter is the following explicit formula for ĨK,N,D′ .
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Theorem 2.7. For each volume v ∈ (0, 1), it holds

ĨK,N,D′(v) = fK,N,D′(aK,N,D′(v)).

In particular, since fK,N,D′(aK,N,D′(v)) = haK,N,D′ (v)(aK,N,D′(v)), the lower bound is attained.

For the proof of Theorem 2.7 it will be useful to consider the function AK,N,D′ : [0, D′)→ [0,∞)
defined as follows:

(2.11) AK,N,D′(a) :=
v(a)

fK,N,D′(a)
=

ˆ
(0,a)

(
sK/(N−1)(D

′ − x)

sK/(N−1)(D′ − a)

)N−1

dx.

We will use that [0, D′) 3 a 7→ AK,N,D′(a) is increasing; we postpone the proof of this fact
at the end of the section. From the symmetric property of av observed few lines above, we
obtain the analogous one for AK,N,D′ :

(2.12)
1− v

AK,N,D′(D′ − av)
=
v(D′ − av)fK,N,D′(D′ − av)

v(D′ − av)
= fK,N,D′(av).

Proof of Theorem 2.7. Fix K,N,D′ ∈ R with N > 1 and any v ∈ (0, 1). Consider
hav and ha1−v and notice that

ˆ
(0,av)

hav(x) dx =

ˆ
(a1−v ,D′)

ha1−v(x) dx = v

and

hav(av) = fK,N,D′(av) = fK,N,D′(a1−v) = ha1−v(a1−v),

where the second equality follows from a1−v = D′−av and the symmetric property of fK,N,D′ .
Hence it is enough to show that for any MCP(K,N) density h : [0, D′]→ [0,∞), the following
inequality is valid

Ih(v) ≥ fK,N,D′(aK,N,D′(v)).

In the one-dimensional setting, taking the lowest possible Minkowski content or the lowest
possible perimeter with respect to h makes no difference (see [39, Corollary 3.2]). Hence fix
any h as above and a set E of finite perimeter with respect to hL1. It follows that, up to a
Lebesgue negligible set, E = ∪i∈I [ai, bi] ⊆ [0, D′], where I ⊆ N is a set of indices, so that
(see [39, Proposition 3.1])

Ph(E) =
∑
i

h(ai) + h(bi),

where Ph denotes the perimeter with respect to h. First notice that if any ai, bi is in the
interval having as boundary points av and D′ − av, the claim is proved

h(x) ≥ fK,N,D′(x) ≥ inf
y∈[av ,D′−av ]

fK,N,D′(y) = fK,N,D′(av);

the same chain of inequalities is valid if 2av ≥ D′. So for each i ∈ I , points ai, bi /∈ (av, D
′−av)

if av ≤ D′/2, or ai, bi /∈ (D′ − av, av) if av ≥ D′/2.

It is convenient to assume with no loss in generality that av ≤ D′ − av and consider the
following subsets of indices

I1 := {i ∈ I : ai ≥ D′ − av}, I2 := {i ∈ I : bi ≤ av};

notice that I1 ∩I2 = ∅.
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Case 1. I = I1.
Then

v =
∑
i∈I

ˆ bi

ai

h(y) dy ≤
∑
i∈I

h(ai)

ˆ D′

ai

(
sK/(N−1)(y)

sK/(N−1)(ai)

)N−1

dy

=
∑
i∈I

h(ai)A(D′ − ai) ≤ A(av)
∑
i∈I

h(ai).

Hence, we get ∑
i∈I

(h(ai) + h(bi)) ≥
∑
i∈I

h(ai) ≥
v

A(av)
= fK,N,D′(av).

Case 2. I = I2.
It holds true

v =
∑
i∈I

ˆ bi

ai

h(y)dy ≤
∑
i∈I

h(bi)

ˆ bi

ai

(
sK/(N−1)(D

′ − y)

sK/(N−1)(D′ − bi)

)N−1

dy

≤
∑
i∈I

h(bi)A(bi)

≤ A(av)
∑
i∈I

h(bi),

for the increasing monotonicity of the function A(·).
Case 3. I 6= I1 ∪I2.
There exists i ∈ I such that ai ≤ av, D′ − av ≤ bi. Then

1− v ≤
ˆ ai

0
h(y) dy +

ˆ D′

bi

h(y) dy

≤ h(ai)

ˆ ai

0

(
sK/(N−1)(D

′ − y)

sK/(N−1)(D′ − ai)

)N−1

dy + h(bi)

ˆ D′

bi

(
sK/(N−1)(y)

sK/(N−1)(bi)

)N−1

dy

= h(ai)A(ai) + h(bi)A(D′ − bi)
≤ A(D′ − av)[h(ai) + h(bi)],

proving the claim.

Case 4. I = I1 ∪I2.
We use the estimates of Case 2. for I1 and the ones in Step 1. for I2, so:

v =
∑
i∈I

ˆ bi

ai

h(y) dy =
∑
i∈I1

ˆ bi

ai

h(y) dy +
∑
j∈I2

ˆ bj

aj

h(y) dy ≤ A(av)(
∑
i∈I1

h(ai) +
∑
j∈I2

h(bj)).

Hence, the claim is proved also in this class. �

Lemma 2.8. The function AK,N,D′(·) is strictly increasing on [0, D′).

Proof. If we are in the case K = 0, we get that

A0,N,D′(a) =

ˆ
(0,a)

(
D′ − x
D′ − a

)N−1

dx

and so A0,N,D′(·) is trivially increasing. If K < 0, without loss of generality we can assume
K = −(N − 1). In this case we have

A−(N−1),N,D′(a) =

ˆ
(0,a)

(
sinh(D′ − x)dx

sinh(D′ − a)

)N−1

dx
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and so again we get the claim by the monotonicity of the hyperbolic sine. If K > 0, we can
directly deal with the case D′ < π

√
(N − 1)/K. Assuming K = N − 1, we can rewrite (2.11)

in the following way:

AN−1,N,D′(a) =

ˆ
(0,a)

(
sin(D′ − x)

sin(D′ − a)

)N−1

dx.

For sure this function is increasing for a ∈ [D′ − π/2, D′) by the monotonicity of sin(D′ − ·);
so, if D′ ≤ π/2, we are done. If this is not the case, i.e. D′ > π/2, we have to prove that the
same result holds in [0, D′ − π/2). Computing the first derivative we obtain that

A′N−1,N,D′(a) = 1 + (N − 1)
cos(D′ − a)

sinN (D′ − a)

ˆ
(0,a)

sinN−1(D′ − x) dx

= 1 +
N − 1

tan(D′ − a)
AN−1,N.D′(a);(2.13)

so A(·) is solution of a differential equation. In order to prove that A(·) is an increasing
function, we will check that its first derivative is positive, i.e.

AN−1,N,D′(a) ≤ −tan(D′ − a)

N − 1
:= g(a), ∀a ∈ [0, D′ − π/2).

For a = 0 we have AN−1,N,D′(a) = 0 and g(a) = − tanD′

N−1 > 0, hence the inequality at the

initial point holds true. In order to prove that it holds for every a ∈ [0, D′ − π/2), we will
check that g verifies the following differential inequality:

g′(a) > 1 +
N − 1

tan(D′ − a)
· g(a).

Since the choice of g makes the second member identically equals to zero, it is sufficient to
prove that g′(a) > 0 for every a ∈ [0, D − π/2). This trivially holds true since

g′(a) =
1

(N − 1) cos2(D′ − a)
> 0.

Hence, the claim follows also in this case. �

We now analyse the dependence of ĨK,N,D′(v) on the diameter.

Lemma 2.9. Fix N,D′ > 0 and v ∈ (0, 1).

- if K ≤ 0, the map D′ 7→ ĨK,N,D′(v) is strictly decreasing;

- if K > 0, the map D′ 7→ D′ ĨK,N,D′(v) is non-decreasing;

Proof. Given any MCP(K,N) density h with domain [0, D′] and any other D′′, defining

g(x) := D′

D′′h(D
′x

D′′ ), for each x ∈ [0, D′′], one easily gets that g is an MCP(K ′, N) with domain

[0, D′′] and K ′ = K(D′/D′′)2. Moreover for any A ⊂ [0, D′],

Pg

(
A
D′′

D′

)
=
D′

D′′
Ph(A),

where Pg is the perimeter with respect to g and Ph the one with respect to h. Assume h is
the optimal density and A the optimal set, one gets

ĨK′,N,D′′ ≤
D′

D′′
ĨK,N,D′ .

Hence if K ≤ 0 and D′′ ≥ D′: ĨK,N,D′ ≥ D′′

D′ ĨK,N,D′′ ≥ ĨK,N,D′′ ; if K > 0 and D′ ≥ D′′:

D′ ĨK,N,D′ ≥ D′′ ĨK,N,D′′ . The claim follows. �

We then obtain straightforwardly the next fact.
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Corollary 2.10. The one-dimensional isoperimetric profile function (2.8) has the fol-
lowing representation:

(2.14) IK,N,D(v) =

{
fK,N,D(aK,N,D(v)) if K ≤ 0,

infD′≤D fK,N,D′(aK,N,D′(v)) if K > 0.

Remark 2.11. In the case K > 0 we expect the map D 7→ fK,N,D′(aK,N,D′(v)) to be
strictly convex as some explicit calculations for particular choices of v would suggest. However
at the moment we cannot conclude the existence of a unique minimizer D̄ = D̄(K,N,D, v) <
D representing IK,N,D(v) in the case K > 0. This in turn affects rigidity of the equality case
of the isoperimetric inequality in the regime K > 0.

2.2.1. One-dimensional rigidity. Building on Corollary 2.2, we prove that the one-
dimensional isoperimetric inequality obtained in Theorem 2.7 is rigid.

Theorem 2.12. Let h : [0, D′]→ R be a MCP(K,N) density which integrates to 1. Assume

there exists v ∈ (0, 1) such that Ih(v) = ĨK,N,D′(v). Then either h = hav or h = ha1−v .

Proof. Assume the existence of a sequence of sets Ei ⊂ [0, D′] so thatˆ
Ei

h(x) dx = v, lim
i→∞

(hL1x[0,D′])
+(Ei) = ĨK,N,D′(v).

Then one can find a sequence of sets having perimeter with respect to h converging to

ĨK,N,D′(v) still with volume v. By lower-semicontinuity we deduce the existence of a set
∪i∈I [ai, bi] of volume v such that∑

i

h(ai) + h(bi) = fK,N,D′(aK,N,D′(v)).

We then proceed as in the proof of Theorem 2.7.
In the Case 1., I = I1, the first chain of inequalities yields that ∪i∈I [ai, bi] = [a1, D

′] and
strict monotonicity of AK,N,D′ implies that D′ − a1 = av. The second chain of inequalities
then implies

h(D′ − av) = fK,N,D′(aK,N,D′(v)) = fK,N,D′(D
′ − aK,N,D′(v)).

Corollary 2.2 yields h = hD′−av and the set ∪i∈I [ai, bi] = [D′ − av, D′]. Equality in Case 2.,
I = I2, implies, repeating the same argument, that h = hav and the set ∪i∈I [ai, bi] = [0, av].
Equality in Case 3. cannot be achieved: the chain of inequality implies that ∪i∈I [ai, bi] =
[a1, b1] and a1 = av and b1 = D′ − av; coupled with the chain of inequality implies

fK,N,D′(av) = h(av) + h(D′ − av) ≥ 2fK,N,D′(av),

giving a contradiction. The same argument implies that also equality in Case 4. cannot be
achieved. �

Exploiting Lemma 2.9, in the case K ≤ 0 one can obtain the following stronger rigidity

Corollary 2.13. Let h : [0, D′]→ R be a MCP(K,N) density which integrates to 1 with
K ≤ 0. Assume there exists v ∈ (0, 1) such that Ih(v) = IK,N,D(v) with D′ ≤ D. Then
D = D′ and either h = hav or h = ha1−v .

Proof. Lemma 2.9 forces D′ = D and then Theorem 2.12 applies. �

To conclude we present another application of one-dimensional rigidity. Since CD(K,N) ⊂
MCP(K,N), we already know that ĨK,N,D(v) ≤ ĨCDK,N,D(v). We can now prove that the
inequality is always strict, with the exception of a single case.
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Corollary 2.14. For every choice of K, N and D ( with D < π
√

(N − 1)/K, if K > 0),
it holds

ĨK,N,D(v) < ICDK,N,D(v).

In particular, IK,N,D(v) < ICDK,N,D(v).

Proof. Suppose by contradiction the existence of K,N,D, v such that ĨK,N,D(v) =

ICDK,N,D(v). As proved in [70](see Corollary 1.4)

ICDK,N,D(v) = ĨCDK,N,D(v),

and there exists (see [70, Corollary A.3]) a CD(K,N)-density, and therefore an MCP(K,N)-
density g defined on [0, D] and integrating to 1 such that I([0,D],g)(v) = ICDK,N,D(v). As observed
in the Theorem 2.12, this would force the density g to be exactly hav or ha1−v contradicting

Lemma 2.4. The final claim simply follows observing that infD′≤D ĨK,N,D′(v) ≤ IK,N,D(v). �

2.3. Isoperimetric inequality

We now deduce Theorem 2.1 from the one-dimensional results of Theorem 2.7 and Lemma
2.9 via localization techniques (Theorem 1.49). Notice that the second part of Theorem 2.1
will then follow by Theorem 2.7.

Theorem 2.15. Let (X, d,m) be an essentially non-branching metric measure space with

m(X) = 1 and diam (X) ≤ D (where D ≤ π
√

(N − 1)/K, if K > 0). If (X, d,m) satisfies
MCP(K,N) for some K ∈ R, N ∈ [1,∞), then

I(X,d,m)(v) ≥ IK,N,D(v), ∀v ∈ [0, 1]

where IK,N,D is explicitly given in (2.14).

Even though the proof is a standard consequence of localization, we present it below for
readers’ convenience.

Proof. Fix v ∈ (0, 1) and let A ⊂ X be a Borel set with m(A) = v. Define the m-
measurable function f := χA − v having zero integral with respect to m, and study the L1-
Optimal Transport problem from µ0 := f+m to µ1 := f−m, where f± denotes the positive and
the negative part of f respectively. The associated Kantorovich potential u has |∇u| = 1 m-
a.e. implying by Theorem 1.49 the existence of a family of unparametrized geodesics {Xα}α∈Q
(of length at most D) such that m(X \ ∪αXα) = 0 and

m =

ˆ
Q
mα q(dα), q− a.e. mα(X) = mα(Xα) = 1;

moreover mα = hαH1xXα and hα is a MCP(K,N)-density. From the localization of the
constraint, it follows that for q-a.e. mα(A) = m(A) = v. Hence

m+(A) = lim inf
ε→0

m(Aε)−m(A)

ε

≥ lim inf
ε→0

ˆ
Q

mα((A ∩Xα)ε)−mα(A)

ε
q(dα),

≥
ˆ
Q
m+
α (A ∩Xα) q(dα)

≥
ˆ
Q
IK,N,D(v) q(dα)

= IK,N,D(v).

�
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In the case K ≤ 0, one-dimensional rigidity (Theorem 2.12) implies the following measure
rigidity.

Theorem 2.16. Let (X, d,m) be an essentially non-branching metric measure space sat-
isfying MCP(K,N) for K ≤ 0, N ∈ [1,∞) with m(X) = 1 and diam (X) ≤ D.

If there exists v ∈ (0, 1) such that I(X,d,m)(v) = IK,N,D(v), then diam (X) = D, there exist
a measure space (Q, q) and a measurable isomorphism between (0, D) × Q and X ′ ⊂ X with
m(X ′) = 1.

Moreover, the measure m admits the following representation

m =

ˆ
Q
hαH1xXα q(dα),

and q-a.e., hα = haK,N,D(v) or hα = haK,N,D(1−v).

Proof. We will prove that X has diameter D. Arguing by contradiction, let us suppose
that there exists ε > 0 such that diam (X) = D − ε. From (2.14), K ≤ 0 and Lemma 2.9, for
any v ∈ (0, 1) the function IK,N,D(v) is strictly decreasing in D. Hence, there exists η > 0
such that

IK,N,D′(v) ≥ IK,N,D(v) + η, ∀D′ ∈ (0, D − ε].
Let A ⊂ X be such that m(A) = v and m+(A) ≤ IK,N,D(v) + η/2. Arguing as in the proof of
Theorem 2.15, we get that

IK,N,D(v) + η/2 ≥ m+(A) ≥
ˆ
Q
m+
α (A ∩Xα) q(dα)

≥
ˆ
Q
ĨK,N,|supphα|(v) q(dα)

≥ IK,N,D(v) + η

where the last inequality is due to the fact that supp(hα) is isometric to a geodesic Xα of
(X, d) and hence |supphα| ≤ D − ε and from K ≤ 0 together with Lemma 2.9. Thus the
contradiction is obtained.
The same argument implies that |supp(hα)| = D for q-a.e. α and

IK,N,D(v) = ĨK,N,|supphq |(v);

the claim follows from the one-dimensional rigidity obtained in Corollary 2.13. �

In the case K > 0 (even in the maximal diameter case D = π
√

(N − 1)/K) rigidity
properties are still not clear. As discussed in Remark 2.11, a first step in this direction
would be the identification of the possibly unique optimal 1-dimensional diameter realizing
the infimum in the definition of IK,N,D(v) for K > 0.





CHAPTER 3

Independence of synthetic Curvature Dimension conditions on
transport distance exponent

As we had the chance to see, the Curvature-Dimension condition CD(K,N) is formulated
in terms of a modified displacement convexity of an entropy functional along W2-Wasserstein
geodesics. In this chapter we will show that the choice of the squared-distance function as
transport cost does not influence the theory. In particular, denoting with CDp(K,N) the
analogous condition obtained choosing as transport cost the distance function raised to the
power p > 1, we will show that all CDp(K,N) are equivalent conditions provided suitable
restrictions are placed on the ambient space. Following [35], the trait-d’union between all the
seemingly unrelated CDp(K,N) conditions will be again the L1-optimal transport problem.
As a consequence, also the local-to-global property of CDp(K,N) will be established. We state
now the main results of the Chapter:

Theorem 3.1 (Theorem 3.44). Let (X, d,m) be such that m(X) = 1. Assume it is p-
essentially non-branching and verifies CDp(K,N) for some p > 1. If (X, d,m) is also q-
essentially non-branching for some q > 1, then it verifies CDq(K,N).

As we will extend the strategy used in [35] to powers other than p = 2, also the local-to-
global property will be established for the CDp(K,N).

Corollary 3.1 (Corollary 3.45). Fix any p > 1 and K,N ∈ R with N > 1. Let (X, d,m)
be a p-essentially non-branching metric measure space verifying CDp,loc(K,N) from Definition
1.36 and such that (X, d) is a length space with supp(m) = X and m(X) = 1. Then (X, d,m)
verifies CDp(K,N).

We now briefly describe the structure of the chapter, providing a general outline of the
approach we will use. In Section 3.1 we fix the notation and the terminology we will use for
the rest of the chapter. Section 3.2 is devoted to a careful analysis of Kantorovich potentials
and their evolution via the Hopf-Lax semigroup with a general exponent p > 1. The aim is to
obtain information about the time derivative of the t-propagated s-Kantorovich potential Φt

s

as defined in Section 3.2.5. This quantity is crucial for the Jacobian factor that appears when
comparing interpolant measures, µt, between measures µ0 and µ1 along a transport geodesic
at two times. To achieve this goal, Sections 3.2.1 - 3.2.3 are dedicated to a detailed study of
the regularity properties of the Hopf-Lax transform. In particular we establish second order
regularity for the Hopf-Lax transform of a Kantorovich potential as well as a few identities
related to the positional information stored in a Kantorovich potential. From here, Section
3.2.4 demonstrates, through a delicate argument, third order temporal regularity of time prop-
agated Kantorovich potentials along transport geodesics, leading to the fundamental Theorem
3.26.
In Section 3.3 we show that a local version of CDp(K,N) implies CD1(K,N) in the version
reported in Theorem 3.31; this is done passing curvature information from the total space
down to the L1-transport rays.
Finally, in Section 3.4 we obtain a complete equivalence of all CDp(K,N) (Theorem 3.44)
and each of them also enjoys the local-to-global property (Corollary 3.45). The first step in

29
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this direction is to transfer the curvature properties along transport geodesics back to the
total space through q-Wasserstein geodesics and hence proving that an enhanced version of
CD1

Lip(K,N) implies CDq(K,N). This will be done by proving, in the terminology of [35], an
“LY”-decomposition for the densities ρt of the q-Wasserstein geodesic µt (see Theorem 3.43).
More precisely, this “LY”-decomposition provides a factorization of the ratio ρt/ρs into two
factors: the first one — denoted by L — is a concave function taking into account only the
one dimensional distortion due to the volume stretching in the direction of the geodesic. The
second factor is denoted by Y and contains the volume distortion in the transversal directions.
To achieve this goal we first use the Disintegration theorem from Section 1.4 to represent m
as an average of measures that live on L1-transport geodesics for the signed distance to any
given level set of a p-Kantorovich potential. In this disintegration of m we follow the evolution
of a specific collection of Kantorovich geodesics. More specifically, we fix a ∈ R and s ∈ (0, 1),
and consider q-Kantorovich geodesics γ which satisfy ϕs(γs) = a, where ϕs is the evolved
Kantorovich potential for the q-Wasserstein geodesic. We denote such geodesics by Ga,s and
we disintegrate m over {γt : γ ∈ Ga,s}t∈[0,1] to obtain

mxe[0,1](Ga,s)=

ˆ
[0,1]

ma,s
t L1(dt),

Then we compare this to a disintegration of m over {ϕ−1
s (a)}a∈R on the time t evaluation of

a sufficiently large set of Kantorovich geodesics denoted by G. Specifically, we obtain

mxet(G)=

ˆ
ϕs(es(G))

mt
a,sL1(da)

This leads to two measures, ma,s
t and mt

a,s, that live on et(Ga,s). In Section 3.4.3 we compare

these two disintegrations to deduce that ma,s
t and mt

a,s differ only by ∂tΦ
t
s. This information

is used in Section 3.4.4 to deduce the Jacobian factor between ρt(γt) and ρs(γs); the latter
step allows us to conclude the desired “LY” decomposition. Once the “LY” decomposition is
at our disposal, we can invoke [35] to conclude that the space satisfies CDq(K,N).

3.1. Preliminaries and notations

In order to carry out a third order analysis of Kantorovich potentials, we will frequently
use incremental ratios over arbitrary subsets of R; in this section we will fix notation and
terminology needed to do so.

3.1.1. Derivatives. For a function g : A→ R defined on a subset A ⊂ R, we denote its
upper and lower derivatives at a point t0 ∈ A which is an accumulation point of A by:

d

dt
g(t0) = lim sup

A3t→t0

g(t)− g(t0)

t− t0
,
d

dt
g(t0) = lim inf

A3t→t0

g(t)− g(t0)

t− t0
.

We will say that g is differentiable at t0 iff d
dtg(t0) := d

dtg(t0) = d
dtg(t0) ∈ R. This is a slightly

more general definition of differentiability than the traditional one which requires t0 to be an
interior point of A.

Remark 3.1. Note that there are only a countable number of isolated points in A, so
a.e. point in A is an accumulation point. In addition, it is clear that if t0 ∈ B ⊂ A is
an accumulation point of B and g is differentiable at t0, then g|B is also differentiable at t0
with the same derivative. In particular, if g is a.e. differentiable on A then g|B is also a.e.
differentiable on B and the derivatives coincide.

Remark 3.2. Denote by A1 ⊂ A the subset of density one points of A (which are in
particular accumulation points of A). By Lebesgue’s Density Theorem L1(A \ A1) = 0. If
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g : A→ R is locally Lipschitz, consider any locally Lipschitz extension ĝ : R→ R of g. Then
it is easy to check that for t0 ∈ A1, g is differentiable in the above sense at t0 if and only if ĝ
is differentiable at t0 in the usual sense, in which case the derivatives coincide. In particular,
as ĝ is a.e. differentiable on R, it follows that g is a.e. differentiable on A1 and hence on A,
and it holds that d

dtg = d
dt ĝ a.e. on A.

If f : I → R is a convex function on an open interval I ⊂ R, it is a well-known fact that the
left and right derivatives f ′,− and f ′,+ exist at every point in I and that f is locally Lipschitz.
In particular, f is differentiable at a given point if and only if the left and right derivatives
coincide there. Denoting by D ⊂ I the differentiability points of f in I, it is also well-known
that I \D is at most countable. Consequently, any point in D is an accumulation point, and
we may consider the differentiability in D of f ′ : D → R as defined above.

We will recall the following classical one-dimensional result about twice differentiability
a.e. of convex functions on Rn. The result extends to locally semi-convex and semi-concave
functions as well; recall that a function f : I → R is called semi-convex (semi-concave) if there
exists C ∈ R so that I 3 x 7→ f(x) + Cx2 is convex (concave).

Lemma 3.3 (Second Order Differentiability of Convex Function). Let f : I → R be a
convex function on an open interval I ⊂ R, and let τ0 ∈ I and ∆ ∈ R. Then the following
statements are equivalent:

(1) f is differentiable at τ0, and if D ⊂ I denotes the subset of differentiability points of
f in I, then f ′ : D → R is differentiable at τ0 with:

(f ′)′(τ0) := lim
D3τ→τ0

f ′(τ)− f ′(τ0)

τ − τ0
= ∆.

(2) The right derivative f ′,+ : I → R is differentiable at τ0 with (f ′,+)′(τ0) = ∆.
(3) The left derivative f ′,− : I → R is differentiable at τ0 with (f ′,−)′(τ0) = ∆.
(4) f is differentiable at τ0 and has the following second order expansion there:

f(τ0 + ε) = f(τ0) + f ′(τ0)ε+ ∆
ε2

2
+ o(ε2) as ε→ 0.

In this case, f is said to have a second Peano derivative at τ0.

For a locally semi-convex or semi-concave function f , we will say that f is twice differen-
tiable at τ0 if any (all) of the above equivalent conditions hold for some ∆ ∈ R, and we will
write ( d

dτ )2|τ=τ0f(τ) = ∆.

Finally, we recall the following slightly different version of the second order differential.

Definition 3.4 (Upper and lower second Peano derivatives). Given an open interval
I ⊂ R and a function f : I → R which is differentiable at τ0 ∈ I, we define its upper and lower
second Peano derivatives at τ0, denoted P2f(τ0) and P2f(τ0) respectively, by:

(3.1) P2f(τ0) := lim sup
ε→0

h(ε)

ε2
≥ lim inf

ε→0

h(ε)

ε2
=: P2f(τ0),

where:

(3.2) h(ε) := 2(f(τ0 + ε)− f(τ0)− εf ′(τ0)).

We say that f has a second Peano derivative at τ0 iff P2f(τ0) = P2f(τ0) ∈ R.

Lemma 3.5. Given an open interval I ⊂ R and a locally absolutely continuous function
f : I → R which is differentiable at τ0 ∈ I, we have:

d

dt
f ′(τ0) ≤ P2f(τ0) ≤ P2f(τ0) ≤ d

dt
f ′(τ0).
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3.1.2. Notations. Given a subset D ⊂ X × R, we denote its sections by:

D(t) := {x ∈ X ; (x, t) ∈ D} , D(x) := {t ∈ R ; (x, t) ∈ D} .

Given a subset G ⊂ Geo(X), we denote by G̊ :=
{
γ|(0,1) ; γ ∈ G

}
the corresponding open-

ended geodesics on (0, 1). For a subset of (closed or open) geodesics G̃, we denote:

(3.3) Im(G̃) :=
{

(x, t) ∈ X × R ; ∃γ ∈ G̃ , t ∈ Dom(γ) , x = γt

}
.

3.2. Hopf-Lax transform with exponent p

In this section we review the basic properties of the Hopf-Lax transform in a metric measure
space setting with a general exponent p > 1. Some of following properties are well-known for
the case p = 2; we will omit the proofs for general p whenever they follow the same line of
reasoning as the corresponding one for p = 2. The main references for most of the definitions
and proofs will be [7, 8, 35]; further developments related to ours may also be found in [5]
[56] [52] [18] and their references.

Remark 3.6. As motivation for the needed properties of the metric measure space Hopf-
Lax transform we remind the reader of the relationship between the Hopf-Lax transform and
the Eulerian point of view of optimal transport. We also provide a comparison between the
results found in this chapter to those familiar from Euclidean space.

We illustrate the main relationship for the case (Rn, d) with d the Euclidean distance, and

the cost function c(x, y) = d(x,y)p

p where p > 1. Recall that, as shown in [9, Theorem 8.3.1],

in the Eulerian view of optimal transport the Wasserstein distance can be interpreted as the
minimizing energy related to the problem

(3.4)


ρt +∇ · (ρv) = 0 in Rn × (0, 1)

ρ(·, 0) = ρ0 in Rn

ρ(·, 1) = ρ1 in Rn

where ρ, v are the distribution of mass and the velocity at position x at time t respectively
[9, Theorem 8.3.1]. By choosing v = DH (∇ϕ), where in our case H(w) = |w|p′/p′ and ϕ is a
solution to the Hamilton-Jacobi equation

(3.5)

{
∂tϕ+H(∇ϕ) = 0 in Rn × (0,∞)

ϕ(x, 0) = ϕ0(x) for x ∈ Rn

where ϕ0 is a Kantorovich potential for the optimal transport problem and p′ is the real number
satisfying 1

p + 1
p′ = 1. That is, p′ is the Hölder dual of p. The method of characteristics gives a

solution to the Hamilton-Jacobi equation for a convex Hamiltonian H [47]; furthermore, this
solution can be expressed by the Hopf-Lax formula

ϕ(x, t) = inf
y∈Rn

{
ϕ0(y) + tL

(
x− y
t

)}
where the Lagrangian L is defined by

L(z) = inf
w∈Rn

{z · w −H(w)} .

In our case, the Lagrangian is explicitly computed as L(v) = |v|p
p , hence

(3.6) ϕ(x, t) = inf
y∈Rn

{
ϕ0(y) +

|x− y|p

ptp−1

}
.
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Finally, it turns out that, at least in the context of smooth manifolds, the spatial gradient of
ϕ behaves as one would expect. Specifically, it turns out that

∇ϕ(x) =
|x− y|p−2(x− y)

tp−1
,

where y is chosen to be a minimizer in the Hopf-Lax infimum (3.6). Hence,

(3.7)
|∇ϕ(x, t)|p′

p′
=

(p− 1)|x− y|p

ptp

Note that, due to (3.7), (3.5) and (3.6) can be compared to conclusion 3 of Theorem 3.9 and
Corollary 3.17 respectively. In particular, notice that the expression found in (3.7) depends on
x only through its distance to the minimizing value y. This should be compared to Definition
3.8. With the above in mind we are now ready to present the details of the nonsmooth case.

In the following sections, we will only consider the cost function c = dp/p on X×X. Hence,
in this case the c-transform of a function ψ : X → R∪{±∞} is defined as the following (upper
semi-continuous) function:

ψc(x) = inf
y∈X

d(x, y)p

p
− ψ(y).

In these sections, we only assume that (X, d) is a proper geodesic metric space. (Here
proper refers to the requirement that closed balls are compact.)

3.2.1. General definitions.

Definition 3.7 (Hopf-Lax transform). Let f : X → R ∪ {±∞} be not identically +∞
and t > 0, p > 1. The Hopf-Lax transform Qtf : X → R ∪ {−∞} is defined in the following
way:

(3.8) Qtf(x) := inf
y∈X

d(x, y)p

ptp−1
+ f(y).

Trivially either Qtf ≡ −∞ or Qtf(x) is finite for all x ∈ X. Indeed, if Qtf(x̄) ∈ R for some
x̄ ∈ X and t > 0, then Qsf(x) ∈ R for all x ∈ X and 0 < s ≤ t. Hence, defining

t∗(f) := sup{t > 0 : Qtf 6≡ −∞},

where we set t∗(f) = 0 if the supremum is over an empty set, it holds that Qtf(x) ∈ R for
every x ∈ X, t ∈ (0, t∗(f)). Moreover, we set Q0f := f . The definition of Qtf can be extended
to negative times t < 0 by setting:

(3.9) Qtf(x) = −Q−t(−f)(x) = sup
y∈X
− d(x, y)p

p(−t)p−1
+ f(y), t < 0.

If (X, d) is a length space (and in particular, if it is geodesic), the Hopf-Lax transform is in
fact a semi-group on [0,∞):

Qs+tf = Qs ◦Qtf ∀t, s ≥ 0.

Being the infimum of continuous functions in (t, x), the map (0,∞) × X 3 (t, x) 7→ Qtf(x)
is upper semi-continuous. Moreover, by definition [0,∞) 3 t 7→ Qtf(x) is monotone non-
increasing; hence, it is continuous from the left.
We now define the distance progressed as the length of the geodesic segment in X along
which information propagates from the initial values to (t, x); this geodesic plays the role of
a characteristic curve. Since we are modeling optimal transport, shocks do not form before
unit time has elapsed [98].
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Definition 3.8. (Distance progressed D±f ). Given f : X → R ∪ {+∞} not identically

+∞, we define

D+
f (x, t) := sup lim sup

n→+∞
d(x, yn) ≥ inf lim inf

n→+∞
d(x, yn) =: D−f (x, t)

where the supremum and the infimum are taken on the set of minimizing sequences {yn}n∈N
in the definition of Hopf-Lax transform. Using a diagonal argument, it is possible to show that
the supremum and infimum are attained, though they may differ in the presence of shocks.

For p = 2, the following properties were established in [7, Chapter 3]. For a proof adopted
to a similar framework we refer to [35, Section 3.2].

Theorem 3.9 (Hopf-Lax solution to metric space Hamilton-Jacobi equations). For any
metric space (X, d) the following properties hold:

1. Both functions D±f (x, t) are locally finite on X × (0, t∗(f)) and (x, t) 7→ Qtf(x) is

locally Lipschitz there.
2. The map (x, t) 7→ D+

f (x, t)
(
(x, t) 7→ D−f (x, t)

)
is upper (lower) semi-continuous on

X × (0, t∗(f)).
3. For every x ∈ X,

∂±t Qtf(x) = −
(p− 1)D±f (x, t)p

ptp
, ∀ t ∈ (0, t∗(f)),

where ∂−t and ∂+
t denote the left and right partial derivatives respectively. In partic-

ular, the map (0, t∗(f)) 3 t 7→ Qtf(x) is locally Lipschitz and locally semi-concave.
Moreover, it is differentiable at t ∈ (0, t∗(f)) if and only if D+

f (x, t) = D−f (x, t).

The next property will be used several times throughout the chapter; we include a proof
for the readers’ convenience.

Lemma 3.10 (Hopf-Lax attainment). Let X be a proper metric space, f : X → R a lower
semi-continuous function, and t∗(f) > 0. For fixed x ∈ X and t ∈ (0, t∗(f)), there exist
y±t ∈ X so that

(3.10) Qtf(x) =
d(x, y±t )p

ptp−1
+ f(y±t ).

Moreover, the following holds: d(x, y±t ) = D±f (x, t).

Proof. Let {y±,nt } be a minimizing sequence such that

Qtf(x) = lim
n→∞

d(x, y±,nt )p

ptp−1
+ f(y±,nt ) and D±f (x, t) = lim

n→∞
d(x, y±,nt )

By local finiteness of D±f , it follows that D±f (x, t) < R for some R < ∞. The properness of

the space X guarantees that the closed geodesic ball BR(x) is compact, hence {y±,nt } admits
a subsequence converging to {y±t }. Using the lower semi-continuity of f , we get:

Qtf(x) = inf
y∈X

d(x, y)p

ptp−1
+ f(y) = min

y∈BR(x)

d(x, y)p

ptp−1
+ f(y) =

d(x, y±t )p

ptp−1
+ f(y±t ).

Hence, the claim holds true. �

Lemma 3.11 (Time monotonicity of distance progressed). Let X be a proper metric space
and let f : X → R∪{+∞} be a lower semi-continuous function. Then, for every x ∈ X, both
functions (0, t∗(f)) 3 t 7→ D±f (x, t) are monotone non-decreasing and coincide except where

they have jump discontinuities.
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Proof. Since trivially D−f ≤ D
+
f , it is sufficient to prove that

D+
f (x, s) ≤ D−f (x, t), 0 < s < t < t∗(f)

in order to conclude. By Lemma 3.10, there exist y+
s , y

−
t such that

d(x, y+
s )p

psp−1
+ f(y+

s ) = Qs(f)(x) ≤ d(x, y−t )p

psp−1
+ f(y−t ),

d(x, y−t )p

ptp−1
+ f(y−t ) = Qt(f)(x) ≤ d(x, y+

s )p

ptp−1
+ f(y+

s ).

Summing the two, we get

d(x, y+
s )p ·

(
1

sp−1
− 1

tp−1

)
≤ d(x, y−t )p ·

(
1

sp−1
− 1

tp−1

)
.

Since the Lemma 3.10 also guarantees that d(x, y−t ) = D−f (x, t) and d(x, y+
s ) = D+

f (x, s), the

claim follows. �

3.2.2. Intermediate-time Kantorovich potentials.

Definition 3.12. (Interpolating Intermediate-Time Kantorovich Potentials). Given a
Kantorovich potential ϕ : X → R, the interpolating p-Kantorovich potential at time t ∈ [0, 1],
ϕt : X → R is defined for all t ∈ [0, 1] by:

(3.11) ϕt(x) := Q−t(ϕ) = −Qt(−ϕ).

Note that ϕ0 = ϕ, ϕ1 = −ϕc, and:

−ϕt(x) = inf
y∈X

dp(x, y)

ptp−1
− ϕ(y) ∀t ∈ (0, 1].

Applying the previous general properties of the Hopf-Lax semi-group we directly obtain
that

1. (x, t) 7→ ϕt(x) is lower semi-continuous on X × (0, 1] and continuous on X × (0, 1),
2. For every x ∈ X, [0, 1] 3 t 7→ ϕt(x) is monotone non-decreasing and continuous on

(0, 1].

We also recall the following terminology: given a Kantorovich potential ϕ : X → R, γ ∈
Geo(X) is called a (ϕ, p)-Kantorovich geodesic if

(3.12) ϕ(γ0) + ϕc(γ1) =
d(γ0, γ1)p

p
=
`(γ)p

p
.

The set of all Kantorovich geodesics will be denoted with Gϕ; the upper semi-continuity of ϕ
and ϕc implies that Gϕ is a closed subset of Geo(X).

Using the modified triangular inequality

(3.13) d(x, y)p ≤ d(x, z)p

tp−1
+

d(z, y)p

(1− t)p−1
,

valid for every choice of x, y, z ∈ X, we may conclude that along (ϕ, p)-Kantorovich geodesics,
ϕt is affine in time, and it verifies the following expression:

(3.14) ϕt(γt) = (1− t)d(γ0, γ1)p

p
− ϕc(γ1).

This result easily implies the following corollary.
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Corollary 3.13. Let γ be a (ϕ, p)-Kantorovich geodesic. Then, for any s, r ∈ (0, 1), we
have:

(3.15) ϕs(γs)− ϕr(γr) = (r − s)d(γ0, γ1)p

p
.

Lemma 3.14. Let x, y, z be points in X and let t ∈ (0, 1). If

(3.16)
d(x, y)p

ptp−1
− ϕ(y) = ϕc(z)− d(x, z)p

p(1− t)p−1
,

then x is a t-intermediate point between y and z with

(3.17) d(y, z) =
d(x, y)

t
=

d(x, z)

1− t
.

Moreover there exists a (ϕ, p)-Kantorovich geodesic γ : [0, 1]→ X with γ0 = y, γt = x, γ1 = z.

Proof. By definition of c-transform, from the assumption (3.16) it follows that

d(x, y)p

ptp−1
+

d(x, z)p

p(1− t)p−1
= ϕ(y) + ϕc(z) ≤ d(y, z)p

p
.

Hence, the equality holds since the reverse inequality is trivially satisfied by (3.13). In partic-
ular, requiring the equality in the Hölder inequality implies that

(3.18)
d(x, z)p

(1− t)p
= d(y, z)p =

d(x, y)p

tp
.

So the concatenation γ : [0, 1]→ X of any constant speed geodesic γ1 : [0, t]→ X between x
and y with any constant speed geodesic γ2 : [t, 1]→ X between y and z so that γ0 = y, γt = x,
γ1 = z must be a constant speed geodesic itself by the triangle inequality. In particular also

ϕ(y) + ϕc(z) ≤ d(y, z)p

p
.

must hold as equality, impling γ to be a (ϕ, p)-Kantorovich geodesic. �

In what follows, forward and backward evolution via the Hopf-Lax semi-group will permit
us to obtain regularity properties and key estimates on the intermediate-time Kantorovich
potential. However, it is immediate to show by inspecting the definitions that we always have

Q−s ◦Qsf ≤ f on X ∀s > 0;

note that for f = −ϕ where ϕ is a Kantorovich potential, we do have equality for s = 1,
and in fact for all s ∈ [0, 1]; for f = Qt(−ϕ), t ∈ (0, 1) and s = 1 − t, we can only assert an
inequality

(3.19) (ϕc)1−t = Q−(1−t) ◦Q1(−ϕ) ≤ Qt(−ϕ) = −ϕt on X,

and equality need not hold at every point of X.

Definition (Time-Reversed Interpolating Potential). Given a Kantorovich potential ϕ :
X → R, define the time-reversed interpolating Kantorovich potential at time t ∈ [0, 1], ϕ̄t :
X → R, as:

ϕ̄t := −(ϕc)1−t = Q1−t(−ϕc) = −Q−(1−t) ◦Q1−t(−ϕt).
Note that ϕ̄0 = ϕ, ϕ̄1 = −ϕc, and:

ϕ̄t(x) = inf
y∈X

dp(x, y)

p(1− t)p−1
− ϕc(y) ∀t ∈ [0, 1).

Note that, since any Kantorovich potential ϕ is upper semi-continuous, Lemma 3.10 applies
to f = −ϕ.
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Lemma 3.15 (Relating forward to reverse evolution of potentials). The following properties
hold true:

(1) ϕ0 = ϕ̄0 = ϕ and ϕ1 = ϕ̄1 = −ϕc;
(2) For all t ∈ [0, 1], ϕt ≤ ϕ̄t;
(3) For any t ∈ (0, 1), ϕt(x) = ϕ̄t(x) if and only if x ∈ et(Gϕ).

Proof. Point 1. is a trivial consequence of the definitions. Also 2. is straightforward,
since

ϕ̄t := Q1−t(−ϕc) = −Q−(1−t) ◦Q1−t(−ϕt) ≥ ϕt.
To demonstrate 3., let us consider a point x = γt with γ ∈ Gϕ and use the following notation
`(γ) = d(γ0, γ1) for length. Applying Corollary 3.13 to γ with s = 0 and r = t we get

ϕ(γ0)− ϕt(γt) = t
`(γ)p

p
,

while applying the same result to γc ∈ Gϕc , the time reversed curve, with s = 1, and r = (1−t)
we obtain

−ϕ(γ0)− ϕc1−t(γt) = (ϕc)1(γc1)− (ϕc)1−t(γ
c
1−t)

= −t`(γ
c)p

p
= −t`(γ)p

p
.

Summing the two identities, it follows that ϕt(γt) = −(ϕc)1−t(γt) = ϕ̄t(γt).
For the other implication, let us assume that for some x ∈ X, t ∈ (0, 1) ϕt(x) =

−(ϕc)1−t(x). Applying Lemma 3.10 to the lower semi-continuous functions −ϕ and −ϕc,
it turns out that there exist yt,zt ∈ X such that

−ϕt(x) = Qt(−ϕ)(x) =
d(x, yt)

p

ptp−1
− ϕ(yt),

ϕt(x) = Q1−t(−ϕc)(x) =
d(x, zt)

p

ptp−1
− ϕc(zt).

Summing the two equations, we get that

d(x, yt)
p

ptp−1
− ϕ(yt) = ϕc(zt)−

d(x, zt)
p

p(1− t)p−1
,

so we are in position to apply Lemma 3.14, obtaining the claim. �

Motivated by Lemma 3.15 we will also consider the following set:

(3.20) D(G̊ϕ) = {(x, t) ∈ X × (0, 1) ; ϕt(x) = ϕ̄t(x)} ;

which is a closed subset of X × (0, 1).

3.2.3. First and Second Order inequalities. Let us now introduce the speed along
which each characteristic is traversed; since the particles move freely, this coincides with the
total length of the characteristic, which is why the same functions are called length functions `t
in [35]. To emphasize the dynamic point of view, we shall also refer to (p−1)`pt /p = (`p−1

t )p
′
/p′

as the energy, though it is really the energy per unit mass transported.

Definition 3.16 (Speed functions `±t ,
¯̀±
t ). Given a Kantorovich potential ϕ : X → R,

define the speed functions `±t ,
¯̀±
t as follows:

`±t (x) :=
D±−ϕ(x, t)

t
, ¯̀±

t (x) :=
D±−ϕc(x, 1− t)

1− t
, (x, t) ∈ X × (0, 1).
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Let us mention that we will shortly see that if x = γt with γ ∈ Gϕ and t ∈ (0, 1), then:

`+t (x) = `−t (x) = ¯̀+
t (x) = ¯̀−

t (x) = `(γ).

In particular, all (ϕ, p)-Kantorovich geodesics having x as their t-midpoint have necessarily

the same length. For ˜̀∈ {`, ¯̀}, we define the set:

(3.21) D˜̀ := {(x, t) ∈ X × (0, 1) : ˜̀+
t (x) = ˜̀−

t (x)}.

On D˜̀ we set ˜̀
t(x) := ˜̀−

t (x) = ˜̀+
t (x). Recalling that ϕt = −Qt(−ϕ) and ϕ̄t = Q1−t(−ϕc), we

can apply Theorem 3.9 to deduce the following:

Corollary 3.17 (Time semi-continuity of speeds). Let ϕ : X → R denote a p-Kantorovich
potential. Then:

(1) Choosing ˜̀∈ {`, ¯̀} and ϕ̃ ∈ {ϕ, ϕ̄} correspondingly, ˜̀±
t (x) are locally finite on X ×

(0, 1), and (x, t) 7→ ϕ̃t(x) is locally Lipschitz there.

(2) For ˜̀ ∈ {`, ¯̀} the map (x, t) 7→ ˜̀+
t (x) ((x, t) 7→ ˜̀−

t (x)) is upper (lower) semi-

continuous on X × (0, 1). In particular, D˜̀⊂ X × (0, 1) is Borel and (x, t) 7→ ˜̀
t(x)

is continuous on D˜̀.
(3) For every x ∈ X we have:

∂±t ϕt(x) =
(p− 1)`±t (x)

p

p
, ∂±t ϕ̄t(x) =

(p− 1)¯̀±
t (x)

p

p
∀t ∈ (0, 1).

In particular, for ˜̀∈ {`, ¯̀} and the corresponding ϕ̃ ∈ {ϕ, ϕ̄}, the map (0, 1) 3 t 7→
ϕ̃t(x) is locally Lipschitz, and it is differentiable at t ∈ (0, 1) iff t ∈ D˜̀(x), the set on

which both maps (0, 1) 3 t 7→ ˜̀±
t (x) coincide. D˜̀(x) is precisely the set of continuity

points of both maps, and thus coincides with (0, 1) with at most countably exceptions.

All four maps (0, 1) 3 t 7→ t`±t (x) and (0, 1) 3 t 7→ (t − 1)¯̀±
t (x) are monotone non-

decreasing; in particular, both D`(x) 3 t 7→ `pt (x) and D¯̀(x) 3 t 7→ ¯̀p
t (x) are differentiable

a.e.. From monotonicity it is straightforward to deduce

∂t`t(x) ≥ −1

t
`t(x) ∀t ∈ D`(x),

as well as a similar estimate for ¯̀
t. In particular, the following estimates holds true (see [35,

Corollary 3.10]).

Corollary 3.18 (Energies are locally Lipschitz in time). The following estimates hold
true for every x ∈ X:

(3.22) ∂t
`pt (x)

p
≥ −1

t
`pt (x), ∀t ∈ D`(x).

(3.23) ∂t
¯̀p
t (x)

p
≤ 1

1− t
¯̀p
t (x), ∀t ∈ D¯̀(x).

The first and the last points of the next Theorem can be compared with [35, Theorem
2.13] in the case p = 2.

Theorem 3.19 (Time-derivatives of energies bound second time-derivatives of potentials).
Let ϕ : X → R be a p-Kantorovich potential. Then the following holds true:

(1) For all x ∈ et(Gϕ) with t ∈ (0, 1), we have:

`+t (x) = `−t (x) = ¯̀+
t (x) = ¯̀−

t (x) = `(γ).
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(2) For all x ∈ X, G̊ϕ(x) 3 t 7→ `t(x) = ¯̀
t(x) is locally Lipschitz and, provided `(γ) > 0,

the following estimate holds true

1− s
1− t

≤ `t(x)

`s(x)
≤ s

t
, 0 < t ≤ s < 1.

(3) For all (x, t) ∈ D(G̊ϕ) ⊂ D` ∩D¯̀ we have that the following estimate holds true for

the upper and lower second derivatives z ∈ {P2ϕ̄t(x),P2ϕt(x)} in time of (3.1):

−p− 1

t
`pt (x) ≤ ∂t

(p− 1)`pt (x)

p
≤ P2ϕt(x) ≤ z ≤ P2ϕ̄t(x) ≤ ∂t

(p− 1)¯̀p
t (x)

p
≤ p− 1

1− t
`pt (x).

Proof. Let (x, t) ∈ D(G̊ϕ) (recall (3.20)). An application of Lemma 3.10 implies that
there exist y±, z± ∈ X such that

− ϕt(x) =
d(x, y±)p

ptp−1
− ϕ(y±),

− ϕ̄t(x) = −d(x, z±)p

ptp−1
+ ϕc(z±).

Since ϕt(x) = ϕ̄t(x) by Lemma 3.15, we can equate the two expressions, obtaining that the
assumption (3.16) in the Lemma 3.14 is satisfied. Hence x is the t-midpoint of a geodesic
connecting y± and z± for all four possibilities. The same lemma guarantees that

d(x, y±)

t
=

d(x, z±)

1− t
and thus `±t (x) = ¯̀±

t (x). Recall now that if x = γt for some γ ∈ Gϕ then Corollary 3.13
implies that

Qt(−ϕ)(x) = −ϕt(x) =
d(x, γ0)p

ptp−1
− ϕ(γ0)

and thus the sequence {yn} with yn ≡ γ0 is in the class of admissible sequences for the infimum
and supremum in the definition of D±−ϕ(x, t). Hence

t`−t (x) = D−−ϕ(x, t) ≤ d(x, γ0) = t`(γ) ≤ D+
−ϕ(x, t) = t`+t (x),

and 1. follows.
In order to prove 2., let γt, γs ∈ Gϕ be such that γtt = γss = x, for some t, s ∈ (0, 1). Then

`(γα)p

p
− ϕ(γα0 ) = ϕc(γα1 ) ≤ d(γα1 , γ

β
0 )p

p
− ϕ(γβ0 )

for (α, β) = (s, t) and (α, β) = (t, s). Summing the two inequalities, we obtain that

`(γt)p + `(γs)p ≤ d(γt0, γ
s
1)p + d(γt1, γ

s
0)p,

hence the set {(γt0, γt1), (γs0, γ
s
1)} turns out to be dp-cyclic monotone. For what concerns the

right hand side we can observe that, since γtt = γss = x, it holds

d(γα0 , γ
β
1 ) ≤ d(γα0 , x) + d(x, γβ1 ) = α`(γα) + (1− β)`(γβ).

Thus the inequality above rewrites in the following way:

`(γt)p + `(γs)p ≤ (t`(γt) + (1− s)`(γs))p + (s`(γs) + (1− t)`(γt))p.

More precisely, it is in the form

ap + bp ≤ cp + dp,
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with a, b, c, d positive and such that a+ b = c+d. Applying Karamata inequality, it turns out
that an inequality of this type implies a, b ∈ (min{c, d},max{c, d}). In our case, if s > t, we
get

1− s
1− t

≤ `t(x)

`s(x)
≤ s

t
,

thus `·(x) is locally lipschitz.

To obtain 3., as in (3.2) let us define h̃ = h, h̄ as

h̃(ε) := 2(ϕ̃t0+ε(x)− ϕ̃t0(x)− ε∂tϕ̃t0(x)).

Recall that, by Lemma 3.15, for all t ∈ [0, 1] it holds ϕt ≤ ϕ̄t with the equality satisfied in the

case x ∈ et(Gϕ). Moreover, since G̊ϕ(x) ⊂ D`(x)∩D¯̀(x), the maps t 7→ ϕ̃t(x) are differentiable

at t0 ∈ G̊ϕ(x) and (p− 1)`pt0(x)/p = ∂t|t=t0ϕt(x) = ∂t|t=t0ϕ̄t(x) = (p− 1)¯̀p
t0

(x)/p. These facts

imply that h ≤ h̃ on (−t0, 1− t0). Dividing by ε2 and taking subsequential limits, we obtain

P2ϕt(x) ≤ P2ϕ̄t(x), P2ϕt(x) ≤ P2ϕ̄t(x).

Combining these inequalities with those of Lemma 3.5, (3.22) and (3.23) we get the claim. �

We conclude with the following result; for its proof we refer to [35, Corollary 3.13].

Corollary 3.20. For all x ∈ X, for a.e. t ∈ G̊ϕ(x), ∂t`
p
t (x) and ∂t`

p
t (x) exist, coincide,

and satisfy:

−`
p
t (x)

t
≤ ∂t

`pt (x)

p
= ∂t

`pt (x) |G̊ϕ(x)

p

= ∂t
`
p
t (x) |G̊ϕ(x)

p
= ∂t

`
p
t (x)

p
≤ `

p
t (x)

1− t
.(3.24)

Remark 3.21. Recall that we already proved that ∂±τ |τ=sϕτ (x) = (p − 1)`±s (x)p/p and
`±s (γs) = ` for all s ∈ (0, 1).

3.2.4. Third order inequality and consequences. Just as the solution to a Hamilton-
Jacobi equation with Hamiltonian H(w) = |w|p′/p′ behaves affinely in time on its character-
istics, (3.14) similarly shows that the t interpolant ϕt of a Kantorovich potential becomes an
affine function of time t along a (ϕ, p)-Kantorovich geodesic γt. The goal of this section and
the next is to show that ∂2

t ϕt is non-decreasing along such curves and provide a positive lower
bound (3.34)–(3.35) for the slope of z(t) := [∂2

t ϕt](γt) — at least under certain regularity
hypotheses which can be subsequently verified for a large enough family of (ϕ, p)-Kantorovich
geodesics that serve our purposes. For p = p′ = 2, such estimates were proved in [35], but
their proof does not generalize to our case. However, Cavalletti and Milman [35] also provided
a heuristic argument in the smooth setting which can be adapted to p 6= 2 as follows.

Remark 3.22. Let us start from the Hamilton-Jacobi equation

∂tϕt = H(∇ϕt)
satisfied by the time t interpolant ϕt of a p-Kantorovich potential ϕ on a Riemannian manifold.
Differentiating in t gives

(3.25) ∂2
t ϕt = DH|∇ϕt(∇∂tϕt).

Setting z(t) =
[
∂2
t ϕt
]

(γt)where γt is the time t evaluation of a ϕ-Kantorovich geodesic, we
observe using γ′(t) = −DH(∇ϕt) that

z′(t) = ∂3
t ϕt(γt)−

〈
∇∂2

t ϕt(γt), DH(∇ϕt(γ(t)))
〉
.
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On the other hand

∂3
t ϕt = D2H|∇ϕt(∇∂tϕt,∇∂tϕt) +DH|∇ϕt(∇∂2

t ϕt).

Inserting this into the previous equation yields

z′(t) = D2H|∇ϕt(∇∂tϕt,∇∂tϕt)

= |∇ϕt(γ(t))|p′−2|∇∂tϕt(γ(t))|2 + (p′ − 2)|∇ϕt(γ(t))|p′−4 〈∇ϕt(γ(t)),∇∂tϕt(γ(t))〉2 .

Convexity of H(w) = |w|p′/p′ shows that z(t) is non-decreasing (hence confirming differentia-
bility a.e.) and allows its derivative to be estimated from below in terms of |∇ϕt(γ(t))| and
|∇∂tϕt(γ(t))| — both of which exist a.e. since ϕt is locally semiconvex in the halfspace t > 0.
The Cauchy-Schwarz inequality gives

z′(t) ≥ (p′ − 1)|∇ϕt(γ(t))|p
′−4〈∇ϕt(γ(t)),∇∂tϕt(γ(t))〉2

=
1

p− 1

z(t)2

`pt
,

where and `t = |DH(∇ϕt)| and (p−1)(p′−1) = 1 have been recalled and (3.25) has been used

to identify z(t) = |∇ϕt(γt)|p
′−2 〈∇ϕt(γt),∇∂tϕt(γt)〉. At least heuristically, this establishes

(3.35).

In order to obtain rigorous estimates on third order variations of Kantorovich potentials,
we introduce the quantities r̃ ∈ {r, r̄} which measure the time partial of energies along a fixed
(ϕ, p)-Kantorovich geodesic (which plays the role of a characteristic in the nonsmooth setting);
for every s ∈ (0, 1) set

r̃γ+(s) = r̃+(s) := ∂τ |τ=s
(p− 1)

p
˜̀p
τ (γs) = (p− 1)˜̀p−1∂τ |τ=s

˜̀
τ (γs),

r̃γ−(s) = r̃−(s) := ∂τ |τ=s
(p− 1)

p
˜̀p
τ (γs) = (p− 1)˜̀p−1∂τ |τ=s

˜̀
τ (γs).

By definition, r̃−(s) ≤ r̃+(s); moreover, equality holds r̃−(s) = r̃+(s) = r̃ if and only if the

map τ 7→ (p− 1)˜̀p
τ (γs)/p is differentiable at τ = s with derivative r̃.

We also define upper and lower second order Peano derivatives in time (Definition 3.4)
q̃± ∈ {q±, q̄±} of the (forward and backward) interpolated Kantorovich potentials respectively,
evaluated along the same characteristic, as follows:

q̃+(s) := P2ϕ̃s(x)|x=γs = lim sup
ε→0

h̃(s, ε)

ε2
,

q̃−(s) := P2ϕ̃s(x)|x=γs = lim inf
ε→0

h̃(s, ε)

ε2
,

where h̃(s, ε) is defined analogously to (3.2). By definition, q̃−(s) = q̃+(s) = q̃ hold if and only
if the map τ 7→ ϕ̃τ (γs) has second-order Peano derivative at τ = s given by q̃. We summarize
the relation between q̃± and r̃± implied by Lemma 3.3 and Lemma 3.5 in the following

Corollary 3.23 (First differentiability of energy is equivalent to second differentiability
of potential). The following statements are equivalent for a given s ∈ (0, 1):

(1) r̃−(s) = r̃+(s) = r̃ ∈ R, i.e. the map D˜̀(γs) 3 τ 7→ (p − 1)˜̀p
τ (γs)/p is differentiable

at τ = s with derivative r̃.
(2) q̃−(s) = q̃+(s) = q̃ ∈ R, i.e. the map (0, 1) 3 τ 7→ ϕ̃τ (γs) has second order Peano

derivative at τ = s given by q̃.
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If one of the two conditions above is satisfied, the map (0, 1) 3 τ 7→ ϕ̃τ (γs) is twice
differentiable at τ = s, and we have :

∂2
τ |τ=sϕ̃τ (γs) = ∂τ |τ=s

(p− 1)˜̀p
τ (γs)

p
= (p− 1)˜̀p−1 · ∂τ |τ=s`τ (γs) = r̃ = q̃.

We are now in a position to obtain lower bounds on the incremental ratio of q̃. This
provides the required third-order information concerning ϕt even when the upper and lower
derivatives in question do not agree. For the geometric interpretation of the following dis-
cretized differential inequalities, we refer to the discussion of the case p = 2 in [35, Section
5.1].

Theorem 3.24 (Third-order difference quotient bounds on potential along its character-
istics). For all 0 < s < t < 1 and both possibilities for ±, we have

(3.26)
q+(t)− q−(s)

t− s
≥ s

t

r±(s)2

(p− 1)`p
,

(3.27)
q̄+(t)− q̄−(s)

t− s
≥ 1− t

1− s
r̄±(t)2

(p− 1)`p
.

The proof of the analogous estimate for p = 2 ([35, Theorem 5.2]) does not work in the
general case p > 1.

Proof. By definition of the Hopf-Lax transform and by Lemma 3.10, we have that

−ϕs+ε(γs) = Qs+ε(−ϕ)(γs) =
d(y±ε , γs)

p

p(s+ ε)p−1
− ϕ(y±ε ),

with d(y±ε , γs) = D±−ϕ(γs, s+ ε) = (s+ ε)`±s+ε(γs) =: D±s+ε. Moreover, the following inequality
trivially holds:

−ϕt+ε(γt) ≤
d(y±ε , γt)

p

p(t+ ε)p−1
− ϕ(y±ε ).

Subtracting the two expressions above, we obtain:

ϕt+ε(γt)− ϕs+ε(γs) ≥ −
d(y±ε , γt)

p

p(t+ ε)p−1
+

d(y±ε , γs)
p

p(s+ ε)p−1
,

hence recalling (3.2)

1

2
(h(t, ε)− h(s, ε)) ≥ −ϕt(γt) + ϕs(γs)−

d(y±ε , γt)
p

p(t+ ε)p−1
+

d(y±ε , γs)
p

p(s+ ε)p−1
,

= (t− s)`
p

p
− d(y±ε , γt)

p

p(t+ ε)p−1
+

d(y±ε , γs)
p

p(s+ ε)p−1
,

= (t− s)`
p

p
− d(y±ε , γt)

p

p(t+ ε)p−1
+

(s+ ε)(`±s+ε(γs))
p

p
.(3.28)

We need now an estimate from below of the second term. In order to do that, let us observe
that

d(y±ε , γt) ≤ d(y±ε , γs) + d(γs, γt) = D±s+ε +Dt −Ds,

where we put Dr = r` = d(γr, γ0), for r = s, t. In particular,

D±s+ε +Dt −Ds = (s+ ε)(`±s+ε(γs)− `s(γs)) + (t+ ε)`

= (t+ ε)

[
s+ ε

t+ ε
`±s+ε(γs) +

(
1− s+ ε

t+ ε

)
`

]
.
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Thus, substituting this expression in (3.28), we get

(3.29)
h(t, ε)− h(s, ε)

2ε2
≥ t+ ε

pε2

[
t− s
t+ ε

`p +
s+ ε

t+ ε
(`±s+ε(γs))

p −
(
s+ ε

t+ ε
`±s+ε(γs) +

t− s
t+ ε

`

)p]
.

In other words, denoting with f(x) := xp and defining for every λ ∈ [0, 1] the functions

sx,y(λ) = λf(x) + (1− λ)f(y), gx,y(λ) = f(λx+ (1− λ)y),

we want to estimate from below the quantity sx,y(λ) − gx,y(λ) for the following choices of
λ, x, y:

(3.30) λ =
s+ ε

t+ ε
, x = `±s+ε(γs), y = ` = `s(γs).

Appling the following inequality sx,y(λ)−gx,y(λ) ≥ min[y,x] f
′′ · λ(1−λ)

2 (x−y)2, for all λ ∈ [0, 1],
with the choices of x, y, λ given by (3.30), we get
(3.31)
h(t, ε)− h(s, ε)

2ε2
≥ t+ ε

pε2

[
min

z∈[`s(γs),`
±
s+ε(γs)]

zp−2 · p(p− 1)

2
· t− s
t+ ε

· s+ ε

t+ ε
· (`±s+ε(γs)− `s(γs))2

]
.

Taking appropriate subsequential limits as ε→ 0, we obtain

q+(t)− q−(s)

2(t− s)
≥ s

t

(p− 1)

2
`p−2(∂τ |τ=s`

±
τ (γs))

2.

In particular, it turns out that

q+(t)− q−(s)

t− s
≥ s

t

r±(s)2

(p− 1)`p
.

Next, we will deduce inequality (3.27) from (3.26) by simply using the duality between ϕ and
ϕc. Indeed, since by definition it holds that ϕ̄t = −ϕc1−t, we deduce that :

h̄ϕγ (r, ε) = −hϕ
c

γc (1− r,−ε).

Moreover, it holds

(p− 1)(`ϕ
c,±

1−r−ε(γ
c
1−r))

p

p
= −∂∓r ϕc1−r−ε(γc1−r) = ∂∓r ϕr+ε(γr) =

(p− 1)(¯̀ϕ,±
r+ε(γr))

p

p
;

hence, choosing as ϕ, γ, ε, s, t respectively ϕc, γc, −ε,1− t, 1− s we get the second claim.
�

We start by noticing an immediate consequence of Theorem 3.24:

Corollary 3.25. For both q̃ = q, q̄, the functions t 7→ q̃±(t) are monotone non-decreasing
on (0, 1).

We now combine previous regularity results on time behaviour of Kantorovich potential
with Theorem 3.24 in order to have a clear statement on the third order variation of Kan-
torovich potentials.

Theorem 3.26 (A priori third-order bounds for potential along its characteristics). As-
sume that for a.e. t ∈ (0, 1):

(3.32) (0, 1) 3 τ 7→ ϕ̃τ (γt) is twice differentiable at τ = t for both ϕ̃ = ϕ, ϕ̄,

in any of the equivalent senses of Corollary 3.23 and that moreover:

∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) for a.e. t ∈ (0, 1).
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If there exists a continuous function z for which

∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) = z(t) for a.e. t ∈ (0, 1),

then (3.32) holds for all t ∈ (0, 1) and for all t ∈ (0, 1)

(3.33) ∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) = ∂τ |τ=t
(p− 1)`pτ (γt)

p
= ∂τ |τ=t

(p− 1)¯̀p
τ (γt)

p
= z(t).

Finally, the following third order information on ϕt(x) at x = γt holds true:

(3.34)
z(t)− z(s)
t− s

≥
√
s

t

1− t
1− s

|z(s)||z(t)|
(p− 1)`p

, ∀ 0 < s < t < 1.

In particular, for any point t ∈ (0, 1) where z(t) is differentiable we have

(3.35) z′(t) ≥ z(t)2

(p− 1)`p
.

Proof. By Corollary 3.23, it follows that q̃−(t) = q̃+(t) = z(t) for a.e. t ∈ (0, 1). More
precisely, the same holds true for every t ∈ (0, 1) by the monotonicity of q̃± and the continuity
of z; thus, (3.33) is satisfied. Moreover, Corollary 3.23 also implies that r̃−(t) = r̃+(t) = z(t)
for both r̃ = r, r̄ and for all t ∈ (0, 1). Taking the geometric mean of (3.26) and (3.27), we get
(3.34). Finally, passing to the limit as s→ t in (3.34), we obtain (3.35). �

The assumptions of Theorem 3.26 will hold true for a.e. t ∈ (0, 1) only for a certain family
of Kantorovich geodesics; nonetheless, this will be enough for our purposes.

Finally, inequality (3.35) will be crucial to deduce concavity of certain one-dimensional
factors. We include here a result that will be used later. For its proof we refer to [35, Lemma
5.7].

Lemma 3.27 (Concavity restatement). Assume that for some locally absolutely continuous
function z on (0, 1) we have:

∂τ |τ=t
(p− 1)`pτ (γt)

p
= z(t) for a.e. t ∈ (0, 1).

Then for any fixed r0 ∈ (0, 1), the function:

L(r) = exp

(
− 1

`p(p− 1)

ˆ r

r0

∂τ |τ=t
(p− 1)`pτ (γt)

p
dt

)
= exp

(
− 1

`p(p− 1)

ˆ r

r0

z(t) dt

)
is concave on (0, 1).

3.2.5. Time propagation of Intermediate Kantorovich potentials. Finally we re-
call the definition of time-propagated intermediate Kantorovich potentials as introduced in
[35].

Definition 3.28. Given a Kantorovich potential ϕ : X → R and s, t ∈ (0, 1), define
the t-propagated s-Kantorovich potential Φt

s on the domain D`(t) where forward speed is
well-defined and its time-reversed version Φ̄t

s on the domain D¯̀(t) from (3.21), by:

Φt
s := ϕt + (t− s)`

p
t

p
on D`(t), Φ̄t

s := ϕ̄t + (t− s)
¯̀p
t

p
on D¯̀(t).

Using Theorem 3.19, it follows that for all s, t ∈ (0, 1):

(3.36) Φt
s = Φ̄t

s = ϕs ◦ es ◦ (et|−1
Gϕ

), on et(Gϕ).

Indeed, for any γ ∈ Gϕ it holds

Φt
s(γt) = ϕt(γt) + (t− s)`t(γt)

p

p
= ϕt(γt) + (t− s)`(γ)p

p
= ϕs(γs).
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Consequently, on et(Gϕ), Φt
s = Φ̄t

s is identified as the push-forward of ϕs via et ◦ e−1
s , i.e. its

propagation along Gϕ from time s to time t.

Proposition 3.29 ( Linear expansion of energy in time generates propagation of poten-
tial). For any s ∈ (0, 1), the following properties hold:

(1) The maps (x, t) 7→ Φt
s(x) and (x, t) 7→ Φ̄t

s(x) are continuous on D` and on D¯̀

respectively;
(2) For each x ∈ X, denoting Φ̃ ∈ {Φ, Φ̄} and the corresponding ˜̀ ∈ {`, ¯̀}, the map

D˜̀(x) 3 t 7→ Φ̃t
s(x) is differentiable at t if and only if D˜̀(x) 3 t 7→ ˜̀p

t (x) is differen-

tiable at t or if t = s ∈ D˜̀(x). In particular, t 7→ Φ̃t
s(x) is a.e. differentiable. At any

point of differentiability:

∂tΦ̃
t
s(x) = ˜̀p

t (x) + (t− s)∂t
˜̀p
t (x)

p

In particular, if s ∈ D˜̀(x) then ∂t|t=sΦ̃t
s(x) exists and is given by ˜̀p

t (x).

(3) For each x ∈ X, the map Gϕ 3 t 7→ Φt
s(x) = Φ̄t

s(x) is locally Lipschitz;
(4) For all t ∈ (0, 1):

(3.37)
∂tΦ

t
s(x) ≥ s

t
`pt (x), t ≥ s

∂tΦ
t
s(x) ≤ s

t
`pt (x), t ≤ s

∀x ∈ D`(t);


∂tΦ̄

t
s(x) ≤ 1− s

1− t
¯̀p
t (x), t ≥ s

∂tΦ̄
t
s(x) ≥ 1− s

1− t
¯̀p
t (x), t ≤ s

∀x ∈ D¯̀(t).

Proof. By lower semi-continuity and Corollary 3.13, 1) and 2) follow trivially. By Corol-
lary 3.17 and Theorem 3.19, 3) holds true. To see 4), observe that for every x ∈ D˜̀(t),

∂tΦ̃
t
s(x) = ˜̀p

t (x) + (t− s)∂t
˜̀p
t (x)

p
, t ≥ s

∂tΦ̃
t
s(x) = ˜̀p

t (x) + (t− s)∂t
˜̀p
t (x)

p
, t ≤ s

with analogous identities holding for ∂tΦ̃
t
s(x). Using estimates (3.22) and (3.23) of Corollary

3.18, the claim follows. �

3.3. Curvature-Dimension conditions: from CDp(K,N) to CD1(K,N)

We will now focus on the main goal of this chapter: to show for essentially non-branching
spaces that the synthetic (p = 2) curvature-dimension condition can be equivalently formu-
lated in terms of entropic convexity conditions along p-Wasserstein geodesics for any any other
p > 1. Our approach will be to show for such spaces that CDp(K,N) for p > 1 is equivalent

to CD1(K,N), which is an appropriate concavity statement about the factor measures which
arise whenever m is disintegrated along the needles of the signed distance to the zero level-set
of an arbitrary continuous function.

The first implication that we will address is the following one: if (X, d,m) is a p-essentially
non-branching metric measure space verifying CDp(K,N) then it satisfies CD1(K,N) (actually

the stronger CD1
Lip(K,N)).

3.3.1. Curvature estimates. Recalling Definition 1.50, one will observe that to prove
(X, d,m) verifies CD1

u(K,N) it suffices to show that, for q-a.e. α ∈ Q, the one dimensional
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metric measure space (Xα, d,mα) is a CD(K,N) space, i.e. if Xα is isometric to [0, Lα] where
Lα is the length of Xα then,

mα = hαL1x[0,Lα],

(
h

1
N−1
α

)′′
+

K

N − 1
h

1
N−1
α ≤ 0,

where the inequality has to be understood in the distributional sense. Notice indeed that, by
construction, the transport rays Xα are the maximal totally-ordered subsets of T bu ⊂ X under
the partial-ordering ≤u given by Γu.

First we recall a result relating dp-cyclically monotone sets to d-cyclically monotone set,
presented in [31] for p = 2.

Lemma 3.30 (Certain d-cyclically monotone sets are also dp-cyclical monotone). Let p > 1
be any real number and let ∆ ⊂ Γu be any set such that

(x0, y0), (x1, y1) ∈ ∆ =⇒ (u(y1)− u(y0)) · (u(x1)− u(x0)) ≥ 0.

Then ∆ is dp-cyclically monotone.

Proof. By hypothesis the set

Λ := {(u(x), u(y)) : (x, y) ∈ ∆} ⊂ R2

is monotone in the Euclidean sense. Since this corresponds to a one-dimensional transportation
problem, it is well-known ([98], p.75) that Λ is also c-cyclically monotone, for any cost c(x, y) =
ϑ(|x − y|) with ϑ : [0,+∞) → [0,+∞) convex and such that ϑ(0) = 0. Hence, in particular,
Λ is | · |p-cyclically monotone.

Fix now {(xi, yi)}ni=1 ⊂ ∆. Using that u is 1-Lipschitz and ∆ ⊂ Γ, it turns out that
n∑
i=1

dp(xi, yi) =
n∑
i=1

|u(xi)− u(yi)|p

≤
n∑
i=1

|u(xi)− u(yi+1)|p ≤
n∑
i=1

dp(xi, yi+1).

Hence the claim. �

Example 1 (Dimensional count in the smooth case). If d is the geodesic distance on an
n-dimensional Riemannian manifold X (or Euclidean space), then — away from the cut locus
— any d-cyclically monotone subset ∆ is contained in a n+ 1 dimensional subset of X2, the
extra dimension being due to the degeneracy of d along the direction of transport [81]. On the
other hand, if the left projection P1(∆) ⊂ {ũ = 0} for some C1 function ũ whose derivative
is non-vanishing on its zero set, we expect the dimension of ∆ to be reduced to n, which
coincides with the dimensional bound on a dp-cyclically monotone set for p > 1. This example
helps motivate both the previous lemma and the construction to follow.

Similarly, in the nonsmooth setting, fixing δ ∈ R and considering pairs ∆ ⊂ Γu of partners
(x, y) ∈ ∆ whose lower endpoint lies on a fixed level set u(y) = δ, it follows that ∆ is
dp-cyclically monotone for all p > 1. Equivalently, for each C ⊂ T bu and δ ∈ R, the set
∆ := (C × {u = δ}) ∩ Γu is dp-cyclically monotone. Setting

Cδ = P1((C × {u = δ}) ∩ Γu),

we see that if m(Cδ) > 0, then by Theorem 1.30, there exists a unique ν ∈ OptGeop(µ0, µ1)
such that

(e0)]ν = m(Cδ)
−1mxCδ, (e0, e1)]ν(C × {u = δ} ∩ Γu) = 1,

and whose push-forwards by et verify the entropic concavity statement 1.35 for all t ∈ [0, 1].
Letting C and δ vary, it is a standard procedure, see for example [30], to deduce that:
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- for q-a.e. α ∈ Q, the conditional probabilities mα are absolutely continuous w.r.t.
L1xXα ;

- if mα = hαL1xXα , then hα > 0 in the relative interior of Xα and is locally Lipschitz.

Figure 1. (The sets Cδ) Transporting µ0 to µ1 along radial transport
geodesics determined by a radial 1-Lipschitz function u associated to the radial
Kantorovich potential ϕ. If we assume that u behaves like the euclidean norm,
it holds that Cδ1 = ∅, Cδ2 = C2, Cδ3 = C.

The next step is to prove the CD(K,N) inequality for q-a.e. one-dimensional density hα.
This follows repeating verbatim the proof of [36, Theorem 4.2] where the same implication was
proved assuming CD2,loc(K,N) and 2-essentially non-branching. The main ingredient being
Lemma 3.30 for p = 2, the argument carries over for any p > 1.

Combining what has been discussed so far, we obtain the following:

Theorem 3.31 (Non-branching CDp,loc spaces are CD1
Lip). Let (X, d,m) be a p-essentially

non-branching m.m.s. satisfying the CDp,loc(K,N) condition for some p ∈ (1,+∞), K ∈ R,
and N ∈ [1,∞) and m(X) = 1.

Then, for any fixed 1-Lipschitz function u : X → R, the transport relation Rbu induces on
the transport set a disintegration of mxTu into conditional measures, mα, that for q-a.e. α
satisfy mα = hαL1xXα and:

hα((1− s)t0 + st1)1/(N−1) ≥ σ(1−s)
K,N−1(t1 − t0)hα(t0)1/(N−1) + σ

(s)
K,N−1(t1 − t0)hα(t1)1/(N−1),

for all s ∈ [0, 1] and for t0, t1 ∈ [0, Lα] with t0 < t1, where we have identified the transport ray
Xα with the real interval [0, Lα] having the same length.

Notice that the q-measurability of the disintegration, ensured by the Disintegration The-
orem, implies joint measurability of the map (α, t)→ hα(t).

Remark 3.32 (Enhancing CD1
Lip). It is worth underlining that the conclusion of Theorem

3.31 is actually stronger than claiming that (X, d,m) verifies CD1
Lip(K,N). Notice, indeed,

that while CD1
Lip(K,N) asks for a disintegration of mxTu (no partition required, see Definition
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1.50) where each conditional measure is concentrated along a maximal transport ray and
verifies CD(K,N), Theorem 3.31 shows that we have a partition of the transport set made of
maximal transport rays and the associated essentially unique disintegration verifies CD(K,N)
(recall Remark 1.46). In what follows we will show that this property is enough to prove that
(X, d,m) also verifies CDq(K,N) for any q > 1, provided it is also q-essentially non-branching.

To complete the picture we mention that in [35, Proposition 8.13] it is shown that
CD1

Lip(K,N) coupled with essentially non-branching (hence p = 2) implies that the disin-

tegration of mxT bu coming from the partition induced by the transport relation Rbu indeed

verifies all the conditions required by CD1
Lip(K,N). We refer to [35, Proposition 8.13] for

additional details.

3.4. Curvature-Dimension conditions: from CD1(K,N) to CDq(K,N)

Before tackling Theorem 3.1 and Corollary 3.1 we explore an example which illustrates
some of the strategies and notations used.

Example 2 (Radial transport). Let X = Rn, d be Euclidean distance, and set m = Ln.
Let µ0(dx) = 1

ωn|x|n−1LnxA1,2(dx) and µ1(dx) = 1
ωn|x|n−1LnxA3,4(dx) where for 0 < s < r <∞,

As,r is defined as the spherical shell

As,r = Br(0) \Bs(0).

We use the cost c(x, y) = d(x,y)q

q where 1 < q < ∞. For this transport problem, the optimal

map is T (x) = (|x|+ 2) x
|x| , the Kantorovich potential is ϕ(x) = −2q−1|x|, and its interpolated

potentials are

ϕt(x) =


−|x|q
qtq−1 , if |x| ≤ 2t,

−2q−1
[
|x| − 2t

q′

]
, if 2t < |x|,

where q′ is the Hölder dual to q. It is possible to show that the set Gϕ of (ϕ, q)-Kantorovich
geodesics (3.12) consist of all segments of length two pointed away from the origin. Notice that
not all such geodesics are involved in the transport of µ0 to µ1: indeed only those starting in
the source A1,2 (and therefore ending in the target A3,4) are. In particular, only the subset of
geodesics starting at a point in A1,2 will have mass passing along them at all times t ∈ (0, 1).
This restriction should be compared to condition 3 from Definition 3.35. In particular, we
use G to denote a good subset of Gϕ of full measure which meet the stipulations of Definition
3.35. Since we wish to apply the Disintegration Theorem, we have to associate the geodesics
of Gϕ with the transport rays of a 1-Lipschitz function. We do so by choosing our 1-Lipschitz
function to be the signed distance to a level set of ϕ. In our example we can use the norm
since ϕ is a monotone radial function. However, in the general case, we must use the signed
distance da,s := dϕs−a with respect to the a level set of ϕ. Note that the ordinary distance
function was not used so that we could refer to the level sets of da,s uniquely. This idea is the
basis of the discussion in subsection 3.4.1. In both cases we see that we are working with a
subset, G, of the transport set according to the 1-Lipschitz function we chose. This should be
compared to Lemma 3.36.

Finally, we demonstrate how the change of variables formula from Theorem 3.41 applies
to our example. For 0 < t < 1 and γ ∈ G, the interpolating maps, measures, and densities
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are given by:

Tt(x) = (|x|+ 2t)
x

|x|
,

µt(dx) =
1

ωn|x|n−1
LnxA1+2t,2+2t(dx),

and ρt(γt) =
1

ωn (|γ0|+ 2t)n−1 .

Hence, for s, t ∈ (0, 1) we have

(3.38)
ρt(γt)

ρs(γs)
=

(
1 + `+ 2s

1 + `+ 2t

)n−1

if |γ0| = 1 + `. For fixed s ∈ (0, 1), we note that if a = −2q−1
[
1 + `+ 2s

q

]
for 0 ≤ ` ≤ 1 and

γ ∈ G is a geodesic such that |γ0| = 1 + ` then

ϕs (γs) = a.

In particular, using this notation we can write Ga,s = {γ ∈ G : ϕs(γs) = a}. Hence,

es (Ga,s) = ∂B1+`+2s(0)

e[0,1] (Ga,s) = A1+`,3+`

where −` = 21−qa+ 1 + 2s
q . Using the Disintegration Theorem, as in (??), for any 1 ≤ ` ≤ 1,

we obtain

LnxA1+`,3+`
(dx) =

ˆ
∂B1(0)

|x|n−1H1x{rα|1+`≤r≤3+`}Hn−1(dα)

where Hk denotes k-dimensional Hausdorff measure. Notice that we can rewrite this as

LnxA1+2`,3+2`
=

ˆ
∂B1+`+2s(0)

ga,s (α, ·)]

(
2

(
1 + `+ 2t

1 + `+ 2s

)n−1

χ[0,1](t)dt

)
Hn−1(dα)

=

ˆ 1

0
ga,s(·, t)]

(
2

(
1 + `+ 2t

1 + `+ 2s

)n−1

χ[0,1](t)dHn−1

)
L1(dt)(3.39)

where ga,s : es(Ga,s) × [0, 1] → X and ga,s(α, ·) = esx
−1
Ga,s

(α). Hence, ha,sα (t) =
(

1+`+2t
1+`+2s

)n−1

where we have normalized this function so that haα(s) = 1. Next notice that

(3.40) Φt
s(x) = −2q−1

[
|x| − 2t+

2s

q

]
.

We may also compute that

∂τ

∣∣∣
τ=t

Φτ
s(x) = 2q.

This allows us to show that

∂τ

∣∣∣
τ=t

Φτ
s(γt)

`q(γ)
· 1

h
ϕs(γs),s
γs (t)

=

(
1 + `+ 2s

1 + `+ 2t

)n−1

if |γ0| = 1 + ` which, of course, matches (3.38) and verifies Theorem 3.41. Note that in
general one will not have such explicit information. As such, an expression like (3.39) will be
not at disposal; hence, it is necessary to deduce information by comparing the disintegration
described in (3.39) with another one. Observe that the measure being pushed forward in
(3.39) lives on et(Ga,s) and was obtained from a disintegration with respect to a time varying
partition of et(Ga,s). For the second disintegration we instead focus on varying the level set
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values a to form a partition of et(G). This description should be compared with subsection
3.4.2 and the comparison done in subsection 3.4.3.

Let (X, d,m) be a p-essentially non-branching metric measure space satisfying CDp(K,N)

and, consequently from Theorem 3.31, also the strengthening of CD1
Lip(K,N) described in

Remark 3.32. This will be needed to close the argument: the strengthening of CD1
Lip(K,N)

will give a “canonical” way of disintegrating the measure m that will be crucial to implement
our strategy.

Given any q > 1, we will prove that (X, d,m) also verifies CDq(K,N), provided the space
is q-essentially non-branching as well. Recall that without loss of generality we can assume
supp(m) = X and we have the standing assumption that m(X) = 1.

Fix µ0, µ1 ∈ Pq(X, d,m). From the curvature assumption it follows that (X, d) is a geodesic
space, hence, from Section 1.2, (Pq(X),Wq) is a geodesic space as well; therefore the set of
q-optimal dynamical plan OptGeoq(µ0, µ1) is not empty.

Recall moreover that CDp(K,N) implies qualitative non-degeneracy (1.4) by [61], hence
Theorem 1.30 yields a unique ν ∈ OptGeoq(µ0, µ1) and

[0, 1] 3 t 7→ µt := (et)]ν = ρtm.

Finally, let ϕ : X → R be a q-Kantorovich potential for the Optimal transport problem
from µ0 to µ1, with cost c := dq/q. Recall that Gϕ ⊂ Geo(X) denotes the set of (ϕ, q)-
Kantorovich geodesics, i.e. all the geodesics γ for which

ϕ(γ0) + ϕc(γ1) =
dq(γ0, γ1)

q
.

We will also denote with G0
ϕ the set of null (ϕ, q)-Kantorovich geodesic defined as follows:

G0
ϕ := {γ ∈ Gϕ : `(γ) = 0},

and its complement in Gϕ by G+
ϕ .

Using [35, Proposition 9.1], the MCP(K,N) implies some non-trivial regularity properties
on the time behaviour of the density ρt: indeed the implication (1)⇒ (4) of [35, Proposition
9.1] gives a Lipschitz-type bound whenever µ1 reduces to a Dirac mass δo for some o ∈ X
(notice that from [35, Remark 9.4] this implication does not require any type of essential
non-branching property). Then the case of a general µ1 can be obtained via approximation:
using the q-essential non-branching property in its equivalent formulation given by Theorem
1.30, one can repeat the arguments of [35, Proposition 9.1] in the implications (4) ⇒ (2)
and (2)⇒ (3) where the main points were uniqueness of optimal dynamical plans and upper
semi-continuity of entropies, both still valid in our framework. We summarize this discussion
in the next statement:

Corollary 3.33 (Logarithmic finite difference bounds for interpolating densities along
characteristics). Let (X, d,m) be a q-essentially non-branching m.m.s. verifying MCP(K,N).
Then for all µ0, µ1 ∈ Pq(X) with µ0 � m there exists a unique ν ∈ OptGeoq(µ0, µ1) and a
map S : X → Geo(X) such that ν = S]µ0.

Moreover µt = (et)]ν � m for t ∈ [0, 1) and there exist versions of the densities ρt = dµt
dm ,

such that for ν-a.e. γ ∈ Geo(X), for all 0 ≤ s ≤ t < 1, it holds

(3.41) ρs(γs) > 0,

(
τ

( s
t
)

K,N (d(γ0, γt))

)N
≤ ρt(γt)

ρs(γs)
≤
(
τ

( 1−t
1−s )

K,N (d(γs, γ1))

)−N
.

In particular, for ν-a.e. γ, the map t 7→ ρt(γt) is locally Lipschitz on (0, 1) and upper semi-
continuous at t = 0.
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A further consequence of Corollary 3.33 can be obtained considering the regularity prop-
erty of the map t 7→ m(et(G)), for some compact subset G of ϕ-Kantorovich geodesics (see for
instance [35, Proposition 9.6]).

Proposition 3.34 (Near continuity of the evolution of sptµt). Let (X, d,m) be a q-
essentially non-branching m.m.s. verifying MCP(K,N). For µ0, µ1 ∈ Pq(X) with µ0 � m, let
ν denote the unique element of OptGeoq(µ0, µ1).

Then for any compact set G ⊂ Geo(X) with ν(G) > 0, such that (3.41) holds true for all
γ ∈ G and 0 ≤ s ≤ t < 1, it holds for any t ∈ (0, 1):

lim
ε→0+

L1
(
G(x) ∩ (t− ε, t+ ε)

)
2ε

= 1 in L1(et(G),m),

where G(x) =
⋃
γ∈G

γ−1(x).

Finally, we conclude this first part by recalling the definition of a special class of Kan-
torovich geodesics.

Definition 3.35 (Good collections of geodesics). Given µ0, µ1 ∈ Pq(X) with µ0 � m, we
say that G ⊂ G+

ϕ is a good subset of geodesics if the following properties hold true:

(1) G is compact;
(2) there exists a constant c > 0 such that for every γ ∈ G: c ≤ `(γ) ≤ 1/c;
(3) for every γ ∈ G, ρt(γt) > 0 for all t ∈ [0, 1] and the map (0, 1) 3 t 7→ ρt(γt) is

continuous;
(4) the claim of Proposition 3.34 holds true for G;
(5) The map et|G : G→ X is injective.

From now on we will assume G ⊂ G+
ϕ to be a good subset. In particular all the results

contained in Sections 3.4.1, 3.4.2, and 3.4.3 will be obtained tacitly assuming any optimal
dynamical plan to be concentrated on a good subset of geodesics.

We will dispose of this assumption in Section 3.4.4 via an approximation argument. Notice
indeed that under q-essentially non-branching and MCP(K,N) for any ν ∈ OptGeoq(µ0, µ1)

with µ0 � m, and any ε > 0 there exists a good compact subset Gε ⊂ G+
ϕ such that ν(Gε) ≥

ν(G+
ϕ ) − ε for any ε > 0. Without loss of generality, we can also assume that Gε increases

along any given sequence of ε decreasing to 0.

In what follows we will use a suitable collection of L1-optimal transport problems to de-
compose the Jacobian of the evolution of the Wq-geodesic t→ µt and to obtain key estimates
on both components: our interest will be focused on finding a codimension-1 Jacobian orthog-
onal to the evolution and a one-dimensional counterpart. For both of these factors, curvature
estimates will be obtained via L1-optimal transport techniques, in particular Theorem 3.31,
by comparing two families of conditional measures: one coming from the aforementioned
L1-optimal transport problem and the other one from the q-Kantorovich potential.

The decomposition technique will be very similar to the one developed in [35]; we will not
repeat all the proofs but just list the main differences and include additional details where
needed.

3.4.1. L1 Partition. For s ∈ [0, 1] and a ∈ R, we define the set of geodesics Ga,s ⊂ Gϕ
as follows:

Ga,s = {γ ∈ G : ϕs(γs) = a}.
Let us observe that since G is compact and es : G→ X is continuous, es(G) is still compact.
Moreover, for s ∈ (0, 1), ϕs : X → R is continuous and hence Ga,s is compact as well.
Let us fix a ∈ ϕs(es(G)). The aim of the next subsection will be to analyze the structure of
the evolution of the set Ga,s, i.e. e[0,1](Ga,s).
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From now on we will denote the signed-distance function from a level set a of ϕs with da,s :=
dϕs−a (recall the notation of (1.19)). Since da,s is a 1-Lipschitz function, we can associate to
it all the sets introduced in Section 1.4.3, including the transport ordering Γda,s =≤da,s ,the

relation Rda,s = Γda,s ∪ Γ−1
da,s

and set Tda,s ⊂ P1(Rda,s).

Lemma 3.36. Let (X, d) be a geodesic space. Once s ∈ [0, 1] and a ∈ ϕs(es(G)) are fixed,
then for each γ ∈ Ga,s and for every 0 ≤ r ≤ t ≤ 1, (γr, γt) ∈ Γda,s. In particular,

e[0,1](Ga,s) ⊂ Tda,s .

The proof goes along the same lines of [35, Lemma 10.3]; we have included it for the
reader’s convenience.

Proof. Let us fix γ ∈ Ga,s. By Corollary 3.13 and Lemma 3.15 (2), we have that if
s ∈ [0, 1) then for any x ∈ {ϕs = a}, it holds

dp(γs, γ1)

p(1− s)p−1
= ϕs(γs) + ϕc(γ1) = ϕs(x) + ϕc(γ1) ≤ ϕ̄s(x) + ϕc(γ1) ≤ dp(x, γ1)

p(1− s)p−1
.

Hence d(γs, γ1) ≤ d(x, γ1). In the same way, if s ∈ (0, 1], then for any y ∈ {ϕs = a} we have
that

dp(γs, γ0)

psp−1
= ϕ(γ0)− ϕs(γs) = ϕ(γ0)− ϕs(y) ≤ dp(y, γ0)

psp−1
.

So d(γs, γ0) ≤ d(y, γ0), which is also trivially satisfied in the case s = 0. Thus, for any
x, y ∈ {ϕs = a} we have

d(γ0, γ1) ≤ d(γ0, x) + d(y, γ1).

Taking the infimum over x and y we get that

d(γ0, γ1) ≤ da,s(γ0)− da,s(γ1),

where the sign of da,s was determined by the fact that s 7→ ϕs(γs) is decreasing. More
precisely, the latter relation turns out to hold as an equality by 1-Lipschitz regularity of da,s,
thus (γ0, γ1) ∈ Γda,s . This implies that for every 0 ≤ r ≤ t ≤ 1, (γr, γt) ∈ Γda,s . �

By Theorem 3.31 we have that, choosing u = da,s, the following disintegration formula
holds

(3.42) mxTda,s=
ˆ
Q
m̂a,s
α q̂a,s(dα),

whereQ is a section of the partition of T bda,s given by the equivalence classes {Rbda,s(α)}α∈Q, and

for q̂a,s-a.e. α ∈ Q, m̂a,s
α is a probability measure supported on the transport ray Xα = Rda,s(α)

and (Xα,d, m̂
a,s
α ) verifies CD(K,N). By Lemma 3.36, it follows that:

mxe[0,1](Ga,s)=

ˆ
Q
m̂a,s
α xe[0,1](Ga,s)q̂

a,s(dα).

From the very definition of Ga,s and the p-essentially non-branching property, in the previous
disintegration formula the quotient set Q can be naturally identified with es(Ga,s); moreover,
we can consider the Borel parametrization

ga,s : es(Ga,s)× [0, 1]→ X, ga,s(α, ·) = (esxGa,s)
−1(α),

yielding the following disintegration formula:

(3.43) mxe[0,1](Ga,s)=

ˆ
es(Ga,s)

ga,s(α, ·)]
(
ha,sα · L1x[0,1]

)
qa,s(dα),

where qa,s is a Borel measure concentrated on es(Ga,s), and for qa,s-a.e. α ∈ es(Ga,s), h
a,s
α is

a CD(`s(α)2K,N) density on [0, 1]. Notice that the factor `s(α)2 = H1(Xα)2 is due to the



3.4. CURVATURE-DIMENSION CONDITIONS: FROM CD1(K,N) TO CDq(K,N) 53

reparametrization of the transport ray on [0, 1]. This permits, invoking Fubini’s theorem, to
reverse the order of integration so to have:

(3.44) mxe[0,1](Ga,s)=

ˆ
[0,1]

ga,s(·, t)](ha,s· (t) · qa,s)L1(dt) =

ˆ
[0,1]

ma,s
t L1(dt),

where we defined

ma,s
t := ga,s(·, t)](ha,s· (t) · qa,s).

Finally, the previous disintegration formula does not change if we multiply and divide con-
ditional measures by ha,sα (s); therefore, changing qa,s, we can assume ha,sα (s) = 1, yielding
ma,s
s = qa,s and

(3.45) ma,s
t := ga,s(·, t)](ha,s· (t) ·ma,s

s ).

Moreover (see [35, Proposition 10.7]), for any s ∈ (0, 1) and a ∈ ϕs(es(G)), the map

(0, 1) 3 t 7→ ma,s
t

is continuous in the weak topology and if m(e[0,1](Ga,s)) > 0, then ma,s
t (et(Ga,s)) > 0, for all

t ∈ (0, 1). Finally,

∀t ∈ [0, 1] ma,s
t (et(Ga,s)) = ‖ma,s

t ‖ ≤ C m(e[0,1](Ga,s)),

for some C > 0 depending only on K, N and {`(γ) : γ ∈ Ga,s}.

3.4.2. Lq partition. We will now consider a decomposition of m into conditional mea-
sures induced by Kantorovich potentials.

Hence for any s, t ∈ (0, 1), let us consider a ∈ Φt
s(et(G)) = ϕs(es(G)). With such a choice

of a, the compact set et(G) admits a partition given by et(G) ∩ {Φt
s = a}a∈R .

Continuity of Φt
s makes it possible to apply the Disintegration Theorem. Since m[et(G)] <

∞, there exists an essentially unique disintegration of mxet(G) strongly consistent with respect

to the quotient map Φt
s:

(3.46) mxet(G)=

ˆ
ϕs(es(G))

m̂t
a,sq

t
s(da)

where qts = (Φt
s)]mxet(G) and m̂t

a,s is a probability measure concentrated on the set et(G) ∩
{Φt

s = a} = et(Ga,s).
Notice that, as one would expect, being the image of a time propagation of an intermediate

Kantorovich potential, the quotient set ϕs(es(G)) does not depend on t.
The next follows with no modification from [35, Proposition 10.8].

Proposition 3.37. The following properties hold true:

(1) For any s, t, τ ∈ (0, 1), the quotient measures qts and qτs are mutually absolutely
continuous;

(2) For any s, t ∈ (0, 1), the quotient measure qts is absolutely continuous with respect to
Lebesgue measure L1 on R.

Employing what we obtained so far, we can rewrite (3.46) in the following way:

(3.47) mxet(G)=

ˆ
ϕs(es(G))

mt
a,sL1(da),

where mt
a,s := (dqts/dL1) · m̂t

a,s is concentrated on et(Ga,s) for L1-a.e. a ∈ ϕs(es(G)).
Over the set et(G) we also have the measure µt; as it can be lifted to the set Geo(X), it

makes sense to notice that the family of sets {Ga,s}a∈R provides a partition of G. Hence an
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application of the Disintegration Theorem guarantees the existence of an essentially unique
disintegration of ν strongly consistent with respect ϕs ◦ es:

(3.48) ν =

ˆ
ϕs(es(G))

νa,sq
ν
s(da)

where the probability measure νa,s is concentrated on Ga,s for qνs -a.e. a ∈ ϕs(es(G)). In
particular, qνs (ϕs(es(G))) = ||ν|| = 1.

Multiplying (3.47) by ρt and applying (et)] to (3.48) produces the same measure µt: this
permits to deduce what follows. For all the missing details we refer to [35, Corollary 10.10].

Corollary 3.38. We have the following

(1) For any s ∈ (0, 1), the quotient measure qνs is mutually absolutely continuous with
respect to qss. In particular, it is absolutely continuous with respect to L1.

(2) For any s, t ∈ (0, 1) and L1-a.e. a ∈ ϕs(es(G)):

ρt ·mt
a,s = qνs (a) · (et)]νa,s,

where qνs := dqνs/dL1. In particular, mt
a,s and (et)]νa,s are mutually absolutely con-

tinuous for qνs -a.e. a ∈ ϕs(es(G)).
(3) For any s ∈ (0, 1) and qνs -a.e. a ∈ ϕs(es(G)), the maps

[0, 1] 3 t 7→ ρt ·mt
a,s, [0, 1] 3 t 7→ (et)]νa,s

coincide for L1-a.e. t ∈ [0, 1] up to a positive multiplicative constant Ca,s depending
only on a, s.

3.4.3. Comparison between conditional measures. We will now link the seemingly
unrelated disintegrations (3.44) and (3.47). Observe that mt

a,s and ma,s
t are concentrated on

et(Ga,s), for each t ∈ (0, 1) for L1-a.e. a ∈ ϕs(es(G)) and for each a ∈ ϕs(es(G)) and all
t ∈ (0, 1), respectively. The common feature of the two families of conditional measures mt

a,s

and ma,s
t is that they are both coming from a disintegration formula with quotient measure

the Lebesgue measure. We can exploit this property in the next lemma.

Lemma 3.39. For every s, t ∈ (0, 1) and a ∈ ϕs(es(G)), the limit

ma,s
t = lim

ε→0

1

2ε
mxe[t−ε,t+ε](Ga,s)

holds true in the weak topology.

Proof. Since (0, 1) 3 t 7→ ma,s
t is continuous in the weak topology, and so together with

(3.44), we see that for any f ∈ Cb(X):

lim
ε→0

1

2ε

ˆ
X
f(z)mxe[t−ε,t+ε](Ga,s)(dz) = lim

ε→0

1

2ε

ˆ t+ε

t−ε

( ˆ
X
f(z)ma,s

τ (dz)

)
L1(dτ) =

ˆ
X
f(z)ma,s

t (dz),

thereby concluding the proof. �

We are now in position to compare mt
a,s and ma,s

t by comparing m in a neighborhood of
et(Ga,s) obtained first varying t and then varying a. We refer to [35, Theorem 11.3] for all the
details in the case q = 2 and simply note that the argument works for any q > 1; (the main
ingredients needed for the proof are the disintegration formulas (3.44), (3.47) and temporal
regularity of Φt

s obtained in Section 3.2).

Theorem 3.40 (Relating factorization by potential values and by ϕ-Kantorovich geodesics
via Fubini). For any s ∈ (0, 1),

ma,s
s = `ps ·ms

a,s, for L1-a.e. a ∈ ϕs(es(G)).
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Moreover, for any s ∈ (0, 1) and L1-a.e. t ∈ (0, 1) including at t = s, ∂tΦ
t
s(x) exists and is

positive, and for L1-a.e. a ∈ ϕs(es(G)) and mt
a,s-a.e. x we have:

(3.49) ma,s
t = ∂tΦ

t
s ·mt

a,s, for L1-a.e. a ∈ ϕs(es(G)).

3.4.4. Change of variable formula. Building on Theorem 3.40, we are now in position
to write the Jacobian associated to the evolution of µt as the product of two factors. All the
results obtained until now will be used to prove the following:

Theorem 3.41 (Change of variables formula). Let (X, d,m) be a p-essentially non branch-
ing m.m.s. satisfying CDp(K,N) and assume it is also q-essentially non branching. Let us
consider µ0, µ1 ∈ Pq(X, d,m) and let ν denote the unique element of OptGeoq(µ0, µ1). Setting
µt = (et)]ν � m, we will consider the densities ρt := dµt/dm, t ∈ [0, 1], given by Corollary
3.33. Then for any s ∈ (0, 1), for L1-a.e. t ∈ (0, 1) and ν-a.e. γ ∈ G+

ϕ , ∂τ |τ=tΦ
τ
s(γt) exists

and the following formula holds:

(3.50)
ρt(γt)

ρs(γs)
=
∂τ |τ=tΦ

τ
s(γt)

`p(γ)
· 1

h
ϕs(γs),s
γs (t)

.

Here h
ϕs(γs),s
γs is the CD(`(γ)2K,N) density on [0, 1] from (3.43), renormalized in such a way

h
ϕs(γs),s
γs (s) = 1. Finally, for all γ ∈ G0

ϕ, it holds:

(3.51) ρt(γt) = ρs(γs), ∀t, s ∈ [0, 1].

Proof. By [35, Lemma 6.11] and the discussion below Definition 1.37, (X, d,m) verifies
MCP(K,N) and Corollary 3.33 guarantees the existence of versions of the densities satisfying
(3.41). For any ε > 0, there exists a good compact subset Gε ⊂ G+

ϕ such that ν(Gε) ≥
ν(G+

ϕ )− ε and such that Gε increases along a sequence of ε decreasing to 0.
Fixing ε > 0 on this sequence and the good subset Gε, let us set

νε =
1

ν(Gε)
νxGε , µεt := (et)]ν

ε � m.

In particular we have that µεt = 1
ν(Gε)µxet(Gε), for all t ∈ [0, 1] and therefore:

µεt = ρεtm, ρεt :=
1

ν(Gε)
ρt|et(Gε), ∀t ∈ [0, 1].

As we proved in Corollary 3.38, for each s ∈ (0, 1) and qε,ss -a.e. a ∈ ϕs(es(G
ε)), the map

[0, 1] 3 t 7→ ρt · mε,t
a,s coincides for L1-a.e. t ∈ [0, 1] with the geodesic t 7→ (et)]ν

ε
a,s up to a

constant Cεa,s > 0. Hence, for such s and a, for L1 a.e t ∈ [0, 1], we have that for any Borel
set H ⊂ Gε the quantity

(3.52)

ˆ
et(H)

ρεt (x)mε,t
a,s(dx) = Cεa,s

ˆ
et(H)

(et)]ν
ε
a,s(dx) = Cεa,sν

ε
a,s(H)

is constant in t, where in the last equality we used the injectivity of the map et : Gε → X. By
Theorem 3.40, for L1-a.e. t ∈ (0, 1) and L1-a.e. a ∈ ϕs(Gεs), ∂tΦt

s(x) exists and is positive for

mε,t
a,s-a.e. x; moreover (3.49) holds. Thus, for all a, s and t for which the previous condition

and (3.52) hold, we have

Cεa,sν
ε
a,s(H) =

ˆ
et(H)

ρεt (x)mε,t
a,s(dx) =

ˆ
et(H)

ρεt (x)(∂tΦ
t
s(x))−1mε,a,s

t (dx)(3.53)

=

ˆ
es(H)

ρεt (g
a,s(α, t))(∂τ |τ=tΦ

τ
s(ga,s(α, t)))−1ha,sα (t)mε,a,s

s (dα)

=

ˆ
es(H)

ρεt (g
a,s(α, t))(∂τ |τ=tΦ

τ
s(ga,s(α, t)))−1ha,sα (t)`ps(α)mε,s

a,s(dα)
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where the two last equalities follow from (3.45) and Theorem 3.40, respectively.
Since the left-hand side of (3.53) does not depend on t, it follows that for all s ∈ (0, 1)

and for qε,ss -a.e. a ∈ ϕs(es(Gε)), there exists a subset T ⊂ (0, 1) of full L1 measure such that
for all H ⊂ Gεa,s the map

T 3 t 7→
ˆ

es(H)
ρεt (g

a,s(α, t))(∂τ |τ=tΦ
τ
s(ga,s(α, t)))−1ha,sα (t)`ps(α)mε,s

a,s(dα),

is constant. In particular, since any Borel subset of es(Ga,s) can be written in the form es(H),
we have that for t, t′ ∈ T

(3.54) ρεt′(γt′)(∂τ |τ=t′Φ
τ
s(γt′))

−1ha,sγs (t′) = ρεt (γt)(∂τ |τ=tΦ
τ
s(γt))

−1ha,sγs (t),

for mε,s
a,s-a.e. α ∈ es(G

ε
a,s) where γ = e−1

s (α) = ga,s(α, ·) ∈ Gεa,s, with the exceptional set

depending on t, t′. Recall that, by Corollary 3.38, given t′ ∈ T , ∂τ |τ=t′Φ
τ
s(γαt′ ) exists for mε,s

a,s-
a.e. α ∈ es(G

ε
a,s). Thus, in particular, the equality (3.54) holds for a countable sequence of

{t′} ⊂ T dense in (0, 1). Using the normalization ha,sγs (s) = 1, the continuity of ha,sγs (·), ρε· (γ·)
and the fact that

lim
T3t′→s

∂τ |τ=t′Φ
τ
s(γαt′ ) = `s(γ

α
s )p = `(γα)p,

it is possible to pass to the limit for t′ → s in (3.54)

(3.55) ρεs(γs)`(γ)−p = ρεt (γt)(∂τ |τ=tΦ
τ
s(γt))

−1ha,sγs (t),

for mε,s
a,s-a.e. α ∈ es(G

ε
a,s), with γ = e−1

s (α) ∈ Gεa,s.
By corollary 3.38, the measures mε,s

a,s and (es)]ν
ε
a,s are mutually absolutely continuous

for qε,ss -a.e. a ∈ ϕs(es(G
ε)). In particular, this implies that for all s ∈ (0, 1), for qε,ss -a.e.

a ∈ ϕs(es(Gε)) and L1-a.e. t ∈ (0, 1), the equality (3.54) holds for νa,s-a.e. γ. By Corollary
3.38, it follows that the measures qε,ss and qε,νs are mutually absolutely continuous; thus, by
the disintegration formula (3.48), it follows that for all s ∈ (0, 1) and L1-a.e. t ∈ (0, 1):

ρεs(γs)`(γ)−p = ρεt (γt)(∂τ |τ=tΦ
τ
s(γt))

−1hϕs(γs),sγs (t),

for ν-a.e. γ ∈ Gε. Passing to the limit as ε→ 0 along the chosen sequence, it turns out that
all s ∈ (0, 1), L1-a.e. t ∈ (0, 1) and ν-a.e. γ ∈ G+

ϕ satisfy

ρs(γs)`(γ)−p = ρt(γt)(∂τ |τ=tΦ
τ
s(γt))

−1hϕs(γs),sγs (t).

By Fubini ’s Theorem, for ν-a.e. γ ∈ G+
ϕ , we have that (3.50) holding for L1-a.e. s, t ∈

(0, 1). �

Remark 3.42. All of the results of this section also hold for Φ̄t
s in place of Φt

s. Indeed,

recall that for all x ∈ X, Φt
s(x) = Φ̄t

s(x) for t ∈ G̊ϕ(x), and that by Proposition 3.29,

∂tΦ
t
s(x) = ∂tΦ̄

t
s(x) for a.e. t ∈ G̊ϕ(x). As these were the only two properties used in the above

derivation the assertion follows.

By Proposition 3.29, we know that the differentiability points of τ 7→ Φ̃τ
s(x) and τ 7→ ˜̀p

τ (x)
coincide for all τ 6= s and at these points

∂τ Φ̃τ
s(x) = ˜̀p

τ (x) + (τ − s)∂τ
˜̀p
τ (x)

p
.

Hence by Remark 3.42, we deduce that for ν-a.e. geodesic γ ∈ G+
ϕ and for a.e. t ∈ (0, 1) both

quantities

∂τ |τ=t`
p
τ (γt) = ∂τ |τ=t

¯̀p
τ (γt)
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exist and coincide. We can therefore rewrite the change of variable formula in the following
way: for ν-a.e. geodesic γ ∈ G+

ϕ

(3.56)
ρs(γs)

ρt(γt)
=

h
ϕs(γs),s
γs (t)

1 + (t− s)∂τ |τ=t`
p
τ (γt)

p`(γ)p

=
h
ϕs(γs),s
γs (t)

1 + (t− s)∂τ |τ=t log ¯̀
τ (γt)

, for a.e. t, s ∈ (0, 1).

For sake of brevity, once the geodesic γ is fixed, we will use the following notation: ρ(t) =

ρt(γt), hs(t) := h
ϕs(γs)
γs (t) and K0 = K · `(γ)2. We recall that, by Corollary 3.33 and (3.43),

given by Theorem 3.31, the following properties hold true for ν-a.e γ ∈ G+
ϕ :

(A) (0, 1) 3 t 7→ ρ(t) is locally Lipschitz and strictly positive.
(B) For all s ∈ (0, 1), hs is a CD(K0, N) density on [0, 1] satisfying hs(s)=1.

Fix now a geodesic γ ∈ G+
ϕ satisfying the change of variable formula (3.58), (A), (B) above.

The formula (3.56) implies that there exists a set I ⊂ (0, 1) of full measure such that for
all s ∈ I the functions

t 7→ ∂τ |τ=t

˜̀p
τ/p(γt)
˜̀(γ)p

, t 7→ zs(t) :=

ρ(t)
ρ(s)hs(t)− 1

t− s

coincide a.e. on (0, 1) for both ˜̀∈ {`, ¯̀}, with zs defined on (0, 1) \ {s}. Hence, by continuity,
the functions {zs}s∈I must all coincide, where defined, with a unique function t 7→ z(t) defined
on (0, 1) such that

(3.57) z(t) =
∂

∂τ

∣∣∣∣
τ=t

log `τ (γt) =
∂

∂τ

∣∣∣∣
τ=t

log ¯̀
τ (γt), for a.e. t ∈ (0, 1).

Since CD(K,N) densities are locally Lipschitz in the interior of the domain where they
are defined, we see that z is locally Lipschitz in (0, 1) from (3.58). Combining (3.57) with the
third order information provided by Theorem 3.26 (up to constant factors) yields:

(C) (0, 1) 3 t 7→ z(t) is locally Lipschitz. Moreover, for any δ ∈ (0, 1/2) there exists
Cδ > 0 so that:

z(t)− z(s)
t− s

≥ (1− Cδ(t− s))|z(s)||z(t)|, ∀ 0 < δ ≤ s < t ≤ 1− δ < 1.

In particular, z′(t) ≥ z2(t) for a.e. t ∈ (0, 1).

To summarize, the change of variable formula can be rewritten in the following form:

(3.58)
ρ(s)

ρ(t)
=

hs(t)

1 + (t− s)z(t)
, for all t, s ∈ (0, 1),

where z(t) coincides for all t ∈ (0, 1) with the second Peano derivative of τ 7→ ϕτ (γt) and
of τ 7→ ϕ̄τ (γt) at τ = t. These second Peano derivatives exist for all t ∈ (0, 1) and are a
continuous function.

We are therefore in position to obtain the aforementioned factorization of the “Jacobian”.
It has been already proved in [35] (see Theorem 12.3) that properties (A), (B), (C) together
with the change of variable formula (3.58) are enough to obtain a factorization of the real
function 1/ρ(t) into a product L(t)Y (t), in which the first factor L(t) is concave due to
dilational and dimensional effects (analogous to the Brunn-Minkowski inequality on (Rn, | ·
|,Ln)), while the latter term Y (t) captures the effects of the curvature of (X, d,m). In the

smooth case ρ(t)−1/n would be interpreted as the mean-free path between particles during
transport.
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Theorem 3.43 (Isolating curvature effects in the volume distortion along the direction
transported [35, Theorem 12.3]). If the change of variable formula (3.58) holds and the prop-
erties (A), (B), (C) are satisfied, then

1

ρt(γt)
= L(t)Y (t) ∀t ∈ (0, 1),

where L is concave and Y is a CD(K0, N) density on (0, 1).

3.4.5. Main Theorems. Finally, combining the results proved so far in Section 3.3 and
Section 3.4 we close the circle proving:

Theorem 3.44 (Non-branching CDp spaces are CD1
Lip hence CDq). Let (X, d,m) be a p-

essentially non-branching m.m.s. verifying CDp(K,N) for some p > 1. If (X, d,m) is also
q-essentially non-branching for some q > 1, then it verifies CDq(K,N).

Proof. Consider µ0, µ1 ∈ Pq(X, d,m). Recall that CDp(K,N) implies (X, d) to be
a geodesic space, hence the same is true for (Pq(X),Wq). Moreover, it implies (X, d) is
MCP(K,N), hence qualitatively non-degenerate. Since (X, d,m) is assumed to be q-essentially
non-branching, Theorem 1.30 yields a unique ν ∈ OptGeoq(µ0, µ1) and

[0, 1] 3 t 7→ µt := (et)]ν � m.

Let ρt := dµt/dm be the versions of the densities guaranteed by Corollary 3.33. Finally let
ϕ : X → R be a Kantorovich potential for the optimal transport problem from µ0 to µ1, with
cost c := dq/q. Recall that Gϕ ⊂ Geo(X) denote the set of (ϕ, q)-Kantorovich geodesics, i.e.
all the geodesics γ for which

ϕ(γ0) + ϕc(γ1) =
dq(γ0, γ1)

q
.

As already observed, ν will be concentrated on Gϕ = G+
ϕ ∪G0

ϕ, where G+
ϕ and G0

ϕ denote the
subsets of positive and zero length (ϕ, q)-Kantorovich geodesics respectively.
By the change of variables formula obtained in Theorem 3.41 (which relies on the CD1

Lip(K,N)

conclusion of Theorem 3.31), for ν-a.e. geodesic γ ∈ G+
ϕ :

(3.59)
ρs(γs)

ρt(γt)
=

h
ϕs(γs),s
γs (t)

1 + (t− s)∂τ |τ=t`
p
τ (γt)

p`(γ)p

=
h
ϕs(γs),s
γs (t)

1 + (t− s)∂τ |τ=t
¯̀p
τ (γt)

p`(γ)p

, for a.e. t, s ∈ (0, 1)

where for all s ∈ (0, 1), hs = h
ϕs(γs),s
γs is a CD(K0, N) density, with K0 = `(γ)2K and hs(s) = 1.

Since Corollary 3.33 implies the Lipschitz regularity of t 7→ ρt(γt), assumptions (A) and (B)
of the Theorem 3.43 are satisfied. Moreover, the third order information on the Kantorovich
potential ϕ guarantees also the validity of the assumption (C) of the Theorem 3.43. Hence
for ν-a.e. γ ∈ G+

ϕ , it holds

1

ρt(γt)
= L(t)Y (t), ∀t ∈ (0, 1)

where L is a concave function and Y is a CD(K0, N) density on (0, 1).
It is now a standard application of Hölder’s inequality that gives us the validity of the

CDq(K,N) inequality along the Wq-geodesic µt: fix t0, t1 ∈ (0, 1) and set tα = αt1 + (1−α)t0,
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where α ∈ [0, 1]. Using that σ
(α)
K0,N

(θ) = σ
(α)
K,N (θ`(γ)), it holds true:

ρ
− 1
N

tα (γtα) = L
1
N (tα)Y

1
N (tα)

≥
(
αL(t1) + (1− α)L(t0)

) 1
N ·
(
σ

(α)
K0,N−1(|t1 − t0|)Y

1
N−1 (t1) + σ

(1−α)
K0,N−1(|t1 − t0|)Y

1
N−1 (t0)

)N−1
N

≥ α
1
N σ

(α)
K0,N−1(|t1 − t0|)

N−1
N Y

1
N (t1)L

1
N (t1) + (1− α)

1
N σ

(1−α)
K0,N−1(|t1 − t0|)

N−1
N Y

1
N (t0)L

1
N (t0)

= α
1
N σ

(α)
K,N−1(|t1 − t0|`(γ))

N−1
N ρ

− 1
N

t1
(γt1) + (1− α)

1
N σ

(1−α)
K,N−1(|t1 − t0|`(γ))

N−1
N ρ

− 1
N

t0
(γt0)

= τ
(α)
K,N (d(γt0 , γt1))ρ

− 1
N

t1
(γt1) + τ

(1−α)
K,N (d(γt0 , γt1))ρ

− 1
N

t0
(γt0).

(3.60)

Recall that, by Corollary 3.33, the function t 7→ ρt(γt) is upper semi-continuous at the end-
points; so, it follows that for ν-a.e. γ ∈ G+

ϕ the inequality (3.60) holds true for all t0, t1 ∈ [0, 1].
In particular, setting t0 = 0, t1 = 1, we have that for all α ∈ [0, 1]:

(3.61) ρ
− 1
N

α (γα) ≥ τ (α)
K,N (d(γ0, γ1))ρ

− 1
N

1 (γ1) + τ
(1−α)
K,N (d(γ0, γ1))ρ

− 1
N

0 (γ0);

the latter inequality being satisfied for ν-a.e.γ ∈ G+
ϕ . We now claim that (3.61) is also satisfied

for every γ ∈ G0
ϕ, confirming in this way the validity of the CD(K,N) condition. Indeed, in

this case the map α 7→ ρα(γα) turns out to be constant by the Theorem 3.41 and then (3.61)

is trivially satisfied as an equality, since τ
(α)
K,N (0) = α, for every α ∈ [0, 1]. Thus, the claim. �

Corollary 3.45 (Local-to-Global). Fix any p > 1 and K,N ∈ R with N > 1. Let
(X, d,m) be a p-essentially non-branching metric measure space verifying CDp,loc(K,N) and
such that (X, d) is a length space with supp(m) = X. Then (X, d,m) verifies CDp(K,N).





CHAPTER 4

Displacement convexity of the Entropy and the distance cost
Optimal Transportation

As we have seen so far, Lott-Sturm-Villani theory is based on the characterisation of Ricci
curvature lower bounds in terms of displacement convexity of certain entropy functionals along
W2-geodesics. The theory of m.m.s.’s verifying CD(K,N) has then extensively developed,
leading to a rich and fruitful approach to the geometry of m.m.s.’s by means of Optimal-
Transport. Nevertheless, substantial recent advancements in the theory (localization paradigm
and local-to-global property) have been obtained considering the different point of view of L1-
Optimal transport problems. This has led to a different curvature dimension condition, called
CD1(K,N) (introduced for the first time in [35]), formulated in terms of one-dimensional
curvature properties of integral curves of Lipschitz maps. In this chapter we show that the two
approaches produce the same curvature-dimension condition reconciling the two definitions. In
particular we show that the CD1(K,N) condition can be formulated in terms of displacement
convexity along W1-geodesics. In order to state the main result of this chapter, we need first
to introduce some preliminary notions.

As we have seen in the Section 1.3, one can also prescribe the convexity inequality (1.5) to
hold along a Wp-geodesic, getting to the more general definition of CDp(K,N) (see definition
1.35). In this chapter we will deal with the case p = 1, that, due to the lack of strict convexity
of the exponent, needs a more refined definition.

Definition 4.1. Given K,N ∈ R with N ≥ 1 we say that a metric measure space (X, d,m)
satisfies the CD1(K,N) condition if and only if for each pair of µ0, µ1 ∈ P1(X, d,m) there exists
a Borel probability measure π ∈ P(Geo(X)) concentrated on constant speed geodesics, such
that (e0, e1)]π ∈ Opt1(µ0, µ1), µt := (et)]π � m and for which the inequality

(4.1) SN ′(µt|m) ≤ −
ˆ
X×X

[
τ

(1−t)
K,N ′ (d(γ0, γ1))ρ

−1/N ′

0 (γ0) + τ
(t)
K,N ′(d(γ0, γ1))ρ

−1/N ′

1 (γ1)
]
π(dγ)

holds for all t ∈ [0, 1] and all N ′ ≥ N .

Remark 4.2. Notice that since we are dealing with the 1-transportation distance, there
are dynamic transport plans which are not concentrated on constant speed geodesics. Insisting
on this property in the definition above seems the natural choice to make a connection with
the analogous definitions for p > 1, see e.g. Lemma 4.4.

Recall that, to avoid pathologies, we assume supp(m) = X. Now we state the main result
of this chapter:

Theorem 4.3. Let (X, d,m) be an essentially non-branching metric measure space and
further assume m(X) = 1. Then (X, d,m) satisfies the CD1

Lip(K,N) condition if and only if
it satisfies the CD1(K,N) condition.

We will present separately the two implications needed for the proof of Theorem 4.3. In
order to prove that CD1(K,N) implies CD1

Lip(K,N), in Section 4.1 we adapt the approach

used in Section 3.3 to prove that CDp(K,N) =⇒ CD1
Lip(K,N). In Section 4.2 we will

prove that, under CD1
Lip(K,N), given any two measures µ0, µ1 ∈ P1(X, d,m), there exists
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a W1-geodesic {µt} interpolating them and verifying the Entropy inequality (4.1). For this
purpose, we will consider the Kantorovich potential u : X → R associated to this L1-optimal
transport problem and, being the latter 1-Lipschitz, we deduce the validity of the CD1

u(K,N)
condition. Disintegrating µ0, µ1 along the transport rays of u, the geodesic µt will be obtained
as superposition of the one-dimensional geodesics interpolating their marginals.

4.1. CD1(K,N) =⇒ CD1
Lip(K,N)

Fix u : X → R a 1-Lipschitz function and let (X, d,m) be an essentially non-branching
m.m.s. verifying CD1(K,N) with m(X) = 1.

Step 1. Disintegration formula.
First notice that CD1(K,N) implies, reasoning for instance like [94] in the case p = 2, that
the space is proper. Moreover CD1(K,N) implies the following variant of MCP(K,N) (see
definition 1.37 and refer to [75], [94] for further insights):

Lemma 4.4. Let (X, d,m) be a m.m.s. with m(X) = 1 and satisfying CD1(K,N). Then
(X, d,m) satisfies the following version of MCP(K,N): for any µ0 ∈ P(X) with µ0 � m
and x0 ∈ X, there exists a curve (µt) which is a Wp-geodesic for any p ∈ [1,∞) such that
µt = ρtm + µst for all t ∈ [0, 1) and

(4.2)

ˆ
X
ρ
−1/N ′

t µt ≥
ˆ
X
τ

(1−t)
K,N ′ (d(x, x0))ρ

−1/N ′

0 (x)µ0(dx),

holds true for all t ∈ [0, 1) and N ′ ≥ N .

Proof. Let µ0 ∈ P(X, d,m) and x0 ∈ X be given. Since supp(m) = X, we can consider
µ1,ε := cεmxBε(x0), with cε > 0 normalisation constant. Let πε be given by Definition 4.1 and
put µt,ε := (et)∗πε. It is classical to check that properness of X implies that πε is precompact
and therefore we can obtain a limit dynamical plan π inducing a geodesic from µ0 to δ0.
Validity of (4.2) simply follows by lower semicontinuity of entropy and the claim follows. �

The version of MCP(K,N) obtained in Lemma 4.4 is actually equivalent to the classical
one, provided the space is essentially non-branching: we refer for its proof to [35, Lemma 6.13]
(see also [83, Section 5]). Hence in our framework we can directly use the classical MCP(K,N).
It was shown in [75, Lemma 2.5] that for MCP(K,N) spaces a doubling condition holds true;
the latter implies that every bounded closed ball in X is totally bounded. Therefore, since X
is complete, it is proper (i.e., all bounded closed sets are compact) and thus geodesic. Hence,
as discussed in Theorem 1.49, the following disintegration formula is valid:

(4.3) mxTu= mxT bu=

ˆ
Q
mα q(dα),

where for q-a.e. α ∈ Q we have mα ∈ P(X), with mα(X\Xα) = 0. Recall that the notation Xα

is used to denote the equivalence class of the element α ∈ Q that is, in particular, a transport
ray. Notice that the first identity follows from the essentially non-branching assumption and
the discussion after Theorem 1.45.

Hence it is only left to show that (Xα, d,mα) satisfy CD(K,N).

Step 2. Intermediate regularity of conditional measures.
It is already present in the literature how to improve the validity of (4.2) to any µ1 ∈ P(X),
provided the space is essentially non-branching and the geodesic (µt)t∈[0,1] is a W2-geodesic
(see [38, Theorem 1.1]).

This will be enough to deduce a first result on the regularity of mα. Indeed, by Theorem
1.49, localization for MCP(K,N) holds true; in particular, for q-a.e. α, mα = hαH1xXα and
the one-dimensional metric measure space (Xα, d,mα) verifies MCP(K,N). Moreover, hα is
strictly positive in the relative interior of Xα and locally Lipschitz.
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Step 3. CD(K,N) estimates for one-dimensional spaces.
In order to conclude, it remains to show that for q-a.e. α ∈ Q, the one-dimensional metric
measure space (Xα, d,mα) satisfies CD(K,N). Consider the ray map g defined in (1.17); via
g we are able to identify the set of definition of the densities hα with real intervals. We start
with the following preliminary result.

Lemma 4.5. For any Q̄ ⊆ Q Borel set with positive q-measure and for R0, R1, L0, L1 ∈ R
such that R0 < R1, L0, L1 > 0 and [R0, R1 +L1] belongs to the domain of q-a.e. hα, it holds:

(Lt)
1
N sup

Q̄

h
1
N
α (Rt)

≥ (L0)
1
N τ

(1−t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (d(R0, R1)) inf

Q̄
h

1
N
α (R1),(4.4)

for every t ∈ [0, 1], where Rt = (1− t)R0 + tR1 (the same holds for Lt).

Proof. Step 1.
Fix Q̄ ⊆ Q Borel set with positive q-measure and consider R0, R1, L0, L1 ∈ R such that
R0 < R1 and L0, L1 > 0. Define for i = 1, 2 the probability measures:

µi =
1

q(Q̄)

ˆ
Q̄
g(α, ·)]

(
1

εLi
L1x[Ri,Ri+εLi]

)
q(dα).

First of all observe that, for such measures, the transport has to be performed along the rays
{Xα}α∈Q̄. For sure an optimal plan with this property exists, since the plan π rearranging the
mass monotonically along each ray is optimal; hence suppπ ⊂ Γ, so it is d-cyclically monotone
and therefore W1-optimal. The aim is to prove that all the other optimal plans enjoy the same
property.

Indeed, if not, there would exist at least one optimal plan π̄ such that, for some Q̄1 ⊂ Q̄
of positive q-measure and for some S ⊂ R, it holds

π̄{(g(α, s), g(α′, s′)) : α, α′ ∈ Q̄1, s, s
′ ∈ S withα 6= α′} > 0,

with Q̄1 × S ⊂ Dom (g). Let us consider the plan

π∗ =
π + π̄

2
;

trivially, it is still optimal for the couple µ0, µ1. By construction this plan splits some points,
generating in this way a set of branching points with positive measure. This will lead to
a contradiction. Consider indeed the Kantorovich potential v associated to the W1-optimal
transport problem between µ0 and µ1, possibly different from the 1-Lipschitz function u we
fixed above. Theorem 1.45 applied to v implies that necessarily m(A±,v) = 0. Since A±,v
will contain P1({(g(α, s), g(α′, s′)) : α, α′ ∈ Q̄1, s, s

′ ∈ S withα 6= α′}) considered above, and
µ0 � m, the contradiction with π̄({(g(α, s), g(α′, s′)) : α, α′ ∈ Q̄1, s, s

′ ∈ S withα 6= α′}) > 0
follows. Hence, every optimal plan will have support contained in the set

AεQ̄ := ∪α∈Q̄g(α, [R0, R0 + εL0])× g(α, [R1, R1 + εL1]).

Step 2.
Since by definition µ0, µ1 � m, there exists a dynamic transport plan π as in Definition 4.1
such that for µt := (et)∗π = ρtm the inequality (4.1) holds true. Step 1 above and the fact
that π is concentrated on constant speed geodesics completely characterize π; in particular we
have that for q-a.e. α ∈ Q the function ρt is 0 mα-a.e. outside the ‘interval’ g(α, [Rt, Rt+εLt]).
Hence, using the Disintegration Theorem and Jensen inequality, we can estimate the left-hand
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side of (4.1) by:ˆ
X
ρ

1− 1
N

t dm =

ˆ
Q̄

ˆ
Xα

ρt(x)1− 1
Nmα(dx)q(dα) =

ˆ
Q̄

ˆ Rt+εLt

Rt

ρt(g(α, s))1− 1
N hα(s)dsq(dα)

≤ (εLt)

ˆ
Q̄

sup
[Rt,Rt+εLt]

h
1
N
α

 Rt+εLt

Rt

(
ρt(g(α, s))hα(s)

)1− 1
N dsq(dα)

≤ (εLt)
1
N

ˆ
Q̄

sup
[Rt,Rt+εLt]

h
1
N
α

(ˆ Rt+εLt

Rt

ρt(g(α, s))hα(s)ds

)1− 1
N

q(dα)

≤ (εLtq(Q̄))
1
N sup

Q̄

(
sup

[Rt,Rt+εLt]
h

1
N
α

)
.

Arguing similarly, the right-hand side of (4.1) can be estimated in the following way where
π = (e0, e1)]π:ˆ

X×X
ρ
− 1
N

0 (x)τ
(1−t)
K,N (d(x, y)) + ρ

− 1
N

1 (y)τ
(t)
K,N (d(x, y))π(dx, dy)

≥ inf
Aε
Q̄

τ
(1−t)
K,N (d(x, y))

ˆ
X
ρ

1− 1
N

0 (x)m(dx) + inf
Aε
Q̄

τ
(t)
K,N (d(x, y))

ˆ
X
ρ

1− 1
N

1 (y)m(dy)

≥ (εq(Q̄))
1
N

[
inf
Aε
Q̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄

(
inf

[R0,R0+εL0]
h

1
N
α

)
(L0)

1
N

+ inf
Aε
Q̄

τ
(t)
K,N (d(x, y)) inf

Q̄

(
inf

[R1,R1+εL1]
h

1
N
α

)
(L1)

1
N

]
.

Hence, considering both the estimates obtained so far, we get

(Lt)
1
N sup

Q̄

(
sup

[Rt,Rt+εLt]
h

1
N
α

)
≥ inf

Aε
Q̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄

(
inf

[R0,R0+εL0]
h

1
N
α

)
(L0)

1
N

+ inf
Aε
Q̄

τ
(t)
K,N (d(x, y)) inf

Q̄

(
inf

[R1,R1+εL1]
h

1
N
α

)
(L1)

1
N .

Sending ε→ 0, we obtain

(Lt)
1
N sup

Q̄

h
1
N
α (Rt) ≥ (L0)

1
N inf
AQ̄

τ
(1−t)
K,N (d(x, y)) inf

Q̄
h

1
N
α (R0)+(L1)

1
N inf
AQ̄

τ
(t)
K,N (d(x, y)) inf

Q̄
h

1
N
α (R1),

where AQ̄ := ∪α∈Q̄{(g(α,R0), g(α,R1))}. Since g(α, ·) is an isometry, (4.4) is proved. �

We are now ready to prove the following:

Proposition 4.6. For q-a.e. α ∈ Q, the metric measure space (Xα, d,mα) satisfies
CD(K,N).

Proof. By remark 1.34, to prove the claim is sufficient to show that:

(4.5) hα((1− t)R0 + tR1)
1

N−1 ≥ σ(1−t)
K,N−1(R1−R0)hα(R0)

1
N−1 + σ

(t)
K,N−1(R1−R0)hα(R1)

1
N−1 ,

for all t ∈ [0, 1] and for R0, R1 ∈ [0, Lα] with R0 < R1, where we have identified the transport
ray Xα with the real interval [0, Lα] having the same length.
As already done in [36], it is sufficient to show that for every R0, R1 ∈ [0, Lα] with R0 < R1

and L0, L1 > 0, we have that for q-a.e. α ∈ Q

(4.6) (Lt)
1
N h

1
N
α (Rt) ≥ (L0)

1
N τ

(1−t)
K,N (R1 −R0)h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (R1 −R0)h

1
N
α (R1),
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for all t ∈ [0, 1], where Lt = (1− t)L0 + tL1 (the same for Rt). Indeed, if this is the case taking
also into account the already established continuity of hα, one can make the choice

L0 =
σ

(1−t)
K,N−1(R1 −R0)h(R0)

1
N−1

1− t
, L1 =

σ
(t)
K,N−1(R1 −R0)h(R1)

1
N−1

t
,

obtaining exactly (4.5). Thus, our aim will be proving (4.6). Arguing by contraddiction, let
us assume that there exist R0, R1 ∈ [0, Lα], L0, L1 > 0 with R0 + L0, R1 + L1 < Lα and a
Borel set Q1 ⊆ Q with positive q-measure such that for every α ∈ Q1 it holds:

(4.7) (Lt)
1
N h

1
N
α (Rt) < (L0)

1
N τ

(1−t)
K,N (R1 −R0)h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (R1 −R0)h

1
N
α (R1).

By Lusin Theorem, there exists a Borel set Q2 ⊂ Q1 with positive q-measure on which the
maps α 7→ hα(Ri), for i = 0, t, 1 are continuous. Hence, fixed δ > 0, there exists Q3 ⊂ Q2

with positive q-measure such that

(Lt)
1
N h

1
N
α (Rt) < (L0)

1
N τ

(1−t)
K,N (R1 −R0)h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (R1 −R0)h

1
N
α (R1)− δ, ∀α ∈ Q3.

In particular, for every Q̄ ⊂ Q3 compact set with positive q-measure:

(Lt)
1
N sup

Q̄

h
1
N
α (Rt) < (L0)

1
N τ

(1−t)
K,N (R1−R0) sup

Q̄

h
1
N
α (R0)+(L1)

1
N τ

(t)
K,N (R1−R0) sup

Q̄

h
1
N
α (R1)−δ.

Combining the latter inequality with (4.4), we deduce that for any Q̄ ⊂ Q3 Borel set with
positive q-measure

(L0)
1
N τ

(1−t)
K,N (R1 −R0) inf

Q̄
h

1
N
α (R0) + (L1)

1
N τ

(t)
K,N (R1 −R0) inf

Q̄
h

1
N
α (R1) <

(L0)
1
N τ

(1−t)
K,N (R1 −R0) sup

Q̄

h
1
N
α (R0) + (L1)

1
N τ

(1−t)
K,N (R1 −R0) sup

Q̄

h
1
N
α (R1)− δ.

Since the parameter δ does not depend on Q̄, we obtain a contradiction. �

This concludes the proof of the implication: from CD1(K,N) to CD1
Lip(K,N). We will

next move to the opposite implication.

4.2. CD1
Lip(K,N) =⇒ CD1(K,N)

Notice that CD1
Lip(K,N) implies that (X, d,m) is a proper geodesic space and verifies

MCP(K,N) (see for all the details [35]).
Let µ0, µ1 ∈ P1(X, d,m) be given. We will construct a W1-geodesic verifying the Entropy

inequality. Consider therefore u : X → R a Kantorovich potential associated to the transport
problem between µ0, µ1 with cost d. Considering the associated Γu, it holds that any optimal
transport plan π has to be concentrated over Γu, i.e. π(Γu) = 1. Moreover, with no loss in
generality we can assume that µ0 is concentrated over the transport set T bu : indeed the part
of µ0 outside of T bu is left in place by π; in particular, it will not give any contribution in the

Entropy inequality as τ
(1−t)
K,N (0) = 0.

Since u is 1-Lipschitz, by the CD1
u(K,N) condition there exist a family of rays {Xα}α∈Q ⊂

X and a disintegration of mxTu on {Xα}α∈Q such that:

(4.8) mxTu= mxT bu=

ˆ
Q
mα q(dα), withmα(Xα) = 1, for q-a.e.α ∈ Q,

where the first identity is given by Theorem 1.45 and (Xα, d,mα) ∈ CD(K,N). It follows that

(4.9) µ0 = ρ0m =

ˆ
Q
ρ0 mα q(dα) =

ˆ
Q
µ0,αq0(dα)
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where µ0,α = ρ0mα · (
´
ρ0mα)−1 and q0 = Q](µ0) with Q the quotient map. Then we claim

that for any Borel set C ⊆ Q it holds:

(Q−1(C)×X) ∩ (Γu \ {x = y}) ∩ (T bu × T bu ) = (X ×Q−1(C)) ∩ (Γu \ {x = y}) ∩ (T bu × T bu ).

Indeed, since µ0(T bu ) = µ1(T bu ) = 1, then π((Γu \ {x = y}) ∩ T bu × T bu ) = 1; hence if x, y ∈ T bu
with (x, y) ∈ Γu, then it must be Q(x) = Q(y) since T bu does not admit forward or backward
branching points. This implies that

µ0(Q−1(C)) = π((Q−1(C)×X) ∩ (Γu \ {x = y}))
= π(X ×Q−1(C)) ∩ (Γu \ {x = y})
= µ1(Q−1(C));

in particular q0 = q1 := Q](µ1). Hence, we can write the following disintegration: µ1 =
ρ1m =

´
Q ρ1 mα q(dα) =

´
Q µ1,αq0(dα), where µ1,α = ρ1mα · (

´
ρ0mα)−1 and, q0-a.e., µ0,α, µ1,α

are probability measures on Xα. Furthermore, by construction they are absolutely continuous
with respect to mα. By the CD1

u(K,N) condition the metric measure space (Xα, d,mα) satisfies
CD(K,N); hence there exists an optimal dynamical plan να such that ρt,αmα = µt,α = (et)]να
is a W1-geodesic interpolating µ0,α and µ1,α and

(4.10) ρ
− 1
N′

t,α (γt) ≥ τ (1−t)
K,N ′ (d(γ0, γ1))ρ

− 1
N′

0,α (γ0) + τ
(t)
K,N (d(γ0, γ1))ρ

− 1
N′

1,α (γ1), for να a.e. γ.

It is then natural to proceed gluing 1-dimensional geodesics: define ν =
´
Q ναq0(dα) and set

µt = (et)]ν. Observe that, it holds µt =
´
Q µt,αq0(dα) and we claim that {µt} is a W1-geodesic

interpolating µ0 and µ1. Indeed:

W1(µt, µs) ≤
ˆ
X×X

d(x, y)(et, es)]ν(dxdy)

=

ˆ
Q

ˆ
Xα×Xα

d(x, y)(et, es)]να(dxdy)q0(dα)

= |t− s|
ˆ
Q

ˆ
Xα×Xα

d(x, y)(e0, e1)]να(dxdy)q0(dα)

= |t− s|
ˆ
X×X

d(x, y)(e0, e1)]ν(dxdy)

= |t− s|W1(µ0, µ1).

The last equality follows from the optimality of the plan: indeed (e0, e1)]ν is concentrated
on a d-cyclically monotone with marginals µ0 and µ1. To conclude, we show the convexity
inequality (4.1) along the geodesic µt.

If µt = ρtm, it follows from (4.8) that for each t ∈ [0, 1] it holds ρt,α = ρt´
ρ0mα

. Hence the

inequality (4.10) can be rewritten in the following way:

(4.11) ρ
− 1
N′

t (γt) ≥ τ (1−t)
K,N ′ (d(γ0, γ1))ρ

− 1
N′

0 (γ0) + τ
(t)
K,N (d(γ0, γ1))ρ

− 1
N′

1 (γ1), for να-a.e. γ.

Since for q0-a.e. α the inequality (4.11) holds for να−a.e. γ, a fortiori it holds true for ν−a.e.
γ; hence, the claim is proved.
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[80] P. Pansu. Une inégalité isopérimétrique sur le groupe de Heisenberg. C. R. Acad. Sci. Paris Sér. I Math..

295: 127–130, 1982.

[81] B. Pass. On the local structure of optimal measures in the multi-marginal optimal transportation problem.

Calc. Var. Partial Differential Equations 43: 529–536, 2012.

[82] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Arch. Rational
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