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Abstract

The ΛCDM model has been extensively tested over the past decades and has been
established as the standard model of cosmology. Despite its huge successes, it faces
some serious theoretical problems, especially related to the nature of dark matter and
dark energy. Different possible modifications and extensions have been considered in the
past in order to solve these problems, and a question of central importance is how these
modifications can be tested and experimentally distinguished from the standard case.
The aim of this thesis is twofold. First, it presents two different modifications of the dark
sector. A model in which dark matter forms a Bose-Einstein condensate in high density
regions and in the process forms a non-minimal coupling to the metric is considered
as a possible deviation from the cold dark matter scenario, while the possibility that
dark energy is inhomogeneous in space is discussed as a possible deviation from a pure
cosmological constant scenario. Second, it examines ways to test these possibilities
via two main observational channels - gravitational waves and electromagnetic waves.
The gravitational wave event GW170817 is used to test the dark matter model and
to put constraints on the mass of the dark matter field and the strength of the non-
minimal coupling. The luminosity distance and the redshift of light are highlighted as
important observables for dark energy, and generalised theoretical formulae for these
observables are derived for conformally FLRW and perturbed FLRW spacetimes. The
luminosity distance and the redshift are finally used to test for possible anisotropies of
the accelerated expansion of the universe.



Basic conventions

Throughout the thesis the signature of the metric is diag(−1, 1, 1, 1). We work in natural
units c = ~ = 1 unless stated otherwise. Also the following abbreviations are frequently
used:

• DM – Dark Matter

• DE – Dark Energy

• BEC – Bose-Einstein Condensate

• ΛCDM - Λ Cold Dark Matter

• FLRW – Friedmann-Lemaitre-Robertson-Walker

• GR – General Relativity

• EFE – Einstein’s Field Equation

• GW – Gravitational Wave

• GRB – Gamma-Ray Burst
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1
Introduction

The Universe as we know it is about 13.7 billions of years old. Yet we have been doing
science in the modern sense of the word only for the last 400 years. This is about 10−8 of
the age of the Universe. For most of its history the Universe remained unknown to itself.
Yet through its natural evolution following impersonal dynamical laws, in some regions
of space the right kind of conditions were created which allowed for complexity to evolve.
A small planet orbiting around a medium-sized star in the outskirts of a spiral galaxy,
saw the formation of life which through billions of years of evolution through natural
selection led to an astonishing variety of species. And one of these species developed the
right kind of neural and cognitive system that allowed it not only to survive better and
dominate over the other species, but also to explore the world, to ask deep questions
about the nature of reality and ultimately to do science. The period of time for which
we have been doing science is like an instant compared to the whole cosmic history. Yet
during that instant we have uncovered many of the principles guiding the Universe, have
established well tested mathematical theories and models, and have thus allowed the
Universe to understand itself.

During that cosmic instant we have learned remarkable truths, for example that
the world is made of atoms, that spacetime is curved, that all matter has wave-like
properties, that the Universe used to be in a very hot dense state 13.7 billion years ago
and has been expanding ever since, that we are the product of the same natural laws
that guide everything that happens around us.

Yet why do we care? Why do we explore the Universe and build theories about phe-
nomena that are completely removed from our daily lives? One possible answer is that
we are simply curious - it is built into our nature to ask questions and make discoveries.
But there are also deeper reasons for exploring the Universe. The Universe is our home
- only through studying it carefully we can understand our place in it and how our lives
fit in the grand scale of everything. Continual progress and development is what distin-
guishes our species from the rest of the biological world, and progress is only possible
when we push hard against the boundaries of our knowledge. Furthermore, progress in
our understanding goes hand in hand with technological progress, and therefore we have
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to find out as much as we can about the Universe and its guiding principles, if we want
to have some control over our future as a species.

Yet there seem to be limits to what we can know. We are located inside the Universe
and are subject to the same laws that govern it and which, therefore, limit our freedom.
We observe the Universe from one particular point of spacetime, and try to make infer-
ences about the whole Universe just from our limited local observations. Furthermore,
our direct experience can probe only a very narrow range of spatial and time scales. For-
tunately, we have devised various instruments and techniques which allow us to probe
a much wider range of scales - from the Planck scale to cosmological scales. Finally,
our neural systems, while astonishingly complex and sophisticated, are not explicitly
designed for understanding the Universe and therefore may have internal limitations.

Despite all those hindrances, our progress is astonishing. We have by now established
theories and standard models in many areas of science including Biology, Chemistry,
Geology, Particle Theory and Cosmology. Over the past decades our knowledge of
gravity, fundamental physics and the nature and distribution of matter in the Universe
has been put together in the standard model of Cosmology - the ΛCDM model. The
ΛCDM model is both very simple, built on strong pillars and in remarkable agreement
with the data coming from very different sources. It tells a very convincing story about
the Universe from its earliest times until its distant future and fits perfectly with theories
from other areas of science. Yet despite its successes it is unlikely to be the final word
as far as Cosmology is concerned. It still has many unresolved issues such as the nature
of the two main constituents of the Universe - dark matter and dark energy, and some
other problems that call for different modifications and extensions. In the spirit of the
progress made so far, we need to push the boundaries of the ΛCDM model and try to
extend it until all of its problems have been solved and the agreement with the data is
complete.

In this thesis we will explore some of the possible modifications of the ΛCDM and
how they can be tested. We will lay the foundation of this exploration in this chapter by
looking in more detail at the model, the evidence for it, its problems, possible alternatives
and extensions, and how they can be tested. The upcoming chapters will look at more
specific issues related to dark matter and dark energy.

1.1 The ΛCDM model

Constructing a cosmological model The ΛCDM model is one of infinitely many
possible cosmological models that one can in principle construct. The construction of
any cosmological model requires four main assumptions [1]:

1. A theory of gravity

2. Matter content

3. Symmetries

4. Topology
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These assumptions should be based both on theoretical developments and experimental
evidence. Now we will give a brief overview of what these assumptions are in the case
of ΛCDM.

Theory of Gravity The gravitational dynamics in the Solar System is governed by
Einstein’s General Theory of Relativity. Spacetime is dynamical and the curvature of
spacetime is determined by the matter content in the Universe according to Einstein’s
Field Equations (EFE) [2]

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.1)

where gµν is the metric, Rµν is the Ricci tensor, Tµν is the stress-energy tensor and Λ
is the cosmological constant (more about it later). EFE can be derived by varying with
respect to the metric the Einstein-Hilbert action1

SEH =
1

16πG

∫
(R− 2Λ)d4x. (1.2)

The stress-energy tensor Tµν is covariantly conserved (this is a consequence of diffeomorphism-
invariance and the fact that there are no direct couplings between matter and curvature
in the Einstein-Hilbert action)

∇µTµν = 0. (1.3)

Both (1.1) and (1.3) need to be solved simultaneously in order to find a solution in
General Relativity. In practice this is extremely difficult due to the non-linearity of the
system of equations.

The ΛCDM model assumes that the EFEs (1.1) hold not only in the Solar System
but on cosmological (arbitrarily large) scales. Despite the successes of General Relativity
so far, this is far from obvious. General Relativity is certainly the simplest gravitational
theory that we can consider. However, there exist a multitude of alternative theories
which modify General Relativity on cosmological scales but reduce to General Relativity
on solar-system scales. Examples of such theories are Scalar-tensor, Vector-tensor and
Bimetric theories, Horava gravity, Einstein-Aether, and so on. These alternative theories
are more complicated than GR in the sense that they add extra ingredients, for example
extra gravitational degrees of freedom, extra terms in the Einstein-Hilbert action or extra
dimensions. While GR is a useful starting assumption for cosmological model-building
it need not be the final theory of gravity on large scales, and as we will see later there
are benefits from exploring other possibilities in this regime.

Assumptions of symmetries and topology The observable Universe appears to be
the same in all spatial directions. CMB observations and galaxy number counts bring
strong support to the idea of isotropy. On the other hand, there is no reason to think

1One would have to add a Gibbons-Hawking-York boundary term in the action, or else perform
Palatini variation.
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that we occupy a special position in the Universe. Ever since Copernicus removed the
Earth as the centre of the Universe, there is an increasing tendency to decrease the
specialness of our place in space and time. This justifies the Copernican principle -
our position in space is typical; we don’t occupy a special place in the cosmos. The
assumption of isotropy around the Earth, together with the Copernican principle leads
to the Cosmological principle - the Universe is homogeneous and isotropic on large scales.
What the Cosmological principle tells us is that among the infinite possible geometries
that could describe the large-scale structure of space-time, only those for which spacetime
can be sliced into maximally-symmetric patches of space with constant curvature should
be taken into account. This leaves us with the FLRW metric:

ds2 = −dt2 + a2(t)
[ dr2

√
1− kr2

+ r2dΩ2
]
, (1.4)

where k = {−1, 0, 1} corresponds to hyperbolic, flat or spherical spatial patches respec-
tively.

The Cosmological Principle is a very strong assumption. It not only allows us to
solve exactly the EFEs, but also allows us to make observations and draw inferences
about the Universe prior to the assumption of any theory of gravity. For example, in
the so-called cosmographic approach, the scale factor is expanded as a Taylor series in
time [3]:

a(t) = a0{1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2

+
1

3!
j0H

3
0 (t− t0)3 +

1

4!
s0H

4
0 (t− t0)4 + o[(t− t0)5]} (1.5)

where the cosmographic parameters are defined as:

H =
ȧ

a
; q = − 1

H2

ä

a
; j =

1

H3

...
a

a
; s =

1

H4

....
a

a
. (1.6)

This allows us, just on the basis of homogeneity and isotropy, to find a theoretical relation
between two observable quantities - the luminosity distance dL (measured for a special
class of objects with a fixed intrinsic luminosity, the so-called standard candles) and the
redshift z (measured from the absorption line spectrum of any distant object):

dL(z) =
z

H0

{
1 +

1

2

[
1− q0

]
z − 1

6

[
1− q0 − 3q2

0 + j0 +
k

H2
0a

2
0

]
z2

+
1

24

[
2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0j0 + s0 +

2k(1 + 3q0)

H2
0a

2
0

]
z3 +O(z4)

}
.

(1.7)

Fitting this theoretical formula with observations of standard candles allows us to con-
strain the parameters in (1.5) and hence to constrain the evolutionary history of the
Universe or, adopting a 4-dimensional perspective, to constrain the geometry of the
Block Universe.
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In addition to symmetries, we need to make an assumption about the global structure
of spacetime, in particular the topology. The global topology of spacetime is not fixed
by neither the choice of metric, nor by EFE. Fixing the value of k in (1.4) does not fix
the topology of the Universe. More precisely, if k = 1 the Universe is forced to be closed
and finite, whereas if k = 0 or k = −1, the Universe can be closed and finite (non-simply
connected) or open and infinite (simply connected). Current observations favour k = 0,
while the issue about the topology remains unsettled.

Matter content The requirements of homogeneity and isotropy force the stress-energy
tensor of all matter in the Universe to be that of a perfect fluid:

Tµν = (ρ+ P )UµUν + Pgµν . (1.8)

The energy density ρ and pressure P are functions of the cosmological time t and are
related by the equation of state

P = wρ (1.9)

where w is a constant which varies from one cosmological species to another.
The covariant conservation of the stress-energy tensor (1.3) leads to the following

evolution equation for the energy density:

ρ̇+ 3H(ρ+ P ) = 0. (1.10)

This implies that the density of the different species scales differently with the scale
factor:

ρI ∝ a−3(1+wI). (1.11)

There are three different species of matter that enter into the ΛCDM model:

1. Dust (wm = 0). This comprises all particles that move at low (non-relativistic
speeds) more notably ordinary (baryonic) matter and dark matter. It leads to the
following equation of state and evolution of the energy density:

Pm = 0, ρm ∝ a−3. (1.12)

2. Radiation (wr = 1
3). This comprises relativistic particles such as photons, gravitons

and neutrinos. It leads to

P =
1

3
ρ ρ ∝ a−4. (1.13)

3. Dark Energy: that is any fluid that leads to an accelerated expansion q < 0. The
most popular candidate is the cosmological constant which appears in (1.1). We
can move that term to the RHS and treat it as a matter source with:

TΛ
µν = −Λgµν . (1.14)

It is easy to verify by going to Riemann normal coordinates that this is the stress-
energy tensor of a perfect fluid with wde = −1. Therefore for a cosmological
constant,

P = −ρ ρ ∝ a0. (1.15)
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Background evolution The assumptions of homogeneity and isotropy imply that the
metric is FLRW (1.4) where the only degrees of freedom are the scale factor a(t) and
the sign of k, while the stress-energy-tensor is that of a perfect fluid (1.8) where the only
degrees of freedom are P and ρ. The EFE reduce to the Friedmann equations:( ȧ

a

)2
=

8πG

3
ρ− k

a2
, (1.16)

ä

a
= −4πG

3
(ρ+ 3P ). (1.17)

The first is a constraint equation, while the second is a dynamical equation for the scale
factor.

Looking carefully at the second of these equations, we notice that it predicts a de-
celarating Universe (ä < 0) as long as the Strong Energy Condition (SEC) is satisfied
ρ + 3P > 0. However, observations of dL(z) of standard candles indicate that the Uni-
verse is actually accelerating its expansion. That is why we need to introduce Dark
Energy, an additional component which can be either a cosmological constant or some-
thing else, in order to explain this apparent acceleration. Dark Energy is any fluid which
has an equation of state wde < −1

3 , thus violating the SEC and allowing us to fit the
observations.

Evolution of perturbations Cosmological perturbations evolve according to the per-
turbed Einstein’s equations. Their fate depends on their type (matter or radiation), their
scale (sub-horizon or super-horizon) and the initial conditions. For example, matter per-
turbations evolve as [4]

∆̈ +H∆̇− 3

2
H2∆ = 0, (1.18)

where ∆ is the gauge-invariant density contrast (equivalent to the Bardeen potentials
but for perturbations of Tµν - see Appendix A). There are two solutions - a growing
mode ∆G ∝ a and a decaying mode ∆G ∝ a−3/2. The growing mode leads to the
amplifications of perturbations in the linear regime as structure formation begins.

There are 6 free parameters that enter into the ΛCDM model [5]. The first two are
the fractional densities of baryons and cold dark matter, Ωb and Ωcdm. It is assumed
that the curvature perturbations are adiabatic and the initial power spectrum can be
parametrised as

PR(k) = As

( k
k0

)ns−1
, (1.19)

where k0 = 0.05Mpc−1. The initial amplitude As and the primordial spectral index
ns are other two free parameters. The last two parameters are the reionisation optical
depth τ and the observed angular size of the sound horizon at recombination θMC . The
ΛCDM model is completely defined by these 6 parameters (most updated constraints can
be found in [5]). Beside that, there are other derived parameters, and also parameters
whose values are fixed within ΛCDM but can vary in alternative models (an example is
w in the equation of state for dark energy).
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1.2 Evidence for the ΛCDM model

There are various cosmological probes which have established the ΛCDM model as
the standard cosmological model. Among these are the Cosmic Microwave Background
(CMB), Baryonic Acoustic Oscillations (BAO), galaxy number counts, Big Bang Nucle-
osynthesis (BBN), standard candles and gravitational waves (GW). All of the ingredients
of a cosmological model - matter content, theory of gravity, symmetries and topology -
have been tested independently and so far all the evidence suggests that despite a few
problems that are to be discussed in the next section, the ΛCDM is the simplest model
that fits all the data with just 6 free parameters.

Starting with the matter content, the evidence for a cosmological constant comes from
observations of standard candles such as supernovae type Ia and from the CMB [5, 6].
The Planck data also demonstrates convincingly that beside the baryonic contribution
towards the matter in the universe, there is an additional non-baryonic contribution
which we call dark matter. Other evidence for the existence of dark matter comes from
the rotation curves of spiral galaxies, the dispersion velocities of elliptical galaxies and
gravitational lensing of clusters such as the Bullet Cluster and the Musket Cluster [7,8].
In addition, dark matter is a vital part of our best theories of structure formation. The
baryonic matter of the Universe consists mostly of hydrogen and helium whose abun-
dances are accurately predicted by Big Bang Nucleosynthesis, while heavier elements are
explained by theories of stellar evolution and structure formation.

General Relativity has been tested beyond reasonable doubt on the scale of the
Solar System. Experimental tests such as the deflection of light during a total eclipse,
the precession of perihelia, gravitational redshift and gravitational (Shapiro) time delay
have established its validity on these scales [2]. In addition, observations beyond the
Solar System such as the energy loss through gravitational-wave emission from binary
pulsars, the time delay between gravitational waves and gamma-ray bursts emitted by
binary neutron star systems and the physics of the BBN are completely compatible with
General relativity and put strong constraints on alternative theories of gravity, as we
will discuss latter.

Evidence for cosmic isotropy come from the CMB (the temperature of the CMB
is uniform in all directions within one part in 105) and from galaxy number counts.
Furthermore, our best theories of structure formation assume that the early Universe
is described by a FLRW background with linear perturbation on top of it, and these
perturbations are enough to produce the variety of structures around us. The topology
of the universe can also be tested by looking for multiple images of distant sources of
light - so far there is no evidence that the universe might be non-simply connected. All
the data is consistent with a flat open universe.

1.3 Problems with the ΛCDM model

Despite its successes, the standard cosmological model has some theoretical problems
and some observational tensions which point to new physics beyond the ΛCDM. The
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theoretical problems concern mostly the nature of dark matter and dark energy, the
observational tensions concern the estimation of cosmological parameters by different
cosmological probes.

Problems with Λ The simplest explanation of dark energy is that it is the cosmo-
logical constant appearing in (1.1) which, as we saw, behaves as a perfect fluid with
a negative pressure. However, that explanation has two big problems that need to be
resolved - the cosmological constant problem and the coincidence problem [9].

There are two aspects to the cosmological constant problem. First, if we start with
the equation for the deceleration parameter in (1.6) and substitute the second Friedmann
equation (1.17), we get an expression for q in terms of Ωm and ΩΛ:

q = − 1

H2

ä

a

=
1

H2

4πG

3
(ρ+ 3P )

=
1

H2

4πG

3
(ρm − 2ρΛ)

=
1

2
Ωm − ΩΛ. (1.20)

By using that in the current age the contributions from radiation and curvature are
negligible: Ωm,0 + ΩΛ,0 = 1, we obtain expressions for Ωm,0 and ΩΛ,0 in terms of q0:

Ωm,0 =
2

3
(1 + q0), ΩΛ,0 =

1

3
(1− 2q0). (1.21)

The best current value of the deceleration parameter is q0 = −0.55 which leads to
Ωm,0 ≈ 0.3, ΩΛ,0 ≈ 0.7. Translating the cosmological constant density in natural units
where c = ~ = 1, we get

ρΛ,obs ∼ (10−3eV )4. (1.22)

The total cosmological constant in (1.1) can be split into bare cosmological constant
which is simply a free parameter that needs to be determined, and vacuum energy:

Λ = Λb + Λvac. (1.23)

For reasons of naturalness Λb is usually set to 0 or at least is assumed to be negligible
compared to Λvac, while Λvac can be estimated within the Standard Model of Parti-
cle Physics. The main contribution to the vacuum energy comes from the zero-point
fluctuations of all the quantum fields. This contribution diverges due to arbitrary high
frequency modes, but the theory can be regularised by imposing a cut-off. A natural
choice for a cut-off is the Planck scale Mp = 1√

8πG
≈ 1018 GeV which leads to an

expected value for the vacuum energy of:

ρΛ,theor ∼ (1027eV)4. (1.24)
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We see that
ρΛ,theor

ρΛ,obs
∼ 10120, (1.25)

which is a huge discrepancy between theory and observation. This is the first aspect
of the cosmological constant problem. There must be something that cancels this huge
vacuum energy predicted by the Standard Model, or else we are making a mistake in
the way we estimate it.

The second aspect of the cosmological constant problem is what really causes the
observed accelerated expansion. It might be a residual of the vacuum energy which is im-
perfectly cancelled, or it might be something different such as a dynamical quintessence
field or a modification of General Relativity.

The second problem with the cosmological constant is called the “coincidence prob-
lem”. The relative density of the cosmological constant compared to matter evolves
as

ΩΛ

Ωm
=
ρΛ

ρm
∝ a3. (1.26)

At early times this fraction is extremely small, while at late times it is extremely large.
The fact that we live in a special period of the history of the Universe where the dark
energy density is comparable to the matter density is termed the “coincidence problem”.

Both the cosmological constant problem and the coincidence problem urge us to
rethink the nature of dark energy and to explore candidates other than the cosmological
constant. (However, see [10] for an alternative point of view.)

Problems with CDM While CDM is very successful at fitting observations on large
(cosmological) scales it experiences some serious problems on small (galactic) scales [7,
11]. Most of the problems arise as mismatches between CDM predictions from numerical
N-body simulations and what is actually observed.

An example is the missing-satellites problem. N-body simulations of CDM predict
that massive halos such as the Milky Way halo will have a large number of subhalos
which host substructures such as dwarf galaxies (these substructures are referred to as
satellites). However, the ones that we have detected so far are not enough to validate
the CDM prediction. It might be that they are simply not bright enough to be detected,
or it might be that we are missing some new physics associated with dark matter.

A closely related issue is the “too big to fail” problem. CDM predicts that the
satellites of the Milky Way and other galaxies will be large and dense - too large and
too dense to evade detection so far (“too big to fail” being detected).

Another difficulty with CDM is that it cannot reliably reproduce the slope (on a
logarithmic plot) and the scatter of the baryonic Tully-Fisher relation:

Mb ∝ v4
c , (1.27)

which is a scaling relation between the mass of baryonic mass in a galaxy Mb and the
circular velocity of the galaxy vc.
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Finally, the most serious problem on small scales is the core-cusp problem. CDM
simulations predict that galaxy halos have a cusp at the centre, i.e. the matter density
rises sharply for decreasing radius, while observations of the velocity curves of spiral
galaxies indicate that there is a core - the density profile flattens and becomes smooth.
We will discuss the core-cusp problem in more detail later.

All these problems ask us to search for modifications of CDM on galactic scales.

The H0-tension Another big problem faced by the current ΛCDM paradigm is the
famous H0-tension [12]. The problem is that the value of the Hubble constant measured
from local standard candles is quite different from the value measured from the CMB,
with non-overlapping error bars.

The local value of the Hubble constant is measured from variable stars with a fixed
intrinsic luminosity known as Cepheids. The current best estimate is

H0 = 73.24± 1.74 km/s/Mpc. (1.28)

On the other hand, the CMB can be used to fix the free parameters of the ΛCDM
and hence predict from the conditions in the early Universe the value of H0 in the late
Universe. The value inferred in this way is

H0 = 67.4± 0.5 km/s/Mpc. (1.29)

There is a tension of 3.6σ, which is quite significant. Possible explanations for the tension
are a systematic error in at least one of the measurements (which becomes increasingly
unlikely as both teams improve their techniques and seek for independent confirmation),
or new physics beyond the ΛCDM.

1.4 Possible deviations from the ΛCDM model

Numerous extensions and modifications of the standard cosmological model have
been considered in response to the problems presented in the previous section. They
concern both components of the dark sector and generally present deviations from the
idealised case of a cosmological constant and cold dark matter.

Dynamical dark energy If dark energy is truly constant, it will be very difficult to
explain why it is comparable to the matter density at the current epoch. On the other
hand, if it is a dynamical field, this fact can be explained more easily. The idea that
dark energy is a dynamical scalar field, and therefore changes with time and possibly
space is known as quintessence dark energy [13]. The basic idea is that a scalar field φ
would have the following density and pressure:

ρφ =
1

2
φ̇2 + V (φ), (1.30)

Pφ =
1

2
φ̇2 − V (φ), (1.31)
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where V (φ) is the potential of the scalar field. Therefore, the equation of state at any
time is given by

wφ =
Pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (1.32)

When V (φ) � 1
2 φ̇

2, wφ ≈ −1, and the scalar field behaves approximately as a cos-
mological constant. For other times, depending on the evolution of φ, there will be a
deviation from the cosmological constant behaviour, but the field by itself will lead to
an accelerated expansion as long as wφ < −1

3 .

Modified equation of state of dark energy In more general terms, dark energy
might have an equation of state with w < −1

3 but w 6= −1, or where w is a function of
the scale factor and hence the redshift [14]

wde(a) = w0 + wa(1− a), wde(z) = w0 +
z

1 + z
wa. (1.33)

Such a modification would change the background evolution of the universe at late times
when dark energy becomes important, and could therefore improve the H0-tension. The
reason for that is that in the CMB measurement, the value of H0 in the late universe
is reconstructed from the state of the early universe by assuming the ΛCDM model.
There, the evolution of the Hubble parameter in terms of redshift is given by

H(z) = H0(1 + z)3/2
√

Ωm + ΩΛ(1 + z)−3. (1.34)

However, in a model where w is also a function of redshift, this evolution is modified [12]:

H(z) = H0(1 + z)3/2

√
Ωm + ΩΛexp

(
3

∫ z

0

w(z′)

1 + z′
dz′
)
. (1.35)

This would, therefore, change the value of H0 inferred from early universe physics.
Demanding that the two values of H0 inferred from local measurements and from CMB
are in closer agreement would put constraints on the evolution of w.

Another way to improve the H0-tension is to make modifications in the physics of
the early universe. There are two possible types of modifications - changes in the details
of recombination, and changes in the early-time expansion history. The former can be
achieved by modifying Y BBN

p - the primordial He mass fraction, while the latter can
be achieved by increasing Neff - the effective number of relativistic species in the early
universe. See [12] for more details on these two approaches.

Acceleration from modified gravity It is well-known that several modified theories
of gravity have the potential to produce an accelerated expansion without the need for
dark energy [15]. Among these, most prominent are scalar-tensor theories where an
extra scalar gravitational degree of freedom is added in addition to the metric. The
most general scalar-tensor theory which leads to second-order equations of motion and
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is free of any Laplacian instabilities and ghosts is Horndeski’s theory. The Horndeski
Lagrangian is a sum of four contributions:

L =
∑
i

Li, (1.36)

where each of the four Lagrangians are given by

L2 = G2(φ,X), (1.37)

L3 = G3(φ,X)�φ, (1.38)

L4 = G4(φ,X)R−G4,X(φ,X)[(�φ)2 −∇µ∇νφ∇µ∇νφ], (1.39)

L5 = G5(φ,X)Gµν∇µ∇νφ+
G5,X

6
[(�φ)3

− 3(�φ)(∇µ∇νφ∇µ∇νφ) + 2(∇µ∇νφ∇ν∇λφ∇λ∇µφ)], (1.40)

and where X is the kinetic term

X ≡ 1

2
∇µφ∇µφ. (1.41)

Suppose that we choose the functions Gi to be constants and to be determined by a single
mass scale µ so that all terms are dimensionally consistent. Varying this Lagrangian and
expanding the resulting field equations in a FLRW background leads to Friedmann-like
equations where the energy density and pressure of matter and radiation are given by
the standard formulae, while the contribution of the scalar field can be collected into
effective “dark energy” density and pressure that are related by an equation of state of a
perfect fluid where w is negative and varies with time [16]. Thus the solution describes
a Universe with accelerating expansion even though there is no cosmological constant in
the theory and the strong energy condition is satisfied. In this sense, modified gravity is
an alternative explanation for the acceleration that we observe, which frees us from the
obligation to postulate the existence of an unknown cosmological species and gives us a
better handle over the cosmological constant problem.

Fuzzy dark matter One of the most popular alternatives to CDM is a light scalar
field, also known as fuzzy dark matter [17,18]. The action takes the following form:

S[g] = SEH [g] + SDM [g,Φ]. (1.42)

In principle there is also a baryonic contribution, which we ignore for now. The action
for the dark matter field is a sum of a kinetic term and a potential term

SDM [g, φ] = −
∫

d4x
√
−g
(1

2
gµν∇µφ∇νφ+ V (φ)

)
, (1.43)
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where V (φ) is most often taken to be the sinusoidal potential for axions

V (φ) = m2(1− cosφ)

≈ 1

2
m2φ2 + o(φ4). (1.44)

In order to be consistent with current constraints, the mass has to be of the order
m ∼ 10−22eV. Varying the action leads to the Klein-Gordon equation and the EFE:

∇µ∇µφ = m2φ, Gµν = 8πGT φµν , (1.45)

where T φµν is the stress-energy tensor for the scalar field:

T φµν = gµν

(
− 1

2
∇ρφ∇ρφ− V (φ)

)
+∇µφ∇νφ. (1.46)

Expanding these equations in a FLRW metric, gives the equation for a damped harmonic
oscillator

φ̈+ 3H2φ̇+m2φ = 0, (1.47)

and the Friedmann equations with energy density and pressure given by

ρφ =
1

2
(φ̇2 +m2φ), (1.48)

Pφ =
1

2
(φ̇2 −m2φ). (1.49)

On large time- and spatial scales, one can take an oscillation average, in which case the
density and pressure become

ρφ ≈ m2φ, Pφ ≈ 0, (1.50)

and the field behaves as CDM. However, on time- and length scales comparable to and
smaller than the period of oscillations T = m−1 and the Compton wavelength, the
pressure is non-zero and there is a modification of the CDM-like behaviour. In order to
see this, it is useful to take the non-relativistic limit and to make a fluid approximation
by defining a complex scalar field ϕ by

φ =
1√
2m

(ϕe−imt + ϕ∗eimt). (1.51)

The Klein-Gordon equation implies that

ϕ̇+
3

2
Hϕ =

i

2a2m
∇2ϕ. (1.52)

Writing ϕ in polar form
ϕ = |ϕ|eiθ, (1.53)
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and defining the fluid density and velocity by

ρ ≡ mϕϕ∗, (1.54)

~v ≡ 1

am
~∇θ, (1.55)

allows to recast the dynamical equations in a fluid representation:

ρ̇+ 3Hρ+
1

a
~∇.(ρ~v) = 0, (1.56)

~̇v +H~v +
1

a
(~v.~∇)~v =

1

a
~∇Vq. (1.57)

Eqs. (1.56) and (1.57) are the continuity and Euler equation. We see that in the
Euler equation there is an extra term compared to the standard perfect fluid case. The
quantum potential

Vq =
1

2a2m2

(∇2√ρ
√
ρ

)
(1.58)

is a consequence of the small scale oscillations, and its effect is that it prevents the
building-up of large gradients of the density thus offering a potential solution to the
core-cusp problem.2

In addition, it provides a potential solution to the missing satellites problem. The
oscillations of the scalar field cause the matter power spectrum to be suppressed on small
scales compared to the standard case, thus decreasing the number of satellites that get
formed and bringing us closer to the observed number. This behaviour is demonstrated
in Fig. 1.1.

Dark matter as a Bose-Einstein condensate Another promising dark matter can-
didate that reduces to CDM on large scales, but shows deviations from the CDM-like
behaviour on small scales, is a Bose-Einstein condensate [20, 21]. Consider a gas of
bosons trapped in a Newtonian potential. Under certain conditions it forms a BEC and
this modifies the small-scale behaviour in a way similar to fuzzy dark matter.

Working in the Heisenberg representation where the operators depend on time while
the state vector is time-independent, the Hamiltonian of the system of interacting bosons
is given by

Ĥ(t) =

∫
d3rΨ̂†(~r, t)

[
− ~2

2m
∇2 + Vg(r)

]
Ψ̂(~r, t)

+
1

2

∫
d3rd3r′Ψ̂†(~r, t)Ψ̂†(~r′, t)V (~r − ~r′)Ψ̂(~r, t)Ψ̂(~r, t), (1.59)

2Note that there are some claims in the literature that fuzzy dark matter might actually be incom-
patible with observations of galactic rotation curves [19].
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Figure 1.1: The linear matter power spectrum for a light scalar dark matter field of mass
m ∼ 10−22eV, for various values of F ≡ ρφ

ρdm
- the ratio of the scalar dark matter density

to the total dark matter density. As F increases, the power spectrum gets more and
more suppressed at small scales (large wavenumbers), thus offering a potential solution
to the missing satellites problem. Taken from [18].

where Ψ̂†(~r, t) is the boson creation operator, Ψ̂(~r, t) is the boson annihilation operator,
Vg(r) is the gravitational potential, and V (~r − ~r′) is the inter-bosonic potential. The
field operator Ψ̂ can be split into a condensate wavefunction plus quantum excitations:

Ψ̂(~r, t) = ψ(~r, t)̂I + ϕ̂(~r, t). (1.60)

The number density is defined in terms of the condensate wavefunction and it is nor-
malised in such a way so that it integrates to the total number of particles in the
condensate phase:

ρ(~r, t) = |ψ(~r, t)|2,
∫
ρd3r = N. (1.61)

The dynamics of the Bose field is given by the Heisenberg equation of motion

i~
∂

∂t
Ψ̂ = [Ψ̂, Ĥ], (1.62)

and for a rare, low-density gas of bosons the inter-bosonic interactions can be approxi-
mated by point interactions:

V (~r − ~r′) = λδ(~r − ~r′), (1.63)

where the coupling constant λ is given by

λ =
4π~2a

m
, (1.64)

where a is the scattering length. Substituting (1.60) into (1.62), we obtain the Gross-
Pitaevski equation for the evolution of the condensate wavefunction:

i~
∂ψ

∂t
=
[
− ~2

2m
∇2 + Vg(~r) + λ|ψ|2

]
ψ. (1.65)

21



The gravitational dynamics is given by the Poisson equation

∇2V (r) = 4πGρm, (1.66)

where the mass density is defined by

ρm = ρm. (1.67)

As before, we split the condensate wavefunction in amplitude and phase, which allows
us to define the fluid velocity

ψ =
√
ρe

i
~S , ~v =

1

m
~∇S. (1.68)

Substituting that into (1.65) gives the continuity equation, and the Euler equation

∂~v

∂t
+ (~v.~∇)~v = − λ

m
~∇ρ− 1

m
~∇Vg −

1

m
~∇Vq. (1.69)

Comparing that to the identical equation for fuzzy dark matter, we see that they are
very similar, except that this equation is valid in a flat spacetime, has a Newtonian
gravitational potential included, and also an extra term on the RHS proportional to the
gradient of ρ. This extra term comes from the gradient of the pressure which arises due
to the interactions of the bosons:

P (ρ) =
1

2
λ2ρ2. (1.70)

We are interested in a static fluid for which ~v = 0. In that case, the continuity equation
implies that ρ is independent of time, while the Euler equation gives

λ~∇ρ = −~∇Vg − ~∇Vq. (1.71)

Using the Poisson equation and rewriting everything in terms of the mass density ρm
gives

λ

m
∇2ρm +∇2Vq = −4πGρm. (1.72)

This equation should be solved in order to find the equilibrium density profile. The
solution is

ρm(r) = ρc
sin(kr)

kr
, (1.73)

where ρc is the density at the centre of the halo, and k =
√

Gm3

~2a
. We see that the cusp of

the standard CDM scenario is removed, and instead there is a smooth core. The radius
of the halo can be defined in terms of the first zero of the profile (1.73) when kr = π,
which gives

R = π

√
~2a

Gm3
. (1.74)
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Dark matter and modified gravity While it is possible that modified gravity might
account for the accelerated expansion without the need for dark energy, it is more con-
troversial whether it can also account for dark matter. In fact, evidence for dark matter
comes from several different directions, and it seems difficult, if not impossible, to explain
all of these by simply modifying the gravitational dynamics and without introducing a
new kind of particle. Nevertheless, some of the observations on small scales associated
with Dark Matter can be accounted for by Modified Newtonian Dynamics (MOND),
which modifies Newton’s theory of gravity below an acceleration scale a0 [22]:

~∇.
[
µ(r)

( |~∇φ|
a0

)]
= 4πGρ(r), (1.75)

where µ(r) is a function of the radial coordinate which is linear for small r and flattens to
a constant value for large r. While MOND fits better than CDM some of the observations
on small scales, it completely fails on large scales and thus is not a viable alternative of
dark matter.

However, its partial success on small scales has led to the idea that maybe there is
something peculiar about the coupling between dark matter and the metric which mod-
ifies the CDM-like behaviour on small scales and leads to a MOND-like phenomenology.
This idea was pursued in [23,24]. Starting from the general action

S[g] = SEH [g] + Sm[g,Ψ] + SDM [g,Φ] + Sint[g,Ψ,Φ], (1.76)

the argument is that in order to explain the success of MOND, dark matter must have a
universal effect on baryons i.e. it must provide an effective metric along which baryons
propagate. Therefore,

Sm[g,Ψ] + Sint[g,Ψ,Φ] ≈ Sm[g + h,Ψ]. (1.77)

Here g̃µν = gµν + hµν is the physical metric to which normal matter couples minimally
(i.e. the metric in the Jordan frame), which is different from the gravitational metric gµν
(the metric in the Einstein frame) which appears in EFEs (in GR both metrics coincide).
It is argued elsewhere [25] that the most general transformation that preserves causality
and respects the weak equivalence principle is the disformal transformation

g̃µν = A(φ)gµν +B(φ)∇µφ∇νφ. (1.78)

It is thus safe to assume that hµν = ∇µφ∇νφ. From (1.77), by expanding the RHS to
first order in h and using the definition of the stress-energy tensor

Tµνm ≡
2√
−g

δSm[gµν ,Ψ]

δgµν
, (1.79)

one can show that

Sint[g,Ψ,Φ] =
1

2

∫
d2x
√
−gTµνm ∇µφ∇νφ. (1.80)
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Using EFEs and writing everything in terms of the physical metric g̃µν , this becomes

Sint[g̃,Ψ,Φ] = − 1

16πG

∫
d4x
√
−g̃Gµν [g̃]∇µφ∇νφ. (1.81)

The advantage of such a non-minimal coupling is that it causes baryons to propagate
on an effective metric different from the one on which dark matter propagates, and this
leads to an effective MOND-like phenomenology on small scales. Since MOND fits the
density profiles of most galactic systems much better than CDM and in particular gives
cored profiles, this is an improvement compared to the standard CDM scenario, which
furthermore requires only a minimal modification of the gravitational interactions of
dark matter.

Challenging the Cosmological Principle All possible deviations from ΛCDM so
far involved a modification either of the matter content of the universe or the dynamical
theory of gravity. However, it is also possible to challenge the Cosmological Principle -
the assumption that the universe is spatially homogeneous and isotropic on large scales.
In fact there are several studies which show that the Universe might have a preferred
spatial direction [26–28].

Furthermore, there are cosmological models which violate the Cosmological Principle
but are so far able to fit the data for some regions in their parameter space as well as
ΛCDM. Such models are for example Bianchi models, Lemaitre-Tollman-Bondi models,
and Swiss cheese models [1]. While the ΛCDM is preferred on the basis of naturalness
and simplicity, these models are valid alternatives which cannot be excluded on the basis
of the current data available.

1.5 Testing deviations from the ΛCDM model

Now that we have presented several possible modifications of the standard ΛCDM
paradigm, an interesting and very important question is whether these modifications can
be tested and experimentally distinguished from the ΛCDM. The most promising ways
to test them come from two main directions - light observations and gravitational wave
observations. Important observables here are the luminosity distance and the redshift for
light, and the luminosity distance and speed for gravitational waves. These observables
can give important information about possible deviations from the standard model.

GW170817 and its implications for Horndeski dark energy One major test
of modified theories of gravity as a candidate to explain the accelerating expansion
of the Universe comes from the detection of a gravitational signal by the advanced
LIGO and advanced Virgo gravitational-wave detectors combined with the detection of
a gamma-ray burst by the Fermi-GBM about 1.7 s later [29]. Both signals are identified
as originating from a binary neutron star merger event about 40 Mpc (in luminosity
distance) away from us. Since in alternative theories of gravity gravitational waves
propagate with a modified speed compared to the speed of light, the short arrival time
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difference between the two waves allows to put stringent constraints on modified gravity
theories which attempt to explain the accelerated expansion without the need for dark
energy.

The speed of gravitational waves in any modified theory of gravity can be written
as [30]

c2
g = 1 + αg, (1.82)

where αg parametrises deviations from the speed of light. The predicted time delay that
would accumulate between the arrival times of gravitational and electromagnetic waves
can be written to first order in αg as

∆t =
2αg
`
, (1.83)

where ` is the distance from the Earth to the emission event. The actual arrival time
difference is about 1.7s which translates into a constraint on αg:

∆t . 1.7s =⇒ |αg| . 10−15. (1.84)

For the Horndeksi action (1.36)

αg =
X[2G4,X + 2G5,X − (φ̈− φ̇H)G5,X ]

G4 − 2XG4,X −XG5,φ − φHXG5,X
. (1.85)

If we set αg = 0, then in order to avoid any unnatural fine-tuning, we must necessarily
have G4,X = G5,φ = G5,X = 0. This implies that G5 = const. and G4 = f(φ), and
therefore L4 = f(φ)R, L5 = 0. The only non-minimal coupling that survives is the
Brans-Dicke coupling f(φ)R. Thus we see that GW170817 puts strong constraints on
Horndeski dark energy.

Luminosity distance measurements from standard candles In the standard
treatment, data from supernovae of Type Ia and other standard candles is fitted by
using a luminosity distance–redshift relation of the type (1.7), i.e. a theoretical expres-
sion for the luminosity distance which is derived by assuming that light propagates on
a perfectly homogeneous and isotropic background. While this is a good approximation
on large scales, it fails to be true on small scales. Therefore the light from distant stars
could be sensitive to the small-scale lumps and inhomogeneities as it propagates towards
us. Moreover, the assumptions of isotropy and homogeneity fail to hold in some alterna-
tive cosmological models which call for a more drastic deviation from the Cosmological
Principle. In order to be able to investigate the role of inhomogeneities from cosmic
structure in the cosmographic approach and also to test alternative cosmologies, it is
necessary to have a more general expression for the luminosity distance with which to
fit the data.

There have been numerous attempts to derive a generalised dL(z) relation ever since
the paper of Sasaki [31]. In that paper, under suitable conditions, the following formula
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for the luminosity distance in a perturbed geometry was derived:

dL(z, λs) = d̄L(z)

[
1 +

(a′
a
δη
)
o

+ coth
(√
−kλs

)√
−kδλs −

1

2

∫ λs

0
δθ(λ)dλ

]
, (1.86)

where d̄L(z) is the luminosity distance evaluated at the background, while δη, δλ and
δθ are the perturbations of the conformal time, the affine parameter and the expansion.
Further progress was made in [32]. Generalised formulas for dL (or some function of
it, such as the magnitude or the fractional fluctuation) have also been derived in [33–
37]. In [35] the authors compute the two-point correlation function of the luminosity
distance while in [37] the authors compute the luminosity distance to second order in
perturbations in the geodesic lightcone gauge and then transform to the Poisson gauge.

1.6 Motivation and overview of the present research

The present thesis aims to make a small contribution towards our understanding of
the physics beyond the ΛCDM model.

Main contributions We will first discuss a slightly different model of dark matter as a
Bose-Einstein condensate, in which a non-minimal coupling of the the type (1.81) forms
during the process of condensation and its effect is added to the effect of the quantum
pressure term. The non-minimal coupling opens a door to testing the model, as it
modifies the speed of gravitational waves with respect to the speed of light. As a result,
we can use the observed time delay between the gravitational wave and gamma ray burst
signal in GW170817 to put a constraint on the model. We will then turn to the other side
of the dark sector - dark energy. One of the best probes of dark energy is the luminosity
distance and we will first discuss how it can be expressed in terms of a mathematical
object known as the van Vleck determinant. We will then proceed to derive theoretical
formulae for the luminosity distance in some spacetimes of cosmological interest and
demonstrate how they can be used to do generalised cosmography. One of the most
exciting deviations from the ΛCDM model is that dark energy might be inhomogeneous
and the expansion of the universe can be anisotropic. However, such a deviation is very
hard to test with present data. Still we can say something about the quality of future
data that would be necessary in order to distinguish this scenario from the standard one.

Outline The structure of this thesis is the following. In Chapter 2 we start by dis-
cussing the model of dark matter as a BEC with a non-minimal coupling. We first look
at the core-cusp problem of CDM, then we present the model and show how it can help
to improve the core-cusp problem. In Chapter 3 we look at how the model can be tested
with GW170817. We first discuss gravitational wave propagation in modified theories of
gravity with a non-minimal coupling, then we parametrise the uncertainties of the BEC
model and derive a formula for the predicted arrival time difference between the two
waves. Comparing this with the actual time delay allows us to constrain the parameters
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of the model. In Chapter 4 we turn to the notion of a cosmological distance and how it
can help us to probe the expansion history of the universe. We present different defini-
tions of a cosmological distance, and then focus on the luminosity distance. We discuss
the Jacobi map and the van Vleck determinant, and how the luminosity distance can be
expressed in terms of them. Finally, we discuss the cosmographic approach and why it
is so useful. In Chapter 5 we continue with the discussion from the previous chapter by
using the expression for the luminosity distance in terms of the van Vleck determinant
and the Jacobi map in order to derive theoretical formulae for the luminosity distance in
Conformally FLRW cosmologies and perturbed FLRW cosmologies. We also show how
to generalise the cosmographic approach. Chapter 6 is more data analysis oriented - we
perform tests of the isotropy of the universe with future forecast data. We first consider
a very simple beyond-the-ΛCDM model where dark energy undergoes a phase transition
and becomes anisotropic at late times. We derive an expression for the luminosity dis-
tance in this model and then investigate the quality of future data needed to distinguish
this model from the ΛCDM. Finally, we conclude in Chapter 7.
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2
Dark matter Bose-Einstein condensates

In this chapter we begin our investigation of models beyond the ΛCDM by considering
the problems faced by the CDM paradigm and focussing on a particular alternative model
in which dark matter is a scalar field which forms a Bose-Einstein condensate in high-
density astrophysical regions, and in the process acquires a non-minimal coupling to the
metric.

2.1 The core-cusp problem

As explained in the Introduction, the standard CDM paradigm faces some serious
challenges on small (galactic) scales. Among these problems the most serious seems
to be the core-cusp problem which arises from a mismatch between the equilibrium
density profile of galaxy halos predicted with numerical N-body simulations and the
actual observed density profiles of typical galaxies.

Numerical simulations with CDM predict that the density profile of a virialised dark
matter halo is given by the Navarro-Frenk-White (NFW) profile [8, 38]

ρNFW (r) =
ρs

r
rs

(1 + r
rs

)2
, (2.1)

where r is the radius from the centre of the halo and ρs and rs are constants specific for
the galaxy of interest (thus they are free parameters in the simulation).

The NFW profile has a cusp at the centre - a region where the density grows without
limit (Fig. 2.1). However, observations favour density profiles with a core at the centre.
For example, the observed circular velocities in spirals, dwarf disks and low surface
brightness systems are well fitted by an empirical Burkert profile [8, 39]

ρB(r) =
ρ0

(1 + r
r0

)(1 + ( rr0 )2)
, (2.2)

where r0 is the radius of the core and ρ0 is the density at the centre (Fig. 2.2). Another
profile that fits well observations of galaxy halos is the Einasto profile [40]

ρE(r) ∝ exp(−Arα), (2.3)

28



10-5 0.01 10

r

rs

10-8

10-4

1

104

ρ

ρs

Navarro - Frenk -White profile

Figure 2.1: The Navarro-Frenk-White (NFW) density profile. The density grows indefi-
nitely for small radii.
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Figure 2.2: The Burkert density profile. The density tends to a constant value for small
radii.

where A and α are constants. In either case the actual density towards the centre of the
halo is much lower than the theoretically expected one. This discrepancy between CDM
simulations, which predict a cusp, and observations, which favour a core, is called the
core-cusp problem.

There are different approaches that attempt to solve or at least ameliorate the core-
cusp problem (some of them were already discussed in the Introduction). One such
approach is to introduce a baryon-feedback onto CDM particles i.e. to introduce inter-
actions between baryons and dark matter. Another approach is to modify the gravita-
tional dynamics on galactic scales (MOND) and thereby completely get rid of the need
for dark matter. Yet another class of approaches is to consider dark matter as a very
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light (low-mass) scalar field. Examples of the latter are fuzzy dark matter where the
scalar field oscillates harmonically and this leads to modifications of the CDM-like be-
haviour on small length scales and BEC dark matter where the scalar field forms BEC in
galactic regions and thus modifies its small-scale behaviour. One of the most attractive
BEC approaches is the one where dark matter is modelled as a fully relativistic scalar
field consistent with General Relativity and the non-relativistic limit is taken at the
end. The formation of a macroscopic coherence length (the healing length) leads to the
conjecture that there is a direct (non-minimal) coupling between dark matter and the
metric. In this chapter we will review this model and consider how it could help to solve
the core-cusp problem.

2.2 Non-minimally coupled BEC model

A relativistic Bose-Einstein condensate (BEC) is a relativistic gas of bosons in which
most of the particles have undergone a phase transition and are in a condensate phase
characterised by a macroscopic occupation number. The starting relativistic action in
flat spacetime is

S = −
∫ [

1

2
∂µφ̂

†∂µφ̂+
1

2
m2φ̂†φ̂+ U(n̂, λ)

]
d4x, (2.4)

where φ̂(~x, t) is a relativistic scalar Bose field operator, n̂ is defined by n̂ = φ̂†φ̂ (in
the non-relativistic theory this has the interpretation of a number density, while in the
relativistic theory it is simply a quantity related to the mass density ρ̂ by ρ̂ = m2n̂), λ
is a dimensionless coupling constant and U(n̂, λ) is a self-interaction term of the form

U(n̂, λ) =
λ

2
n̂2. (2.5)

One could also add an external potential V (~x, t) to the action (2.4). The condensation
occurs below a critical temperature Tc. In the condensate phase the Bose field can be
split into a classical complex scalar field φ describing the ground state, and quantum
excitations ϕ̂:

φ̂ = φ(1̂ + ϕ̂). (2.6)

The field φ obeys a relativistic Klein-Gordon equation of the form

�φ−m2φ− U ′φ = 0, (2.7)

where the prime denotes derivative with respect to the number density defined above.
In the non-relativistic limit this reduces the Gross-Pitaevski equation (1.65) (with the
difference that here the potential U does not have to be the one for point interactions)
and for this reason φ is often called the “wave function” of the condensate. It is useful
to express the condensate wave function and its complex conjugate in terms of the
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hydrodynamic variables ρ = m2φ∗φ and uµ in the so-called Madelung representation
(this mirrors the procedure performed in the non-relativistic case):

φ ≡ 1

m

√
ρeiθ, (2.8)

uµ ≡ 1

m
∇µθ. (2.9)

The 4-velocity uµ is in general not normalised. One can instead define the normalised
velocity vµ ≡ uµ/

√−uµuµ but for our purposes this is not necessary and we will keep
using uµ in the subsequent formulae. 1 With these definitions the Klein-Gordon equation
can be shown to be equivalent to two equations in terms of ρ and uµ:

∇µ(ρuµ) = 0, (2.10)

uµuµ = −1 +
(
− 2U

′
(ρ) +

1

m2

�
√
ρ

√
ρ

)
(2.11)

where U ′(ρ) is the derivative of the self-interaction potential U with respect to the mass

density ρ and Vq ≡ 1
m2

�
√
ρ√
ρ is the quantum potential. The first equation is the continuity

equation while the second is an equation for the norm of uµ. It shows that the 4-velocity
uµ is generally not normalised but that for CDM for which both U(ρ) = 0 and Vq = 0 it
reduces to the normalised velocity. Eqn. (2.11) can be turned into a dynamical equation
by taking the covariant derivative:

uµ∇µuν = −∂ν

[
U ′(ρ)

(
1− ξ2�

√
ρ

√
ρ

)]
, (2.12)

where ξ2 ≡ 1/(2m2U ′(ρ)) is the healing length which is the length scale over which the
density of the condensate returns to its bulk value when perturbed locally. Notice the
appearance of a third derivative on the RHS of the equation due to the extra covariant
derivative that we took.

If we consider a uniform square potential well, the density must vanish at the bound-
ary and become constant towards the centre of the square well. In that case, the healing
length would correspond to the length scale over which the density rises from 0 to that
constant value (see [41] for more details). If the typical length and time scales of vari-
ation of the density ρ are much larger than ξ, then we can ignore the quantum pressure
term in (2.12), in which case (2.10) and (2.12) are completely equivalent to the continuity
and Euler equations of a relativistic perfect fluid.

Now we want to generalise the above formalism from flat to curved spacetime. We
saw that the process of condensation is characterised by the formation of a typical length

1The quantity ρ is obtained by taking the vacuum expectation value of the operator ρ̂ = m2n̂ and
can be interpreted as the rest mass density in the BEC frame. One can check that this is the correct
interpretation by deriving the stress-energy tensor of the scalar field and contracting it with vµ in order
to obtain the energy density.
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scale - the healing length ξ. If this length scale is comparable to the length scale set by
the curvature of spacetime, i.e. the length scale over which the geometry of spacetime
starts deviating from Minkowski, then the condensate would become sensitive to the
global geometry. Thus one would expect the formation of a non-minimal coupling -
a direct coupling between the curvature and the Bose field with a coupling constant
directly related to the healing length of the BEC. Unfortunately, in the absence of a
rigorous mathematical theory of condensation in a curved spacetime, one cannot say
for sure what the form of this coupling would be. However, we can impose several
requirements that narrow the range of possible couplings.

The requirement to have second order field equations leads to a coupling which is a
subclass of the Horndeski Lagrangian (1.36). We also require that the coupling contains
a dimensionful coupling constant (thus φR would not work for example) in order to
justify why this coupling is present for DM but not for baryons (because baryons have
no macroscopic coherence length scale, while DM has - the healing length). Furthermore,
as we discussed in the Introduction, a coupling of the form Gµν∇µφ∇νφ in the Jordan
frame leads to an effective modified gravity behaviour on small scales which, in the
Einstein frame, causes baryons to propagate on an effective metric different from that on
which DM propagates and thus leads to an effective MOND-like phenomenology. Based
on this reasoning it was conjectured in [42] that the non-minimal coupling developed
during the process of condensation is L2Gµν∇µφ†∇νφ where L is a coupling constant
with dimensions of length. This coupling satisfies all the above requirements and in
Appendix B we show that it is equivalent to a subpart of the Horndeski Lagrangian
(1.36).

Thus the action of the Bose field in the condensate phase is taken to be a sum of
three terms

S = SEH + Sφ + SNMC , (2.13)

where

SEH =
1

16πG

∫
R
√
−gd4x (2.14)

is the standard Einstein-Hilbert term,

Sφ = −
∫ [

1

2
gµν∇µφ̂†∇ν φ̂+

1

2
m2φ̂†φ̂+ U(n̂, λi)

]√
−gd4x (2.15)

is the minimally coupled part of the Bose field and

SNMC =

∫
L2Gµν∇µφ̂†∇ν φ̂

√
−gd4x (2.16)

is the non-minimally coupled part of the Bose field. Varying the above action with
respect to gµν gives the gravitational field equation

Gµν = 8πG
[
T φµν + TNMC

µν

]
, (2.17)
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where T φµν is the stress-energy tensor associated with the minimally coupled field2

T φµν =
1

2
∇µφ̂†∇ν φ̂+

1

2
∇µφ̂∇ν φ̂† − gµν(

1

2
gαβ∇αφ̂†∇βφ̂+

1

2
m2φ̂φ̂† + U(φ̂φ̂†), (2.18)

and the contribution arising from the variation of the non-minimal coupling is packed
in the pseudo-stress-energy tensor TNMC

µν :

TNMC
µν = 8πGL2

[
XGµν −

1

2
�φ̂†�φ̂gµν +

1

2
∇α∇βφ̂†∇α∇βφ̂gµν

+
1

2
R∇µφ̂†∇ν φ̂+ 3∇β∇µφ̂†∇β∇ν φ̂+∇µ∇ν φ̂†�φ̂−∇λφ̂†∇µφ̂Rλν

−∇λφ̂†∇ν φ̂Rλµ −Rµβνλ∇βφ̂†∇λφ̂+Rλβ∇λφ̂†∇βφ̂gµν + c.c.
]
, (2.19)

where c.c. stands for the complex conjugate. It is useful to manipulate this equation by
imposing both a fluid limit and a Newtonian limit.

As we saw before, for the fluid limit we need to express T φµν and TNMC
µν in terms of

the fluid variables ρ and uµ and we assume that ρ varies slowly enough in order to ignore
the quantum pressure term in (2.12).

For the Newtonian limit we expand the metric as the flat spacetime metric plus a
first-order scalar mode perturbation Φ and we assume small time gradients and small
velocities compared to the speed of light. The full calculation can be seen in [42]. At
the end the field equation (2.17) reduces to a modified Poisson equation of the form

∇2Φ = 4πG(ρ− L2∇2ρ). (2.20)

2.3 Phenomenology of the model

In the numerical simulations which lead to the cuspy profile (2.1) dark matter is
modelled as dust, i.e. a pressureless collection of particles interacting only via standard
(Newtonian) gravity. However, in our model dark matter is a scalar field which forms
a Bose-Einstein condensate and therefore gravitates in the non-relativistic limit via the
modified Poisson equation (2.20). This would lead to a different prediction for the
equilibrium density profile. In order to find it, we need to solve a set of three coupled
partial differential equations in terms of three variables Φ, ρ and ~v. The first is, of course,
the modified Poisson equation (2.20), the other two are the fluid equations (2.10) and
(2.12) in the non-relativistic limit:

∇2Φ = 4πG(ρ− L2∇2ρ), (2.21)

∂ρ

∂t
+ ~∇.(ρ~v) = 0, (2.22)

2We must stress that the relation between the non-condensate phase where the field is minimally
coupled and the condensate phase where a non-minimal coupling exists is not equivalent to the relation
between a UV theory and an IR theory in the EFT sense. In particular, both regimes exist below the
Planck scale and are not related to each other by a RG flow, rather by a thermodynamic phase transition.
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m
∂~v

∂t
= −m(~v.~∇)~v −m~∇Φ + ~∇

[
U
′
(ρ)
(

1− ξ2∇2√ρ
√
ρ

)]
. (2.23)

Up to the extra term in the Poisson equation, these are the same equations as for the
non-relaitivistic BEC discussed in the Introduction. Unfortunately, solving these three
equations analytically is not possible. A numerical simulation would be required in order
to evolve ρ and ~v from some specified initial conditions. However, we can still argue
from the structure of these equations that they would tend to smooth out any cusps.

In particular, the quantum pressure term ξ2~∇
(
U
′
(ρ)
∇2√ρ√

ρ

)
in (2.23) would prevent the

building up of large gradients of the density.
We can actually find an approximate relation between ξ and m such that the cusp

within galaxy halos is smoothed out. For that we consider the regime after the halo has
relaxed to its equilibrium density profile. In that regime the gradients of the density and
the velocities are negligible. This means that in (2.21) and (2.23) we can neglect both
the term from the non-minimal coupling proportional to L2 and the quantum pressure
term proportional to ξ2. Looking for static solutions ~v = 0 leads to the same density
profile as (1.73):

ρ(r) = ρ0
sin(kr)

kr
, (2.24)

where k =
√

Gm3

~2a
and a is the scattering length. The radius of the halo is given by

R = π

√
~2a

Gm3
. (2.25)

On the other hand, for a non-relativistic BEC the healing length is related to the scat-
tering length by [43]

ξ =
1√

4πan
, (2.26)

where n ≈ ρ̄/m is the number density of particles in the condensate phase. Combining
(2.25) and (2.26) allows us to express the healing length as a function of the mass:

ξ =
~
m

π

R

1√
4πGρ̄

. (2.27)

This relation is essentially obtained by requiring that the density distribution of the
BEC in the non-relativistic minimally coupled limit is of the same size as the size of
the typical galaxy halo. Since the density distribution of the BEC does not have the
cusp at the centre, one can think of this as the healing length necessary to solve the
core-cusp problem (of course, as mentioned before in order to really demonstrate that
the core-cusp problem is solved, one would have to run numerical simulations).

In order to find the coupling constant L which favours a smooth core, we need to find
a relation between L and ξ. Since the non-minimal coupling is present when ξ is of the
same order as lc the length scale of the curvature, it is the ratio ξ/lc which controls the

34



strength of the non-minimal coupling. Since, lc already appears in the Einstein tensor,
L has to be of the same order as ξ. Indeed, taking L = ξ we have that

ξ2Gµν∇µφ∇νφ ∼
( ξ
lc

)2
gµν∇µφ∇νφ, (2.28)

and therefore the term becomes important only when ξ ∼ lc. Therefore, from now on we
will fix L = ξ. We need to stress that this identification between the two length scales
does not follow from the mathematics of the model or from any rigorous mathematical
theory of condensation in a curved spacetime. Instead, it is based on intuition and the
desire to consider the simplest possible model. So even though we assume that for now,
one must entail the possibility that L and ξ could be related in some more complicated
way. Writing the coupling constant as ς ≡ 1/L and using (2.27) gives a relation between
ς and m:

ς = m
R

π

√
4πGρ. (2.29)

Equation (2.29) gives the coupling constant ς which favours a smooth core as a function
of the mass m.

Field oscillations and CDM limit The complex scalar field φ should behave as
CDM, i.e. pressureless dust, on large scales in order to fit with cosmological observations.
As we noted before, this implies that in this case the 4-velocity uµ is normalised and
therefore there exists a frame where it takes the form uµ = (1, 0, 0, 0). Because of the
isotropy on large scales, the time direction in uµ necessarily coincides with the cosmic
time direction as defined in FLRW. From (2.9) this implies that θ̇ = m and therefore
the scalar field can be written as

φ = A(r)ei(mt+α0), (2.30)

where A ≡ |φ| is the amplitude of oscillations - we write it as A(r) to emphasise that it
depends on r only. The energy of oscillations is

ρ =
1

2
|φ̇|2 +

1

2
m2|φ|2 = m2A2 = m2φ∗φ, (2.31)

consistent with the hydrodynamic definition of the density.
For later convenience, it would also be useful to split the complex field in terms of

its real and imaginary components:

φ = φ1 + iφ2, (2.32)

where each component oscillates according to:

φ1 = A(r)cos(mt+ α0), (2.33)

φ1 = A(r)sin(mt+ α0). (2.34)

These oscillations guarantee that the pressure averages out to zero and therefore that
the field behaves as CDM on large scales. We will treat the CDM-like behaviour as a
zero-level approximation for the evolution of the field inside galaxies and clusters.
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Summary The ΛCDM model, while very successful in explaining dark matter obser-
vations on large scales, experiences problems in fitting observations on small (galactic)
scales. Most notorious of these small-scale problems is the core-cusp problem - numerical
N-body simulations predict a very different density profile in galaxy halos from the one
observed. As a step towards a solution of the core-cusp problem and the reconciliation
of dark matter observations on small and large scales, in this chapter we considered
the model of dark matter as a BEC. We argued that the resultant profile fits better
observations in galaxies due to the effect of the quantum pressure term which smooths
out large gradients in the density and prevents the formation of a cusp. We derived a
relation between the healing length and the mass of the field that needs to be satisfied so
that the cusp can be smoothed out in agreement with observations. The formation of a
non-zero coherence length (the healing length) allows the condensate to couple directly
to the curvature and thus leads to the appearance of an extra non-minimal coupling
in the action which modifies the gravitational dynamics on small scales. We have also
argued that in the CDM limit, in which the non-minimal coupling is suppressed, the
field oscillates harmonically - something which would be very important later on when
we shall parametrise deviations from this oscillatory behaviour by taking into account
the possible damping due to the non-minimal coupling. Having reviewed the model of
dark matter as a non-minimally coupled BEC, let us now turn to the question of how
gravitational wave propagation is modified within this model.
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3
Testing the BEC model with gravitational waves

In the previous chapter we developed the model of dark matter as a Bose-Einstein
condensate with a non-minimal coupling to the metric. In this chapter we want to test
this model by using the signals from the event GW170817. If dark matter is really
non-minimally coupled in high-density regions, then as the gravitational wave and the
gamma-ray burst propagate through these regions, the speed of gravitational waves
would be modified, which would result in a non-zero time lag between the two signals.
By comparing the predicted time delay from our model to the observed time delay, we
can put constraints on the model [44]. We begin by deriving a formula for the speed of
the gravitational waves in a theory with the action (2.13) both for the cases of a timelike
and spacelike gradient of the scalar field. Then, after parametrising the model to take
into account several uncertainties, we derive a formula for the total time lag predicted
by the model. Comparing this to the observed time delay, we put constraints on the
parameters m and ς. Finally, we comment on the validity of our results.

3.1 GW propagation in modified gravity

It is well known that in several modified theories of gravity, in particular Horndeski
Scalar-Tensor theories, gravitational waves propagate with a speed different from that
of light. It is therefore of no surprise that in our model, where a non-minimal coupling
forms after a phase transition, this phenomenon is also present. We now outline the
mathematical procedure to calculate the speed of gravitational waves. We choose to
work at the level of the field equations, although another possibility would have been to
work at the level of the action (see, for example, [45] and [46] for such an approach).

Starting from the gravitational part of the action (2.13) expanded in terms of the
condensate wave function φ:

SEH =

∫ [ 1

16πG
R+ L2Gµν∇µφ∗∇νφ

]√
−gd4x (3.1)

it takes a tedious but straightforward calculation to obtain the gravitational field equa-
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tion

1

16πG
Gµν + L2

[
− 1

2
XGµν +

1

4
�φ∗�φgµν −

1

4
∇α∇βφ∗∇α∇βφgµν

− 1

4
R∇µφ∗∇νφ+

3

2
∇β∇µφ∗∇β∇νφ−

1

2
∇µ∇νφ∗�φ+

1

2
∇λφ∗∇µφRλν

+
1

2
∇λφ∗∇νφRλµ +

1

2
Rµβνλ∇βφ∗∇λφ−

1

2
Rλβ∇λφ∗∇βφgµν + c.c.

]
= 0.

(3.2)

where the term in the brackets is proportional to TNMC
µν evaluated at the condensate

wavefunction φ (i.e. ignoring quantum excitations). Eqn. (3.2) reduces to the Einstein
Field equation in vacuum when the non-minimal coupling constant is sent to zero: L→ 0.
We expand both the metric and the scalar field (condensate wave function) in terms
of a background plus a first order perturbation, use local flatness to write the metric
background as Minkowski

gµν = ηµν + hµν , (3.3)

φ = φ̄+ ϕ, (3.4)

impose the de Donder gauge

∂µh
µν =

1

2
∂νh, (3.5)

and require that the trace vanishes

h ≡ ηµνhµν = 0. (3.6)

The latter is a restriction of the solution, not a gauge fixing. Since we are interested
only in the propagation of tensor modes, and since tensor and scalar modes decouple
from each other in linear theory, we can without loss of generality impose the above
restriction, thereby removing any scalar modes involving the trace from the equation
[47]. The final result is the linearised field equation1

1

16πG
�hµν − L2

[1

4
�hµν∂ρφ̄

∗∂ρφ̄− 1

2
�hρµ∂ν φ̄

∗∂ρφ̄

− 1

2
�hρν∂µφ̄

∗∂ρφ̄+
1

2
�hρσ∂

ρφ̄∗∂σφ̄ηµν +
1

2
(−∂µ∂νhρσ

+ ∂µ∂ρhνσ + ∂ν∂ρhµσ − ∂ρ∂σhµν)∂ρφ̄∗∂σφ̄+ c.c.
]

= 0. (3.7)

The real fields φ1 and φ2 appear on the same footing in the Lagrangian and thus satisfy
similar equations of motion. Therefore, the gradients of both φ1 and φ2 must be of the
same nature - spacelike or timelike. Thus from now on we will only speak about the
gradient of φ̄. There are two cases that we need to consider - first, when the gradient of
φ̄ is timelike, and second when it is spacelike.

1Some steps of that and the previous computation were performed using the xAct package of Math-
ematica.
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3.1.1 The Case of a Timelike Gradient of φ̄

If the gradient of φ̄ is timelike, we can boost to a frame where it has the form2

φ̄µ = ( ˙̄φ, 0, 0, 0). (3.8)

We perform a 3 + 1 decomposition of the perturbation hµν (again we are interested only
in the propagation of tensor modes):

h00 = 0, h0i = hi0 = 0, ∂ihij = δijhij = 0. (3.9)

This allows to rewrite (3.7) in the form of a wave equation

−ḧij + c2
g∇2hij = 0, (3.10)

from where it is straightforward to extract the speed of propagation of gravitational
waves - cg:

c2
g =

1 + 8πGL2| ˙̄φ|2

1− 8πGL2| ˙̄φ|2
. (3.11)

3.1.2 The Case of a Spacelike Gradient of φ̄

If the gradient of φ̄ is spacelike, then we can boost to a frame where it has the form

φ̄µ = (0, ~∇φ̄). (3.12)

We separate the space gradient into components parallel and perpendicular to the prop-
agation vector ~k:

|~∇φ̄|2 = |φ̄‖|2 + |φ̄⊥|2. (3.13)

Performing the 3 + 1 decomposition as before and considering a single mode of wave
vector ~k and frequency ω,

hij = Aije
i(~k.~x−ωt), (3.14)

allows to find the dispersion relation

ω2 − c2
gk

2 = 0, (3.15)

from where, again, it is straightforward to read the speed of propagation:

c2
g =

1 + 8πGL2|φ̄‖|2 + 8πGL2|φ̄⊥|2

1− 8πGL2|φ̄‖|2 + 8πGL2|φ̄⊥|2
. (3.16)

2Technically, we need to do this for both components of the complex field. However, since the evolution
of the two components is similar, the same boost would bring both components to approximately the
same form.
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One can also rewrite the last formula in terms of the angles ι1 and ι2 between the wave
vector ~k and the gradient of each component of the complex scalar field, ~∇φ̄1 and ~∇φ̄2:

c2
g =

1 + 8πGL2|~∇φ̄1|2 + 8πGL2|~∇φ̄2|2

1− 8πGL2|~∇φ̄1|2cos(2ι1)− 8πGL2|~∇φ̄2|2cos(2ι2)
. (3.17)

In our case the scalar field is only radially dependent, Eqn. (2.30), which implies that
the two gradients are aligned ι1 = ι2 = ι, so the expression for the speed reduces to

c2
g =

1 + 8πGL2|~∇A|2

1− 8πGL2|~∇A|2cos(2ι)
. (3.18)

A very important point to note is that Equations (3.16) and (3.18) imply that the
speed depends on the direction of propagation of the wave or more accurately on the
angle subtended between the wave vector and the spatial gradient of the field. In fact,
when ~k is orthogonal to ~∇A, the speed of gravity is equal to the speed of light. As we
vary the angle the speed of gravity increases and it reaches its maximal possible value
when ~k is aligned with ~∇A.

Another important point is that both (3.11) and (3.16) allow for superluminal prop-
agation. While the fundamental theory - General Relativity with a minimally-coupled
scalar field, respects all the Lorenz symmetries, as the phase transition occurs and a
non-minimal coupling forms, the Lorentz invariance is spontaneously broken. The rea-
son behind that is that the BEC selects a preferred frame of reference and the gradient
of the scalar field selects a preferred direction in spacetime. This Lorentz violation is not
more drastic than what happens in theories of dark energy with non-minimal couplings
and is also reminiscent of the Scharnhorst effect in optics [48]. There higher order QED
corrections modify the speed of light at low wavelengths as it travels in the Casimir
vacuum between two parallel tiny plates so that the speed in the direction orthogonal
to the plates is greater than c. Because of the boundary condition set by the plates, the
ground state breaks the Lorentz invariance and this leads to superluminal propagation
even though the fundamental theory from which the effect is derived still respects all
Lorentz symmetries. In fact, as shown in [49] the Scharnhorst effect does not lead to
any causal paradoxes. This serves as an argument that also in the BEC model the su-
perluminal propagation is not a problem and is consistent with all the assumptions that
we have made.

It is an interesting question whether the modification of the propagation speed is the
same for waves of all wavelengths. In fact, the answer is “no” and the easiest way to see
that is through the dispersion relation ω2 = c2

gk
2. If we write the speed of gravity in the

compact form

c2
g = c2

(
1 +

L2α

δ2

)
(3.19)

where δ is the length scale over which φ̄ changes and α is a dimensionless parameter
which depends on the Planck length and the strength of the field, then the dispersion
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relation can be written as (keeping factors of c just for clarity)

ω2 = c2k2 + c2
(4π2α

δ2

)k2

κ2
. (3.20)

where in the second term on the RHS we have introduced κ ≡ 2π
L in order to make the

scaling between k and κ and hence λ and L more apparent. It is obvious that (keeping
the gradient fixed) for κ � k, hence λ � L, this reduces to the standard relativistic
dispersion relation, while a significant deviation from the standard relation occurs when
λ ∼ L or λ� L. Thus the speed of propagation is modified only for wavelengths smaller
than the healing length (which we have identified with the coupling constant). Since in
our case the wavelength is much shorter than the healing length, as verified later, there
will be a corresponding modification of the speed. On the other hand λ has to be larger
than the scattering length a since on scales smaller than a individual particles can be
discerned and the condensate description breaks. Since the scalar field constituting dark
matter is very weakly self-interacting, the scattering length has to be very small - much
smaller than the wavelength of the observed gravitational waves. We elaborate more on
this later in the chapter.

An intriguing peculiarity of (3.11) and (3.16) is that they allow the denominator to
become zero and therefore the speed to blow up. This is not a serious worry in our case
because the terms proportional to the gradients of the scalar field can a posteriori be
verified to be extremely small. Actually, when we later estimate the predicted difference
in the arrival time of electromagnetic and gravitational waves, we will only need the
linearly expanded versions of (3.11) and (3.16), which can be compactly written as

c2
g ≈ 1 + 2∆cg, (3.21)

where ∆cg ≡ cg−c
c . For the cases of timelike and spacelike gradients, ∆cg is given by

∆cg ≈ 8πGL2| ˙̄φ|2, (3.22)

∆cg ≈ 8πGL2|φ̄‖|2. (3.23)

In the case when the scalar field is only radially dependent and its spatial gradient is
aligned with the wave vector ~k, the latter expression can be rewritten as

∆cg ≈ 8πGL2~∇A · ~∇A =
8πGL2

m2
~∇√ρ · ~∇√ρ. (3.24)

Nevertheless, the potential divergence of (3.11) and (3.16) shows that these formulas
cannot be applied at arbitrary large gradients of the scalar field. It is viable that there is a
feedback mechanism built inside the model which prevents the building of such gradients.
Indeed, for a BEC the formation of large gradients is prevented by the the quantum
pressure term, but a similar mechanism might hold even for a genuine modification of
General Relativity.
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3.2 Parametrisation of the model and astrophysical setting

We currently do not have a rigorous mathematical theory of condensation in a curved
spacetime. As a result, there are several uncertainties in the model of DM BEC. For
example, we do not know how strong the gravitational potential wells need to be so that
the condensate forms. Therefore, several scenarios are possible. The condensate might
form only within galaxy halos, or it might also form outside galaxy halos. It might even
be possible that the whole halo of a cluster of galaxies is in the condensed phase. We
capture the uncertainty about the level at which the condensate forms by introducing a
free parameter β which is defined in the next subsection.

A second source of uncertainty is whether the scalar field (i.e. the condensate wave
function) oscillates or not around the minima of its potential. As we have argued before,
in order for the scalar field to mimic CDM on large scales, the field has to oscillate.
However, the presence of the non-minimal coupling Gµν∇µφ∗∇νφ changes the evolution
of the field with respect to the standard case. It is viable that this coupling would serve
as a damping force which would tend to dissipate the oscillatory energy. In order to
calculate the precise effect of the non-minimal coupling we would have to numerically
solve for the evolution of the scalar field and also know details about the dynamics of
the galaxy immediately after the condensation has happened and before is has reached
equilibrium. Since this goes beyond the scope of this work, we are going to capture the
uncertainty about whether the oscillations are damped or not by introducing two extra
free parameters - γ1 and γ2. Including m - the mass scale of the field, and ς ≡ 1

L the
scale of the non-minimal coupling, we have in total five free parameters - m, ς, β, γ1, γ2.
We will express the total predicted arrival time difference between GWs and GRBs that
accumulates along the way between the source and the observer in terms of them.

In order to achieve that analytically, we work at an order of magnitude level. We
also make several other simplifying assumptions and approximations. We assume that
the density distribution is given by the Burkert profile (2.2), i.e. we assume that the
quantum pressure has already smoothed out any cusps and the system has relaxed to its
equilibrium profile (Ref. [42] shows that one can obtain a profile similar to the Burkert
one within this model). The dominant effect on the time delay of GRBs with respect to
GWs comes from the halos of the Milky Way and the host galaxy and eventually from
the halos of clusters between us and the event (all other halos are too far away from
the physical path of the waves). We assume that the GWs and GRBs pass through the
centre of each halo. At first, this might seem like a drastic assumption but it actually
leads to the maximal possible difference in the arrival time of the two signals and is good
enough for putting a constraint on the theory. Nonetheless, later we comment on the
case where the waves pass at an impact parameter b.

In order to perform an order of magnitude estimation of the difference in the arrival
time, we also assume that in the case of spatial gradients the GW propagates with
the maximal possible speed (i.e. the speed is constant and is calculated at the radius
where the gradient of φ is largest) only inside the core of the halo (this agrees with a
numerical calculation of the full arrival time difference performed for different values
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of the parameters ς and m), while in the case of time gradients, we later show that
the modification of the speed of GWs is proportional to the average DM density of the
halo. In both cases we work to first order in ∆cg as given by Equations (3.22) and (3.23)
respectively (a posteriori checks can verify that these terms are very small and numerical
checks confirm that for the spatial case the first order calculation gives the same result
as the full calculation).

We calculate the contribution to the arrival time difference coming from a single
galaxy halo assuming that the galaxy is typical i.e. that it has the following parameters
[50]:

Dark matter density at the centre ρ0,g = 3× 10−22kg/m3

Average dark matter density in the halo ρ̄gh = 10−23kg/m3

Radius of the core r0,g = 15kpc = 4.5× 1020m

Radius of the halo Rh,g = 200kpc = 6× 1021m

Similarly, when we take into account the possible contributions from clusters, we
assume that they are typical with the following parameters:

Dark matter density at the centre ρ0,cl = 9× 10−23kg/m3

Average dark matter density in the halo ρ̄cl = 3× 10−24kg/m3

Virial radius Rh,cl = 1.2× 1023m

Radius of the core r0,cl = 2.4× 1022m

In order to calculate the average dark matter density for a galaxy halo and a cluster
halo, we use the following formula which is obtained from numerical simulations [51,52]:

ρ̄ ≈ 200ρcr(zvir), (3.25)

where ρcr(zvir) is the critical density of the Universe evaluated at zvir and zvir is the
redshift at which the galaxy or cluster virialized.

In order to obtain r0,cl from Rh,cl we use the fact that they are related by [38]

r0,cl =
Rh,cl
Cp

, (3.26)

where the concentration parameter Cp is approximately a constant (it is very weakly
mass-dependent) and for a typical cluster of galaxies: Cp ≈ 5.

Note that the above given ρ0,cl is obtained from ρ0,g by assuming they are related by

ρ0,cl

ρ0,g
=
ρ̄cl
ρ̄gh

. (3.27)

It is not certain whether this assumption holds - it is still debatable whether halos of
clusters have a well-defined core and what their central density is. In any case, it is
unlikely that this ambiguity will affect the order of magnitude constraints that we will
later obtain.

The distance between the source and the observer is ` = 40 Mpc. If we draw a line,
between us and the source about half of the line would pass through a cluster. Since the
typical virial radius of a cluster halo is about 4 Mpc, then statistically there are about
5 clusters or N = 10 half-clusters between us and the source.
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Parametrising the model The first source of uncertainty is whether the condensa-
tion occurs only within galaxy halos or also outside galaxy halos within the cluster halo.
We started from the assumption that there is condensation within galaxies. What can
we say about the physics at the scale of galaxy clusters?

A priori, there is a range of different possibilities. It might be that there is no dark
matter in the condensate phase outside galaxies, it might be that in some parts of the
clusters where the gravitational fields are stronger the dark matter field has condensed
or it might be that the whole cluster is in the condensate phase. In fact, we can capture
all the different cases by introducing a term L̃Gµν〈φ〉µ〈φ〉ν in the effective Lagrangian
at cluster scales. Here 〈φ〉 is the average of the field over cluster scales and L̃ is a new
coupling constant which we keep as a free parameter that represents our uncertainty as
to what exactly happens on cluster scales.

We allow L̃ to have a range from 0, which corresponds to the case where there is
no condensation anywhere outside galaxies, to ξ̃ = αξ which corresponds to the case
where the whole cluster is in the condensate phase. Here α is an empirical constant
which takes into account the fact that a BEC in the whole cluster would have a different
healing length than a BEC in a galaxy. In order to calculate α we need to take into
account that the healing length of a condensate is related to the average matter density
and radius of a halo by (2.27). This implies

α =
( ρ̄cl
ρ̄gh

)−1/2 Rh,g
Rh,cl

≈ 0.1. (3.28)

We now define the parameter β by

β ≡ L̃

αξ
(3.29)

so that it has a range (0, 1).
The second source of uncertainty is whether the field φ, which corresponds to the

condensate wave function, oscillates or not. This is important because any oscillatory
behaviour would lead to large time gradients, which would contribute significantly to the
modification of the speed of gravitational waves in a cosmological medium. The scalar
field that constitutes dark matter would tend to oscillate. However, we saw that in our
case the non-minimal coupling to the curvature could potentially serve as a damping
force which would tend to relax this oscillation. The question is whether this damping
really happens and how effective it is.

We can parametrise this uncertainty by introducing another free parameter γ1. In
the extreme case where there is no damping there would be simple harmonic oscillations
with period proportional to the inverse of the mass of the scalar field. We model the
effect of the damping by still assuming simple harmonic oscillations but with a longer
period Teff and therefore a smaller effective mass meff . While this is not strictly true, it is
good enough for the purposes of the present investigation. We define the dimensionless
parameter γ1 by

γ1 ≡
meff

m
. (3.30)
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We see that it has limiting values γ1 = 0 corresponding to completely damped oscillations
and γ1 = 1 corresponding to completely undamped (free) oscillations.

Next we need to take into account that if the condensation happens within clusters
as well, then the oscillations might be damped to a different extent outside galaxy halos.
In order to capture this uncertainty, we introduce another free parameter γ2 which is
defined in the same way as γ1 but for oscillations within clusters, leaving γ1 to represent
only our uncertainty about oscillations within galaxies.

3.3 Constraining the model

Deriving the formula for the total arrival time difference The modification
of the speed of propagation of gravitational waves with respect to the speed of light
is proportional to the gradients of the scalar field (condensate wave-function). Larger
gradients imply larger modification which in turn implies larger time lag between the two
waves. Therefore the total time lag, the difference in arrival time which is detected at
the observer, accumulates only when the waves pass through regions with large gradients
of the field. There are four separate contributions to the arrival time difference that we
need to consider - from spatial gradients within galaxies, from time gradients within
galaxies, from spatial gradients within clusters, from time gradients within clusters. We
will now derive formulas for each in turn.

The contribution from spatial gradients in galaxies We first look at the contri-
bution from the spatial gradients in galaxies. We make use of all the assumptions and
approximations stated earlier. The DM density distribution inside a galaxy halo is given
by the Burkert density profile

ρ(r) =
ρ0,g

(1 + r
r0,g

)(1 + ( r
r0,g

)2)
. (3.31)

Substituting that inside (3.24) one obtains:

∆cg(r) =
ρ0,g

4M2
p ς

2m2r2
0,g

F
( r

r0,g

)
. (3.32)

where Mp is the reduced Planck mass defined by

Mp ≡ 1/
√

8πG = 2.4× 1027eV (3.33)

and F is a function defined by

F (x) :=
(1 + 2x+ 3x2)2

(1 + x)3(1 + x2)3
. (3.34)
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The total time lag between electromagnetic and gravitational waves can be written
as an integral over the line of sight

∆t = 2

∫ `/2

0
dr∆cg(r)

=
ρ0,g

2M2
p ς

2m2r0,g

∫ `/2r0,g

0
F (x)dx. (3.35)

Since we assume that the wave propagates with the maximally modified speed over
a distance equal to the diameter of the core, this reduces to

∆tg =
ρ0,g

4M2
p ς

2m2r0,g
F
(rmax,g

r0,g

)
. (3.36)

where rmax,g is the radius at which the gradient is maximal: rmax,g = 1.5× 1020m.

The contribution from time gradients in galaxies Next we calculate the contri-
bution from time gradients in galaxy halos. Since galaxies are virialised objects, they
don’t evolve very much. There are very small time gradients from rotation and fluxes of
radiation and heat. However, they are mostly associated with the visible matter inside
halos and their influence on the evolution of the dark matter field is negligible. The
main contribution to the time gradient of the condensate field comes from possible os-
cillations of the field. Now we calculate this contribution in terms of the free parameter
γ1. According to our assumptions, the field oscillates as a free field with effective mass
meff :

φ̄ = A(r)ei(meff t+α0). (3.37)

Therefore,

| ˙̄φ|2 = m2
effA(r)2 = m2

eff φ̄
2 =

m2
eff ρ̄gh
m2

= γ2
1 ρ̄gh, (3.38)

where φ̄2 ∝ ρ̄gh is necessary since the field oscillates everywhere within the halo. The
fractional modification of the speed of gravitational waves (written in terms of Newton’s
constant G) is

∆cg =
8πG

ς2
| ˙̄φ|2 =

8πGρ̄ghγ
2
1

ς2
, (3.39)

where we make use of the assumed first order relation between the density and the scalar
field. This immediately gives us the formula for the arrival time difference:

∆tg,osc = 2Rh,g∆cg =
16πGRh,gρ̄ghγ

2
1

ς2
. (3.40)

The contribution from spatial gradients in clusters The dark matter density
distribution inside a cluster halo follows the Burkert profile but with different values of
the central density ρ0,cl and of the radius of the core r0,cl:

ρ(r) =
ρ0,cl

(1 + r
r0,cl

)(1 + ( r
r0,cl

)2)
. (3.41)
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As a consequence, the maximal value of the gradient of the scalar field is reached at
rmax,cl = 7.7× 1021m. The difference between the arrival times in this case is given by
the same formula as (3.36) but with the parameters of the cluster halo and with one
major difference - the prefactor that we insert is, in accordance with our assumptions,
N × r0,cl where N = 10 is the number of half-clusters between us and the source:

∆tcl =
Nα2β2ρ0,cl

4M2
p ς

2m2r0,cl
F
(rmax,cl
r0,cl

)
. (3.42)

The contribution from time gradients in clusters The case of the time delay
between the two waves arising from time gradients within clusters of galaxies mirrors
almost exactly the case of time gradients within galaxies except that it is now propor-
tional to the average dark matter density within clusters - ρ̄cl and that the distance over
which the GW propagates with modified speed is `/2:

∆tcl,osc =
4πG`ρ̄clα

2β2γ2
2

ς2
. (3.43)

The total arrival time difference Gathering all contributions together, we obtain a
formula for the total predicted arrival time difference in terms of the five free parameters:

∆ttot = ∆tg + ∆tg,osc + ∆tcl + ∆tcl,osc

=
ρ0,g

4M2
p ς

2m2r0,g
F
(rmax,g

r0,g

)
+

16πGRh,gρ̄ghγ
2
1

ς2

+
Nα2β2ρ0,cl

4M2
p ς

2m2r0,cl
F
(rmax,cl
r0,cl

)
+

4πG`ρ̄clα
2β2γ2

2

ς2
. (3.44)

It is easy to see how the total arrival time difference scales with the three parameters
which parametrise our uncertainty - β, γ1 and γ2. It is proportional to the square of
each parameter. Since each parameter has a range (0, 1), the terms containing these
parameters become important when the corresponding parameter gets close to 1. This
also means that we cannot a priori ignore any of these terms, since each of them becomes
important in some regime. However, we can identify several physically important limiting
cases and testing the model in each of these cases gives us an idea of the overall constraint.

Testing the Limiting Cases There are two limiting values - 0 and 1, for each of
the three parameters - β, γ1 and γ2, which naively would give a total of eight limiting
cases. However, two of them, {β = 0, γ1 = 0, γ2 = 0} and {β = 0, γ1 = 1, γ2 = 0} are
redundant, since they correspond to no condensation outside galaxy halos, which in turn
would make it irrelevant if the field there oscillates or not (in fact, it probably will, since
there is no non-minimal coupling there to suppress the oscillations).

Of the remaining six limiting cases, there are two classes of cases which lead to
different results. It turns out that the constraint is not sensitive to the value of β, i.e. in
the end it is not important whether the condensation happens only inside galaxy halos
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or also inside cluster halos. Instead the constraint is sensitive to the values of γ1 and γ2,
i.e. it matters whether the oscillations are suppressed everywhere or they happen freely
somewhere.

No field oscillations The first class of cases is when there are no oscillations anywhere
in the condensate phase which corresponds to the cases {β = 0, γ1 = 0} and {β = 1, γ1 =
0, γ2 = 0}. Then the gradients are far too small to seriously affect the time difference
between gravitational and electromagnetic waves. Calculating the constraint in ς −m
space at an order of magnitude level, we obtain

ς ×m & 10−52eV 2. (3.45)

Fig.3.1 shows a constraint plot in the ς −m parameter space. The red line corresponds
to the relation (2.29) i.e. we identify the coupling constant L with the healing length ξ
and demand that ξ is of the order necessary to fit the size of non-relativistic BEC halo
with the size of a typical DM halo. Thus it provides an independent constraint in the
parameter space originating from the requirement that the density profile of the BEC
fits with the observed density profile within galaxies. Combining this with the time of
flight constraint, we get separate constraints on ς and m

m & 10−24eV, ς & 10−28eV. (3.46)

Undamped field oscillations The second class of cases is when the oscillations hap-
pen somewhere - it could be either in galaxy halos, in cluster halos or in both. This
corresponds to the cases {β = 0, γ1 = 1}, {β = 1, γ1 = 1, γ2 = 0}, {β = 1, γ1 = 0, γ2 = 1}
and {β = 1, γ1 = 1, γ2 = 1}. Calculating the constraint in ς −m space at an order of
magnitude level, we obtain a strong constraint on ς

ς & 10−25eV, (3.47)

and a weak constraint on m coming from the spatial gradients of φ as calculated in the
previous case. Fig. 3.2 shows a constraint plot in the ς − m parameter space. Again
combining the time of flight constraint with the requirement that the BEC halo fits in
size with a typical galaxy halo (the red line) leads to a separate constraint on m

m & 10−21eV. (3.48)

These constraints allow us to verify that λ � L and therefore the GW is sensitive to
the non-minimal coupling. Indeed, for GW170817, λ ∼ 105− 107m, while (3.47) implies
that the region L & 1018m is allowed. For small L such that L ∼ λ the GW would no
longer be sensitive to the non-minimal coupling and there would be no corresponding
time delay between the two waves. However, since this region is allowed anyway, it does
not change the constraint.

At first it might seem surprising that the contribution to the arrival time difference
from cluster halos is of the same order as the contribution from galaxy halos especially in

48



Figure 3.1: A constraint on the ς −m parameter plane when the oscillations are com-
pletely suppressed everywhere. The arrival time difference between gravitational and
electromagnetic waves is solely due to spatial gradients. Models which lie in the blue
region are consistent with the observed time difference ∆t . 1.7s. The red line corre-
sponds to values of ς and m for which the BEC halo fits the size of a typical galaxy
halo.

the case where the difference arises from the oscillations of the field. Naively, one would
expect the contribution from cluster halos to be much larger due to the larger distance
within a condensed region that the waves have to propagate (the factor of ` in the fourth
term of (3.44) compared to the factor of Rh,g in the second term). However, it turns
out that this surplus in the propagation distance is exactly compensated by the fact
that the healing length and hence the non-minimal coupling is of different size outside
galaxy halos compared to inside due to the different dark matter density (the factor
of α2 in the fourth term). As a consequence, it is completely irrelevant for the time-
of-flight constraint whether the condensation happens only inside galaxy halos or also
outside. What matters only is whether the oscillations are suppressed or not. As we saw
this uncertainty is captured by the parameter γ1 (and γ2 for oscillations outside galaxy
halos). Formula (3.44) shows that the arrival time difference depends quadratically on
γ1 as it varies from 0 to 1. Thus as the oscillations are gradually switched on, larger and
larger regions of the parameter space will get forbidden by the oscillations. Figures 3.1
and 3.2 show the limiting cases of γ1 = 0 and γ1 = 1.
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Figure 3.2: A constraint on the ς−m parameter plane when the field oscillates somewhere
in galaxy or cluster halos. The dominant contribution to the arrival time difference is
from the time gradients. Models which lie in the blue region are consistent with the
observed time difference ∆t . 1.7s. The red line corresponds to values of ς and m for
which the BEC halo fits the size of a typical galaxy halo.

Waves at an impact parameter b So far we have only considered the case where the
waves pass through the centre of the halo of a galaxy or a cluster. This is good enough
for putting a constraint on the model because it maximises the total time difference
accumulated along the path of the two waves. But how does the total arrival time
difference change as we shift the path of the waves away from the centre of the halo
while still preserving the spherical symmetry? This would only make a difference, if
the arrival time difference is dominated by spatial gradients i.e. oscillations are largely
suppressed. Then we can derive a formula for the arrival time difference in terms of the
impact parameter b, which is defined as the closest distance between the path of the

waves and the centre of the halo. Working again to first order in 1
M2
p ς

2 |dφ̄dr |
2, we obtain

the formula which is just a slight modification of (3.35) above

∆t(b) =
2

M2
p ς

2

l2

b2 + l2

∫ l/2

0

∣∣∣∣dφ̄dr
∣∣∣∣2
r=(b2+x2)1/2

dx. (3.49)

The difference between the arrival times of the two signals decreases quickly as b is
increased. For example, the nearest galaxy to the path of the waves, other than the
Milky Way or the host galaxy, is at b ∼ 1022m [53]. Taking values of ς and m for
which the model barely passes the test in the case of completely suppressed oscillations:
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m ∼ 10−24eV and ς ∼ 10−28eV (i.e. the point where the red dashed line intersects the
boundary between the allowed and forbidden regions in Fig.3.1) gives an additional time
lag from the nearest galaxy of ∆t ∼ 10−5s. This justifies our decision to ignore possible
contributions to the arrival time difference from other galaxies.

Other constraints on the mass The relation between the mass and the coupling
constant (2.29) which corresponds to the red dashed line in the plots suggests that we
can increase both m and ς indefinitely while still fitting the profile of a galaxy with
that of a BEC halo. However, both m and ς depend on the scattering length a via
(2.25) and (2.26) and the scattering length is not a completely free parameter in our
model. Indeed, we can obtain an independent constraint on the mass m by considering
the possible range of a.

The scattering length is a constant which characterises the strength of the interactions
between the bosons in the condensate. Since the interactions have to be repulsive, a has
to be positive.3 The case a = 0 would correspond to no interactions. This is very unlikely
since in order to form a condensate, a weak interaction between the bosons is necessary
(though see [55] for the possibility of forming a BEC without interactions). The case
a . lp where lp is the Planck length would correspond to an interaction weaker than the
gravitational one. This also seems unlikely since in that case gravitational interactions
between the particles would dominate over their repulsive interactions. On the other
hand, a cannot become very large because this would imply strongly interacting dark
matter which would be at odds with the observations. In particular since the lower limit
for the range of observed wavelengths of the gravitational waves is λmin ∼ 105 m and
since a scattering length of that same order would imply very strong interactions of dark
matter which is excluded by the observations, we can safely conclude that a � λ and
thus gravitational waves propagate safely in the regime where the condensate description
holds. In fact, there is a hierarchy of length scales which goes like this:

lp < a < λ < ξ. (3.50)

A possible, though highly overestimated, upper bound for a is given by the scattering
length of Rubidium atoms [20]: aRb = 5.77× 10−9m. If we impose

lp < a < aRb, (3.51)

we obtain from Equations (2.25) and (2.29) a constraint on the mass m given by

5.07× 10−10 eV < m < 0.36 eV. (3.52)

If we compare this interval to the time-of-flight constraints, we see that the interval lies
deep into the allowed region of the parameter space both in the case of no oscillations
and of free oscillations.

3Incidentally, this implies that the boson which forms the condensate in this model cannot be the
QCD axion for which the interactions are attractive [54]. However, it could be a generalised axion
particle.
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Summary This chapter was devoted to putting a constraint on the model where dark
matter forms a non-minimally coupled BEC by using the time delay between gravita-
tional and electromagnetic waves emitted during a binary neutron star merger. We cal-
culated the modification of the speed of propagation of gravitational waves with respect
to the speed of light both for timelike (Eqn. (3.11)) and spacelike (Eqn. (3.16)) gradi-
ents of the condensate wavefunction and we argued that such a modification would be
present whenever the wavelength of the gravitational waves falls in the range a < λ < ξ
– a condition which is satisfied in our case. Then we proceeded to estimate the actual
time delay predicted by the model. Due to the uncertainty in the behaviour of the con-
densate wavefunction and the scale at which the condensation happens we introduced 3
additional parameters and expressed the expected time delay in terms of them and the
mass of the field m and the strength of the non-minimal coupling ς. The total time delay
was a sum of 4 contributions – the spatial and time gradients of the field in galaxies and
galaxy clusters respectively (Eqn. (3.44)). Comparing the predicted time delay with the
observed one allowed us to put constraints on m and ς (Figures 3.1 and 3.2). We found
out that the constraint is independent of whether the condensation occurs in galaxy
halos only or in clusters too, but it is quite sensitive to whether the scalar field oscillates
or whether the oscillations are suppressed. Finally, we compared our constraint on the
mass with other independent constraints.
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4
The luminosity distance as a probe of the geometry of

spacetime

In this chapter we will overview the notion of a distance in Cosmology. We will
see that there are different types of distances and they are all defined in terms of light
emitted by the source and detected by the observer. Throughout the chapter we work in
a very general context without restricting to a particular Cosmology and show how the
luminosity distance can be calculated by using two independent mathematical objects -
the Jacobi map and the van Vleck determinant [56,57]. We explore Cosmography, which
is an approach to test the evolution of the Universe in a model-independent way. Only
later do we focus on FLRW metrics to illustrate in a more specific context some of the
techniques used. This chapter should be thought of as a preparation for the next one in
which we will apply these techniques to more sophisticated cosmological models.

4.1 Cosmological distances - definitions and uses

Defining a notion of a distance in Cosmology is a challenge for several reasons. First,
spacetime is curved and so our Euclidean notion of a distance breaks. Second, spacetime
is not static, rather it is dynamical and generally there is no background geometry to
serve as a ruler. Third, we want a distance which is measurable by light observations and
which captures our intuition that objects at larger distances from us are more separated
from us. It turns out that there are several such notions of a cosmological distance. While
they reduce to the same Euclidean distance in a flat spacetime, in a curved spacetime
they are truly different and in some occasions are related to one another through well-
known transformations. We will now go through the definitions and subtleties of some
of them, namely those that will play an important role in our analysis later on: the
luminosity distance, the area distance, the angular diameter distance, the redshift and
the affine parameter distance.
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The luminosity and area distances Consider a spacetime (M, gµν) and a point
source emitting light at the source event S (Fig. 4.1). An extended observer located at
O receives the light emitted by S. The luminosity distance is defined in terms of the
energy flux measured by the observer, Fo, and the (absolute) luminosity at the source,
Ls, assumed to be known by the observer [32,58]:

Fo =
Ls

4π d2
L

. (4.1)

Measuring the photon energy flux Fo is straightforward, while estimating the source
luminosity Ls is trickier and model-dependent but achievable. Once both quantities are
known, an estimate of the observed luminosity distance is given by

dL =

√
Ls

4π Fo
. (4.2)

One can easily see that in a Minkowski spacetime this reduces to the standard notion of
a distance. On the theoretical side, the intrinsic luminosity of S is related to the flux F
measured by O by the integral [1]

L =

∫
S2

(1 + z)2F dA, (4.3)

where S2 is the 2-sphere centred at the source S and passing through the observer O,
while z is the redshift of the light. If the source radiates isotropically, we can write (4.3)
as a differential relation

F dAo =
L

4π

dΩs

(1 + z)2
, (4.4)

where dAo is an area element at the observer and dΩs is the infinitesimal solid angle at
the source (see Fig. 4.1). Therefore, the luminosity distance can be written in terms of
elements of the geometry in the following way:

dL = (1 + z)

√
dAo
dΩs

. (4.5)

Later the quantity dAo
dΩs

will be related to the metric thus allowing to make a theoretical
prediction for the luminosity distance in any given cosmological model.

Often instead of measuring the photon energy flux it is easier to count the number of
photons received by the observer and to estimate the number of photons emitted by the
source over the total lifetime of the event (or over some specified interval, for example
from peak luminosity to half-maximum). Then in terms of integrated photon number
flux, and photon number luminosity:

(F#)o =
(L#)s

4π(dAo/dΩs)
. (4.6)
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Figure 4.1: A congruence of light rays emitted at a point source S and received by
an extended observer O. The luminosity distance between S and O is given by dL =
(1 + z)

√
dAo/dΩs, while the area distance is darea =

√
dAo/dΩs. Here `a is a tangent

vector to a geodesic in the congruence.

This eliminates the two explicit redshift factors, and so allows one to empirically define
the “area distance” (see figure 4.1):

darea =

√
(L#)s

4π (F#)o
=

√
dAo
dΩs

. (4.7)

The area distance differs from the luminosity distance by the absence of the redshift
factor 1 + z and is often more convenient to work with. Due to the similarity between
the two distances, any formula for the luminosity distance that we derive later can be
recast in terms of the area distance simply by eliminating the redshift factor.

The luminosity and area distances are defined for objects of a known and fixed in-
trinsic luminosity. Most often they are measured by performing observations in the elec-
tromagnetic spectrum. However, the notion of luminosity distance (and area distance)
can also be defined for other types of waves. Recently, the gravitational wave luminosity
distance has become quite popular because some binary compact object mergers serve
as standard sirens - they have a fixed gravitational wave luminosity [59–61]. While the
electromagnetic luminosity distance can be only used to directly test the geometry of
the Universe, the gravitational luminosity distance also carries information about the
gravitational dynamics. More importantly, the two notions of a distance are truly dif-
ferent - they agree for General Relativity, but not for most modified theories of gravity.
Hence, the gravitational wave luminosity distance is particularly adept at testing gravity
on cosmological scales. From now on our interest will be mainly in the standard elec-
tromagnetic luminosity distance even though most of the results can be adapted for the
gravitational wave luminosity distance as well.

The angular diameter distance and the distance duality relation A different
notion of a distance between a source and an observer is the angular diameter distance
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defined in terms of the physical size of the source and the angle subtended at the observer
(Fig. 4.2):

dangular =

√
dAs
dΩo

. (4.8)

The angular diameter distance can be measured for objects of known size called standard
rulers (an example is the BAO). While the luminosity and angular diameter distances are
completely independent, there is a relation between them called the “Etherington dis-
tance duality” relation. The derivation of this relation rests on a number of assumptions,
namely (1) photon number is conserved, (2) gravity is described by a metric theory, (3)
photons travel on unique null geodesics. Given these assumptions, one can show that
[1] √

dAo
dΩs

= (1 + z)

√
dAs
dΩo

, (4.9)

or writing that in terms of the distances defined so far:

dL = (1 + z)2 dangular; darea = (1 + z) dangular. (4.10)

Exotic physics could in principle violate one or more of the assumptions above and
for this reason observational tests of the distance duality relation are an active area of
research [62–64].

Figure 4.2: A congruence of light rays emitted at an extended source S and received by a
point observer O. The angular diameter distance between S and O is given by dangular =√

dAs/dΩo. Here `a is a tangent vector to a geodesic in the congruence. Under suitable
technical conditions the Etherington distance duality relation yields

√
dAo/dΩs = (1 +

z)
√
dAs/dΩo .

The redshift A different notion of a distance is the observed redshift of the source.
To define the redshift and to isolate the different contributions, we consider a single null
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geodesic (the photon trajectory), affinely parameterized by λ, and carefully distinguish
the null tangent 4-vector, the null 4-wave-vector, and the null 4-momentum:

`α =
dxα

dλ
; kα = ω̃ `α; pα = ~ kα = ~ω̃ `α = Ẽ `α. (4.11)

Since the photon 4-momentum is, by definition, parallel transported along the null tra-
jectory we have `α∇αpβ = 0, (no external forces act on the photon, it is in free-flight).
Since the tangent vector is chosen to be affinely parameterized, we have `α∇α`β = 0.
Consequently the scalar Ẽ = ~ω̃, (and hence ω̃ itself), is constant along the null trajec-
tory. However Ẽ is not the locally measured energy, and ω̃ is not the locally measured
frequency. In general for an observer of 4-velocity V α one has

E = −gαβV αpβ = Ẽ (−gαβV α`β); ω = −gαβV αkβ = ω̃ (−gαβV α`β). (4.12)

So E and ω can change by purely geometric factors along the photon trajectory, as they
should.

Now let the source have timelike 4-velocity (Vs)
α, and the observer have timelike

4-velocity (Vo)
α. Then the total redshift is given by [32,65]

1 + z =
(gαβ p

αV β)s
(gαβ pαV β)o

=
(gαβ k

αV β)s
(gαβ kαV β)o

=
(gαβ `

αV β)s
(gαβ `αV β)o

. (4.13)

Note that the total redshift is purely geometrical, and by definition automatically fre-
quency independent (achromatic). Let us now introduce two fiducial 4-velocities, (Ws)

α

and (Wo)
α, at the source and observer and write

1 + z =
(gαβ `

αW β)s
(gαβ `αW β)o

(gαβ `
αV β)s

(gαβ `αW β)s

(gαβ `
αW β)o

(gαβ `αV β)o
. (4.14)

These fiducial 4-velocities Wα might represent, for instance, the local rest frame of the
CMB, or the local rest frame of the Hubble flow. This now factorizes the total red-
shift into an overall cosmological/gravitational contribution, plus two peculiar velocity
contributions. First, the factor

1 + zc =
(gαβ `

αW β)s
(gαβ `αW β)o

(4.15)

represents the combined effects (as seen by fiducial observers) of cosmological expansion
plus possible local variations in the gravitational field. Second, the factors

1 + zp =
(gαβ `

αV β)

(gαβ `αW β)
= γ(1− ˆ̀· ~v) (4.16)

represent the effect of peculiar velocities of source/observer 4-velocities V α relative to
the fiducial background Wα. (In the absence of any choice of fiducial observer Wα one
cannot even begin to define the notion of “peculiar velocity”.) Here we have gone to
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Riemann normal coordinates at both source and observer, so gαβ → ηαβ, and have gone

to the fiducial rest frame Wα → (1;~0), with V α → γ(1;~vi) and `α ∝ (1; ˆ̀i) to cast the
peculiar redshifts in the γ(1− ˆ̀·~v) form. (Note that in order to find the last expression
for the peculiar redshift, we did not have to normalise the null vector, i.e. `α ∝ (1; ˆ̀i)
simply defines a direction and implies `α = `0(1; ˆ̀i). But `0 drops out of the calculation
and so the result is independent of the normalization chosen.) Overall we have the
general result

1 + z = (1 + zc)
[γ(1− ˆ̀· ~v)]s

[γ(1− ˆ̀· ~v)]o
= (1 + zc)

1 + zp,s
1 + zp,o

= (1 + zc) (1 + zD), (4.17)

where 1 + zD is the Doppler contribution to the redshift. This neatly splits the total
redshift into cosmological/gravitational contributions plus peculiar motion contributions.
This version of the redshift equation in principle allows for arbitrarily high peculiar
velocities, and arbitrarily high cosmological/gravitational redshifts.1 (Note that peculiar
velocities need not necessarily be intrinsically small. Ultimately it is an observational
question as to just how small they are.)

Affine parameter distance Consider the spray of affinely parameterised null geodesics,
with null tangent 4-vector `α = dxα/dλ, emitted from the source into some solid an-
gle dΩs (Fig. 4.1). While the null affine parameters are well defined (up to constant
rescaling) along each individual null geodesic, there is a priori no connection between
the affine parameters on distinct null geodesics. Introduce such a connection between
distinct null geodesics by enforcing (at the source and for all elements of the geodesic
spray):

(gαβ `
αW β)s = −1. (4.18)

Going (temporarily) to Riemann normal coordinates at the source, (gs)αβ → ηαβ, and
going to the fiducial rest frame (Ws)

α → (1;~0), this implies (at the source and for all
elements of the geodesic spray) that we can set

`α = (1; ˆ̀i). (4.19)

Note that ˆ̀i will vary as one selects different elements of the geodesic spray; the geodesics
in the geodesic spray are moving more-or-less in the same direction, they are not moving
exactly in the same direction. That is, the affine parameters for all the null geodesics of
interest are normalised by asserting that, at the source, the affine parameter along any
of the elements of the null geodesic spray equals the proper time of the fiducial observer
at the apex of that geodesic spray. That is, the fiducial observer at the source sees an

1Often the peculiar velocities are known or assumed to be small, |~v| � 1, (we have set c → 1), in

which case one has the simple perturbative result 1 + z = (1 + z∗)
(

1− ˆ̀· [~vs − ~vo] +O(v2)
)

. But

such a low-peculiar-velocity approximation is by no means necessary. Sometimes one sees the Doppler

factor written as

√
(1 + ˆ̀· ~v)/(1− ˆ̀· ~v), but this is actually wrong as it incorrectly ignores the transverse

Doppler effect. (Though it does give the correct low-peculiar-velocity limit.)
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outgoing (partial) light cone, and using local flatness, uses his/her time coordinate to
naturally fix the near-apex affine parameter on each of the null geodesics making up the
(partial) light cone. With this normalisation convention the affine parameter distance
∆λ = λo − λs equals the distance the photon would have travelled in Minkowski space
if the Riemann tensor were forced to zero.2 The affine parameter distance will play an
important role later on when we express the luminosity distance in terms of the van
Vleck determinant.

Other distances There are other notions of cosmological distances such as the paralax
distance, the lookback time and the transverse comoving distance (see [66] for a review).
While they are useful in different circumstances, for our purposes it is enough to work
with the ones defined so far.

Having defined different notions of a cosmological distance which can be measured
by light observations made by observers on Earth, it is of great interest how one can
compute theoretically a cosmological distance given a particular model. We focus on the
luminosity distance and we show how this can be done using two mathematical objects
- the Jacobi map and the van Vleck determinant.

4.2 The Jacobi map

The Jacobi map is a powerful tool to analyse the propagation of light in a curved
spacetime. Roughly speaking, it maps solid angles subtended by light geodesics at the
source to the area of the locus of these geodesics at the observer. The Jacobi determinant
can be used to compute the luminosity distance of a source in any spacetime. We now
develop this result in more rigour.

The Jacobi determinant and the luminosity distance At a most basic level the
Jacobi determinant can be understood as the Jacobian of the transformation from carte-
sian to angular coordinates at the observer. To be more specific, consider a congruence of
null geodesics starting from a source S and ending at an extended observer O (Fig. 4.3).
The locus of end points for each geodesic at O form a section of a 2-dimensional spacelike
surface. More precisely, this surface is obtained by intersecting the section of the null
hypersurface comprising the light geodesics with a spacelike hypersurface at the event O.
There are two types of coordinates that one can introduce on this 2-dimensional surface -
angular coordinates ξi = (θ, φ) and cartesian coordinates xi = (x, y). The 2-dimensional
Jacobi matrix is defined as

J ij ≡
∂xi

∂ξj
(4.20)

2With this normalisation convention the cosmological/gravitational contribution to the redshift sim-
plifies to 1 + zc = [(gαβ `

αW β)o]
−1. This apparent simplification is less useful than one might at first

imagine since one has to propagate the chosen normalisation from source to observer.
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This implies that for an area element at the observer dAo and an angular element at the
source dΩs

dAo = |det(J)|dΩs. (4.21)

Hence, dAo/dΩs = |det(J)| and by (4.5) the luminosity distance is given by

dL = |det(J)|1/2(1 + z). (4.22)

The Jacobi map At a more geometric level, the Jacobi map can be understood as
arising from the geodesic deviation equation [32]. Consider again the congruence of light
rays emitted by the source as shown in Fig. 4.3. It can be parametrised as

xα = fα(λ, yi), (4.23)

where λ is the affine parameter along each light ray, and the yi parametrise neighbouring
rays. Focussing on a single one-parameter family of light rays, one has

xα = fα(λ, y). (4.24)

The tangent vector and the wave vector are defined as

`α =
∂fα

∂λ
, kα = ω̃ `α, (4.25)

where ω̃ is just a constant with dimension [L−1]. The geodesic deviation vector is defined
as

Y α =
∂fα

∂y
. (4.26)

For a point source all light rays intersect at S and therefore Y α
s = 0. The geodesic

deviation equation for the family of geodesics is

D2Y α

dλ2
= Rαβγδ `

β`γ Y δ. (4.27)

The equation is linear and therefore the solution at O is a linear combination of the
initial values at the source S (this is a nontrivial result – see for instance [67]). Since
Y α
s = 0, we must have

Y ρ
o = J ρα (O,S)

DY α
s

dλ
, (4.28)

where J ρα (O,S) is the 4-dimensional Jacobi map. It is useful to define the following
infinitesimal vectors:

δxα := Y α δy, (4.29)

which can be thought of as pointing from one geodesic to a neighbouring one along the
family, and

δθα :=
DY α

dλ
δy, (4.30)
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which connects one geodesic to a neighbouring one at the source and whose magnitude
is the angular separation between the two geodesics at the source. Then (4.28) becomes

δxµo = J µα (O,S) δθαs . (4.31)

Thus the Jacobi map maps initial directions around the source to vectors transversal to
the photon beam at the observer position.

Figure 4.3: A congruence of light rays emitted at a point source S and received by
an extended observer O. The luminosity distance between S and O is given by dL =
(1 + z)

√
dAo/dΩs, while `α is a tangent vector to a geodesic in the congruence while Y α

is a transverse vector connecting different geodesics of the congruence.

The Jacobi map defined in (4.31) is a 4-dimensional map from the tangent space
Ts(M) to To(M). However the vectors δxµo and δθαs live in 2-dimensional subspaces of
the tangent spaces at O and S, normal to the four-velocities of the observer and the
source, Uo and Us, respectively, and normal to the photon direction at O and S (see
Appendix D). To find the true Jacobi map, we need to project onto these subspaces

J(O,S) := PoJPs, (4.32)

where Po and Ps are the projectors

(Ps)
µ
ν = (δµν + UµUν − nµnν)s, (Po)

µ
ν = (δµν + UµUν − nµnν)o, (4.33)

and where ns and no are normalized spacelike vectors pointing in the photon direction
in the reference frames of the source and the observer

no =
(
`+ (` · U)U

)
o
, ns =

(
`+ (` · U)U

)
s
. (4.34)

Here J(O,S) is a 2-dimensional map from a subspace of Ts(M) to a subspace of To(M)
(it is identical to the Jacobi matrix defined in (4.20)). It follows from its definition in
(4.31) and (4.32) that

dAo
dΩs

= | det J(O,S) | (4.35)

(see general discussion in [56], and other sources [32–37, 68, 69]). Thus the luminosity
distance is given by

dL(S,O) = |det J(O,S)|
1
2 (1 + z). (4.36)
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Solving for the Jacobi map We now want to solve the geodesic deviation equation
(4.27) in order to find the Jacobi map. In practice it is easier to transform the geodesic
deviation equation, which is a 2nd-order differential equation for Y µ, into two coupled
1st-order differential equations for δxµ and δθµ. (This is similar to what one does in
Hamiltonian mechanics where a single 2nd-order differential equation for a given dynam-
ical variable is transformed into two 1st-order differential equations for the dynamical
variable and its conjugate momentum.) It follows from (4.29), (4.30) and (4.27) that

D(δxµ)

dλ
= δθµ;

D(δθµ)

dλ
= Rµναβ `

ν`αδxβ. (4.37)

Equivalently

d(δxα)

dλ
= Cαν (λ) δxν + δθα;

d(δθα)

dλ
= Aαν (λ) δxν + Cαν (λ) δθα; (4.38)

where
Cαν (λ) := −Γαµν`

µ; Aαν (λ) := Rαρµν`
ρ`µ. (4.39)

In order to find the Jacobi map, this system must be solved consistently with the initial
conditions

δxα(λs) = 0; (`αδθα)(λs) = (Uαs δθα)(λs) = 0. (4.40)

Similar equations have also been derived in [32]. We will use these equations at the end
of this section and in the next section in order to solve for the luminosity distance in
some cosmologically interesting spacetimes.

We saw how the Jacobi map and its determinant in particular can be used to track the
geodesic deviation of light rays in any spacetime and therefore to calculate the luminosity
distance. Similar calculations can be performed by another widely used mathematical
object called the van Vleck determinant.

4.3 The van Vleck determinant

Definition and applications The van Vleck determinant is an ubiquitous object that
appears in many different areas of Theoretical Physics [70]. Consider a classical system
of n degrees of freedom described by an action

S =

∫
L(~̇q, ~q)dt (4.41)

Minimising the action (δS < 0) with respect to variations of the path between two points
in configuration space (~qi, ti) and (~qf , tf ) leads to the classical path γ along which the
equations of motion hold. Now we can evaluate the action over γ:

Sγ =

∫
γ
L(~̇q, ~q)dt, (4.42)
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and take the second derivative of the resultant scalar with respect to each of the com-

ponents of ~qi and ~qf :
∂2Sγ

∂(qi)k∂(qf )l
, that is we consider variations of the initial and final

state of the system and how the scalar function Sγ changes with respect to that. The
result is an n× n matrix whose determinant is called the van Vleck determinant. More
precisely, the van Vleck determinant is defined in the following way:

∆γ(~qi, ti, ~qf , tf ) ≡ (−1)ndet
[ ∂2Sγ
∂(qi)k∂(qf )l

]
(4.43)

It has applications in various areas of Theoretical Physics such as the WKB approxi-
mation in Quantum Mechanics, Wormhole physics and the regularisation of the stress-
energy tensor in a curved spacetime [71,72].

Geodesic interval and geodesic focussing The van Vleck determinant is also ap-
plied to geodesic deviation and geodesic focussing [73]. In order to see how, we first
define the geodesic distance between two events S and O connected by a geodesic γ:

sγ(xs, xo) =


∫
γ dτ timelike∫
γ ds spacelike

0 null

(4.44)

where τ is the proper time along a timelike geodesic and s is a similar parameter along
a spacelike geodesic. Then the geodesic interval between S and O is given by

σγ(xs, xo) := ±1

2
[sγ(xs, xo)]

2 (4.45)

with a +sign for a spacelike geodesic and a −sign for a timelike geodesic. Then the van
Vleck determinant is given by an expression similar to (4.43):

∆vV (xs, xo) := −
det{∇xsµ ∇xoν σγ(xs, xo)}√

g(xs)g(xo)
(4.46)

where g(xs) is the determinant of the metric at S. The factor in front of the determinant
is (−1)d where d is the number of spatial dimensions. Here we consider only the case
d = 3.

As we will see later, the van Vleck determinant captures information about focussing
or defocussing of a geodesic congruence or, in different words, it parametrises deviations
from the inverse square law which is obeyed by light geodesics in a flat spacetime. More
precisely, if ∆vV = 1, the inverse square law is obeyed. However, if ∆vV > 1, the geodesic
congruence is focussed, while if ∆vV < 1, the geodesic congruence is defocussed. This
property of the van Vleck determinant is useful for calculating the luminosity distance.
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The luminosity distance in terms of the van Vleck determinant Now we con-
sider a congruence of geodesics emanating from point S - the source (Fig. 4.3). This
means that for a fixed source the van Vleck determinant becomes a function of the affine
parameter λ along the congruence. It can also be shown (see [73]) that the van Vleck
determinant obeys a first-order differential equation

d∆vV

dλ
=

(
2

λ− λs
− θ
)

∆vV , (4.47)

where λs is the affine parameter at the source and θ is the expansion of the congruence:

θ =
1

dA/dΩs

d(dA/dΩs)

dλ
. (4.48)

The solution of (4.47) at point O - the observer, is given by

∆vV (λo, λs) =
(λo − λs)2

(dAo/dΩs)
. (4.49)

Therefore, Eqn. (4.5) immediately implies that there is a relation between the luminosity
distance and the van Vleck determinant:

dL = (1 + z)(λo − λs)∆−1/2
vV . (4.50)

Eqn. (4.49) also implies a relation between the Jacobi determinant and the van Vleck
determinant:

|det J(O,S)| = (λo − λs)2∆−1
vV . (4.51)

Thus Eqn.(4.50) is equivalent to Eqn.(4.36). However, in (4.50) the affine parameter
distance is separate from the focussing/defocussing contributions while in (4.36) the two
terms are lumped together. Thus, (4.50) has a more clear physical interpretation.

Limitations of the luminosity distance Despite the usefulness of the notion of the
luminosity distance and its wide applications in cosmology and cosmography, there are
circumstances where the luminosity distance fails to give an accurate representation of
the separation between the source and the observer. This happens for example, near a
conjugate point of the null geodesic congruence emanating from the source. A conjugate
point is a point where the transverse vector field Y µ vanishes: Y µ = 0. At such a point
the Jacobi determinant is zero, while the van Vleck determinant blows up: det(J) = 0,
∆vV =∞. As a result, an observer located at the conjugate point would infer a vanishing
luminosity distance of the source: dL(S,O) = 0, while an observer located close to a
conjugate point would infer a highly misrepresented value of the luminosity distance. An
example of a geometry which leads to such an effect is FLRW with k = 1. The spacial
slices are 3-spheres and any two antipodal points on these 3-spheres would be conjugate
points. This means that a source and an observer located at antipodal points, i.e.
where the metric distance between them is maximal, would have vanishing luminosity
distance. This failure of the luminosity distance at conjugate points is actually an
opportunity because it allows for tests of the topology of the Universe. So far there is no
observational evidence for a non-trivial topology of our observable patch of the Universe.
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4.4 Cosmography in FLRW

Now we will use the results for the luminosity distance derived so far in order to
show how the geometry of the Universe can be tested in a model-independent way.
First, however, we need to establish a general result about conformal transformations.
Many of the cosmological spacetimes that we are interested in can be related to simpler
spacetimes through conformal transformations (local rescalings) of the metric. There-
fore, it would be extremely valuable, if we know how the main quantities of interest -
luminosity distance, redshift, affine parameter distance, etc., transform under conformal
transformations.

Conformal transformations We define a conformal transformation (or Weyl trans-
formation) to be a local rescaling of the metric:

gµν = exp(2Φ)ĝµν , (4.52)

where Φ(x) is an arbitrary function of space and time (note that we choose to write the
general function in front of the metric as an exponential because it will be computation-
ally useful later on). The behaviour of null geodesics under conformal transformations
implies specific transformation properties for the luminosity distance. Under the confor-
mal transformation (4.52) the paths of the null geodesics are unaffected, while the affine
parameters are non-trivially related by [72,74,75] (see Appendix C for details)

dλ = exp(2Φ)dλ̂, (4.53)

which implies the transformation law for the null vector `µ

`µ = exp(−2Φ)ˆ̀µ. (4.54)

Area transformations are straightforward while angles remain invariant

dAo = exp(2Φo)dÂo, dΩs = dΩ̂s. (4.55)

This implies
dAo
dΩs

= exp(2Φo)
dÂo

dΩ̂s

, (4.56)

which immediately leads to a transformation law for the area distance:

darea =

√
dAo
dΩs

= exp(Φo)

√
dÂo
dΩs

= exp(Φo) d̂area. (4.57)

For a timelike vector V µ = dxµ

dτ with proper time τ the transformation laws are the
following:

dτ = exp(Φ)dτ̂ , V µ = exp(−Φ)V̂ µ. (4.58)
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Therefore,

gµν`
µV ν = (exp(2Φ)ĝµν)(exp(−2Φ)ˆ̀µ)(exp(−Φ)V̂ ν)

= exp(−Φ)(ĝµν ˆ̀µV̂ ν). (4.59)

This implies that the redshift transforms as

1 + z =
(gµν`

µV ν)s
(gµν`µV ν)o

= exp(Φo − Φs)
(ĝµν ˆ̀µV̂ ν)s

(ĝµν ˆ̀µV̂ ν)o

= exp(Φo − Φs) (1 + ẑ). (4.60)

Hence the luminosity distance transforms as

dL = (1 + z)

√
dAo
dΩs

= exp(2Φo − Φs)(1 + ẑ)

√
dÂo

dΩ̂s

= exp(2Φo − Φs)d̂L. (4.61)

In applications one would typically take gµν to be the physical spacetime metric while
ĝµν would be some (not directly physical) conformal deformation of spacetime useful for
calculational purposes. Observe that the Jacobi matrix has the simple transformation
law

J ij = exp(Φo) Ĵ
i
j ; det(J) = exp(2Φo) det(Ĵ). (4.62)

However the transformation law for the affine parameter distance (and therefore also for
the van Vleck determinant) is more subtle and is given by an integral, not by a simple
local rescaling:

∆λ̂ = λ̂o − λ̂s =

∫ o

s
exp[−2Φ(λ′)] dλ′. (4.63)

The fact that the affine parameter distance (and hence the van Vleck determinant) does
not simply rescale under conformal transformations is actually potentially useful, not
a hindrance – it implies that the van Vleck determinant might actually simplify much
more radically under conformal transformations.

The dL−z relation in FLRW spacetimes A particularly simple example of confor-
mal transformations of the spacetime metric comes from considering FLRW cosmologies.
Consider the usual FLRW cosmology with a spacetime metric:

ds2
FLRW = −dt2 + a(t)2

{
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

}
, (4.64)
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where k ∈ {−1, 0,+1}, r is dimensionless and a has units of distance. Introduce a
new time parameter (conformal time) by defining dt/a(t) = dη and then subsequently
reparametrise a(t) to a(η) to write

ds2
FLRW = a(η)2

[
−dη2 +

dr2

1− kr2
+ r2dΩ

]
, (4.65)

where dΩ = dθ2 + sin2 θ dφ2. Now the term in braces

ds2
E = −dη2 +

dr2

1− kr2
+ r2dΩ (4.66)

is just the spacetime metric for the Einstein static universe, which we shall use as a
computational aid, the real physical universe not being static. Then

dL,FLRW =

(
a2
o

as

)
dL,E , (4.67)

where dL,E is the luminosity distance in the Einstein static universe. It is dimensionless
and unphysical but extremely easy to calculate. For a source placed at r = 0, and
observer located at r, the flux is simply

F =
1

(1 + zE)2

L

4πr2
, (4.68)

where zE is the redshift in the Einstein static universe. It depends only on the peculiar
velocities (there are no local inhomogeneities or cosmological effects) so

dL,E = (1 + zE)r =

(
1 + zp,s
1 + zp,o

)
r. (4.69)

In order to determine r in terms of conformal time, consider a radial null geodesic for
which

dη =
dr√

1− kr2
, (4.70)

so we have

∆η = ηo − ηs =

∫ r

0

dr̃√
1− kr̃2

=
arcsin

(√
kr
)

√
k

, (4.71)

which implies

r =
sin
(√

k∆η
)

√
k

. (4.72)

For each of the three different values of k, this reduces to

r =


sin (∆η) for k = 1

sinh (∆η) for k = −1

∆η for k = 0.

(4.73)
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Eqn.(4.72) implies

dAo
dΩs

= r2 =
sin2

(√
k∆η

)
k

. (4.74)

The affine null parameter is simply the conformal time λE = η which allows us extract
the van Vleck determinant:

∆vV,E =
k(∆η)2

sin2
(√

k∆η
) . (4.75)

Then for k = 0 (flat spatial slices) ∆vV,E ≡ 1, so there is no deviation from the inverse

square law. For k = −1 (hyperbolic spatial slices) ∆vV,E = (∆η)2

sinh2(∆η)
< 1. That is, one

has defocussing induced suppression of the inverse square law. Finally, for k = 1 (hyper-

spherical spatial slices) ∆vV,E = (∆η)2

sin2(∆η)
> 1, one has focussing induced enhancement of

the inverse square law.
Now going to the physical FLRW spacetime one has

dL,FLRW =

(
a2
o

as

)(
1 + zp,s
1 + zp,o

)
r

= ao(1 + zc)

(
1 + zp,s
1 + zp,o

) sin
(√

k∆η
)

√
k

. (4.76)

This expression cleanly separates the various distinct physical contributions to the lu-
minosity distance in a general FLRW spacetime. Of course, we have a very similar
expression for the area distance:

darea,FLRW = ao
sin
(√

k∆η
)

√
k

. (4.77)

The luminosity distance depends on the redshift in two distinct ways - first, through the

redshift factor 1 + z = (1 + zc)
(

1+zp,s
1+zp,o

)
that appears at the front, and second, through

the conformal time interval ∆η that appears in the sine function. In fact, the first step
in any cosmographic analysis is to expand the ∆η as a power series of the cosmological
redshift zc:

∆η = P (1 + zc) with the normalisation P (1) = 0. (4.78)

We next show how this is performed in FLRW.

Cosmographic expansion in FLRW spacetimes Cosmographic analyses make
good physical sense whenever the cosmological spacetime can be sliced by spacelike
hypersurfaces which can be factored into an overall “size of the universe” (depending
only on some convenient global time parameter t, possibly some proper time measured
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by some class of fiducial observers) multiplied by something that depends on the “shape”
of the spatial slices. That is, take

ds2 = −N(t, ~x)2 dt2 + a(t)2 [gshape(t, ~x)]ij dx
idxj . (4.79)

This form of the metric is a variant on the notion of “synchronous gauge” and might be
called “pre-synchronous gauge”, or “conformally synchronous gauge”.3

Whenever such a decomposition makes sense one can further construct a “conformal
time” coordinate dη = dt/a(t) and use this to recast the spacetime metric as

ds2 = a(η)2
{
−N(η, ~x)2 dη2 + [gshape(η, ~x)]ij dx

idxj
}
. (4.80)

As long as this can be done (and this is a rather mild constraint on the cosmology),
one can undertake a cosmographic analysis either in terms of the t-time derivatives as
in (1.5)

H =
ȧ

a
; q = − 1

H2

ä

a
; j =

1

H3

...
a

a
(4.81)

or in terms of η-time derivatives

H =
a′

a
; Q = − 1

H2

a′′

a
; J =

1

H3

a′′′

a
. (4.82)

Here we do it for the latter case but the former case is very similar. Expanding the
scale factor in a truncated Taylor series around the “observer” conformal time ηo, the
conformal time equivalent of the present epoch, we obtain

a(η) = a(ηo)

[
1 +Ho(η − ηo)−

H2
oQo
2

(η − ηo)2 +
H3
oJo
6

(η − ηo)3 +O(η − ηo)4

]
, (4.83)

and, using 1 + zc = ao/a(η), we can derive an expansion of zc in terms of Ho(η − ηo).
We find

zc(η) = −[Ho(η − ηo)] +
2 +Qo

2
[Ho(η − ηo)]2 −

Jo + 6Qo + 6

6
[Ho(η − ηo)]3

+O
(

[Ho(η − ηo)]4
)
. (4.84)

Reverting the series, we obtain

Ho(η − ηo) =− zc +
2 +Qo

2
z2
c −

3Q2
o + 6Qo + 6− Jo

6
z3
c +O(z4

c ). (4.85)

3Observe that the phrase “synchronous gauge”, where N(t, ~x) = 1, is somewhat of a misnomer. When
enforced globally it enforces the existence of a timelike geodesic vorticity-free congruence V = dt. The
conformally synchronous gauge is less restrictive, only requiring the existence of a timelike vorticity-free
congruence V = N−1 dt, that is not necessarily geodesic. Note we also want ∂t det([gshape(t, ~x)]ij) to be
perturbatively small.
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The analogous expression in terms of the t-time is

Ho(t− to) =− zc +
2 + qo

2
z2
c −

3q2
o + 6qo + 6− jo

6
z3
c +O(z4

c ). (4.86)

Such perturbative expansions can in principle be carried out to arbitrarily high order,
and their usefulness is limited only by the extent to which we can measure, estimate, or
theoretically predict the Hubble, deceleration, jerk, and higher-order parameters. The
key point is that these cosmographic series make sense under very generic conditions,
whenever one is able to peel off an “overall size” and a natural “global time” for the
universe. These cosmographic series will generically only be part of the full analysis,
(for instance they ignore peculiar velocities and the effect of local clumping), but if the
“overall size” a(t) or equivalently a(η) is chosen appropriately, they can easily be the
dominant feature contributing to the luminosity distance.

Now we turn to the specific case of a FLRW spacetime, and in particular we restrict
ourselves to the case k = 0 in agreement with observations (the cases k = ±1 can be
handled similarly). Inserting the expression (4.85) in (4.76) with k = 0 we obtain

dL(z) =
ao
Ho

[
z − Qo

2
z2
c +

3Q2
o + 3Qo − Jo

6
z3
c +O(z4

c )

]
. (4.87)

Note that
ao
Ho

=
ao

(da/dη)o/ao
=

ao
(da/dt)o

=
1

Ho
, (4.88)

where Ho is the usual Hubble parameter measured by the astronomers. That is, in any
FLRW cosmology

dL(zc) =
1

Ho

[
zc −

Qo
2
z2
c +

3Q2
o + 3Qo − Jo

6
z3
c +O(z4

c )

]
. (4.89)

Furthermore, Qo and Jo can be converted to qo and jo which gives

dL(zc) =
1

H0

[
zc +

1− q0

2
z2
c −

1− q0 − 3q2
0 + j0

6
z3
c +O(z4

c )
]
. (4.90)

Peculiar velocities From the above we see that in a k = 0 FLRW universe without
peculiar velocities

dL =
ao
Ho

(1 + zc)P (zc), (4.91)

where P (zc) is the specific polynomial

P (zc) = zc −
2 +Qo

2
z2
c +

3Q2
o + 6Qo + 6− Jo

6
z3
c +O(z4

c ). (4.92)

If one now adds peculiar velocities, then the only change is that we substitute the
prefactor (1 + zc) with the total redshift (1 + z) = (1 + zc)(1 + zD)

dL =
ao
Ho

(1 + z)P (zc), (4.93)
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where (1+zD) is the Doppler contribution to the redshift which arises due to the peculiar
velocities of the source and the observer:

1 + zD =
1 + zp,s
1 + zp,o

. (4.94)

Then, assuming that peculiar velocities, and hence zD, are small, we have

zc =
1 + z

1 + zD
− 1 ≈ z − (1 + z)zD +O(z2

D). (4.95)

Therefore
dL =

ao
Ho

(1 + z)P
(
z − (1 + z)zD +O(z2

D)
)
, (4.96)

implying

dL =
ao
Ho
{

(1 + z)P (z)− (1 + z)2P ′(z)zD +O(z2
D)
}
. (4.97)

This gives an explicit formula for estimating the potential effect of peculiar velocities on
luminosity distance. The fractional size of the effect is easily seen to be

∆dL
dL

= −(1 + z)
P ′(z)

P (z)
zD +O(z2

D). (4.98)

Evaluating explicitly the polynomial P (z) to O(z3), we can find an expression for dL to
O(z2) and O(zD)

dL =
ao
Ho

[
− zD +

(
1 +QozD

)
z

−
(
Qo
2

+
3Q2

o + 2Qo − Jo
2

zD

)
z2 +O(z3) +O(z2

D)

]
. (4.99)

As a further application we might consider a situation where on average the peculiar
Doppler shifts are zero: 〈zD〉 = 0. Then on average

〈dL〉 =
ao
Ho

[
z − Qo

2
z2 +O(z3) +O(z2

D)

]
, (4.100)

and so

dL − 〈dL〉 = −ao zD
Ho

[
1−Qoz +

(
3Q2

o + 2Qo − Jo
2

)
z2 +O(z3) +O(zD)

]
. (4.101)

This could be used, in principle, to estimate peculiar Doppler redshifts zD (and so
peculiar velocities) at various values of total redshift z. This would be done by first
neglecting peculiar Doppler redshifts to naively fit dL(z) to the supernova data, thereby
determining the cosmographic coefficients, and then binning the supernovae into small
redshift bins to observationally determine dL − 〈dL〉.
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The dL(z) relation in the ΛCDM model The cosmographic approach developed
so far does not require the specification of a theory of gravity. It rests only on the
assumption that the metric is of the form (4.79). In the case of FLRW, no use of the
Friedmann equations is made in order to derive an expression for the luminosity distance
as a power series of the redshift. The assumption of homogeneity and isotropy, together
with the definition of the luminosity distance, redshift and the cosmographic parameters
together imply (4.89).

Now we want to look at the luminosity distance in a model which requires the spec-
ification of a theory of gravity, namely the ΛCDM model which is based on the General
Theory of Relativity. The Friedmann equations are used to relate the Hubble function
to the matter content of the universe in the form of the parameters Ωr,0, Ωm,0, ΩΛ,0,
Ωk,0:

H2 = H2
0

[
Ωr,0

(a0

a

)4
+ Ωm,0

(a0

a

)3
+ Ωk,0

(a0

a

)2
+ ΩΛ,0

]
. (4.102)

Setting a0 = 1 and going to conformal time, this implies

dη = H−1
0

[
Ωr,0 + Ωm,0a+ Ωk,0a

2 + ΩΛ,0a
4
]−1/2

da, (4.103)

or writing everything in terms of the cosmological redshift zc:

dη = −H−1
0

[
Ωr,0(1 + zc)

4 + Ωm,0(1 + zc)
3 + Ωk,0(1 + zc)

2 + ΩΛ,0

]−1/2
dzc. (4.104)

Integrating from the source S to the observer O gives

ηo − ηs = −H−1
0

∫ 1

1+zc

[
Ωr,0x

4 + Ωm,0x
3 + Ωk,0x

2 + ΩΛ,0

]−1/2
dx. (4.105)

Therefore, the luminosity distance is

dL = (1 + zc)(ηo − ηs)

=
1 + zc
H0

∫ 1+zc

1

[
Ωr,0x

4 + Ωm,0x
3 + Ωk,0x

2 + ΩΛ,0

]−1/2
dx. (4.106)

As before peculiar velocities can be introduced by the substitution (1+zc)→ (1+z) in the
prefactor. Eqn. (4.106) is far more specific than (4.90), because it relies on a particular
cosmological model, whereas (4.90) is model-independent. The lesson from this is that
while luminosity distance observations are very useful for testing and constraining the
geometry of the Universe, they can also be indirectly used to test the theory of gravity
and the matter content of the Universe.

Summary In this chapter we looked at several different definitions of a distance in Cos-
mology, focussing in particular on the luminosity distance which can be measured for a
class of astronomical objects with a fixed intrinsic luminosity known as standard candles
(or more precisely standardisable candles). The luminosity distance is a very useful tool
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to test the geometry of the Universe because it can be computed theoretically for a par-
ticular metric and then compared to observations. On the theoretical side, there are two
tools that are invaluable in the computation of the luminosity distance - the van Vleck
determinant and the Jacobi map. Furthermore, since the luminosity distance scales in a
well-known way under conformal transformations of the metric, we can use these tools to
calculate the luminosity distance for a variety of spacetimes. The most useful approach
to test the geometry of the Universe is the cosmographic approach where the theoretical
luminosity distance is expanded as a power series of the redshift. Observations of both
luminosity distance and redshift then allow to constrain the cosmographic parameters,
H0, q0, s0, etc., and hence reconstruct at least the most recent expansion history of the
Universe. If one introduces a specific cosmological model, one can in addition test the
gravitational dynamics or/and the matter content of the Universe. Next we are going to
use these techniques to explore more sophisticated cosmological models, namely Confor-
mally FLRW models and perturbed FLRW models. We will also look at a specific toy
model where a more generalised cosmographic expansion can be performed.
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5
Beyond the ΛCDM model

5.1 Motivation for going beyond the ΛCDM model

In the Introduction we explained why the ΛCDM model might not be the final word
as far as classical cosmology is concerned. One of the most exciting possible deviations
from the standard cosmological model is if dark energy is not simply a cosmological
constant or a vacuum energy, but a dynamical field which is changing with time and is
possibly inhomogeneous in space [13,76–79]. Such a modification would influence light
propagation in the Universe and therefore would have an observable effect on some of
the distances discussed in the previous section, in particular the luminosity distance.

Even within the standard cosmological model the role of inhomogeneities from cosmic
structure on the propagation of light and their effect on the inference of the cosmographic
parameters guiding the expansion of the Universe are pretty much an open question. It
is usually assumed that light propagates on the FLRW background completely oblivious
to any inhomogeneities. The reason for that is that the Universe is statistically homo-
geneous and hence the effect of different inhomogeneities would cancel out. However, it
would still be interesting to explore even within the ΛCDM framework how the standard
cosmographic approach can be modified and adapted to a more realistic inhomogeneous
Universe and whether this would lead to a significant change in our estimation of the
cosmographic parameters.

Taking these two considerations into account, in this chapter we will explore two
deviations from the FLRW background on which electromagnetic waves are usually as-
sumed to propagate [56, 57]. The first is a Conformal FLRW spacetime in which the
FLRW background is conformally deformed by an arbitrary large conformal factor in a
way consistent with CMB physics. The second is FLRW with linear scalar perturbations.
The latter can be thought of as arising solely due to cosmic structure thus in principle
allowing for tests of the impact of inhomogeneities on the estimation of cosmological
parameters entirely within the paradigm of ΛCDM, or they can also be thought of as
arising due to inhomogeneities in the distribution of dark energy thus allowing to probe
models beyond the ΛCDM.
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5.2 Conformal FLRW

The CFLRW spacetimes A conformal FLRW spacetime (CFLRW spacetime) is any
spacetime whose metric is conformally related to a FLRW one with an arbitrary position-
dependent conformal factor [65]. This in turn implies that any CFLRW spacetime is
conformal to an Einstein static spacetime:

ds2
CFLRW = gαβ dx

αdxβ = f(x)2

{
−dη2 +

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

}
, (5.1)

where f(x) is an arbitrary function of spacetime.
The physical reason that CFLRW spacetimes are important is because of the observed

smoothness of the CMB: In view of the fact that the CMB is smooth to O(10−5),
the conformal mode is the only deviation from FLRW that has the slightest chance of
becoming non-perturbatively large between last scattering and the current epoch without
grossly distorting the CMB [65]. More precisely, if we write f(x) ≡ exp[Θ(η, ~x)] then in
order to be consistent with CMB observations, we demand that at the last scattering
surface, at z ≈ 1100, the variation of Θ is sufficiently small: ∆Θls ≤ 10−5, while it can
be arbitrarily large for z � 1100. The null geodesics in this model coincide with the
null geodesics in FLRW spacetime and therefore the angular distribution of the CMB is
preserved - the only signature of the conformal factor is an isotropic, observer-dependent
temperature shift:

Tloc = Tcexp[−Θo] (5.2)

where Tloc is the local CMB temperature measured by the observer, Tc is the cosmological
temperature of the CMB which would have been inferred in the absence of any conformal
deformation, and Θo is the value of Θo for the observer.

The mathematical reason that CFLRW spacetimes are important is because (from
the point of view of luminosity distance, area distance, and photon propagation) they are
almost as easy to analyse as the FLRW spacetimes. Although the CFLRW cosmologies
are relatively easy to analyse mathematically, to date only relatively crude bounds have
been put on the conformal factor [65]. (More complicated deviations from FLRW are
generally treated perturbatively, though there is an ongoing debate as to the significance
of non-perturbative effects. See for instance [80–85].)

The analysis of photon propagation in the Einstein static (unphysical) reference
spacetime carries through (completely unchanged) as in the previous subsection, and
going to the physical CFLRW spacetime one has

dL,CFLRW = fo (1 + z∗)

(
1 + zp,s
1 + zp,o

) sin
(√

k∆η
)

√
k

, (5.3)

where fo is the value of the function f(x) evaluated at the spacetime coordinates of
the observer, while z∗ is the cosmological/local gravity contribution to the redshift,
which arises from local conformal inhomogeneities: 1 + z∗ = fo/fs. One could factorise
the conformal factor as f(x) = a(η)f̃(x), i.e. into a cosmological contribution a(η)
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characterising the overall change in volume of the spatial slices, and a second contribution
f̃(x) characterising volume-preserving conformal distortions of the spatial slices [65].
Then the cosmological and local contributions to the redshift further factorise as

(1 + z∗) =
fo
fs

=
ao
as

(f̃)o

(f̃)s
= (1 + zc)(1 + zloc). (5.4)

Collecting all of this leads to the general result

dL,CFLRW = ao f̃o(1 + zc) (1 + zloc)

(
1 + zp,s
1 + zp,o

) sin
(√

k∆η
)

√
k

. (5.5)

This formula cleanly separates the various distinct physical contributions to the luminos-
ity distance in a general CFLRW spacetime. Note in particular, that the factor fo = aof̃o
is common to all the objects one might look at. So there is no real loss of generality, if
we simply absorb this into the definition of distance and assert that

dL,CFLRW ∝ (1 + zc) (1 + zloc)

(
1 + zp,s
1 + zp,o

) sin
(√

k∆η
)

√
k

. (5.6)

This is equivalent to considering a luminosity modulus instead of a luminosity distance,
µL,CFLRW = ln(dL,CFLRW ), and agreeing to ignore a common offset.

Cosmography in CFLRW spacetimes Adopting a modified cosmographic analysis,
one can invert a(η) to find η(a), and use ao/as = 1 + zc to rewrite the conformal time
as a function of the cosmological contribution to the redshift:

∆η = h(1 + zc). (5.7)

This implies

dL,CFLRW = ao (1 + zc)(1 + zloc)

(
1 + zp,s
1 + zp,o

) sin
[√

k h(1 + zc)
]

√
k

. (5.8)

This quite formal result seems to be as far as one can go without making some approx-
imations and resorting to perturbation theory.

General spacetimes In view of the results presented above we can argue that non-
perturbatively the best we can hope for in any completely general spacetime is that

dL = ao (1 + z) F (zc); darea = ao F (zc); F (0) = 0; (5.9)

for some function F (zc) of the cosmological contribution to the total redshift

1 + z = (1 + zc) (1 + zloc)

(
1 + zp,s
1 + zp,o

)
. (5.10)
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5.3 Perturbed FLRW

Now we look at a linearly perturbed FLRW metric with 2 scalar modes in the
Newtonian gauge (Appendix A)

ds2 = a2(η)
[
− (1 + 2Ψ(~x, η))dη2 + (1 + 2Φ(~x, η))δijdx

idxj
]
, (5.11)

where Ψ and Φ are the so called Bardeen potentials. Even though we work in a par-
ticular gauge, Ψ and Φ are gauge-invariant quantities. We ignore vector and tensor
perturbation - the former are experimentally very small while the latter propagate away.
This is a sensible thing to do since at first order the different types of perturbations do
not get mixed under gauge transformations. Assuming that the stress-energy tensor is
anisotropic and using Einstein’s equations sets Φ = −Ψ. However, here we will make no
assumptions of that sort and so we will keep Φ and Ψ as general, though perturbatively
small, functions of spacetime.

From now on all quantities are expressed to first order in terms of the Bardeen
potentials. To first order the metric (5.11) can be cast in the form

ds2 = f2(η, ~x)
[
− (1 + 2ξ)dη2 + δijdx

idxj
]
, (5.12)

where the overall conformal factor is

f(η, ~x) = a(η)(1 + 2Φ)
1
2 ≈ a(η)(1 + Φ), (5.13)

and
ξ = Ψ− Φ. (5.14)

Calculating the redshift Now look at the simplified one-mode metric

dŝ2 = −(1 + 2ξ)dη2 + δijdx
idxj , (5.15)

which is simply background Minkowski space plus a perturbation: ĝµν = ηµν + hµν . We
require that the 4-velocities of the source and the observer are normalised ÛµÛν ĝµν = −1
and we again first consider the case of zero peculiar velocities. This implies that to first
order

Ûµs = Ûµo = (1− ξ,~0). (5.16)

The source emits light which travels on null geodesics with wave vector k̂µs . The emission
frequency is given by

ω̂s := −ĝµν k̂µs Ûνs = −ω̃ĝµν ˆ̀µ
s Û

ν
s = ω̃(1 + ξs), (5.17)

where we use the fact that locally at the source spacetime is approximately flat. So
ˆ̀µ
s ≈ ˆ̀̄µ

s = (1, ~n) where the bar here and thereafter will denote the background value of
a given object. The observed frequency is similarly given by

ω̂o = ω̃ ˆ̀0
o (1 + ξo). (5.18)
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Then the redshift is given by

1 + ẑ =
ω̂s
ω̂o

=
1 + ξs

ˆ̀0
o(1 + ξo)

= (ˆ̀0
o)
−1(1 + ξs − ξo). (5.19)

In order to calculate this redshift, we need to relate the tangent vector of the light ray
at the position of the observer ˆ̀µ

o to the tangent vector at the source ˆ̀µ
s ≈ (1, ~n). This

can be done via the geodesic equation

dˆ̀µ

dλ̂
= −Γ̂µρσ

ˆ̀ρ ˆ̀σ, (5.20)

which to first order becomes
dˆ̀(1)µ

dλ̂
= −Γ̂µρσ

ˆ̀̄ρ ˆ̀̄σ, (5.21)

where the background connection vanishes: ˆ̄Γµρσ = 0, because the background space is
Minkowski. The Christoffel symbols can be easily calculated from the metric (5.15)

Γ̂0
00 = ξ,η; (5.22)

Γ̂0
0i = Γ̂0

i0 = Γ̂i00 = ξ,i; (5.23)

Γ̂0
ij = Γ̂k0i = Γ̂ki0 = Γ̂kij = 0; (5.24)

Hence, the solution of the geodesic equation is given by

ˆ̀(1)0
o − ˆ̀(1)0

s = −
∫ λ̂o

λ̂s

(ξ,η + 2~∇ξ.~n)dλ̂; (5.25)

ˆ̀(1)i
o − ˆ̀(1)i

s = −
∫ λ̂o

λ̂s

ξ,idλ̂. (5.26)

Equation (5.25), and the fact that ˆ̀µ
s ≈ (1, ~n), together imply that

ˆ̀0
o = 1−

∫ λ̂o

λ̂s

(ξ,η + 2~∇ξ · ~n)dλ̂. (5.27)

Therefore, the redshift to first order becomes

1 + ẑ = 1− (ξo − ξs) +

∫ λ̂o

λ̂s

(ξ,η + 2~∇ξ · ~n)dλ̂. (5.28)

We can put that in a more useful form by changing variables from the affine parameter
λ̂ to the conformal time η. Using (5.27) we have that to first order

dλ̂ = dη

[
1 +

∫ λ̂

λ̂s

(ξ,η + 2~∇ξ · n̂)dλ̂′

]
. (5.29)
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We also use that to first order

ξ,η =
dξ

dη
− ~∇ξ · ~n. (5.30)

This then gives us the following expression for the redshift

1 + ẑ = 1 +

∫ ηo

ηs

~∇ξ · ~ndη. (5.31)

or, equivalently,

1 + ẑ = 1 + ξo − ξs −
∫ ηo

ηs

ξ,ηdη. (5.32)

Now we can find the redshift in the full perturbed FLRW metric

1 + z =
ao
as

(
1 + Φo − Φs +

∫ ηo

ηs

~∇ξ · ~ndη

)
, (5.33)

or, equivalently,

1 + z =
ao
as

(
1 + Ψo −Ψs −

∫ ηo

ηs

ξ,ηdη
)
. (5.34)

The redshift is a product of different contributions

1 + z = (1 + zc)(1 + zgr)(1 + zISW ). (5.35)

Here
1 + zc =

ao
as
, (5.36)

is the cosmological redshift due to the overall expansion of the universe, and

1 + zgr =

√
1 + 2Ψo

1 + 2Ψs
≈ 1 + Ψo −Ψs, (5.37)

is the gravitational redshift due to the potential wells of the source and the observers.
Finally,

1 + zISW = 1−
∫ ηo

ηs

ξ,ηdη = 1−
∫ to

ts

ξ,tdt (5.38)

is the gravitational redshift caused by changing potential wells along the path of the light
— an integrated Sachs–Wolfe effect [86]. Eqn. (5.35) gives the total redshift without the
Doppler redshift arising due to the peculiar velocities of the source and the observer. It
is trivial to include the Doppler redshift in the analysis - (5.35) is modified to

1 + z = (1 + zD)(1 + zc)(1 + zgr)(1 + zISW ), (5.39)

where the Doppler contribution to the redshift is

1 + zD =
γs(1− ~vs.~n)

γo(1− ~vo.~n)
, (5.40)
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and where γ = (1 − |~v|2)−
1
2 and ~vs, ~vo are the peculiar velocities of the source and the

observer.
We can also adapt this redshift calculation to determine the affine parameter distance

in terms of the difference in conformal time between the source and the observer. From
the above, the relationship between affine parameter and conformal time is

dλ̂ = dη

[
1 +

∫ λ̂

λ̂s

(ξ,η + 2~∇ξ · n̂)dλ̂′

]

= dη

[
1 + 2(ξ − ξs)−

∫ η

ηs

ξ,η′dη
′
]

= dη [1 + 2(ξ − ξs) + zISW (ηs)− zISW (η)] , (5.41)

where

zISW (η) = −
∫ ηo

η
ξ,η′dη

′. (5.42)

Integrating the above expression gives

λ̂o − λ̂s = (ηo − ηs) [1 + 2(〈ξ〉 − ξs) + zISW − 〈zISW 〉] . (5.43)

Here 〈ξ〉 and 〈zISW 〉 are simply averages along the line of sight:

〈ξ〉 :=
1

ηo − ηs

∫ ηo

ηs

ξdη; (5.44)

〈zISW 〉 :=
1

ηo − ηs

∫ ηo

ηs

zISW (η)dη. (5.45)

While 〈ξ〉 and 〈zISW 〉, (and ξs and zISW for that matter), might be difficult to measure,
they do at least have clear physical interpretations.

The Jacobi and van Vleck determinants The Jacobi map and Jacobi determinant
can be calculated using the formalism developed in the previous chapter. We present
here the final result for the Jacobi determinant and defer the full calculation to Appendix
E. The Jacobi determinant in the unphysical metric (5.15) is given by:

(det Ĵ)
1
2 = (λ̂o − λ̂s)

{
1− 1

2

1

λ̂o − λ̂s

∫ λ̂o

λ̂s

(λ̂o − λ̂)(∇2ξ − ninjξ,ij)(λ̂− λ̂s)dλ̂

}
. (5.46)

Since the Jacobi and the van Vleck approaches are equivalent as demonstrated in the
previous chapter, we must necessarily have that

(det Ĵ)
1
2 = ∆̂

− 1
2

vV (λ̂o − λ̂s). (5.47)

We will now show that this is indeed the case by a direct calculation of the van Vleck
determinant.

80



In the weak field limit the van Vleck determinant is approximated by [71–73]

∆̂vV ≈ exp

[
1

λ̂o − λ̂s

∫ λ̂o

λ̂s

(λ̂o − λ̂)(R̂µν ˆ̀µ ˆ̀ν)(λ̂− λ̂s)dλ̂

]

≈ 1 +

[
1

λ̂o − λ̂s

∫ λ̂o

λ̂s

(λ̂o − λ̂)(R̂µν ˆ̀µ ˆ̀ν)(λ̂− λ̂s)dλ̂

]
. (5.48)

The components of the Ricci tensor to first order are

R̂00 = ∇2ξ; R̂0i = 0; R̂ij = −ξ,ij . (5.49)

Since ˆ̄Rµν = 0, only the term R̂
(1)
µν

ˆ̀̄µ ˆ̀̄ν will contribute to first order in the expression
(5.48). We have

R̂(1)
µν

ˆ̀̄µ ˆ̀̄ν = (∇2ξ − ninjξ,ij), (5.50)

and therefore

∆̂vV = 1 +
1

λ̂o − λ̂s

∫ λ̂o

λ̂s

(λ̂o − λ̂)(∇2ξ − ninjξ,ij)(λ̂− λ̂s)dλ̂. (5.51)

Hence,

∆̂
− 1

2
vV = 1− 1

λ̂o − λ̂s
1

2

∫ λ̂o

λ̂s

(λ̂o − λ̂)(∇2ξ − ninjξ,ij)(λ̂− λ̂s)dλ̂. (5.52)

We see that (5.47) is satisfied and so the two approaches are equivalent as expected.

The luminosity distance in perturbed FLRW Now we finish the calculation of
the luminosity distance in perturbed FLRW. We can express the Jabobi determinant
(5.46) in terms of the conformal time by using the fact that

dη

dλ̂
= 1−

∫ λ̂

λ̂s

(ξ,η + 2~∇ξ · ~n)dλ̂′, (5.53)

and hence to linear order

dλ̂ = dη

(
1 +

∫ η

ηs

(ξ,η + 2~∇ξ · ~n)dη′
)
. (5.54)

The resulting expression for the Jacobi determinant is:

(det Ĵ)
1
2 = (ηo − ηs) +

∫ ηo

ηs

ξdη +

∫ ηo

ηs

(ηo − η)(~∇ξ · ~n)dη − ξs(ηo − ηs) (5.55)

− 1

2

∫ ηo

ηs

(ηo − η)(∇2ξ − ninjξ,ij)(η − ηs)dη,
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where again we have replaced a double integral by a single integral. Hence, the luminosity
distance in two-mode perturbed (Φ, ξ) FLRW cosmology is given by

dL(ηs, ηo, ~n) =
f2
o

fs
d̂L (5.56)

=
f2
o

fs
(det Ĵ)

1
2 (1 + ẑ) (5.57)

=
a2
o

as

[
(ηo − ηs) + 2Φo(ηo − ηs)−Ψs(ηo − ηs)

+ (ηo − ηs)
∫ ηo

ηs

~∇ξ · ~ndη +

∫ ηo

ηs

ξdη +

∫ ηo

ηs

(ηo − η)(~∇ξ · ~n)dη

− 1

2

∫ ηo

ηs

(ηo − η)(∇2ξ − ninjξ,ij)(η − ηs)dη
]
. (5.58)

This formula shows the dependance of the luminosity distance measured by an observer
O as a function of the conformal time of the source ηs in a given direction ~n. In the
next section we will present a simple toy model where we will use the above formula.
For now will try to re-cast it to the extent possible in terms of various contributions to

the redshift. For instance, by recognising that dL,FLRW = a2
o
as

(ηo − ηs) is the luminosity
distance in FLRW without peculiar velocities, one can write

dL(ηs, ηo, ~n) = dL,FLRW (zc)

[
1 + 2Φo −Ψs +

∫ ηo

ηs

~∇ξ · ~ndη

+
1

ηo − ηs

∫ ηo

ηs

ξdη +
1

ηo − ηs

∫ ηo

ηs

(ηo − η)(~∇ξ · ~n)dη

−1

2

1

ηo − ηs

∫ ηo

ηs

(ηo − η)(∇2ξ − ninjξ,ij)(η − ηs)dη
]
. (5.59)

There are several other ways of usefully repackaging the luminosity distance in the two-
mode perturbed (Φ, ξ) FLRW cosmology we are considering. For instance, using (5.43),
we have that

(det Ĵ)
1
2 = (ηo − ηs) [1 + 2(〈ξ〉 − ξs) + zISW − 〈zISW 〉] ∆̂

− 1
2

vV , (5.60)

and substituting that inside (5.57) we obtain

dL = dL,FLRW (zc) (1 + Φo) (1 + zgr) (1 + zISW ) [1 + 2(〈ξ〉 − ξs) + zISW − 〈zISW 〉]

×
{

1− 1

2

1

ηo − ηs

∫ ηo

ηs

(ηo − η)(∇2ξ − ninjξ,ij)(η − ηs)dη
}
. (5.61)

The (1+Φo) factor is relatively uninteresting, since it only depends on what is happening
at the observer, it is common to all observations — at worst it is a rescaling to marginalise
over. These various ways of looking at the luminosity distance, we do feel, give us a
somewhat better handle on the fundamental physics. Equations (5.59) and (5.61) are
now manifestly of the form

dL(ηs, ηo, ~n) = dL,FLRW (zc)× {1 + (perturbatively small)} . (5.62)
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5.4 Generalised cosmography

We now consider a simple toy model where the Bardeen potentials depend sinu-
soidally on conformal time and are independent of space

Ψ = −Φ = ε sin(κη), (5.63)

where ε and κ are constants and ε is perturbatively small. Initially we shall neglect
peculiar velocities, but subsequently show how to put them back in. We choose this
particular toy model because it is tractable, and because, even though the Bardeen
potentials in this case are independent of space, it serves to illustrate the basic principles
behind generalising the cosmographic approach to an inhomogeneous universe. In order
to analyse the real universe, one would need to consider more sophisticated models in
which the Bardeen potentials depend also on space, and which would therefore be more
computationally cumbersome.

Toy model without peculiar velocities Equations (5.58) and (5.33) become

dL =
a2
o

as

[
∆η + ε

(
− 2 sin(κηo)∆η − sin(κηs)∆η − 2

cos(κηo)

κ
+ 2

cos(κηs)

κ

)]
; (5.64)

and
1 + zs =

ao
as

[
1 + ε

(
− sin(κηo) + sin(κηs)

)]
. (5.65)

Now we derive a cosmographic series for dL in terms of z. The coefficients to leading order
are expected to be the same as in (4.87) plus corrections of order ε. The cosmographic
parameters are defined in the same way as before – equations (4.82), and we make use
of the following relation, valid for any conformal time η,

1 + z(η) =
ao
a(η)

[
1 + ε

(
− sin(κηo) + sin(κη)

)]
. (5.66)

Expanding a(η) and sin(η) as a series in terms of (η − ηo) inside (5.66), we obtain a
series for z(η) in terms of (η − ηo)

z(η) =

[
−Ho + ε

(
κ cos(κηo)

)]
(η − ηo)

+

[
H2
o

(2 +Qo
2

)
+ ε
(
− κ cos(κηo)Ho − κ2 sin(κηo)

2

)]
(η − ηo)2

+

[
−H3

o

(Jo + 6Qo + 6

6

)
+ ε
(
κ cos(κηo)H2

o(
2 +Qo

2
)

+ κ2 sin(κηo)

2
Ho − κ3 cos(κηo)

6

)]
(η − ηo)3 +O(η − ηo)4. (5.67)

Reverting this series, we find

η − ηo = A1 z +A2 z
2 +A3 z

3 +O(z4), (5.68)
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where

A1 = − 1

Ho
+ ε

[
− κcos(κηo)

H2
o

]
; (5.69)

A2 =
1

Ho

(2 +Qo
2

)
+ ε

[
− κcos(κηo)

H2
o

− κ2 sin(ηo)

2H3
o

+ κ
3cos(ηo)

H2
o

(2 +Qo
2

)]
; (5.70)

A3 = − 1

Ho

(
6 + 3Q2

o + 6Qo − Jo
6

)
+ ε

1

H2
o

[
κ cos(κηo)

(
−6− 9Qo + 5Q2

o − 2J 2
o

2

)
+ κ3 cos(κηo)

6H2
o

+ κ
sin(κηo)

Ho

(
3 + 2Qo

2

)]
. (5.71)

We also have
∆η = ηo − ηs = −A1zs −A2z

2
s −A3z

3
s +O(z4

s ). (5.72)

This allows us to expand sin(ηs), cos(ηs) and ao
as

as functions of zs. We find

sin(κηs) = sin(κηo) +

[
κ cos(κηo)A1

]
zs

+

[
κ cos(κηo)A2 − κ2 sin(κηo)A

2
1

2

]
z2
s

+

[
κ cos(κηo)A3 − κ2 sin(κηo)A1A2 − κ3 cos(κηo)

6
A3

1

]
z3
s +O(z4

s ); (5.73)

while

cos(κηs) = cos(κηo) +

[
− κ sin(κηo)A1

]
zs

+

[
−κ sin(κηo)A2 −

κ2 cos(κηo)A
2
1

2

]
z2
s

+

[
−κ sin(κηo)A3 − κ2 cos(κηo)A1A2 + κ3 sin(κηo)

6
A3

1

]
z3
s +O(z4

s ); (5.74)
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and

ao
as

= 1 +

[
1− εκ cos(κηo)A1

]
zs

+ ε

[
−κ cos(κηo)A2 + κ2 sin(κηo)A

2
1

2
− κ cos(κηo)A1

]
z2
s

− ε
[
κ cos(κηo)A3 − κ2 sin(κηo)A1A2 − κ3 cos(κηo)

6
A3

1

+ κ cos(κηo)A2 − κ2 sin(κηo)A
2
1

2

]
z3
s +O(z4

s ). (5.75)

Substituting everything inside equation (5.64) we obtain an expansion of the luminosity
distance dL in terms of the redshift z

dL
ao

=

[
1

Ho
+ εX

]
zs +

[
− Qo

2Ho
+ εY

]
z2
s

+

[
1

Ho

(
3Q2

o + 3Qo − Jo
6

)
+ εZ

]
z3
s +O(z4

s ). (5.76)

Here

X := 2
sin(κηo)

κ
− 2

cos(κηo)

κ
− sin(κηo)

Ho
+ κ

cos(κηo)

H2
o

; (5.77)

Y := κ
6 cos(κηo)

H2
o

+ κ
3 cos(κηo)Qo

2H2
o

+
sin(κηo)Qo

2Ho
+ κ2 sin(κηo)

2H3
o

; (5.78)

and

Z := κ
2 cos(κηo)

H2
o

− κ2 2 cos(κηo)

H3
o

− κ2 cos(κηo)Qo
H3
o

− κ3 cos(κηo)

6H4
o

+ κ
cos(κηo)

H2
o

(
36 + 15Q2

o + 36Qo − 4Jo
6

)
− 4 sin(κηo)

Ho
− κ2 sin(κηo)

3H3
o

− sin(κηo)Qo
2Ho

− κ2 sin(κηo)Qo
H3
o

+
2 sin(κηo)

Ho

(
6 + 3Q2

o + 6Qo − Jo
6

)
. (5.79)

This agrees to zeroth order in ε with equation (4.87).
From the above we see that in our toy model (a sinusoidally perturbed k = 0 FLRW

universe) without peculiar velocities we have

dL =
ao
Ho

(1 + z)P (z), (5.80)

where P (z) is the specific polynomial

P (z) =B1 z +B2 z
2 +B3 z

3 +O(z4) (5.81)
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with

B1 = 1 + εHoX ; (5.82)

B2 = −Qo + 2

2
+ εHo(Y − X ); (5.83)

B3 =
3Q2

o + 6Qo − Jo + 6

6
+ εHo(Z − Y + X ). (5.84)

The only thing that has changed with respect to standard FLRW is the coefficients of the
polynomial. These coefficients are still constant because the toy model is isotropic. In a
more sophisticated anisotropic model the coefficients would be functions of the angular
coordinates on the sky.

Toy model with peculiar velocities If one now adds peculiar velocities, then, as
discussed several times already, the only change is that

dL =
ao
Ho

(1 + z)P (zc), (5.85)

where zc is the cosmological contribution to the total redshift z. Now in terms of the
redshift contributions due to peculiar velocity zp, we again have

zc =
1 + z

1 + zD
− 1 ≈ z − (1 + z)zD +O(z2

D), (5.86)

again implying

dL =
ao
Ho
{

(1 + z)P (z)− (1 + z)2P ′(z)zD +O(z2
D)
}
. (5.87)

Within the context of this model universe, this gives an explicit formula for estimating
the potential effect of peculiar velocities on the luminosity distance. Again evaluating
explicitly the polynomial P (z) to O(z3) allows us to express dL to O(z2) and O(zD)

dL =
ao
Ho

{
−
(

1 + εHoX
)
zD

+

[
1 + εHoX −

(
−Qo + ε2HoY

)
zD

]
z

+

[
− Qo

2
+ εHoY −

(
3Q2

o + 2Qo − Jo
2

+ εHo(Y + 3Z)

)
zD

]
z2

+O(z3) +O(z2
D)

}
. (5.88)

We could proceed further for instance by assuming 〈zD〉 = 0, (effectively temporarily
ignoring peculiar Doppler shifts), and fitting

〈dL〉 =
ao
Ho

{[
1 + εHoX

]
z +

[
− Qo

2
+ εHoY

]
z2 +O(z3)

}
. (5.89)
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Then

dL − 〈dL〉 = − ao
Ho

zD

{(
1 + εHoX

)
+

(
−Qo + ε2HoY

)
z

+

(
3Q2

o + 2Qo − Jo
2

+ εHo(Y + 3Z)

)
z2

}
+O(z3) +O(z2

D). (5.90)

So even in this sinusoidally perturbed FLRW model we see how we can use cosmographic
techniques to estimate the size of the peculiar Doppler shifts.

Summary In this chapter we considered two possible deviations from the assumption
that light propagates in a perfectly homogenous and isotropic Universe. First, we consid-
ered CFLRW cosmological models which represent a genuine modification of the ΛCDM
model, where the FLRW background is deformed by an arbitrary large conformal factor
consistent with CMB physics. Second, we considered linearly perturbed FLRW models
with 2 scalar mode perturbations (the Bardeen potentials), which can be applied in two
contexts - first, to investigate the effect of inhomogeneities from cosmic structure on the
propagation of light and therefore on the inference of the cosmographic parameters, and
second, to modifications of the ΛCDM model where dark energy is no longer a cosmo-
logical constant, but rather a dynamic field on space and time. While we considered no
formal model of dark energy, we demonstrated how the generalised cosmographic pro-
cedure works for a simple toy model where a single scalar mode varies sinusoidally with
time. The same approach can be applied to more sophisticated and realistic cosmological
models where of course the calculations would be much more convoluted.
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6
Testing the isotropy of the Universe

There are several claims in the literature of some evidence for an anisotropic expan-
sion of the present universe [26–28]. Such an anisotropy is easiest to associate with the
properties of dark energy, which might be something more complicated than a cosmolog-
ical constant, and hence might be inhomogeneous at later times leading to an anisotropic
expansion. On the other hand, there are other studies which claim no deviation from
the null hypothesis of a statistically isotropic universe [87, 88], and indeed CMB data
gives strong support to the idea that the early universe is isotropic [89]. We shall con-
sider here how to test for a possible anisotropy in the late universe. In particular, we
shall construct a simple toy model where dark energy undergoes a phase transition at
DM-DE equality and leads to isotropy-breaking. We want to contrast this model with
ΛCDM and see whether there is any signal in the data for such a late-time deviation
from isotropy. Unfortunately, the current data from Supernovae Type Ia is not enough
to distinguish between them. We can however make forecasts with mock datasets and
show that if some conditions turn out to be satisfied, future data might be able to dif-
ferentiate between the two models and hence settle the issue about the isotropy of the
universe.

6.1 A simple toy model of an anisotropic expansion

We consider a simple toy model where the universe expands at a different rate along
one of the directions, which we label as the z-direction (this can be generalised to an
arbitrary direction). We capture this by introducing in the spatially flat FLRW metric
a time-dependent function ε(t) in front of the other two directions:

ds2 = −dt2 + a2(t)[ε2(t)(dx2 + dy2) + dz2]

= a2(η)[−dη2 + ε2(η)(dx2 + dy2) + dz2]

= a2(η)ds̃2, (6.1)
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where

ds̃2 = −dη2 + ε2(η)(dx2 + dy2) + dz2

= ε2(τ)[−dτ2 + dx2 + dy2] + dz2

= ε2(τ)dŝ2 + dz2, (6.2)

and

dŝ2 = −dτ2 + dx2 + dy2

= −dτ2 + dr2. (6.3)

Thus we have three metrics ds2, ds̃2 and dŝ2, related by conformal transformations.
Under a conformal transformation ds2 = f2(x)ds

′2, the luminosity distance transforms
as in Eq. (4.61):

dL =
f2
o

fs
d
′
L, (6.4)

where f0 is the value of the conformal factor at the observer, and fs is the value of the
conformal factor at the source.

The luminosity distance in d+ 1 dimensions is related to the luminosity distance in
d dimensions by

d
(d+1)
L =

√
d

(d)2
L + z2, (6.5)

because there is no coefficient in front of dz2 and hence as we go in the z-direction, we
simply increment the Euclidean distance. Therefore, by using (6.4) and (6.24), we can
derive the following expressions for the luminosity distance in each of the three metrics:

d̂L = r, (6.6)

d̃L =

√
ε4o
ε2s
r2 + z2, (6.7)

dL =
a2
o

as

√
ε4o
ε2s
r2 + z2, (6.8)

where r is the radial distance in the xy-plane. If we set z = Rcosθ and r = Rsinθ, Eq.
(6.8) simplifies to

dL =
a2
o

as
R

√
ε4o
ε2s

sin2θ + cos2θ

= dL,FRW

√
ε4o
ε2s

sin2θ + cos2θ, (6.9)

where dL,FRW = a2
o
as
R is the luminosity distance in a FLRW spacetime.
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The function ε(t) should capture the behaviour that we described before – at early
times the universe is homogeneous and isotropic and therefore ε → 1, while at late
times the isotropy is broken and ε settles to some value different from unity. Since this
isotropy-breaking is associated with dark energy, the transition occurs roughly at the
time of dark matter – dark energy equality teq and has a typical time-scale equal to the
time scale for the transition from matter domination to dark energy domination Teq.
Thus ε(t) is assumed to have the following form:

ε(t) = −
(1

2
− ε0

2

)
tanh

( t− teq
Teq

)
+

1

2
+
ε0
2
, (6.10)

where 0 ≤ ε0 ≤ 1 is a free parameter which gives the amount of isotropy breaking.
Fig. 6.1 shows the evolution of ε(t) in terms of logarithmic time for ε0 = 0.84 (we will
comment on the value chosen later). The constant ε0 represents the maximal amount of
isotropy breaking – it is equal to the value of ε at future timelike infinity. The constant
Teq is specified by the physics at matter-dark energy equality, as we will see later.

Figure 6.1: The function ε(t) with ε0 = 0.84. The time interval marked by the red
dashed lines corresponds to Teq.

6.2 A two-component universe

We want to write (6.9) as a function solely of the redshift z and the polar angle θ
(it does not depend on the azimuthal angle φ because the isotropy is broken along a
single dimension which we have identified with the z-direction). For that we need to
write (6.10) as a function of z. For that we need to solve for the evolution of the scale
factor a(t) during the time when both matter and dark energy are important, i.e. we
need to solve the Friedmann equations with both matter and dark energy sources (we
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set k = 0)1: ( ȧ
a

)2
=

8πG

3
ρ, (6.11)

ä

a
= −4πG

3
(ρ+ 3P ), (6.12)

where ρ = ρm + ρΛ with

ρm =
1

2
ρeq

(aeq
a

)3
, ρΛ =

1

2
ρeq, (6.13)

where ρeq is the total density at the time of the equality and aeq is the scale factor
at equality. While dark energy is not really a cosmological constant in the anisotropic
model, it will be approximately so, and therefore it is fine to treat it as a constant as
a first-order approximation. Since what we want to do is to solve for t(z) in order to
substitute it in Eq. (6.10), any deviation from FLRW and a cosmological constant would
appear as second-order in ε. Thus we are allowed to estimate t(z) by assuming that the
metric is FLRW. Using (6.13), the first Friedmann equation (the constraint equation)
becomes

ȧ2 =
4πG

3
ρeqa

3
eq

1

a
+

4πG

3
ρeqa

2, (6.14)

while the second Friedmann equation (the dynamical equation) is not independent any-
more - it can be derived from the first by differentiating with respect to t.

The solution of (6.14) with the initial condition a(t = 0) = 0 is

a = aeq

[
sinh

(3

2

√
4πG

3
ρeqt

)]2/3
, (6.15)

which can be easily verified by differentiating with respect to time. Inverting that, we
get

t(a) =
2

3

(4πG

3
ρeq

)−1/2
arcsinh

[( a

aeq

)3/2]
=

2

3
Ω
−1/2
Λ,0 H−1

0 ln
[( a

aeq

)3/2
+

√
1 +

( a

aeq

)3]
, (6.16)

where to get to the second line we used that ρΛ,0 = ρΛ,eq = 1
2ρeq and that arcsinh(x) =

ln(x+
√
x2 + 1). Using a = (1 + z)−1 (we set a0 = 1) this can be rewritten as

t(z) =
2

3

(4πG

3
ρeq

)−1/2
arcsinh

[(1 + zeq
1 + z

)3/2]
=

2

3
Ω
−1/2
Λ,0 H−1

0 ln
[(1 + zeq

1 + z

)3/2
+

√
1 +

(1 + zeq
1 + z

)3]
. (6.17)

1Note that the Friedmann equations would still hold approximately if we assume that the effect of ε
is very small, which will certainly be true at late times.
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The time of equality is given by

teq =
2

3
Ω
−1/2
Λ,0 H−1

0 arcsinh[1] ≈ 7× 1017s. (6.18)

In addition, we can easily determine the redshift at equality zeq and the scale factor at
equality aeq. Defining Ωi ≡ ρi

ρcr
, we have

Ωm =
Ωm,0(1 + z)3

Ωm,0(1 + z)3 + ΩΛ,0
, (6.19)

ΩΛ =
ΩΛ,0

Ωm,0(1 + z)3 + ΩΛ,0
. (6.20)

Imposing Ωm,eq = ΩΛ,eq leads to

zeq =
(ΩΛ,0

Ωm,0

)1/3
− 1 ≈ 0.3, (6.21)

and therefore

aeq = (1 + zeq)
−1 =

(Ωm,0

ΩΛ,0

)1/3
. (6.22)

The time scale for the dark matter – dark energy transition Teq is given by the inverse
of the Hubble scale at the time of equality

Teq =
(a
ȧ

)
eq

=
1√
2

Ω
−1/2
Λ,0 H−1

0 ≈ 3.8× 1017s. (6.23)

These values are calculated for the ΛCDM model which assumes a flat FLRW uni-
verse, so they will not hold exactly in our toy model, but they will hold approximately,
as the deviation from FLRW is minimal and is controlled by the value of ε at any given
time. We can substitute t(z) from (6.17) into ε(t) from (6.10) to get ε(z). Fig. 6.2 shows
the plot. For larger redshifts (earlier times) ε(t) get closer to the isotropic case of ε = 1.

Substituting ε(z) in (6.9) leads to the luminosity distance function in the toy model
dL,toy(z, θ):

dL,toy(z, θ) = dL,FRW (z)

√
ε4o
ε2(z)

sin2θ + cos2θ. (6.24)

Eq.(6.24) shows that for θ = 0 the two models are indistinguishable, whereas one gets
maximal deviation for θ = π/2. Fig.6.3 shows a plot of (6.24) for θ = π/2 and for
different values of ε0 including for the ΛCDM model which corresponds to ε0 = 1.

6.3 The JLA dataset

The JLA (Joint Light-Curve Analysis) dataset comprises 740 spectroscopically con-
firmed Type Ia Supernovae drawn from SDSS, SNLS and several other experiments [90].
A Type Ia Supernova occurs when a white dwarf accretes enough mass from a nearby
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Figure 6.2: The function ε(z) with ε0 = 0.84. The red dashed line corresponds to ε(t) = 1
which is the case of perfectly isotropic cosmology as in ΛCDM.

Figure 6.3: The luminosity distance as a function of redshift for ΛCDM model (blue),
and Tanh model at θ = π/2 for ε0 = 0.2 (orange) and ε0 = 0.9 (green).

object in order to ignite a thermonuclear explosion. These supernovae can be standard-
ised and hence serve as distance indicators. In order to standardise them, one first needs
to take into account that brighter supernovae shine for a longer time. The apparent
brightness in the sky allows to measure the apparent magnitude, while the time scale for
the decline of the brightness allows to estimate the absolute magnitude, and hence de-
termine the luminosity distance of the object. In addition, one needs to perform a colour
correction because brighter supernovae are bluer in colour. In this way for each stan-
dardised supernova we get a measurement of the luminosity distance and the redshift.
The corresponding data points are shown in Fig.6.4 together with a theoretical dL − z
curve derived from the ΛCDM model (we do not show the uncertainty of the luminosity
distance). We see that the match is quite good and so JLA data is consistent with the
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ΛCDM model and hence with an isotropic universe. However, the data is inconclusive
because the number of supernovae is too low, they are not uniformly scattered in the sky,
and most of the supernovae are located at low redshifts where any potential large-scale
deviation from isotropy would not be apparent. As we will discuss in the Conclusion,
future supernovae data from Euclid and LSST would involve more data points and at
higher redshifts and hence would allow us to better test for a possible anisotropy of the
universe. For now we will consider mock data sets and explore under what conditions
they would be able to give us a signal of an anisotropy.

Figure 6.4: The luminosity distance – redshift curve for JLA data (red points) and the
theoretically predicted one by the ΛCDM model (blue curve).

6.4 Statistical tests of the toy model

In order to test the anisotropic model and determine under what circumstances
it would be distinguishable from ΛCDM, we first generate a mock catalog under the
assumption that the toy model is correct. We fix the redshift to z = 0.01 for now and
split the sky into 12288 pixels by setting NSIDE = 32 in the Healpix module. We select
two orthogonal regions such that one of them is in the anisotropic direction and for each
region we populate 30% of the pixels with supernovae. The value of dL in each pixel
is drawn from a Gaussian distribution with a mean dL,toy(z = 0.01) and a standard
deviation dL,toy(z = 0.01)/20. We also temporarily fix ε0 = 0.84 (this is the value of ε0
most consistent with the amount of anisotropy claimed in [26]). Fig.6.5 shows an image
of the sky, where the values of the luminosity distance in the two regions have been
highlighted.

The setup that we consider is that the data is given by the mock data generated from
the toy model and we want to check whether this data is compatible with the ΛCDM
model. We offer two statistical tests to distinguish between the ΛCDM model and the
late-time anisotropic model.
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Figure 6.5: An image of the sky where two orthogonal regions are populated with su-
pernovae. The brightness shows the value of the luminosity distance in Mpc.

Permutation test The null hypothesis is that the data in the two regions is drawn
from an isotropic distribution in the sky (as in the ΛCDM model). We simulate the
null hypothesis by drawing many artificial data sets under the assumption that the null
hypothesis is true. For that, we combine all the values of the luminosity distance from
the two patches into one array, permute the elements in the array and split the array
into two new arrays corresponding to each of the two regions. Then for each artificial
dataset, we calculate a test statistic which is given by the difference of the means of the
luminosity distance in the two regions. We repeat that 10000 times and get a distribution
of the test statistic which is shown on the histogram in Fig. 6.6. The red line corresponds
to the value of the test statistic for the actual data (the one drawn by assuming that
the late-time anisotropic model is correct). The p-value is defined as the fraction of the
permutation samples for which the test statistic is at least as extreme as the value of the
test statistic for the actual data. In this case: p ≈ 0 (note that we can never claim that
p is exactly 0 because drawing more permutation samples might eventually lead to a
non-zero p), which implies that the null hypothesis is rejected: the data is not consistent
with an isotropic universe. However, as we increase the value of ε0, the toy model gets
closer and closer to the ΛCDM model and at some threshold value, the red line in Fig.
6.6 will enter the 99% confidence interval and the two models would be indistinguishable
at that confidence level.

Bootstrap replicate test Now we test a weaker null hypothesis: the luminosity
distance distributions of the two patches are drawn from parent distributions with the
same mean (but not necessarily the same parent distribution as in the previous case).
In order to simulate the null hypothesis, we first calculate the mean of the full data
comprising the two patches, then we shift the two arrays so that they have a mean equal
to the common mean and then calculate the same test statistic as before. Repeating
that 10000 times allows to calculate the p-value which is again p ≈ 0. Therefore, the
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null hypothesis is rejected (Fig.6.7).

Figure 6.6: The distribution of the difference of the means for 10000 permutation repli-
cates. The green lines show the 99% confidence interval. The red line shows the observed
difference which is obviously incompatible with the null hypothesis.

Figure 6.7: The distribution of the difference of the means for 10000 bootstrap replicates.
The green lines show the 99% confidence interval. The red line shows the observed
difference which is obviously incompatible with the null hypothesis.

6.5 Distinguishing the toy model from the ΛCDM with
future data

The analysis performed so far shows that given enough supernovae (or other standard
candles) in the sky, the two models – ΛCDM and the anisotropic toy model, can be
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distinguished as long as ε0 is sufficiently different from 1. The closer ε0 is to 1, the
more data we would need in order to distinguish them. This is something which is
obvious even prior to any detailed analysis. A sensible question then is how much future
data we would actually need in order to distinguish between the ΛCDM model and the
anisotropic model for any non-trivial value of ε0. We can begin to answer this question
by parametrising any future data set by two free parameters: the fractional sky coverage
parameter q and the Gaussian scattering parameter s. The former tells us the percentage
of pixels in some region of the sky which is empty, i.e there are no supernovae in these
pixels, and no value for the luminosity distance. Thus 1−q is proportional to the number
of supernovae in this region of the sky. We assume that q is identical for both regions of
the sky that we consider, and we set its default value to q = 0.7. That was the value of
q that we used in the previous section.

The scattering parameter s represents the random error of the luminosity distance in
a future dataset. This means that when we generate a mock dataset from the anisotropic
toy model, we assume that for any given supernova, its luminosity distance is drawn
from a Gaussian distribution with a mean equal to the theoretical prediction from the
toy model, and a standard deviation equal to s times the mean. We set the default value
of the scattering parameter to be s = 0.05 because that coincides with the average error
in the luminosity distance from the JLA dataset [90]. That was the value of s that we
used in the previous section.

Together with the free parameter of the toy model ε0 (whose default value is 0.84 as
before), we have in total 3 free parameters to keep track of. We run permutation tests
for different values of the free parameters and keep track of the variation of the number
of σ’s between the two models, where σ is the standard deviation of the distribution
of the test statistic for the different permutation samples. First, we vary only one of
the free parameters, while keeping the other two at their default values. Next, we vary
two of the free parameters, keeping the third one at its default value. Figs. 6.8–6.13
show the number of σ’s between the two models as a function of the values of the free
parameters in each of the six cases.

There are a few points that need to be stressed here. First, it is easier to distinguish
between the two models for small values of each of the three parameters. For the
anisotropy parameter, this is because smaller values of ε0 imply a stronger anisotropy at
late times and hence a greater theoretical difference between the two models. For the
data parameters, this is because a smaller value of q implies more supernovae in the sky
and hence a smaller sampling error, and a smaller value of s implies a smaller random
error.

The second point is that the boundaries between the different regions on the two-
dimensional plots are relatively smooth. The apparent jaggedness comes simply from
the finite number of sample points that we drew for each parameter.

The third point is that the shapes of the curves in Figs.6.8–6.10 and the boundaries in
Figs.6.11–6.13 remain approximately the same for different realisations of the mock data
set and the permutation samples, and thus these curves capture general dependancies
of the number of σ’s in terms of the model– and data parameters.
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Figure 6.8: The number of σ’s between the ΛCDM and the anisotropic toy model as a
function of the model parameter ε0 where the data parameters are kept at their default
values: q = 0.7, s = 0.05.

Figure 6.9: The number of σ’s between the ΛCDM and the anisotropic toy model as
a function of the data parameter q where the other data parameter and the model
parameter are kept at their default values: s = 0.05, ε0 = 0.8.

Note that Fig.6.9 shows that if we keep ε0 and s and their default values, we can
distinguish between the two models even for a large value of q and thus for a small
number of supernovae. However, these supernovae would need to be located precisely in
the anisotropic direction, and since we do not know a priori what such a direction might
be, we need a significant number of supernovae distributed over the whole sky.

In addition, this analysis assumes that we have removed all sources of systematic
errors and that we have very good understanding of the astrophysics of supernovae.
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Figure 6.10: The number of σ’s between the ΛCDM and the anisotropic toy model
as a function of the data parameter s where the other data parameter and the model
parameter are kept at their default values: q = 0.7, ε0 = 0.8.

Figure 6.11: The number of σ’s between the ΛCDM and the anisotropic toy model as a
function of the data parameters s where the model parameter is kept at its default value
ε0 = 0.8. The colour code shows the number of σ’s.

In reality, this would not be the case, and we would need more supernovae in order to
perform cross-checks and validate any particular claim of an anisotropy. In a similar way,
Fig.6.10 shows that we can distinguish the two models even for a large random error
in the luminosity distance measurements, but again by making idealised assumptions
which will be unlikely to hold in real data.

So far we have kept the redshift fixed at z = 0.01. However, Fig.6.3 shows that the
difference between the two models tends to become bigger as we increase the redshift.
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Figure 6.12: The number of σ’s between the ΛCDM and the anisotropic toy model as
a function of the data parameter q and the model parameter ε0 where the other data
parameter is kept at its default value s = 0.05. The colour code shows the number of
σ’s.

Figure 6.13: The number of σ’s between the ΛCDM and the anisotropic toy model as
a function of the data parameter s and the model parameter ε0 where the other data
parameter is kept at its default value q = 0.7. The colour code shows the number of σ’s.

Thus having more supernovae at higher redshifts would help to distinguish between the
two models. This relation is shown in Fig.6.14. Overall, we would be able to detect
an anisotropy in the universe by the permutation test outlined above, if we had more
supernovae and these supernovae were located at higher redshifts, and if they were
distributed in the sky so that at least some of them lie in the anisotropic direction.

To summarise, while detecting a potential anisotropy of the universe with present
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Figure 6.14: The number of σ’s between the ΛCDM and the anisotropic toy model as a
function of the redshift at which the supernovae are located where the model parameter
ε0 and the data parameters q and s are kept at their default values.

data might be difficult or even impossible, future data might allow us to do that as
long as the anisotropy is big enough. In particular, by considering a simple extension
of the ΛCDM model where the amount of anisotropy at late times is given by a single
parameter ε0, we have investigated what properties a future data set might need in order
to allow us to distinguish this model from the standard one. We stress that there are
several assumptions in this analysis: that the isotropy is broken along a single direction,
that there are supernovae along this direction and a perpendicular direction, and that
the supernovae have a well-measurable luminosity distance with an error proportional
the value of the luminosity distance. We have parametrised the number of supernovae
by a parameter q and the random error by a parameter s, and have shown in Figs. 6.8–
6.13, the values of these parameters and the model parameter ε0 needed to distinguish
between the two models at any particular significance level.

101



7
Conclusion

The ΛCDM model is the crowning achievement in our attempts to understand the
Universe. It provides a very robust cosmological framework, in that it is both very simple
and elegant (being based on clear, justified assumptions with only six free parameters),
and very well tested with different cosmological probes. It is remarkable that a biological
species that has been doing science for only 10−8 of the age of the Universe has gone so
far into understanding its structure and evolution.

The robustness of the standard cosmological model can be seen both as an advantage
and a disadvantage. One the one hand, it implies that we have understood well the
basic physics on which it is built and it gives a clear starting point for further model-
building. Any alternative cosmological model would have to be based on the ΛCDM
and would have to reduce to it in the regime in which it has been successfully tested.
For example, the DM BEC model that we considered in Chapter 2 reduces to CDM
on large scales, while modifying the CDM-like behaviour only on small (galactic) and
intermediate (cluster) scales. Similarly, the conformal FLRW and linearly perturbed
FLRW metrics that we considered in Chapter 6 represent simple modifications of the
FLRW metric on which the ΛCDM model is built (at the background level).

On the other hand, the robustness of the standard cosmological model makes it ex-
tremely difficult to make further progress. The problem is that any extension of the
ΛCDM would have to solve or at least improve upon some of its problems in order to
be worth considering, and at the same time be minimal enough in order to preserve
its successes. This would make it very difficult to experimentally distinguish such an
extension from the standard case by using current data. We addressed this problem
in Chapter 6, in the context of a possible deviation from the Cosmological Principle.
Still, new cosmological probes such as binary neutron star mergers, more precise CMB
measurements, the expected launches of the Euclid and LISA missions, and new mea-
surements of standard candles such Type Ia supernovae and possibly GRBs, might give
us enough leverage in order to distinguish between the leading proposed modifications of
the ΛCDM and hence settle on a new extended cosmological model which would fit the
data better than ΛCDM and would resolve most of its issues. As an example, one way
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to put the BEC DM model to the test is to look for correlations between the arrival time
difference between GWs and GRBs from binary neutron star mergers and the integrated
gradient of the density along the path of the waves.

Of particular importance and interest are the LISA and Euclid missions. LISA (Laser
Interferometer Space Antenna) is going to be the first space-based GW observatory [91].
While ground-based observatories are only able to observe GWs in the frequency range
10−103 Hz, LISA will also be able to cover the interval 10−4−1 Hz. Therefore, it will be
able to detect GWs emitted by more massive objects at earlier times. This will allow us
to probe extreme gravitational physics such as in the very early universe and surrounding
black holes, to make further cosmological tests of General Relativity, to probe the dark
universe, and to probe compact binary star systems and merging black holes. A very
important observable will be the gravitational-wave luminosity distance dgwL which is
defined in the same way as the electromagnetic one, but in terms of GWs [59]. While it
coincides with the standard luminosity distance in GR, the two distances are different in
modified theories of gravity, and also in models where either DM or DE is non-minimally
coupled to the metric. Thus it could give an additional independent test of the BEC DM
model. Furthermore, since binary neutron star systems serve as standard sirens, one can
also do cosmography with the GW luminosity distance. This would allow both for an
independent measurement of H0, and for measuring the acceleration of the universe in
more detail. So it will be able to probe the expansion of the universe at earlier times
and search for potential anisotropies at late times.

The Euclid mission involves the launch of a space-based telescope which will map the
geometry of the Universe and will help us to understand better the nature of the dark
components of the Universe [92]. It will measure the shapes and redshifts of galaxies
and clusters up to z ∼ 2 and since matter–dark energy equality occurs at zeq ∼ 0.3, it
will cover the whole period of time when dark energy is important. Thus by using the
cosmographic approach, it will be possible to probe better the expansion and acceleration
of the universe at earlier times. In particular, Euclid will allow us to measure the jerk
parameter j (Eqn. (4.81)) to a very high accuracy and hence to determine whether
dark energy is actually constant or not. By looking at different directions in the sky, it
will also allow us to tell whether there are any signs of anisotropy in the cosmological
expansion. The telescope will also investigate the structure and distribution of dark
matter in the universe - first by tracking the evolution and distribution of visible matter,
and second by weak lensing. Dark matter at the foreground distorts the images of
background galaxies and thus allows to form 3D maps of the dark matter distribution
in the universe. Furthermore, Euclid will be able to detect about 140 high-quality
superluminous supernovae (SLSNe-I) up to z ∼ 3.5 [93]. They will allow for astrophysical
tests, such as probing star-formation rates, as well as the interstellar and intergalactic
mediums. In addition, a fraction of them could be calibrated and standartised, and hence
can serve as standard candles. With their aid we would be able to constrain better the
equation of state of dark energy w(z) in the early (high-redshift) universe.

Another very important upcoming experiment is the Large Synoptic Survey Tele-
scope (LSST), recently renamed the Rubin observatory, which will make detailed light
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observations of the low-redshift universe [94]. In particular, it will be able to probe dark
matter and dark energy by measuring the effects of weak and strong lensing of billions
of galaxies, galaxy correlation functions and Type Ia supernovae up to z ∼ 1. The many
supernovae that are expected to be discovered – O(105), will allow us to study in detail
their astrophysical properties and evolution, to perform cross-calibrations and hence to
reduce the systematic error in luminosity-distance measurements. They will also help us
to further constrain w(z) in the late (low-redshift) universe and to potentially distinguish
between a cosmological constant, dynamical dark energy and modified gravity. Overall,
precision measurements from the LSST will allow us to better constrain the composition
of the universe, the parameters of the ΛCDM and possible deviations especially in the
dark sector.

Beside the issues faced by the ΛCDM mentioned in the Introduction, there are further
issues related to initial conditions and the earliest stages of the evolution of the Universe.
It is well known that in order to have a well-defined thermodynamic arrow of time, the
very early Universe has to be in a state of a very low entropy (this is referred to as the Past
Hypothesis). However, we do not know yet how to define and calculate the entropy of a
general-relativistic gravitational system. The low entropy of the early universe is most
often associated with its homogeneity and the smoothness of the matter distribution,
and this is something that is supposed to be explained by inflation. However, the initial
conditions for inflation would also have to be fine-tuned in order to get the right amount
of inflation and therefore inflation by itself cannot resolve the issue of initial conditions
– a deeper explanation for the arrow of time is required.

Moreover, at very early times the temperature of the Universe is likely to reach the
Planck scale, and the state of the Universe would then be described by an unknown
quantum theory of gravity. While classical General Relativity predicts that timelike
geodesics hit a singularity in the past, this singularity is very likely to disappear at the
quantum level, and hence the very early Universe would be ruled by some exotic and
yet unknown physics. This is another direction in which the ΛCDM should be extended
and ideally embedded in a quantum cosmological model.

To conclude, this thesis attempted to make a modest contribution towards our un-
derstanding of what might lie beyond the ΛCDM and how it could be tested. We looked
at a model where dark matter forms a macroscopic Bose-Einstein condensate and ac-
quires a non-minimal coupling to the metric, and we constrained this model by using
the GW170817 event. We also considered the possibility that dark energy might be
something more than a cosmological constant, and motivated by this, we extended the
luminosity distance – redshift formalism to conformally FLRW and linearly perturbed
FLRW spacetimes, thus allowing us to generalise the cosmographic approach to an inho-
mogeneous universe. We also addressed the question of whether the universe might have
a large-scale anisotropy and looked at how future data might shed some light on this
question. Overall, the next decades are expected to bring some exciting new develop-
ments in the whole field of Cosmology which will allow us to test all different components
of the ΛCDM model - General Relativity, dark matter, dark energy and the Cosmolog-
ical Principle. This exemplifies the spirit of science in which we constantly update our
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best models in order to improve our understanding of the Universe.
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A
Cosmological linear perturbation theory

The first step in Cosmological Perturbation Theory is to expand the metric into a
background plus a small perturbation:

gµν = ḡµν + δgµν = a2(η)(γµν + hµν). (A.1)

We are in the linear regime as long as hµν � γµν . The stress-energy tensor is expanded
in a similar way:

Tµν = T̄µν + δTµν . (A.2)

Substituting the metric and the stress-energy tensor in EFE and the equation for co-
variant conservation leads to dynamical equations at the background and perturbation
levels

Ḡµν = 8πGT̄µν , ∇µT̄µν = 0, (A.3)

δGµν = 8πGδTµν , ∇µ(δTµν) = 0. (A.4)

It will be useful to classify perturbations according to how they transform under
spatial rotations. A scalar perturbation s remains invariant under spatial rotations.
A vector perturbation vi can be decomposed into a scalar-type vector and vector-type
vector in the following way:

vi = ∇is+ vi∗, (A.5)

where s is the solution of the Poisson equation

�s = ~∇.~v, (A.6)

which guarantees that ~v∗ is divergenceless:

~∇.~v∗ = 0. (A.7)

A tensor perturbation can be split into a scalar-type tensor, a vector-type tensor and a
tensor-type tensor:

tij = ∇j∇is+∇jvi∗ + tij∗ , (A.8)
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where s satisfies the Poisson equation

�s = Tr(t), (A.9)

which guarantees that ~v∗ is divergenceless and t∗ is traceless:

~∇.~v∗ = 0, Tr(t∗) = 0. (A.10)

In addition, we require that ~v∗ satisfies

∇2vi∗ = ∇jtij −∇2(∇is), (A.11)

which implies that t∗ is further constrained:

∇jtij = 0, (A.12)

i.e. t∗ is both transverse (divergenceless) and traceless. From the dynamical equations
it can be shown that this is a propagating mode and it represents gravitational waves.

The next step is to expand the different types of perturbations in a harmonic basis,
i.e. in terms of the eigenfunctions of the Laplace operator γij∇i∇j . Scalars can be

expanded in terms of the functions Y (~k, ~x) satifying

(�γ + k2)Y (~k, ~x) = 0. (A.13)

Scalar-type vectors are expanded in terms of

Yi ≡ −
1

k
∇iY, (A.14)

while scalar-type tensors are expanded in terms of

Yij ≡
1

k2
∇j∇iY +

1

3
γijY. (A.15)

Vector-type vectors are expanded in terms of the vector-functions Y
(±1)
i (~k, ~x):

(�γ + k2)Y
(±1)
i (~k, ~x) = 0, (A.16)

while vector-type tensors are expanded in terms of

Y
(±1)
ij = − 1

2k
(∇jY (±1)

i +∇iY (±1)
j ). (A.17)

Finally, tensor-type tensors are expanded in terms of Y
(±2)
i (~k, ~x):

(�γ + k2)Y
(±2)
i (~k, ~x) = 0. (A.18)

Now we proceed to expand the different perturbations of the metric in a Fourier basis.
We need to take into account the scalar perturbation δg00, the vector perturbation δg0i,
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which consists of a scalar-type vector δg
(0)
0i and vector-type vector δg

(±1)
0i , and the tensor

perturbation δgij , which consists of a scalar-type tensor δg
(0)
ij , a vector-type tensor δg

(±1)
ij

and a tensor-type tensor δg
(±2)
ij :

δg00(η, ~x) = −2a2(η)

∫
d3k

(2π)3
A(η,~k)Y (~k, ~x) (A.19)

δg
(0)
0i (η, ~x) = −a2(η)

∫
d3k

(2π)3
B(η,~k)Yi(~k, ~x) (A.20)

δg
(0)
ij (η, ~x) = 2a2(η)

∫
d3k

(2π)3

(
HL(η,~k)Y (~k, ~x)γij +HT (η,~k)Yij(~k, ~x)

)
(A.21)

δg
(±1)
0i (η, ~x) = −a2(η)

∫
d3k

(2π)3
B(±1)(η,~k)Y

(±1)
i (~k, ~x) (A.22)

δg
(±1)
ij (η, ~x) = 2a2(η)

∫
d3k

(2π)3
H

(±1)
T (η,~k)Y

(±1)
ij (~k, ~x) (A.23)

δg
(±2)
ij (η, ~x) = 2a2(η)

∫
d3k

(2π)3
H

(±2)
T (η,~k)Y

(±2)
ij (~k, ~x) (A.24)

General Relativity and all other physical theories should be invariant under change
of coordinates. This means that all equations should change covariantly and therefore
should be constructed from tensors. For example, when going from a frame F to a frame
F̃ , the metric transforms as

gµν(x) =
∂x̃µ

′

∂xµ
∂x̃ν

′

∂xν
g̃µ′ν′(x̃). (A.25)

We can apply this lesson to infinitesimal transformations:

x̃µ = xµ + δxµ(η, ~x). (A.26)

We refer to different frames infinitesimally shifted from the Hubble frame as different
gauges and to transformations between such frames as gauge transformations. The
infinitesimal shift δxµ can itself be expanded in terms of the Fourier basis:

δx0(η, ~x) =

∫
d3k

(2π)3
T (η,~k)Y (~k, ~x), (A.27)

δxi(η, ~x) =

∫
d3k

(2π)3

(
L(η,~k)Yi(~k, ~x) + L(±1)(η,~k)Y

(±1)
i (~k, ~x)

)
. (A.28)

Therefore by using the general rule (A.25), we can derive the transformation equa-
tions for the perturbations of the metric:
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Ã = A− T ′ −HT, (A.29)

B̃ = B + L′ + kT, (A.30)

H̃L = HL −
k

3
L−HT, (A.31)

H̃T = HT + kL, (A.32)

B̃(±1) = B(±1) + L′(±1), (A.33)

H̃
(±1)
L = H

(±1)
L − k

3
L(±1), (A.34)

H̃
(±1)
T = H

(±1)
T + kL(±1), (A.35)

H̃
(±2)
T = H

(±2)
T . (A.36)

These equations show that it is always possible to go to some frame where a particular
component of the perturbation vanishes. However, it is not possible to completely erase
the perturbation by performing coordinate shifts. They also show that the different
functions A, B, HL, etc. are gauge-dependent. However, it is possible to construct
gauge-invariant potentials by combining several such functions. These are known as the
Bardeen potentials:

Φ = HL +
1

3
HT +

H
k

(B − 1

k
H ′T ), (A.37)

Ψ = A+
H
k

(B − 1

k
H ′T ) +

1

k
(B′ − 1

k
H ′′T ). (A.38)

It is also usual in cosmology to fix a particular gauge, to derive all important results
in that gauge and then to write them in a covariant fashion so that they hold in all
gauges. A common choice of gauge is the Newtonian gauge, given by the requirement:

B̃ = H̃T = H̃
(±1)
T = 0, (A.39)

B̃ = H̃T = H̃
(±1)
T = 0. (A.40)

In the Newtonian gauge, the formulae for the Bardeen potentials simplify a lot:

Φ = HL, Ψ = A. (A.41)
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We can actually go back to position space and write the Bardeen potentials as

Φ(η, ~x) =

∫
d3k

(2π)3
HL(η,~k)Y (~k, ~x), (A.42)

Ψ(η, ~x) =

∫
d3k

(2π)3
A(η,~k)Y (~k, ~x). (A.43)

Then the metric can simply be written as

ds2 = gµνdx
µdxν

= (ḡ00 + δg00)dt2 + (ḡij + δgij)dx
idxj

= a2(η)[−(1 + 2Φ)dt2 + (1− 2Ψ)γijdx
idxj ]. (A.44)

We can repeat the same kind of analysis for the perturbations of the stress-energy
tensor and hence from (A.4) derive the dynamical equations for the evolution of pertur-
bations.
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B
The Relation between Gµν∇µφ∇νφ and L4 of Horndeski

Starting from L5 of the Horndeski Lagrangian with G5(φ,X) = L2φ:

L5 = L2φGµν∇µ∇νφ, (B.1)

integrating by parts, ignoring the boundary term and using the Bianchi identity: ∇µGµν =
0, leads to

L5 = −L2Gµν∇µφ∇νφ. (B.2)

Thus the coupling L2Gµν∇µφ∇νφ is a subclass of the Horndeski action. Now we show
that it is equivalent to L4 of Horndeski with G4(φ,X) = L2X:

L4 = L2XR− L2
[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]
. (B.3)

Starting from Gµν∇µφ∇νφ we have

Gµν∇µφ∇νφ = Rµν∇µφ∇νφ−XR
= ∇ρ∇ν∇ρφ∇νφ−∇ν∇ρ∇ρφ∇νφ−XR
= −∇ν∇ρφ∇ν∇ρφ+ (�φ)2 −XR

= − 1

L2
L4, (B.4)

where in the first line we use the definition of the Einstein tensor, in the second line we
use the definition of the Riemann tensor

RρµσνV
µ = ∇σ∇νV ρ −∇ν∇σV ρ (B.5)

with V µ = ∇µφ, in the third line we integrate by parts ignoring the boundary terms,
and in the fourth line we use (B.3). Notice the minus sign that we have picked in the
integration by parts. What we have essentially shown is that

L =
1

16πG
R+ L2Gµν∇µφ∇νφ (B.6)

is equivalent to

L =
1

16πG
R− L2

{
XR−

[
(�φ)2 −∇µ∇νφ∇µ∇νφ

]}
. (B.7)
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C
Conformal transformations

If we have two conformally related metrics gµν and g̃µν :

ds̃2 = g̃µνdxµdxν = f2(x)gµνdxµdxν = f2(x)ds2. (C.1)

then the inverse metrics are related by:

g̃µν = f−2(x)gµν . (C.2)

The connections are related by:

Γ̃νµρ = Γνµρ + δνρ
∂µf

f
+ δνµ

∂ρf

f
− gνσgµρ

∂σf

f
, (C.3)

and we have that for an arbitrary vector V µ:

V µ∇̃µV ν = V µ∇µV ν + 2V νV µ∂µlnf − (gµρV
µV ρ)gνσ∂σlnf. (C.4)

This equation shows that if V µ satisfies the geodesic equation for the metric gµν , it does
not in general satisfy the geodesic equation for the metric g̃µν . But if V µ is a null vector
with affine parameter λ:

lµ =
dxµ

dλ
, (C.5)

and
lµ∇µlν = 0, (C.6)

then
lµ∇̃µlν = αlν , (C.7)

where

α := 2lµ∂µlnf = 2
d

dλ
lnf. (C.8)
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Therefore, lµ satisfies the geodesic equation in the conformal metric gµν but λ is no
longer an affine parameter. However, we can change parametrisation to a new affine
parameter λ̃. The tangent vector in terms of the new affine parameter is given by:

l̃µ =
dxµ

dλ̃
, (C.9)

and we have that:

lµ =
dλ̃

dλ
l̃µ. (C.10)

Substituting that in (C.7) and imposing that the affine geodesic equation holds for λ̃,
we obtain a differential equation for λ̃:

d2λ̃

dλ2
= α

dλ̃

dλ
. (C.11)

Solving it, we obtain:
dλ̃

dλ
= Kexp

(∫
αdλ

)
. (C.12)

Using (C.8) and setting K = 1 we get that:

dλ̃

dλ
= f2. (C.13)

Hence,

l̃µ =
1

f2
lµ. (C.14)

If instead we have a timelike geodesic with tangent vector:

Uµ =
dxµ

dτ
, (C.15)

normalized in the metric gµν
gµνU

µUν = −1, (C.16)

then it won’t be normalized in the conformal metric g̃µν :

g̃µνU
µUν = −f2. (C.17)

So we have to reparameterize:

dτ̃ = f dτ ; Ũµ =
1

f
Uµ. (C.18)
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D
Demonstration that δθs⊥(ks, Us) and δxo⊥(ko, Uo)

Here we demonstrate that the vectors δθµs and δxµo indeed belong to two dimensional
subspaces orthogonal to kµ = ω̃`µ and to Uµs , U

µ
o .

δxo⊥ko: Since all photons start at the same point in spacetime, they must have the
same phase P defined as

`µ = ∇µP. (D.1)

Since the phase does not change along a cross section of the congruence, we must have
that

0 = ∇δxP = δxµ∇µP = δxµ`µ, (D.2)

which implies that δx⊥ko.

δθs⊥ks: Define

vµ :=
DY µ

dλ
= `ρ∇ρY µ, (D.3)

so that δθµ = vµδy. Then we have that

vµ`µ = `µ`
ρ∇ρY µ = `ρ∇ρ(lµY µ)− Y µ`ρ∇ρ`µ = 0, (D.4)

where the first term vanishes due to (D.2) and the second term vanishes due to the
geodesic equation. This implies that δθs⊥ks.

δθs⊥Us: This follows from the fact that spacetime at the source S is locally Minkowski
and the emission of light is isotropic in all directions.

δxo⊥Uo: In order for this to hold we must choose a suitable parametrisation of the
one-parameter family of null geodesics. Let’s say that we start with parameters (λ, y)
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such that δxo · Uo 6= 0. We can obtain new parameters (λ̃, ỹ) by performing a general
coordinate transformation on the 2-surface spanned by Y µ and `µ

λ = g1(λ̃, ỹ); (D.5)

y = g2(λ̃, ỹ). (D.6)

However, we want this transformation to preserve the null geodesic curves and to preserve
the affinity of the parameter λ. Thus we are left with

λ = λ̃+ h(ỹ); (D.7)

y = g(ỹ). (D.8)

This implies that

Ỹ µ =
∂fµ

∂ỹ

=
∂λ

∂ỹ

∂fµ

∂λ
+
∂y

∂ỹ

∂fµ

∂y

=
∂h

∂ỹ
`µ +

∂y

∂ỹ
Y µ, (D.9)

which in turn implies
δx̃µ := Ỹ µδỹ = `µδh+ δxµ. (D.10)

Hence
δx̃µoUOµ = (lµOUOµ)δh+ δxµoUOµ, (D.11)

and this will be zero, provided we choose the function h such that

δh = −
δxµoUOµ
`µoUOµ

. (D.12)
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E
Calculating the Jacobi map and Jacobi determinant

We now show the full calculation of the Jacobi map and Jacobi determinant in the
perturbed FLRW spacetime. We first work in the unphysical spacetime (5.15). The
system of equations (4.38) reduces to

d

dλ̂
(δx̂(1)α) = C(1)α

ν (λ̂) δ ˆ̄xν + (δθ̂α)(1), (E.1)

d

dλ̂
(δθ̂α)(1) = A(1)α

ν (λ̂) δ ˆ̄xν + C(1)α
ν (λ̂) (δθ̂α). (E.2)

The background equations are the same as those for Minkowski space. Therefore the
background unprojected Jacobi map is given by

ˆ̄J αβ = (λ̂o − λ̂s) δαβ , (E.3)

while the first order correction to the unprojected Jacobi map is given by

Ĵ (1)α
β =

∫ λ̂o

λ̂s

C
(1)α
β (λ̂)(λ̂− λ̂s)dλ̂

+

∫ λ̂o

λ̂s

∫ λ̂

λ̂s

[
A

(1)α
β (λ̂′)(λ̂′ − λ̂s) + C

(1)α
β (λ̂′)

]
dλ̂′dλ̂, (E.4)

where
C

(1)α
β := −Γ

(1)α
µβ

ˆ̄kµ, A
(1)α
β := R

(1)α
ρµβ

ˆ̄kρˆ̄kµ, (E.5)

and
ˆ̄kµ = ω̃(1, ~n). (E.6)

Calculating these for the metric (5.15), we obtain:

C
(1)0
0 = −(ξ̇ + ~∇ξ.~n), C

(1)j
0 = C

(1)0
j = −ξ,j , C

(1)j
k = 0, (E.7)
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and
A

(1)0
0 = ξ,ijn

inj , A
(1)k
0 = −A(1)0

k = ξ,kin
i, A

(1)k
l = −ξ,kl. (E.8)

The photon direction vectors (4.34) can be split into background plus perturbation

nµs = n̄µs + n(1)µ
s , nµo = n̄µo + n(1)µ

o , (E.9)

where
n̄µs = n̄µo = (0, ~n), (E.10)

and

n(1)µ
s = (0, ~̀̂(1)

s ) ≈ ~0, n(1)µ
o = (0, ~̀̂(1)

o ). (E.11)

Also the projectors (4.33) can be split into background plus perturbation:

P̄µsν = δµν + ˆ̄Uµs
ˆ̄Usν − n̄µs n̄sν , P̄µoν = δµν + ˆ̄Uµo

ˆ̄Uoν − n̄µo n̄oν , (E.12)

and

P (1)µ
sν = ˆ̄Uµs Û

(1)
sν + Û (1)µ

s
ˆ̄Usν , P (1)µ

oν = ˆ̄Uµo Û
(1)
oν + Û (1)µ

o
ˆ̄Uoν − n̄µon(1)

oν −n(1)µ
o n̄oν . (E.13)

In terms of the metric (5.15), the projectors are given by

P̄ 0
0 = P̄ 0

i = P̄ i0 = 0, P̄ ij = δij − ninj , (E.14)

and

P (1)µ
sν = 0, P

(1)0
o0 = P

(1)0
oi = P

(1)i
o0 = 0, P

(1)i
oj = −ni ˆ̀(1)

oj − ˆ̀(1)i
o nj . (E.15)

The projected Jacobi map is given by

Ĵ = PoĴPs (E.16)

= P̄o
ˆ̄J P̄s + P (1)

o
ˆ̄J P̄s + P̄oĴ (1)P̄s

= ˆ̄J + Ĵ (1).

The background projected Jacobi map is the same as in Minkowski space

ˆ̄J0
0 = ˆ̄J0

i = ˆ̄J i0 = 0, (E.17)

ˆ̄J ij = (λ̂o − λ̂s)(δij − ninj). (E.18)

After a long but straightforward calculation, the full projected Jacobi map can be shown
to be equal to

Ĵ0
0 = Ĵ0

i = Ĵ i0 = 0, (E.19)
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Ĵ ij = (λ̂o − λ̂s)
[
δij − ninj

]
−
∫ λ̂o

λ̂s

∫ λ̂

λ̂s

[
ξ,ij − ξ,iln,ln,j − ninkξ,k,j + ninkξ,kln

lnj

]
(λ̂′ − λ̂s)dλ̂′dλ̂

+ (λ̂o − λ̂s)
[
− ni ˆ̀(1)

oj + ninj(~̀̂
(1)
o · ~n)

]
. (E.20)

Solving the characteristic equation, we find the two non-vanishing eigenvalues of this
3 × 3 spatial matrix. Their product gives the determinant of the Jacobi map (to first
order)

(det Ĵ)
1
2 = (λ̂o − λ̂s)−

1

2

∫ λ̂o

λ̂s

∫ λ̂

λ̂s

(λ̂′ − λ̂s)ξ,ij(δij − ninj)dλ̂′dλ̂. (E.21)

We can rewrite the double integral as a single integral by using the identity∫ ηo

ηs

∫ η

ηs

g(η′)dη′dη =

∫ ηo

ηs

(ηo − η)g(η)dη. (E.22)

We then obtain

(det Ĵ)
1
2 = (λ̂o − λ̂s)

{
1− 1

2

1

λ̂o − λ̂s

∫ λ̂o

λ̂s

(λ̂o − λ̂)(∇2ξ − ninjξ,ij)(λ̂− λ̂s)dλ̂

}
. (E.23)

Since (λ̂o − λ̂s) is positive and ξ is by assumption extremely small we must have that

(det Ĵ)
1
2 = |det Ĵ |

1
2 . If one desires, one can now easily obtain the Jacobi map and Jacobi

determinant in the full perturbed FLRW spacetime by using the relations

J = fo Ĵ , and detJ = f2
o det Ĵ . (E.24)
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