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Abstract – We exploit the knowledge of the entanglement spectrum in the ground state of
the gapped XXZ spin chain to derive asymptotic exact results for the full counting statistics of
the transverse magnetisation in a large spin block of length `. We found that for a subsystem
of even length the full counting statistics is Gaussian, while for odd subsystems it is the sum
of two Gaussian distributions. We test our analytic predictions with accurate tensor networks
simulations. As a byproduct, we also obtain the symmetry (magnetisation) resolved entanglement
entropies.

Introduction. – The process of measurement in
quantum mechanics is intrinsically probabilistic: the mea-
sure of a given observable generically provides different
outcomes in identically prepared systems. Hence, the
probability distribution (PDF) of an observable is a nat-
ural quantity to consider in any quantum mechanical sys-
tem and provides much more information than the aver-
age value of the same observable. In many-body systems,
these PDFs, or equivalently their full counting statistics
(FCS), have been the subject of intensive investigations
since many years with a focus mainly on local observ-
ables (i.e. defined in a given point or lattice site) or global
ones (i.e. extensive quantities involving the entire system).
Only in recent time, the attention shifted to observables
with support on a finite, but large, subsystem embedded
in a thermodynamic one, partially motivated by some cold
atomic experiments [1–6] and by the connection with the
entanglement entropy of the same subsystem [7–16]. In
spite of a large recent literature on the subject [17–41],
results based on integrability for one-dimensional exactly
solvable interacting models are still scarse (see [30,31]).

In this Letter, we provide an explicit exact calculation
for the PDF and for the FCS of an observable within an
extended subsystem. We consider the ground state of the
XXZ spin chain defined by the Hamiltonian

HXXZ =
∑
j

[
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆σzjσ

z
j+1

]
, (1)

where σαj , α = x, y, z are the Pauli matrices at site j. We
focus in the antiferromagnetic gapped regime with ∆ > 1.

The observable of interest is the transverse magnetisation
for a block of ` contiguous spins, i.e.

Sz` =
1

2

∑̀
j=1

σzj . (2)

In particular, since the total transverse magnetisation
(
∑
j σ

z
j /2) is conserved, the FCS can be directly obtained

from the entanglement spectrum of the subsystem. In-
deed, the reduced density matrix ρ` of the subsystem is
organised in blocks of fixed magnetisation (quantised in
terms of integers or half-integers up to `/2 depending on
the parity of `). In order to work with an observable with
integer eigenvalues for any `, it is convenient to focus on
the difference of the block magnetisation with the Néel
state, i.e.

δSz` ≡
∑̀
j=1

(σzj
2
− (−1)j

2

)
. (3)

The probability of a measurement of the subsystem mag-
netisation with outcome δSz` = q is just the trace of the
block of ρ` in the sector with δSz = q, i.e.

P (q) = Trρ`Πq =
∑
s∈Sq

λs , (4)

where Πq is the projector on the sector of magnetisation
δSz = q, λs are the eigenvalues of ρ`, and Sq stands for all
the eigenvalues in that magnetisation sector (notice that∑
q P (q) = Trρ` = 1 by construction). Similarly the FCS
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Fig. 1: Entanglement spectra of the gapped XXZ spin chain in the three configurations we consider here. Left: Semi-infinite
line. Center: A block of ` contiguous spins with ` even. Right: A block with ` odd. We report the logarithm of the eigenvalues
of the reduced density matrix εn in units of 2ε, with ε = arccosh∆, as function of δSz

` (cf. (3)). Each tilted square signals the
presence of an eigenvalue with degeneracy given by the nearby number. The dashed-red parabolas are envelopes of the location
of the largest eigenvalue of the RDM at fixed δSz

` . Notice that in the left and in the center, the towers of degeneracies are
independent of δSz

` . Conversely, on the right, i.e. for odd blocks, there are two towers depending on the parity of δSz
` .

generating function is defined as

G(λ) ≡ Trρ`e
iλδSz

` =
∑
q

P (q)eiqλ; (5)

its derivatives in λ = 0 provide the moments of the ob-
servables δSz` . Hence the exact knowledge of the entangle-
ment spectrum also provides the FCS of the total trans-
verse magnetisation (in general it provides the FCS of any
conserved charge). For the ground state of the XXZ spin
chain in the gapped regime, the entanglement spectrum
has been obtained in Ref. [42]. We exploit its knowledge
here to reconstruct the PDF and the FCS of the subsystem
magnetisation.

The remaining of this Letter is organised as follows.
First, we recap and generalise results for the entangle-
ment spectrum of Ref. [42]. Then we reconstruct the PDF
and the FCS for both even and odd number of sites of the
subsystem. As a byproduct, we also derive some results
for the symmetry resolved entanglement. Finally we draw
our conclusions.

Recap on the entanglement spectrum. – We con-
sider the symmetry broken ground state, i.e. the one that
for large ∆ converges to the Néel state. This state is dou-
bly degenerate, so there are two equivalent states which
are mapped into each other by the translation of one site.
Let us first consider the case of ` =∞, i.e. the subsystem
being the semi-infinite line. In this case, the logarithm of
the eigenvalues of ρ` are equispaced, i.e. λs = e−εs with
εs = 2εs, where ε = arccosh∆ (see, e.g., [43, 44]). The
total degeneracy Dh(s) of the level 2εs is the number of
partitions of s into smaller non-repeated integers (includ-
ing zero). Here we need to know how these eigenvalues

distribute among sectors of fixed magnetisation; this has
been worked out in [42] with a combination of perturba-
tion theory and integrability arguments. The first panel of
Figure 1 reports the structure of the entanglement spec-
trum based on the results of Ref. [42]. The final result for
the degeneracy of the eigenvalue with δSz` = q at level s is

dh(q, s) = ph( s−mh(q)
2 ) [42], with ph(n) the number of inte-

ger partitions of n and mh(q) = q(2q+1). We use the con-
vention that ph(x) = 0 for negative integers and for half-
integers. (The other degenerate state –sometimes called
Antineel for ∆→∞– is obtained by sending q → −q with
the net effect of having ma(q) = q(2q − 1).) The number
of partitions ph(x) has not an analytic form; the same is
true for the total degeneracy Dh(x) above; however both
have simple generating functions given by

∑
s=0

ph(s)xs =

∞∏
k=1

1

1− xk
,

∑
s=0

Dh(s)ys =

∞∏
k=1

(1 + yk).

(6)
Notice that the degeneracies of the various sectors are all
the same, there is only an overall shift of the lowest eigen-
values at fixed q given by mh(q). Recalling that the PDF
P (q) is just the sum of all the eigenvalues of the RDM at
fixed q (weighted with their degeneracy), this is the same
for all q except for the important factor of the largest
eigenvalue at fixed q equal to e−2εmh(q). Hence the PDF
is just

Ph(q) = N e−2εq(2q+1) , with N−1 = θ3
(
iε, e−4ε

)
, (7)

and indeed it was already obtained in Ref. [46] (here θ3 is
the elliptic theta function).
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Now, still following the approach of Ref. [42], we ex-
plain how to use these results to obtain the entanglement
spectrum of a finite large interval. As long as ` is larger
than the correlation length, the reduced density matrix
ρ` of a single interval with two boundaries factorises into
ρL ⊗ ρR, where ρL/R are the reduced density matrices for
the semi-infinite lines having the left/right end-point of
the interval. The combination of these two spectra into
a single one is graphically reported in Fig. 1. We show
both cases for even and odd subsystems (center and right
respectively). For an even subsystem we should combine
two different spectra mL(x) = mh(x) = x(2x + 1) and
mR(x) = ma(x) = x(2x − 1) from left and right. Con-
versely, for odd blocks, the left and the right spectra to
combine are equal, e.g. mL(x) = mR(x) = x(2x+ 1). The
final results for the degeneracies are reported in the figure.
In the even case, we have that the degeneracy at fixed q

at level s can be written as de(q, s) = pe(
s−me(q)

2 ) with
me(q) = q2 and pe generated by∑

s=0

pe(s)x
s =

∏
k≥1

(1 + xk)2

1− xk
, (8)

leading to the generating function for the total degeneracy
De(s) of level s∑

s=0

De(s)x
s =

∏
k≥1

(1 + xk)2. (9)

Notice that while the generating function for De(s) is the
square of the one for Dh(s), the same is not true for pe.
Again we employ the convention pe(x) = 0 for negative
numbers and for half-integers.

For odd blocks, it is more complicated to combine the
two spectra for even and odd q. The degeneracies of both
sectors have the generating function∑

s=0

pbo(s)xs =
∏
k≥1

(1− x2k)3

(1− xk)2(1− x4k)2
, (10)

where even (odd) powers of x correspond to even (odd) val-
ues of q. However, a single generating function for different
q is not a too useful tool to write symmetry resolved quan-
tities. Exploiting some identities of elliptic theta functions
θ2,3, we can extract the even and the odd part of (10) we
are interested in. After some algebra we get (for x > 0)∑

s=0

po(s, q)xs =
(θ2(x4))

1−(−1)q

2 (θ3(x4))
1+(−1)q

2∏
k≥1(1 + x2k)(1− (−x)k)(1− xk)

,

(11)
which does depend on the parity of q. Hence the degener-
acy of the level s with fixed q is

do(q, s) = po(s−mo(q)), (12)

with mo(q) = q2 − q. Indeed mo(q) and mo(q) + 1 are the
two parabolas in Fig. 1, envelopes of the largest eigen-
values of the RDM for even and odd q respectively. The
generating function for the total degeneracy Do(s) of level
s is the same as De/h(s) in Eq. (9).

Full counting statistics: even number of sites. –
The easiest way to get the PDF Pe(q) for the interval is
to combine the PDFs at the right and left boundary as

Pe =

∞∑
q1=−∞

PL(q1)PR(q − q1) =

∞∑
q1=−∞

Ph(q1)Ph(q1 − q),

(13)
where we used that the PDF at the two boundaries are
PL(q) = Ph(q1) and PR(q) = Ph(−q). The sum is easily
rewritten as

Pe(q) = N 2e−2ε(q
2−1/4)

∞∑
q1=−∞

e−2ε(2q1+q+1/2)2 . (14)

The remaining sum over q1 does not depend on q, for
integer q. Hence the PDF is Gaussian

Pe(q) = Nee
−2q2ε, (15)

and the normalisation factor is N−1e =
∑
q e
−2q2ε =

θ3(e−2ε). The FCS is the Fourier series (5) which im-
mediately leads to

Ge(λ) =
θ3
(
λ
2 , e
−2ε)

θ3(e−2ε)
. (16)

Notice that this is real and even in λ. As a cross check, the
same result is re-obtained by directly summing over the
eigenvalues of the RDM with the degeneracies reported in
Fig. 1 (to perform the sum, one exploits (8) the product
representation of the θ3 function).

The FCS generating function is directly measured in
iTEBD simulations [45], as explained in details, e.g., in
Refs. [27, 37]. The results in the thermodynamic limit for
three values of ∆ > 1 and for ` = 200 are shown in Figure
2. The agreement is always excellent (data and predictions
are superimposed) for all considered values of ∆. We men-
tion that as ∆ gets close to 1, one should consider much
larger values of ` to reach such good agreement due to the
diverging correlation length at the isotropic point.

Full counting statistics: odd number of sites. –
Also for this case, the PDF can be obtained combining
two single-boundary ones as

Po =

∞∑
q1=−∞

PL(q1)PR(q − q1) =

∞∑
q1=−∞

Ph(q1)Ph(q − q1),

(17)
where we used that the PDF at the two boundaries are
the same. Again, the sum is easily rewritten as

Po(q) = N 2e−2ε(q
2−q)

∞∑
q1=−∞

e−2ε(2q1−q)
2

. (18)

However, this time the remaining sum does depend on the
parity of q. Performing this sum, the PDF is

Po(q) = Noe
−2ε(q2−q) ×

{
θ3(e−8ε) , q even,

θ2(e−8ε) , q odd,
(19)
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Fig. 2: Full counting statistics generating functions G(λ) for the gapped XXZ spin chain for three values of ∆. The left (right)
panel is the real (imaginary) part of G(λ). The symbols are the iTEBD data that perfectly match the superimposed analytic
predictions (full lines for odd ` and dashed for even `). The data are for infinite chains and subsystems equal to ` = 200 (circles)
or 201 (squares). Notice that the real parts for even and odd q are qualitatively similar, but quantitatively different.

with N0 easily obtained from the normalisation.
The FCS is the Fourier series (5) which, after some ma-

nipulations using the properties of elliptic functions, leads
to

Go(λ) =

(
θ3
(
iε− λ

2 , e
−4ε)

θ3(iε, e−4ε)

)2

. (20)

Notice that this FCS has a non-vanishing and non-trivial
imaginary part, but satisfy Go(λ)∗ = Go(−λ). Again, as a
cross check, this result is re-obtained by directly summing
over the eigenvalues of the RDM with the degeneracies
reported in Fig. 1.

Also for odd `, the analytical prediction (20) is tested
against iTEBD simulations in Figure 2. In these simu-
lations, we measure the FCS of the operator Sz` and not
δSz` ; hence the numerical data have been divided by eiλ/2.
After this normalisation, the agreement between data and
prediction is extremely good in all considered cases.

Byproduct: symmetry resolved entropies. – A
very recent research line in many body quantum sys-
tems is to understand how the entanglement organises
into the various symmetry sectors of a theory [46–56].
The reduced density matrix is symmetry decomposed as
ρ` = ⊕qP (q)ρ`(q). The symmetry resolution of the entan-
glement spectrum reported in Figure 1 allows us to access
the symmetry resolved moments as

Zn(q) ≡
∑
s∈Sq

λns =

∑
j d(q, j)e−2nεj(∑
j D(j)e−2εj

)n , (21)

where d(q, j) and D(j) are respectively the degeneracies of
the j-th eigenvalue for fixed q and total (whose generating
functions are known in the three cases of interest). The
symmetry resolved entropies are defined as

Sn(q) ≡ 1

1− n
ln Trρn` (q) =

1

1− n
ln Tr

Zn(q)

Zn1 (q)
. (22)

Since in Sn(q) only the ratio Zn(q)/Zn1 (q) matters, the
dependence on Dj cancels and

Zn(q)

Zn1 (q)
=

∑
j d(q, j)e−2nεj(∑
j d(q, j)e−2εj

)n =

∑
j p(j)e

−2anεj(∑
j p(j)e

−2aεj
)n ,

(23)

where in the last equality we used d(q, s) = p( s−m(q)
a )

(with a = 2 for semi-infinite and even `, while a = 1 for
odd `) and shifted the sum as (j −m(q))/a → j (notice
that the actual value of m(q) is unessential).

The result for the semi-infinite line has been already
derived in Ref. [46] and we recall it here:

Sh
n(q) =

1

1− n

∞∑
k=1

[n ln(1− e−4εk)− ln(1− e−4nεk)],

(24)
as simply follows combining (23) with (6). Now we derive
the entropies for a finite interval of both even and odd
length. For even `, the two sums in (23) can be rewritten
in terms of generating functions (8) (with x = e−4nε),
obtaining

Se
n(q) =

∞∑
k=1

[
ln

(1 + e−4nεk)2

1− e−4nεk
− n ln

(1 + e−4εk)2

1− e−4εk
]

1− n
.

(25)
Very importantly, the symmetry resolved entropies are not
the double of the single resolved entropies (24) for the half
line as it is the case for the total one (mathematically this
is a consequence of the relation between the generating
function for De(s) and Dh(s), but not for pe/h). Also,
these symmetry resolved entanglement entropies are inde-
pendent of q and hence satisfy the equipartition of entan-
glement [51] exactly.

In the very same fashion, we can repeat the calculation
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for odd `, obtaining the more cumbersome expression

So
n(q) =

1

1− n

[
∞∑
k=1

(
n ln(1 + e−4εk)(1− e−2εk)(1− (−)ke−2εk)

− ln(1 + e−4εnk)(1− e−2εnk)(1− (−)ke−2εnk)

)

+
1 + (−)q

2
(ln θ3(e−8εn)− n ln θ3(e−8ε)

+
1− (−)q

2
(ln θ2(e−8εn)− n ln θ2(e−8ε)

]
, (26)

Hence, for odd `, the symmetry resolved entropies do de-
pend on the parity of q and the equipartition of entangle-
ment is explicitly broken.

We finally mention, as a highly non-trivial crosscheck,
that it is possible, but cumbersome, to sum over the var-
ious sectors q in order to recover the total entanglement,
both for even and odd `. The calculation parallels the one
for the half-line in [46].

Conclusions. – We computed the FCS of the trans-
verse magnetisation in gapped XXZ chains within a spin
block of length `, for ` larger than the correlation length.
Our main results are the exact formulas for the generating
functions (16) and (20) valid for even and odd ` respec-
tively. Their accuracy has been tested against iTEBD
simulations, see Figure 2. The astonishing simplicity of
the final results resides in the entanglement spectrum be-
ing equispaced, as reported in Figure 1. The symmetry
resolved entanglement entropies turn out to be a simple
byproduct of our results.

An extremely interesting open question is whether one
can access the crossover from the conformal regime [18,19]
(valid for ` � ξ, with ξ being the correlation length) to
massive one (` � ξ) we obtained here. It is likely that
exact techniques developed for the entanglement entropy
[57,58] may be used even for this problem.
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