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Abstract

We propose a definition of non-collapsed space with Ricci curvature bounded from
below and we prove the versions of Colding’s volume convergence theorem and of Cheeger-
Colding dimension gap estimate for RCD spaces.

In particular this establishes the stability of non-collapsed spaces under non-collapsed
Gromov-Hausdorff convergence.
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1 Introduction

Lott-Villani in [43] and Sturm in [49, 50] introduced a synthetic notion of lower Ricci curvature
bounds for metric measure spaces: their approach is based on suitable convexity properties for
entropy-like functionals over the space of probability measures equipped with the quadratic
Kantorovich distance W2. The classes of spaces that they introduced are called CD(K,N),
standing for lower Curvature bound by K ∈ R and upper Dimension bound by N ∈ [1,∞]
(in [43] only the cases K = 0 and N =∞ have been considered).

∗SISSA, gdephili@sissa.it
†SISSA, ngigli@sissa.it

1



Since then the study of these classes of spaces has been a very flourishing research area, see
for instance the surveys [53, 51] and references therein. Among the various fine tunings of Lott-
Sturm-Villani’s proposal, we mention the definition of CD∗(K,N) spaces proposed by Bacher-
Sturm in [11]: under minor technical conditions, this is locally equivalent to the CD(K,N),
has better local-to-global properties but a priori leads to slightly suboptimal constants in
various geometric and functional inequalities (but see (1.2) below).

Since the very beginning, one of the main research lines has been, and still is, that of
understanding the geometric properties of such spaces. Here fundamental ideas come from
the theory of Ricci-limit spaces developed in the nineties by Cheeger and Colding [16, 17, 18,
19, 22]: one would like at least to replicate all their results in the synthetic framework, and
then hopefully to obtain, thanks to the new point of view, new insights about both smooth
and non-smooth objects having Ricci curvature bounded from below. In this direction it has
been soon realized that the classes of CD/CD∗(K,N) spaces are not really suitable for the
development of this program: the problem is that Finlser structures are included (see the
last theorem in [52]) and for these Cheeger-Colding’s results are not valid. For instance, the
Cheeger-Colding-Gromoll splitting theorem fails in finite dimensional Banach spaces.

Motivated by this problem the second author proposed in [31] to reinforce the Lott-Sturm-
Villani condition with the functional-analytic notion of infinitesimal Hilbertianity:

(X, d,m) is infinitesimal Hilbertian provided W 1,2(X, d,m) is an Hilbert space. (1.1)

This definition is the result of a research program devoted to the understanding of the heat
flow [27, 32, 3] on CD(K,N) spaces, and in particular of the introduction of the class of
RCD(K,∞) spaces - R standing for Riemannian - in a collaboration with Ambrosio and
Savaré [4].

In (1.1), W 1,2(X, d,m) is the Sobolev space of real valued functions on X as introduced by
Cheeger in [15] (see also the alternative, but equivalent, descriptions provided in [48] and [3]).
It is a priori non-trivial, but nevertheless true, that infinitesimal Hilbertianity is stable under
mGH-convergence when coupled with a CD(K,N) condition. Moreover, as proved by the
second author in [28] (see also [30]), the splitting theorem holds in the class of infinitesimally
Hilbertian CD(0, N) spaces.

In a different direction, in another collaboration [5] of the second author with Ambrosio
and Savaré it has been introduced the class of BE(K,N) spaces: these are spaces in which, in
a suitable sense, the Bochner inequality with parameters K,N holds (BE stands for Bakry-
Émery). The key points of [5] are the proof that the class of BE(K,N) spaces is stable under
mGH-convergence (and thus provides another reasonable synthetic notion of spaces having a
curvature-dimension bound) and that for N =∞ it coincides with that of RCD(K,∞) spaces.

This circle of ideas has been closed in [25] (and later in [9]) where it has been proved that

BE(K,N) = CD∗(K,N) + infinitesimal Hilbertianity.

More recently, Cavalletti-Milman in [14] proved in high generality, and in particular without
relying on infinitesimal Hilbertianity, that it holds

CD(K,N) = CD∗(K,N)
( under some kind of non-branching assumption

which always holds in RCD(K,∞) spaces

)
(1.2)

The results in [14] are stated for spaces with finite reference measure but the kind of arguments
used seems to indicate that the same also holds without this restriction. For this reason in
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this manuscript we shall work with RCD(K,N) := CD(K,N) + Inf.Hilb. spaces, rather than
with RCD∗(K,N) := CD∗(K,N) + Inf.Hilb. ones which have been recently more popular. In
any case, all our arguments are local in nature and since the local versions of CD(K,N) and
CD∗(K,N) are known to be equivalent from the very first paper [11] where CD∗ has been
introduced, our results are independent from [14].

We now turn to the description of the content of this manuscript.
Thanks to the celebrated volume convergence result by Colding [22], and to its general-

ization to Ricci-limit spaces by Cheeger-Colding [17], we know that for a pointed-Gromov-
Hausdorff-converging sequence of pointed Riemannian manifolds (Mn, pn) with the same di-
mension and Ricci curvature uniformly bounded from below, the volume of the unit ball
around pn either stays away from 0 (i.e. infn Voln(BMn

1 (pn)) > 0) or it converges to 0. Limit
spaces are called non-collapsed or collapsed according to whether they are obtained as limits
of sequences of the former or latter kind respectively.

As it turned out from the analysis done in [16, 17, 18, 19], non-collapsed spaces are more
regular than collapsed ones and it is therefore natural to look for a synthetic counterpart of
this class of spaces. To do so we should look for an intrinsic characterization of non-collapsed
Ricci-limit spaces, i.e. for one which does not rely on the existence of a converging sequence
having suitable properties. A work in this direction has also been done by Kitabeppu in [42]
(see also Remark 1.14).

Let us observe that the aforementioned volume convergence result grants, as noticed in
[17], that: a pGH-limit space (X, d) of a sequence of N -dimensional manifolds with Ricci
curvature uniformly bounded from below is non-collapsed if and only if

the volume measures weakly converge to the measure HN on X and HN (X) > 0,

where here and in the following HN is the N -dimensional Hausdorff measure.
Since for a CD(K,N) space (X, d,m) the requirement m(X) > 0 is part of the definition,

the above motivates the following:

Definition 1.1 (Non-collapsed RCD spaces). Let K ∈ R and N ≥ 1. We say that (X, d,m) is
a non-collapsed RCD(K,N) space, ncRCD(K,N) space in short, provided it is an RCD(K,N)
space and m = HN .

From the known structural properties of RCD(K,N) spaces it is not hard to show that if
(X, d,m) is a ncRCD(K,N), then N must be an integer. This follows for instance from the
rectifiability results proved in [44], [41], [35] (see Theorem 2.13). Alternatively, this can be
proved by blow-up arguments, see Theorem 1.12 and in particular the implication (iii)⇒ (iv).

Imitating the arguments in [17] we shall prove that ncRCD(K,N) spaces are stable under
Gromov-Hausdorff (thus a priori not necessarily measured -GH) convergence in the sense made
precise by the following theorem:

Theorem 1.2 (Non-collapsed and collapsed convergence). Let (Xn, dn,HN , xn) be a sequence
of pointed ncRCD(K,N) spaces. Assume that (Xn, dn, xn) converges to (X∞, d∞, x) in the
pointed-Gromov-Hausdorff topology. Then precisely one of the following happens:

i) limn→∞HN (B1(xn)) > 0. In this case the lim is actually a limit and (Xn, dn,HN , xn)
converges in the pointed-measured-Gromov-Hausdorff topology to (X∞, d∞,HN , x). In
particular (X,∞ d∞,HN ) is a ncRCD(K,N) space.
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ii) limn→∞HN (B1(xn)) = 0. In this case dimH(X∞) ≤ N − 1.

Here and in what follows dimH(X) is the Hausdorff dimension of the metric space X.
Notice that in particular

non-collapsed limits of Riemannian manifolds in the sense of Cheeger-Colding are
non-collapsed spaces in our sense,

explaining our choice of terminology.
Theorem 1.2 is strictly related to the following two results. The first generalizes the already

mentioned volume convergence theorem to the RCD setting. Notice that there is no non-
collapsing assumption.

Theorem 1.3 (Continuity of HN ). For K ∈ R, N ∈ [1,∞) and R ≥ 0 let BK,N,R be the
collection of all (equivalence classes up to isometry of) closed balls of radius R in RCD(K,N)
spaces equipped with the Gromov-Hausdorff distance.

Then the map BK,N,R 3 Z 7→ HN (Z) is real valued and continuous.

Such theorem is true even for open balls, see equation (2.20). Notice also that Gromov
precompactness theorem for RCD spaces and the stability of the RCD condition grant that
BK,N,R is compact w.r.t. the Gromov-Hausdorff topology (see also the proof of Theorem 1.3
given at the end of Section 3.1).

The second result, analogous to [17, Theorem 3.1], concerns the Hausdorff dimension of
an RCD(K,N) space; again there is not an assumption about non-collapsing, but on the other
hand N is assumed to be integer.

Theorem 1.4 (Dimension gap). Let K ∈ R, N ∈ N, N ≥ 1, and X an RCD(K,N) space.
Then either dimH(X) = N or dimH(X) ≤ N − 1.

Since R is RCD(0, 1 + ε), we see that the assumption N ∈ N is necessary in the above.
For non-integer N ’s this last result easily implies the following:

Corollary 1.5. Let K,N ∈ R, N ≥ 1, and X an RCD(K,N) space. Then dimH(X) ≤ [N ],
where [·] denotes the integer part.

Notice that this is sharp because for every N ∈ (1, 2) the space ([0, π], dE, sin
N−1(t) dt) is

an RCD(N − 1, N) space whose Hausdorff dimension is 1.
As a quite direct consequence of Theorem 1.2 and its proof we also obtain the following

volume (almost) rigidity result:

Theorem 1.6 (Volume rigidity). For every ε > 0 and N ∈ N, N ≥ 1 there is δ = δ(ε,N)
such that the following holds. Let (X, d,HN ) be a ncRCD(−δ,N) space and x̄ ∈ X such that

HN (BX
1 (x̄)) ≥ HN (BRN

1 (0))(1− δ).

Then
dGH

(
B

X
1/2(x̄), B

RN
1/2(0)

)
≤ ε.

The example of a unit ball in a cylinder shows that we cannot replace 1/2 with 1 in
the conclusion, see also the discussion in [24]. A simple consequence of the Bishop-Gromov
inequality combined with Corollary 2.14 and the above Theorem is the following:
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Corollary 1.7. Let (X, d,HN ) be a ncRCD(0, N) space, then for all x ∈ X and r > 0,

HN (BX
r (x)) ≤ ωNrN . (1.3)

Moreover, if there exists x̄ ∈ X and r̄ > 0 achieving equality in (1.3), then BX
r̄/2(x̄) is isometric

to BRN
r/2(0). As a consequence, a point x ∈ X is regular (i.e. all tangent cones are isometric to

RN ) if and only if

lim
r→0

HN (BX
r (x))

ωNrN
= 1.

We now pass to the description of the main properties of non-collapsed spaces. A first
result is about the stratification of their singular set: denote by Sk(X) the set of points x ∈ X
such that no tangent space splits off a factor Rk+1 (see (3.48) for the precise definition). In
the same spirit of classical stratification results in geometric measure theory first established
in [1] and axiomatized in [54] we have the following result, compare with [17, Theorem 4.7].

Theorem 1.8 (Stratification). Let K ∈ R, N ∈ N, N ≥ 1 and let X be a ncRCD(K,N)
space.

Then dimH(Sk(X)) ≤ k for every k ∈ N.

Beside these, all the other properties of ncRCD spaces that we are able to prove hold in
the a priori larger class of weakly non-collapsed spaces, which we now introduce.

For K ∈ R, N ∈ [1,∞) and r ≥ 0 let us consider the volume of the ball of radius r in the
reference ‘space form’ defined by

vK,N (r) := ωN

∫ r

0

∣∣sK,N (t)
∣∣N−1

dt,

where ωN := πN/2∫∞
0 tN/2e−t dt

coincides for integer N with the volume of the unit ball in RN and

sK,N (r) :=


√

N−1
K sin(r

√
K
N−1), if K > 0,

r, if K = 0,√
N−1
|K| sinh(r

√
|K|
N−1), if K < 0.

Then the Bishop-Gromov inequality, which is valid in the class of MCP(K,N) spaces (see [45]
and [50] and recall that an RCD(K,N) space is also MCP(K,N)), states that

r 7→ m(Br(x))

vK,N (r)
is decreasing (1.4)

for any x ∈ supp(m). Therefore the following definition if meaningful:

Definition 1.9 (Bishop-Gromov density). Let K ∈ R, N ∈ [1,∞) and let (X, d,m) be a
MCP(K,N) space with supp(m) = X. For x ∈ X we define the Bishop-Gromov density at x
as

ϑN [X, d,m](x) := lim
r→0

m(Br(x))

vK,N (r)
= sup

r>0

m(Br(x))

vK,N (r)
. (1.5)

5



Notice that by the very definition of vK,N (r) we have

lim
r→0

vK,N (r)

ωNrN
= 1, (1.6)

hence

ϑN [X, d,m](x) = lim
r→0

m(Br(x))

ωNrN
, (1.7)

whence the choice of omitting the K in the notation of the Bishop-Gromov density. Still, the
definition (1.5) allows to directly exploit (1.4) and this simplifies some proofs.

We note that for an RCD(K,N) space the Bishop-Gromov density can be equal to ∞ at
almost every point, a simple example being the RCD(0, N) space ([0,∞), dE, x

N−1 dL1), where
here and in the sequel dE will denote the euclidean distance. In a sense what is happening
in this example is that there is a gap between the ‘functional analytic’ upper bound on the
dimension N of the space and its ‘geometric’ dimension. This motivates the following:

Definition 1.10 (Weakly non-collapsed RCD spaces). Let K ∈ R and N ∈ [1,∞). We say
that (X, d,m) is a weakly non-collapsed RCD(K,N), wncRCD(K,N) in short, space provided
it is RCD(K,N), it holds supp(m) = X and

ϑN [X, d,m](x) < +∞ for m− a.e. x.

Notice that by classical results about differentiation of measures (see e.g. Lemma 2.11), if
HN is a Radon measure on X we know that

lim
r↓0

HN (Br(x))

ωNrN
≤ 1 HN − a.e. x ∈ X

and thus in particular

a non-collapsed RCD(K,N) space is also weakly non-collapsed,

see Corollary 2.14.
Also, from (1.4) it follows that ϑN is lower-semicontinuous both as a function on the fixed

RCD(K,N) space (X, d,m) and along a pmGH-converging sequence (see Lemma 2.2). This
easily implies the stability of the weakly non-collapsed condition w.r.t. pmGH-convergence,
see Theorem 2.3.

Remark 1.11. By analogy with the properties of Ricci-limit spaces obtained in [16, 17, 18,
19, 23] we believe that

if (X, d,m) is RCD(K,N) and ϑN [X, d,m] <∞ on a set of positive m-measure,

then up to multiply m by a positive constant the space is ncRCD(K,N)

and in particular that any weakly non-collapsed space is, up to multiply the measure by a
positive constant, non-collapsed. Note in particular that a consequence of the above property
would be the constancy of the dimension of RCD(K,N) spaces in the case when there is at
least a N -dimensional piece1. This fact is proved, in full generality, for Ricci limit spaces by
Colding and Naber in [23]. �

1During the revision process of this manuscript, Bruè and Semola proved in [12] that finite dimensional
RCD spaces have constant dimension regardless of such ‘maximality’ condition.
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The geometric significance of the finiteness of ϑN is mostly based on the fact that

if ϑN [X, d,m](x) <∞ then every tangent space at x is a metric cone (1.8)

which in turn follows directly from the ‘volume cone to metric cone’ property of RCD spaces
obtained by the authors in [24, Theorem 1.1] (see Proposition 2.8 for the proof of (1.8)).

With this said, we have the following equivalent characterizations of weakly non-collapsed
spaces:

Theorem 1.12. Let K ∈ R, N ∈ [1,∞) and let (X, d,m) be a RCD(K,N) space with suppm =
X. Then the following are equivalent:

(i) X is a wncRCD(K,N) space.

(ii) m� HN .

(iii) There exists a function ϑ1 ∈ L1
loc(HN ) such that m = ϑ1HN .

(iv) N is integer and for m-a.e. x ∈ X there exists a constant ϑ2(x) such that

(X, d/r,m/rN , x)
pmGH−→ (RN , dE, ϑ2(x)LN , 0) as r ↓ 0.

(v) N is integer and for m-a.e. x ∈ X it holds

(X, d/r,m/cr, x)
pmGH−→ (RN , dE,LN/c(N), 0) as r ↓ 0,

where

cr :=

∫
BX
r (x)

(
1− d(y, x)

r

)
dm(y) c(N) :=

∫
BRN

1 (0)

(
1− |y|

)
dLN (y).

(vi) N is integer and for m-a.e. x ∈ X it holds

(X, d/r, x)
pGH−→ (RN , dE, 0) as r ↓ 0.

(vii) The tangent module L2(TX) has constant dimension equal to N .

Moreover in the above statements

ϑ1(x) = ϑ2(x) = ϑN [X, d,m](x) < +∞ for m-a.e. x. (1.9)

Finally, if any of these holds then (referring to [29] for the necessary definitions) it holds

H2,2(X)=D(∆) and tr Hess(f) = ∆f ∀f ∈ H2,2(X). (1.10)

Remark 1.13. We believe that if (X, d,m) is an RCD(K,N) space for which (1.10) holds,
then there exists n ∈ N, n ∈ [1, N ], such that (X, d,m) is a weakly non-collapsed RCD(K,n)
space. Notice that according to Han’s results in [40], this would be true if one knew that
the tangent module has constant dimension, in which case one should pick n to be such
dimension2. �

2As already mentioned, Bruè and Semola recently proved in [12] that indeed finite dimensional RCD spaces
have constant dimension. As a consequence of their result, the conjecture in this remark holds.
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Remark 1.14. The definition proposed by Kitabeppu in [42] in our formalism reads as:
ϑN [X](x) < ∞ for every x ∈ X (in particular such spaces are weakly non-collapsed in our
sense). Then in [42] it has been proved that such spaces have many of the properties stated
in Theorem 1.12, see [42, Theorem 1.4], and it has also been noticed that (1.8) holds. Our
proofs of these facts are essentially the same as those in [42]. �

We conclude mentioning that the characterization of non-collapsed spaces via blow-ups
allows to deduce that ‘products’ and ‘factorizations’ of (weakly) non-collapsed spaces are still
(weakly) non-collapsed, see Proposition 2.15 and compare it with the non-trivial behaviour -
even on Rn - of products of Hausdorff measures, see e.g. [26, 2.10.29].
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2 Weakly non-collapsed spaces

2.1 Stability

In this section we prove the stability of the class of wncRCD(K,N) spaces w.r.t. pointed-
measured-Gromov-Hausdorff convergence.

In all the upcoming discussion, a metric space is always a complete and separable space
(sometimes we will consider convergence of open balls in such spaces, but this creates no
problems in the definition of Gromov-Hausdorff convergence) and a metric measure space is
a metric space equipped with a non-negative and non-zero Radon measure which is finite
on bounded sets. Moreover, by C(α, β, γ, . . .) we will always intend a constant whose value
depends on the parameters α, β, γ, . . . and nothing else.

Let us begin recalling some basic definitions that will be used throughout the text. The
Hausdorff (semi-)distance between two subsets A,B of a metric space Y is given by

dH(A,B) := inf{ε ≥ 0 : B ⊂ Aε and A ⊂ Bε}

where Aε denotes the ε-neighbourhood of A, i.e. the set of points at distance < ε from A.
With this said, we now recall the definitions of the various kind of Gromov-Hausdorff

convergences that we shall use. Notice that for the case of pointed and pointed-measured
convergences our definitions are not really the correct ones in the general case, but given
that we will always deal with geodesic metrics and uniformly locally doubling measures, our
(simplified) approach is equivalent to the correct definitions, see for instance the discussions
in [39, Chapter 3], [13, Section 8.1], [33, Section 3.5].

Definition 2.1 (Gromov-Hausdorff convergences). Let (Xn, dn), n ∈ N ∪ {∞} be metric
spaces. We say that (Xn, dn) converges to (X∞, d∞) in the Gromov-Hausdorff (GH in short)
sense provided there exist a metric spaces (Y, dY) and isometric embeddings ιn : Xn → Y,
n ∈ N ∪ {∞}, such that

dH

(
ιn(Xn), ι∞(X∞)

)
→ 0 as n→∞.
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If the spaces are pointed, i.e. selected points xn ∈ Xn are given, we say that (Xn, dn, xn)
converges to (X∞, d∞, x∞) in the pointed-Gromov-Hausdorff (pGH in short) sense provided
there exist a metric spaces (Y, dY) and isometric embeddings ιn : Xn → Y, n ∈ N∪{∞}, such
that:

i) ιn(xn)→ ι∞(x∞) in Y,

ii) for every R > 0 we have

dH

(
ιn(BR(xn)), ι∞(BR(x∞))

)
→ 0 as n→∞.

If moreover the spaces Xn are endowed with Radon measures mn finite on bounded sets, we
say that (Xn, dn,mn, xn) converges to (X∞, d∞,m∞, x∞) in the pointed-measured-Gromov-
Hausdorff (pmGH in short) sense provided there are Y and (ιn) satisfying (i), (ii) above and
moreover it holds:

iii) ((ιn)∗mn) weakly converges to (ι∞)∗m∞, i.e. for every ϕ ∈ Cb(Y) with bounded support
we have ∫

ϕd(ιn)∗mn →
∫
ϕd(ι∞)∗m∞ as n→∞.

In any of these cases, the collection of the space Y and isometric embeddings (ιn) is called
realization of the convergence and in any of these cases, given zn ∈ Xn, n ∈ N∪{∞}, we say

that (zn) converges to z∞, and write zn
GH→ z∞ provided there exists a realization such that

lim
n→∞

dY

(
ιn(zn), ι∞(z∞)

)
= 0.

Notice that in presence of non-trivial automorphism of the limits space X∞ it might be
that the same sequence (zn) converges to two different points z∞, z

′
∞ ∈ X∞. This creates no

issues in the foregoing discussion.
We shall frequently use, without further reference, the fact that the class of RCD(K,N)

spaces is closed w.r.t. pmGH-convergence (see [43], [49], [50], [4], [31], [33]).
Since the Bishop-Gromov inequality (1.4) implies that the measure is locally doubling, we

can use Gromov’s compactness theorem (see [39, Section 5.A]) to deduce that

if (Xn, dn,mn, xn), n ∈ N, are RCD(Kn, N) spaces with N ∈ [1,∞), supp(mn) = Xn,

mn(B1(xn)) ∈ [v, v−1] for every n ∈ N and some v ∈ (0, 1) and Kn → K ∈ R,

then there is a subsequence pmGH-converging to some RCD(K,N) space

(X, d,m, x) with supp(m) = X and a realization with Y proper.

(2.1)

Recall that a metric space is proper provided closed bounded sets are compact. Notice that
a direct consequence of the definitions is that

∀y∞ ∈ X∞ there exists yn ∈ Xn, n ∈ N such that yn
GH→ y∞. (2.2)

We also recall that on MCP(K,N) spaces (see [45] and [50]) (X, d,m) with supp(m) = X
and N < ∞, from the spherical version of Bishop-Gromov inequality - see [50, Inequality
(2.4)] - it holds

m(Br(x)) = m(B̄r(x)) ∀x ∈ X, r > 0 (2.3)
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and in turn this easily implies that if (Xn, dn,mn, xn)
pmGH→ (X∞, d∞,m∞, x∞) and all such

spaces are MCP(K,N) with measures of full support, then

yn
GH→ y∞ ⇒ mn(Br(yn))→ m∞(Br(y∞)) ∀r > 0, (2.4)

which easily follows by the weak convergence of the measures and by the fact that m(∂Br(y∞)) =
0 under our assumptions (from (2.3)). Let us now collect some basic simple properties of
the Bishop-Gromov density:

Lemma 2.2 (Basic properties of the Bishop-Gromov density). Let K ∈ R, N ∈ [1,∞). Then:

(i) Let (Xj , dj ,mj , x̄j) be a sequence of pointed MCP(K,N) spaces pmGH-converging to a
limit MCP(K,N) space (X∞, d∞,m∞, x̄∞). Then

xj
GH→ x∞ ⇒ lim inf

j→∞
ϑN [Xj , dj ,mj ](xj) ≥ ϑN [X∞, d∞,m∞](x∞).

In particular, on a given MCP(K,N) space (X, d,m), the function ϑN : X → [0,∞] is
lower-semicontinuous (and thus Borel measurable).

(ii) Let (X, d,m) be a MCP(K,N) space. Then m-a.e. point x ∈ {ϑN <∞} is an approximate
continuity point for ϑN , i.e.

lim
r→0

m
({
y ∈ Br(x) : |ϑN (y)− ϑN (x)| > ε

})
m(Br(x))

= 0 (2.5)

for every ε > 0.

(iii) Let (X, d,m) be a MCP(K,N) space and, for r > 0, put (Xr, dr,mr) = (X, d/r,m/rN ).
Then for every x ∈ X we have ϑN [Xr, dr,mr](x) = ϑN [X, d,m](x).

Proof Point (iii) trivially follows from (1.7) and point (i) is a direct consequence of the
definitions, of (2.4) and of the monotonicity granted by the Bishop Gromov inequality (1.4).

For point (ii) note that the Bishop-Gromov inequality (1.4) grants that m is locally dou-
bling, hence the Lebesgue differentation Theorem applies to every function f ∈ L1

loc(X):

lim
r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)|dm(y) = 0 m-a.e. x. (2.6)

By applying (2.6) to, for instance, f(x) := arctanϑN (x) one easily gets (ii). �

A stability result for the class of wncRCD spaces now easily follows, see Remark 2.4 below
for some comments on the statement:

Theorem 2.3 (Stability of weakly non-collapsed spaces). Let K ∈ R, N ∈ R and let
(Xn, dn,mn, xn) be a sequence of wncRCD(K,N) spaces pmGH-converging to some limit space
(X, d,m, x). Assume that for every R > 0 there is an increasing function fR : [0,+∞] →
[0,+∞] with fR(+∞) = +∞ such that

lim
n→∞

∫
BXn
R (xn)

fR ◦ ϑN [Xn, dn,mn] dmn <∞. (2.7)

Then (X, d,m) is a wncRCD(K,N) space and for every R > 0 it holds∫
BX
R(x)

fR ◦ ϑN [X, d,m] dm ≤ lim
n→∞

∫
BXn
R (xn)

fR ◦ ϑN [Xn, dn,mn] dmn. (2.8)
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Proof From the stability of the RCD condition we know that (X, d,m) is RCD(K,N). Let
(Y, dY, (ιn)) be a realization of the pmGH-convergence and define ϑ̃n : Y → [0,∞] as

ϑ̃n(y) :=

{
ϑN [Xn, dn,mn](ι−1

n (y)), if y ∈ ι(Xn),
+∞, otherwise.

and similarly ϑ̃. Then from point (i) of Lemma 2.2 and the monotonicity of fR we deduce
that

yn → y ⇒ χ
BY
R(ι(x))(y)fR(ϑ̃(y)) ≤ lim

n→∞
χ
BY
R(ιn(xn))(yn)fR(ϑ̃n(yn))

having also used the fact that if y ∈ BY
R(ι(x)) then eventually yn ∈ BY

R(ιn(xn)). By the
simple Lemma 2.5 below this inequality and the weak convergence of (ιn)∗mn to ι∗m give∫

χ
BY
R(ι(x))fR ◦ ϑ̃ dι∗m ≤ lim

n→∞

∫
χ
BY
R(ιn(xn))fR ◦ ϑ̃n d(ιn)∗mn,

which is (2.8). In particular, taking into account (2.7) we deduce that∫
BX
R(x)

fR ◦ ϑN [X, d,m] dm <∞

and since fR(+∞) = +∞, this forces ϑN [X, d,m] to be finite m-a.e.. �

Remark 2.4. It is not hard to check that, in this last theorem, if all the spaces Xn are
Riemannian manifolds of the same dimension k converging to a smooth Riemannian manifold
X, then necessarily k = N and X has dimension k. In particular, the convergence is non-
collapsed in the sense of Cheeger and Colding, [17].

In this respect the following example might be explanatory: Let S1
r be the 1-dimensional

sphere of radius r and consider the cylinder Mn := R×S1
1/n equipped with its natural product

distance dn and volume measure voln. It is clear that as n → ∞ the metric spaces (Mn, dn)
converge in the pGH-topology to the real line, which trivially has smaller dimension (since
in all these manifolds the isometry group acts transitively, the choice of reference point is
irrelevant and thus omitted).

Let us now consider convergence of the metric measure spaces (Mn, dn, voln). Notice that
for any r > 1/n and pn ∈Mn we have that

voln(Br(pn)) ∼ r

n
as n→∞ (2.9)

and thus the measures mn weakly converge, in any realisation of the pGH-convergence, to 0.
However, the choice of the null measure is excluded by the definition of metric measure space
- see the beginning of Section 2.1 -, so that (R, dE, 0) is not a legitimate metric measure space
and the spaces (Mn, dn, voln) do not satisfy the assumptions of Theorem 2.3 above, because
they do not converge anywhere in the pmGH-topology. We emphasize that the choice of
excluding null reference measures is customary in this research field, see for instance [33] and
references therein for a discussion of this topic in relation to convergence of mm-structures.

The typical way to avoid measures disappearing in the limit is to renormalise them via
the multiplication by an appropriate constant: this is precisely what Cheeger-Colding do in
[17], [18], [19] when defining renormalised limit measure. In our case, by (2.9) we are led to

11



consider the measures mn := cnvoln with cn ∼ n, so that the spaces (Mn, dn,mn) converge
in the pmGH-sense to (R, dE, cL1) for some c > 0. Thus we have ϑ2[Mn, dn,mn] ≡ cn → +∞
and mn(Br(pn))→ cL1(Br(0)) = 2cr > 0 as n→∞. Hence for any function z 7→ f(z) going
to +∞ as z → +∞ we have∫

Br(pn)
f ◦ ϑ2[Mn, dn,mn] dmn = f(cn)mn(Br(pn))→ +∞, as n→ +∞,

so that the assumption (2.7) does not hold in this case.
We conclude pointing out that the notion of (weakly) non-collapsed space makes sense

only when coupled with the dimension which is being considered, so that it can very well
be that a sequence of 2-dimensional non-collapsed spaces converges, with collapsing, to a 1-
dimensional non-collapsed space. This is precisely what happens in the example we discussed
here. �

In the proof of Theorem 2.3 we used the following known simple variant of the classical
Fatou lemma:

Lemma 2.5 (A variant of Fatou’s lemma). Let (Y, dY) be a complete and separable metric
space, {µn}n∈N∪{∞} be Radon measures finite on bounded sets such that

lim
n→∞

∫
ϕdµn =

∫
ϕdµ∞

for every ϕ ∈ Cb(Y) with bounded support. Also, let fn : Y → R ∪ {+∞}, n ∈ N ∪ {∞} be
such that

yn → y ⇒ f∞(y) ≤ lim
n→∞

fn(yn) (2.10)

and fn ≥ g for every n ∈ N ∪ {∞} for some g ∈ Cb(Y) with bounded support.
Then ∫

f∞ dµ∞ ≤ lim
n→∞

∫
fn dµn.

Proof Replacing fn with fn−g we can assume that the fn’s are non-negative. Then we follow
verbatim the proof in [2, Lemma 8.2] which, although presented on Rd, actually holds also in
our context. �

2.2 Tangent spaces

In this section we study the tangent spaces of weakly non-collapsed spaces, here is the defi-
nition that we will adopt (notice the chosen scaling of the measure):

Definition 2.6 ((metric) tangent space). Let K ∈ R, N ∈ [1,∞), (X, d,m) an RCD(K,N)
space with supp(m) = X and x ∈ X.

We say that (Y, dY, o) is a metric tangent space of X at x if there exists a sequence rn ↓ 0
such that

(Xrn , drn , x) := (X, d/rn, x)
pGH→ (Y, dY, o) as n ↑ ∞.

Similarly, we say that (Y, dY,mY, o) is a tangent space of X at x if there exists a sequence
rn ↓ 0 such that

(Xrn , drn ,mrn , x) := (X, d/rn,m/r
N
n , x)

pmGH→ (Y, dY,mY, o) as n ↑ ∞.
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Notice that the Bishop-Gromov inequality (1.4) gives that infr∈(0,1) mr(B1(x)) > 0 for
every x ∈ supp(m) and if ϑN (x) <∞ then by (1.7) we also have that supr∈(0,1) mr(B1(x)) <
∞. Hence recalling (2.1) we see that given an RCD(K,N) space (X, d,m) and a point x ∈ X
with ϑN (x) < ∞, the family (Xr, dr,mr, x), r ∈ (0, 1), is precompact and, by scaling, any
limit space as r ↓ 0 is RCD(0, N).

For the definition of cone built over a metric space see for instance [13, Definition 3.6.16].
We then give the following:

Definition 2.7 (Metric (measure) cones). We say that (X, d) is a metric cone with vertex
x ∈ X provided there is a metric space (Z, dZ) and an isometry ι between X and the cone over
Z sending x to the vertex.

If X is also endowed with a Radon measure m we say that it is a metric measure cone
provided there are Z, ι as before and moreover there are a Radon measure mZ on Z and α ≥ 1
such that

d(ι∗m)(r, z) = dr ⊗ rα−1 dmZ(z).

In this case we say that X is an α-metric measure cone.

A crucial regularity property of weakly non-collapsed spaces is contained in the following
statement, which in turn is a direct consequence of the ‘volume cone to metric cone’ for RCD
spaces obtained in [24, Theorem 1.1]:

Proposition 2.8 (Tangent spaces are cones). Let K ∈ R, N ∈ [1,∞), (X, d,m) an RCD(K,N)
space and x̄ ∈ X such that ϑN (x̄) <∞. Then every tangent space (X∞, d∞,m∞, o) at x̄ is an
N -metric measure cone based in o and it holds

ϑN [X,d,m](x̄) = ϑN [X∞, d∞,m∞](o) =
m∞(B%(o))

ωN%N
∀% > 0. (2.11)

Proof Let rn ↓ 0 be such that the rescaled spaces (Xrn , d/rn,m/r
N
n , x̄) pmGH-converge to the

RCD(0, N) space (X∞, d∞,m∞, o). We shall apply [24, Theorem 1.1] to the space X∞. From
the very definition of pmGH-convergence and recalling (2.4), for any % > 0 we have

m∞(B%(o))

ωN%N
= lim

n→∞

m∞(Brn%(x̄))

ωN (rn%)N
= ϑN [X,d,m](x̄). (2.12)

Hence % 7→ m∞(B%(o))
%N

is constant and according to [24, Theorem 1.1] this is enough to deduce

that X∞ is a N -metric measure cone based in o. Also, letting % ↓ 0 in (2.12) we deduce (2.11).
�

The fact that tangent cones of wncRCD spaces are in fact a.e. Euclidean spaces is based
on the following simple lemma. Notice that the first part of the statement only assumes the
space to be a metric cone, and not a metric measure cone: the rigidity is possible because the
splitting theorem for RCD(0, N) spaces only requires the existence of a straight line on the
given space and this is a metric requirement (as opposed to a metric-measure requirement).

Lemma 2.9. Let N ∈ [1,∞) and let (X, d,m) be an RCD(0, N) space which, for every x ∈ X,
is a metric cone with vertex in x. Then there exists m ∈ N and cm > 0 such that (X, d,m) =
(Rm, dE, cmLm).

If we also know a priori that X is an N -metric measure cone with vertex x for every
x ∈ X, then N ∈ N and m = N in the above.
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Proof By the very definition of metric cone with vertex x̄ any point x ∈ X \ {x̄} lies in the
interior of a half line (i.e. an isometric embedding of [0,+∞)). Moreover, by assumption, for
every x ∈ X \ {x̄} and r > 0 the pointed spaces (X, d/r, x) and (X, d, x) are isometric and
therefore any metric tangent space at x must coincide with X itself. Given that x lies in the
interior of a length minimising geodesic, the tangent space, and hence X itself, must contain
a line through x, see for instance [?, Proof of Theorem 1.1] for a similar argument. Thus
the splitting theorem for RCD spaces [28], [30] grants that (X, d,m) splits off a line, i.e. it is
isomorphic to the product of the Euclidean line R and a metric measure space (X′, d′,m′).
Moreover, such X′ is a point if N ∈ [1, 2) and a RCD(0, N − 1) space if N ≥ 2. By iterating
this fact finitely many times we obtain the desired conclusion.

The last statement is now obvious. �

We then have the following:

Proposition 2.10. Let K ∈ R, N ∈ [1,∞), (X, d,m) an RCD(K,N) space with supp(m) = X
and x̄ ∈ X. Assume that x̄ is a point of approximate continuity of ϑN [X], i.e. ϑN [X](x̄) <∞
and (2.5) holds.

Then N ∈ N and (RN , dE, ϑN [X](x̄)LN , 0) is the only tangent space of X at x̄.

Proof Let (X∞, d∞,m∞, o) be a tangent space at x̄, let rn ↓ 0 be a sequence that realises it

and pick y ∈ X∞. We claim that there exists a sequence n 7→ yn ∈ Xrn such that yn
GH→ y and

ϑN [X, d,m](yn)→ ϑN [X, d,m](x̄). (2.13)

Indeed, let n 7→ ỹn ∈ Xrn = X be arbitrary such that ỹn
GH→ y (recall (2.2)), notice that

d(ỹrn , x̄) → 0 and that the choice of x̄ and the fact that m is doubling grant that for every
r, ε > 0 the balls Brrn(ỹn) ⊂ X must eventually intersect the set {x : |ϑ(x) − ϑ(x̄)| < ε}.
Hence with a perturbation and diagonalization argument, starting from (ỹn) we can produce
the desired (yn).

With this said, for any % > 0 we have

m∞(B%(y))

ωN%N
(2.4)
= lim

n→∞

m(B%rn(yn))

ωN (%rn)N

(1.6),(1.4)

≤ lim
n→∞

ϑN [X, d,m](yn)
(2.13)

= ϑN [X, d,m](x̄).

(2.14)

On the other hand, putting R := d∞(y, o) and using again the Bishop-Gromov inequality
(1.4) (recall that X∞ is RCD(0, N)) we have

m∞(B%(y))

ωN%N

(1.4)

≥ lim
r→∞

m∞(Br(y))

ωNrN
= lim

r→∞

m∞(Br+R(y))

ωN (r +R)N

≥ lim
r→∞

m∞(Br(o))

ωNrN
rN

(r +R)N
(2.11)

= ϑN [X, d,m](x̄).

(2.15)

From (2.14) and (2.15) we deduce that

% 7→ m∞(B%(y))

ωN%N
is constantly equal to ϑN [X, d,m](x̄) (2.16)

and from [24] we can then deduce that (X∞, d∞,m∞, y) is a N -metric measure cone. Then
arbitrariness of y ∈ X∞ and the simple Lemma 2.9 above give the conclusion. �
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2.3 Equivalent characterizations of weakly non-collapsed spaces

Here we shall prove Theorem 1.12 about different equivalent characterizations of weakly non-
collapsed spaces.

We shall make use of the following classical result about differentiation of measures, see
e.g. [10, Theorem 2.4.3] for the proof.

Lemma 2.11 (Density w.r.t. Hausdorff measures). Let (X, d) be a complete and separable
metric space, m a Radon measure on it and for α ≥ 0 define the α-upper density function as:

ϑ̄α(m, x) := lim
r↓0

m(Br(x))

ωαrα
.

Then for every Borel B ⊂ X and c > 0 it holds

ϑ̄α(m, x) ≥ c ∀x ∈ B ⇒ m(B) ≥ cHα(B), (2.17)

ϑ̄α(m, x) ≤ c ∀x ∈ B ⇒ m(B) ≤ c2αHα(B), (2.18)

Let us point out a direct consequence of the above which, being based on the Bishop-
Gromov inequality only, is valid on general MCP(K,N) spaces:

Proposition 2.12. Let K ∈ R, N ∈ [1,∞) and (X, d,m) a MCP(K,N) space with supp(m) =
X. Then for every R > 0 there is C = C(K,N,R) such that for every x ∈ X it holds

HN |BR(x)
≤ C(K,N,R)

m(B1(x))
m|BR(x)

. (2.19)

In particular, HN is a Radon measure on X, is absolutely continuous w.r.t. m and it holds

HN (Br(x)) = HN (B̄r(x)) ∀x ∈ X, r > 0. (2.20)

Proof The Bishop-Gromov inequality (1.4) implies that ϑN [X, d,m](y) ≥ m(B2R(y))
vK,N (2R) ≥

m(B1(x))
vK,N (2R)

for every y ∈ BR(x) and R > 1. Also, from (1.7) we know that ϑ̄N (m, y) = ϑN [X, d,m](y) for
every y ∈ X. Hence (2.19) comes from (2.17) and then (2.20) follows from (2.3). �

Before coming to the proof of Theorem 1.12 let us collect in the following statement the
known rectifiability properties of RCD spaces:

Theorem 2.13 (Rectifiability of RCD spaces). Let K ∈ R, N ∈ [1,∞) and (X, d,m) be an
RCD(K,N) space. Then we can write

X = N ∪
M⋃
k=1

⋃
j∈N

Ukj (2.21)

for Borel sets N , Ukj where m(N ) = 0, M ∈ N, M ≤ N , each Ukj is bi-Lipschitz to a subset of

Rk, and for m-a.e. x ∈ Ukj the metric tangent space at x is the Euclidean space Rk. Moreover
for any j, k it holds

m|Ukj
= ϑkjHk|Ukj

(2.22)

for some Borel function ϑkj : X→ R which also satisfies

ϑkj (x) = lim
r↓0

m(Br(x) ∩ Ukj )

ωkrk
= lim

r↓0

m(Br(x))

ωkrk
Hk|Ukj

− a.e. x. (2.23)
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Proof The existence of the partition (2.21), of bi-Lipschitz charts and the fact that metric
tangent spaces are Euclidean have all been proved in [44]. Property (2.22) has been proved in
[41], [35]. These informations together grant that m|Ukj

is a k-rectifiable measure according to

[7, Definition 5.3], hence the first equality in(2.23) follows from [7, Theorem 5.4]. To conclude,
notice that if

ϑkj (x) < lim
r↓0

m(Br(x))

ωkrk

holds in a Borel set A ⊂ Ukj of positive Hk-measure, then we can find b > a ≥ 0 and a Borel

set A′ ⊂ A such that HN (A′) > 0, ϑkj ≤ a Hk-a.e. on A′ and limr↓0
m(Br(x))
ωkrk

≥ b for x ∈ A′.
This would lead to

m(A′)
(2.17)

≥ bHk(A′) > aHN (A′)
(2.22)

≥ m(A′),

which is impossible. This proves the second equality in (2.23) and concludes the proof (see
also [6] for similar arguments). �

We are now ready to prove Theorem 1.12.

Proof of Theorem 1.12
(i) ⇒ (ii) By (2.18) we know that m|{θ<+∞} � H

N and since by hypothesis we have that

m({ϑN = +∞}) = 0, the claim follows.
(ii) ⇒ (iii) Proposition 2.12 grants that HN is σ-finite, hence the claim follows by the
Radon-Nikodym theorem.
(iii) ⇒ (i) We consider the decomposition (2.21) and notice that the assumption m = ϑ1HN
and (2.22) forces m(Ukj ) = 0 for every k < N and j ∈ N and, since m(X) > 0, N to be an
integer. Hence for every j we have

ϑN [X](x)
(1.7)
= lim

r→0

m(Br(x))

ωNrN
(2.23)

= ϑ1(x) < +∞ for m|UNj
-a.e. x. (2.24)

(i) ⇒ (iv) Consequence of the assumptions, point (ii) of Lemma 2.2 and Proposition 2.10,
which also grant that

ϑN = ϑ2 m-a.e.. (2.25)

(iv) ⇒ (v) This is immediate, since one can easily check that

cr/r
N =

∫
BXr

1

(1− dr(y, x))dmr(y) → ϑ2(x)

∫
BRN

1

(1− |y|)dLN (y).

(v) ⇒ (vi) Trivial by definitions.
(vi) ⇒ (ii) By Theorem 2.13 we know that for every k, j, for m-a.e. x ∈ Ukj the metric

tangent space at x is Rk. Thus our assumption forces m to be concentrated on ∪jUNj and the
conclusion follows recalling (2.22).
(vi) ⇔ (vii) This is an immediate consequence of [36, Theorem 5.1].
Proof of xxx Consequence of (2.24) and (2.25).
(vii) ⇒ (1.10) This follows from [40, Proposition 4.1]. �
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An easy consequence of the above is:

Corollary 2.14 (ncRCD⇒ wncRCD). Let (X, d,HN ) be a ncRCD(K,N) space. Then

ϑN (x) ≤ 1 ∀x ∈ X. (2.26)

In particular, (X̃, d,HN ) is wncRCD(K,N), where X̃ ⊂ X is the support of HN .

Proof By point (iii) of Theorem 1.12 and (1.9) we see that ϑN ≤ 1 HN -a.e.. Then (2.26)
follows by the lower semicontinuity of ϑN established in point (i) of Lemma 2.2. �

2.4 Tensorization and factorization

Given two metric measure spaces (X1, d1,m1) and (X2, d2,m2), by their product we mean the
product X1 ×X2 equipped with the distance d1 ⊗ d2 defined by

(d1 ⊗ d2)2
(
(x1, x2), (x′1, x

′
2)
)

:= d2
1(x1, x

′
1) + d2

2(x2, x
′
2) ∀x1, x

′
1 ∈ X1, x2, x

′
2 ∈ X2

and the product measure m1 ×m2.
Recall that the product of an RCD(K,N1) and an RCD(K,N2) space is RCD(K,N1 +N2)

(see [50], [4], [5]).
With this said, thanks to characterization of wncRCD spaces via blow-ups obtained in

Theorem 1.12 we can easily prove that products and factors of wncRCD (resp. ncRCD) are
wncRCD (resp. ncRCD):

Proposition 2.15 (Tensorization and factorization of non-collapsed spaces). Let (Xi, di,mi)
be RCD(K,Ni) spaces, i = 1, 2, with K ∈ R and Ni ∈ [1,∞) and consider the product space
(X1 ×X2, d1 ⊗ d2,m1 ×m2).

Then X1 × X2 is wncRCD(K,N1 + N2) if and only if X1 is wncRCD(K,N1) and X2 is
wncRCD(K,N2).

Similarly, X1×X2 is ncRCD(K,N1+N2) if and only if for some constant c > 0 (X1, d1, cm1)
is ncRCD(K,N1) and (X2, d2, c

−1m2) is ncRCD(K,N2).

Proof From Theorem 2.13 we know that for m1-a.e. x1 the metric tangent space of X1 at x1 is
Rn1(x1) with n1(x1) ≤ N1. Similarly for X2. Then from the very definition of pGH-convergence
and Fubini’s theorem it is readily checked that Rn1(x1)+n2(x2) is the metric tangent space of
X1 ×X2 at (x1, x2) for m1 ×m2-a.e. (x1, x2).

Thus the claims about wncRCD spaces follows by the characterization given in point (vi)
of Theorem 1.12.

For the case of ncRCD spaces we can assume, by what just proved, that X1,X2,X1 × X2

are all wncRCD spaces. Then we notice that, much like in the metric case just considered,
if (RN1 , dE, ϑN1 [X1](x1)LN1 , 0) (resp. (RN2 , dE, ϑN2 [X2](x2)LN2 , 0)) is the tangent space of X1

(resp. X2) at x1 (resp. x2), then (RN1+N2 , dE, ϑN1(x1)ϑN2(x2)LN1+N2 , 0) is the tangent space
of X1 × X2 at (x1, x2). Hence taking into account the characterization of wncRCD spaces in
point (iv) of Theorem 1.12 we deduce that

ϑN1+N2 [X1 ×X2](x1, x2) = ϑN1 [X1](x1)ϑN2 [X2](x2) (m1 ×m2)− a.e. (x1, x2). (2.27)

Hence if ϑN1 [X1](x1) = c > 0 m1-a.e. and ϑN2 [X2](x2) = c−1 > 0 m2-a.e. it trivially follows
that ϑN1+N2 [X1 × X2] = 1 a.e., thus showing that X1 × X2 is ncRCD (by (iii) of Theorem
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1.12 and (2.11)). Conversely, if the left-hand-side of (2.27) is a.e. equal to 1, then the identity
(2.27) forces ϑN1 [X1] and ϑN2 [X2] to be a.e. constant and since the product of these constants
must be 1 we must have ϑN1 [X1](x1) = c m1-a.e. and ϑN2 [X2](x2) = c−1 > 0 m2-a.e. for some
c > 0, which is the claim. �

3 Non-collapsed spaces

3.1 Continuity of HN

In this section we prove the continuity of HN as stated in Theorem 1.3.
A key ingredient that we shall need is the “almost splitting via excess theorem” proved

by Mondino and Naber in [44, Theorem 5.1]: we shall present such result in the simplified
form that we need referring to [44] for the more general statement.

Here and in the following for p ∈ X we put dp(·) := d(·, p) and for p, q ∈ X we put
ep,q := dp + dq − d(p, q).

Theorem 3.1. For every k ∈ N, N ∈ R, 1 ≤ k ≤ N and ε ∈ (0, 1) there is δ1 = δ1(ε, k,N) ≤
1 such that the following holds.

Assume that (X, d,m) is an RCD(−δ1, N) space with supp(m) = X and that there are
points x̄, {pi, qi}1≤i≤k, {pi + pj}1≤i<j≤k in X with d(pi, x̄), d(qi, x̄), d(pi + pj , x̄) ≥ 1/δ1 such
that ∑

1≤i≤k
−
∫
BX
R(x̄)
|Depi,qi |2dm +

∑
1≤i<j≤k

−
∫
BX
R(x̄)

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2dm ≤ δ1 (3.1)

for all 1 ≤ R ≤ 1/δ1.
Then there exists a metric space Y and a map φ : X→ Y such that if we define

u := (dp1 − dp1(x̄), . . . , dpk − dpk(x̄)) : X→ Rk,

the map U := (u, φ) : X→ Rk ×Y provides an ε-isometry of BX
1 (x̄) to BRk×Y

1 ((0, φ(x)), i.e.:

∀x, y ∈ BX
1 (x̄) it holds

∣∣dX(x, y)− dRk×Y(U(x), U(y))
∣∣ ≤ ε,

∀z ∈ BRk×Y
1 ((0, φ(x)) there is x ∈ BX

1 (x̄) such that dRk×Y(U(x), z) ≤ ε.

Furthermore if k = N we can take Y to be a single point.

Very shortly and roughly said, the idea of the proof is the following: For given ε > 0 one
picks a sequence δ1,n ↓ 0 and a corresponding sequence of spaces Xn satisfying the assumptions
for δ1 = δ1,n pmGH-converging to a limit X. Then by an Ascoli-Arzelà-type argument, up to
subsequences the corresponding functions un : Xn → Rk converge to a limit u : X→ Rk and,
this is the key point of the proof, thanks to (3.1) such limit map u is a metric submersion.
The compactness (2.1) of the class of RCD(−1, N) spaces then gives the conclusion (see [44,
Theorem 5.1] for the details).

An important consequence of the above theorem is the following sort of ‘ε-regularity’
result (see also [44, Theorem 6.8]) that we shall state for the case k = N ∈ N only; notice
that, as discussed in [44], the map uε is (1 + ε)-biLipschitz for arbitrary values of k, but in
order to obtain the key inequality (3.3) the ‘maximality’ assumption k = N ∈ N is necessary
(see in particular inequalities (3.14) and (3.15)).
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Proposition 3.2. For every N ∈ N, N ≥ 1 and ε ∈ (0, 1) there is δ2 = δ2(ε,N) > 0 such
that the following holds. Let (X, d,m) be an RCD(−δ2, N) space with supp(m) = X and x̄ ∈ X
such that

dGH

((
BX

1/δ2
(x̄), d

)
,
(
BRN

1/δ2
(0), dE

))
< δ2. (3.2)

Then there exists a Borel set Uε ⊂ BX
1 (x̄) and a (1+ε)-biLipschitz map uε : Uε → uε(Uε) ⊂ RN

such that
LN
(
uε(Uε) ∩BRN

1 (0)
)
≥ (1− ε)LN (BRN

1 (0)). (3.3)

Proof We divide the proof in two steps:
Step 1: construction of Uε, uε and (1 + ε)-biLipschitz estimate This is the content of [44, The-
orem 6.8], however since some aspects of the proof will be needed to obtain (3.3) we briefly
recall the argument.

Step 1.1: basic ingredients We start observing that for any R ≥ 1 and any f ∈ Lip(X), it
holds the simple inequality∫

BR(x̄)
|Df |2 dm ≤ ‖f‖L∞(B2R(x̄))

(
‖∆f‖L1(B2R(x̄)) + m(B2R(x̄)) Lip(f)

)
, (3.4)

as can be proved with an integration by parts (see e.g. [31] for all the relevant defini-
tions and properties of integration by parts and Laplacian) starting from

∫
BR(x̄) |Df |

2 dm ≤∫
X |Df |

2ϕdm for ϕ := (1− d(·, BR(x̄)))+. (In fact one can easily get rid of the term Lip(f) in
the right hand side provided ϕ has bounded Laplacian. The existence of such cut-off functions
- i.e. Lipschitz and with bounded Laplacian - in the context of Ricci-limit spaces has been
proved in [16] and frequently used as important technical tool in [17, 18, 19, 20, 21, 22]; their
existence in the RCD setting has been proved in [8, Lemma 6.7] and [34, Theorem 3.12], see
also [44, Lemma 3.1].).

A second ingredient is the Laplacian comparison estimate for the distance function (see
[31]) which ensures that on an RCD(−1, N) space, if d(p, x̄) ≥ 8R ≥ 8 then ∆dp ≤ C(N,R)
on B4R(x̄) (this should be understood as an inequality between measures, but for the purpose
of this outline let us think at ∆dp as a function). From this bound it is not hard to get the
estimate

‖∆dp‖L1(B2R(x̄)) ≤ C(N,R)m(B4R(x̄)) ∀p /∈ B8R(x̄) (3.5)

(this is in fact reverse engineering: in [31] the fact that ∆dp is a measure is obtained by
proving an inequality like (3.5) with the total variation norm in place of the L1 one).

Step 1.2: geometric argument Let η̃, δ1 ∈ (0, 1) and notice - by direct simple computation

- that there exists R ≥ 32
δ1

such that

sup
x∈BRN

8/δ1
(0)

(
|x−Rei|+ |x+Rei| − 2R

)
≤ η̃ ∀i = 1, . . . , N.

Hence if (3.2) is satisfied for some δ2 ≤ min{η̃, 1
R}, letting pi, qi ∈ X be points corresponding

to Rei,−Rei respectively in the δ2-isometry we obtain

‖epi,qi‖L∞(BX
4/δ1

(x̄)) ≤ 3δ2 + η̃ ≤ 4η̃ ∀i = 1, . . . , N.

Noticing that d(pi, x̄), d(qi, x̄) ≥ R− δ2 ≥ 16
δ1

, from (3.5) we deduce that

‖∆epi,qi‖L1(B4/δ1
(x̄)) ≤ C(δ1, N)m(B8/δ1(x̄)) ∀i = 1, . . . , N
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and since epi,qi is 2-Lipschitz, these last two bounds, (3.4) and (1.4) imply that

−
∫
B2/δ1

|Depi,qi |2 dm ≤ 4η̃ C(δ1, N).

The same line of thoughts yields the analogous inequality for the function
dpi+dpj√

2
−dpi+pj for

properly chosen points pi + pj ∈ X with d(pi + pj , x̄) ≥ 16/δ1.
Now we fix ε ∈ (0, 1), pick δ1 = δ1(ε,N) given by Theorem 3.1, let η � ε be a small

parameter to be fixed later and notice that we can rephrase what we just proved as: there exists
δ2 = δ2(δ1, η,N) ≤ 1 such that if (3.2) is satisfied for such δ2 - which we shall hereafter assume
-, then we can find points {pi, qi}1≤i≤N , {pi+pj}1≤1<j≤N with d(pi, x̄), d(qi, x̄), d(pi+pj , x̄) ≥
2/δ1 and such that∑

1≤i≤N
−
∫
BX

2/δ1
(x̄)
|Depi,qj |2dm +

∑
1≤i<j≤N

−
∫
BX

2/δ1
(x̄)

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2dm ≤ η2. (3.6)

Step 1.3: use of the maximal function Consider the function f : X→ R defined as

f(x) :=
∑

1≤i≤N
|Depi,qj |2 +

∑
1≤i<j≤N

∣∣∣D(dpi + dpj√
2

− dpi+pj

)∣∣∣2 (3.7)

and its maximal function M : BX
1 (x̄)→ R given by

M(x) = sup
0<R<1/δ1

−
∫
BX
R(x)

f(x)dm.

We put
U :=

{
x ∈ BX

1 (x̄) : M(x) ≤ η
}

and note that the left hand side of (3.1) is invariant under rescaling of the distance (essentially
because it holds |Drd

r
p| = |Ddp|, where drp = dp/r and |Dr · | is the weak upper gradient

computed with respect to the metric measure space (X, d/r,m)). Hence for x ∈ U we can apply
Theorem 3.1 to the scaled space (X, d/r,m) for r ∈ (0, 1) (notice that since we multiplied
the distance by a factor > 1, the space is ‘flatter’ than the original one and in any case still
RCD(−δ2, N), in particular 3.1 is applicable) - to infer that, provided η, and hence δ2, are
sufficiently small, the map

u := (dp1 − dp1(x̄), . . . , dpN − dpN (x̄))

is an ε-isometry at every scale in the range (0, 1) around points on U : this is sufficient to
prove that it is (1 + ε) bi-Lipischitz when restricted to U , see the proof of [44, Theorem 6.8]
for the details.

Step 2: proof of estimate (3.3) From the trivial set identity

BRN
1 (0) ∩ u(U) =

(
BRN

1 (0) \
(
BRN

1 (0) \ u(BX
1 (x̄))

))
\
(
u(BX

1 (x̄)) \ u(U)
)

we deduce that

LN
(
BRN

1 (0)∩u(U)
)
≥ LN

(
BRN

1 (0)
)
−LN

(
BRN

1 (0)\u(BX
1 (x̄))

)
−LN

(
u(BX

1 (x̄))\u(U)
)
. (3.8)
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Step 2.1: estimate of the size of u(BX
1 (x̄)) \ u(U) Recall that since δ2 ≤ 1, the space X is

RCD(−1, N) and thus m|BX
2/δ1

(x̄)
is doubling with a constant depending only on δ1 and N .

Hence according to the weak L1 estimates for the maximal function we have

m(BX
1 (x̄) \ U)

m(BX
1 (x̄))

≤ C(δ1, N)

ηm(BX
1 (x̄))

∫
BX

2/δ1
(x̄)
f(x) dm

(3.6)

≤ C(δ1, N) η
m(BX

2/δ1
(x̄))

m(BX
1 (x̄))

≤ C(δ1, N) η.

(3.9)
Now notice that u is

√
N -Lipschitz so that since u(BX

1 (x̄)) \ u(U) ⊂ u(BX
1 (x̄) \ U) we have

LN
(
u(BX

1 (x̄)) \ u(U)
)
≤ LN

(
u(BX

1 (x̄) \ U)
)
≤ (
√
N)NHN

(
BX

1 (x̄) \ U
)

and therefore using (2.19) with R = 1 we get

LN
(
u(BX

1 (x̄)) \ u(U)
)
≤ C(K,N)

m
(
BX

1 (x̄) \ U
)

m
(
BX

1 (x̄)
) (3.9)

≤ C(δ1,K,N) η. (3.10)

Step 2.2: estimate of the size of BRN
1 (0) \ u(BX

1 (x̄)) SinceBRN
1/2(−1

2e1) ⊂ BRN
1 (0)\BRN

1 (e1)
we have that

if S ⊂ BRN√
N

(0) is 1
2 -dense in BRN

1 (0), then S ∩BRN
1 (e1) 6= ∅. (3.11)

Then let δ̄ := δ1(1
2 , N,N) be given by Theorem 3.1 and put

λ = λ(N) :=

√
N + 1

δ̄
.

Apply Lemma 3.3 below to such λ and to the open set A := BRN
1 (0) \ u

(
B̄X

1 (x̄)
)

(notice that

since u(x̄) = 0 we have A 6= BRN
1 (0)) to find balls {BRN

rk
(yk)}Mk=1 satisfying the properties

(i), . . . , (iv) stated in the lemma. By property (ii), for every k = 1, . . . ,M there exists zk ∈
B̄X

1 (x̄) such that u(zk) ∈ ∂BRN
rk

(yk). Moreover by point (i) and the
√
N -Lipschitzianity of u,

u
(
BX
rk

(zk)
)
⊂ BRN√

Nrk
(u(zk)) \BRN

rk
(yk). (3.12)

We now claim that there exists a radius ρk ∈ (rk, rk/δ̄) such that

−
∫
Bρk (zk)

f(x)dm ≥ δ̄ (3.13)

where f is the function defined in (3.7) (recall that the points pi, qi, pi + pj have been already
fixed in Step 1.2). Indeed if (3.13) fails we can apply the scaled version of Theorem 3.1 to

deduce that u(BX
rk

(zk)) is 1
2rk-dense in BRN

rk
(u(zk)), a contradiction with (the scaled version

of) (3.11) and (3.12). Using again that m|B2/δ1
(x̄)

is doubling with a constant depending only

on δ1 and N , and that ρk ≤ rk/δ̄ ≤ 1/δ̄ we see that

m
(
BX

2/δ1
(x̄)
)
≤ C(δ1, N)

m(BX
ρk

(zk))

ρNk
for every k = 1, . . . ,M (3.14)
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and therefore from the fact that rk ≤ ρk we obtain

M∑
k=1

rNk ≤
M∑
k=1

ρNk
(3.14)

≤ C(δ1, N)

m(BX
2/δ1

(x̄))

M∑
k=1

m(BX
ρk

(zk))
(3.13)

≤ C(δ1, N)

δ̄m(BX
2/δ1

(x̄))

M∑
k=1

∫
BX
ρk

(zk)
f dm.

(3.15)

Since u is
√
N -Lipschitz and u(zk) ∈ ∂BRN

rk
(yk) we have

u(BX
ρk

(zk)) ⊂ u(BX
rk/δ̄

(zk)) ⊂ BRN√
Nrk/δ̄

(u(zk)) ⊂ BRN
(
√
N+1)rk/δ̄

(yk) = BRN
λ(N)rk

(yk).

This inclusion and the fact that, by property (iii) in Lemma 3.3, the balls BRN
λ(N)rk

(yk) are

disjoint, grant that the balls BX
ρk

(zk) ⊂ BX
2/δ1

(x̄) are disjoint as well. Hence from (3.15) we
get

M∑
k=1

rNk ≤
C(δ1, N)

δ̄m(BX
2/δ1

(x̄))

∫
BX

2/δ1
(x̄)
f dm

(3.6)

≤ C(δ1, N)

δ̄
η2

which together with property (iv) in Lemma 3.3 gives

LN
(
BRN

1 \ u(BX
1 (x̄)

)
≤ C(λ(N), N)

C(δ1, N)

δ̄
η2.

The conclusion comes plugging this bound and (3.10) into (3.8) and by picking η, and thus
δ2, sufficiently small w.r.t. ε. �

In the proof of the above proposition we have used the following covering Lemma from
[22], we report here its simple proof for the sake of completness.

Lemma 3.3. Let N ∈ N, N ≥ 1, and λ ≥ 1. Then there exists a constant C = C(λ,N) such
that the following holds.

For every A ( BRN
1 (0) open there exists a finite family of balls {BRN

rk
(yk)}Mk=1, such that

(i) BRN
rk

(yk) ⊂ A for every k,

(ii)
(
∂BRN

rk
(yk) ∩ ∂A

)
\ ∂BRN

1 (0) 6= ∅ for every k,

(iii) The family {BRN
λrk

(yk)}Mk=1 is disjoint,

(iv) It holds

LN (A) ≤ C(λ,N)
M∑
k=1

rNk . (3.16)

Proof We claim that if B ⊂ A is a ball with B ⊂ B1(0), then there exists another ball B′

such that
B ⊂ B′ ⊂ A and

(
∂B′ ∩ ∂A

)
\ ∂BRN

1 (0) 6= ∅. (3.17)

Indeed, let B = Br(v), put Bt := B(1−t)r+t(tv), notice that the family (0, 1) 3 t 7→ Bt is

increasing and that Bt ⊂ B1(0) for every t ∈ [0, 1). Since ∪t∈[0,1)Bt = B1(0) and A is strictly
included in B1(0), by a simple compactness argument we find a least t0 ∈ [0, 1) such that
Bt0 ∩ (RN \ A) 6= ∅ and since Bt0 ⊂ B1(0) we must also have Bt0 ∩ (B1(0) \ A) 6= ∅. To
conclude the proof of the claim simply notice that from the trivial identity Bt0 = ∪t∈[0,t0)Bt

and the minimality of t0 we have Bt0 ⊂ A, hence B′ := Bt0 does the job.
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Now let K ⊂ A be compact so that LN (A) ≤ 2LN (K) and, by compactness, find a finite

family of balls {BRN
rj (yj)}Lj=1 with closure included in A and covering K. Up to replace each of

these balls with the corresponding one B′ as in (3.17), we can assume that this family satisfies
(i), (ii). We shall now build a subfamily for which (iii), (iv) also hold. Up to reordering we
can assume that r1 ≥ . . . ≥ rL. Then put j1 := 1 and define recursively

jn := least index j such that BRN
λrj

(yj) ∩
n−1⋃
i=1

BRN
λrji

(yji) = ∅.

Since the original family was finite, this process ends at some step M and, by construction,
the family {BRN

rji
(yji)}Mj=1 fulfils (i), (ii), (iii). Also, by construction for every j > 1 there is

i ∈ {1, . . . ,M} such that rji ≥ rj and BRN
λrj

(yj) ∩BRN
λrji

(yji) 6= ∅, hence BRN
λrj

(yj) ⊂ BRN
3λrji

(yji)

and thus

K ⊂
L⋃
j=1

BRN
rj (yj) ⊂

L⋃
j=1

BRN
λrj

(yj) ⊂
M⋃
i=1

BRN
3λrji

(yji),

so that (3.16) holds with C(λ,N) := 2ωN (3λ)N . �

We can now prove the continuity of HN under a uniform Riemannian-curvature-dimension
condition:

Proof of Theorem 1.3
Set up If N /∈ N, Theorem 2.13 implies that HN (X) = 0 for any RCD(K,N) space X, hence
in this case there is nothing to prove. We shall therefore assume N ∈ N.

Let (Zn) ⊂ BK,N,R be GH-converging to some limit Z∞ ∈ BK,N,R and for each n ∈ N,
let (Xn, dn,mn, xn) be an RCD(K,N) space such that Zn = B̄Xn

R (xn). Up to replace mn

with mn/mn(Zn) we can, and will, assume that mn(Zn) = 1 for every n ∈ N. Then by
the compactness of the class of RCD(K,N) spaces (2.1), up to pass to a subsequence, not

relabeled, we have (Xn, dn,mn, xn)
pmGH→ (X∞, d∞,m∞, x∞) for some pointed RCD(K,N)

space X∞. It is then clear that Z∞ = B̄X∞
R (x∞). To conclude it is now sufficient to prove that

HN (Zn) → HN (Z∞), because such continuity property is independent on the subsequence
chosen.
Upper semicontinuity Let (X, d,m) be a generic RCD(K,N) space with supp(m) = X. We
claim that

HN =
1

ϑN [X]
m (3.18)

where it is intended that 1
ϑN [X](x) = 0 if ϑN [X](x) =∞. To see this start observing that the

Bishop-Gromov inequality (1.4) grants that

ϑN [X](x) ≥ C(K,N)m(B1(x)), (3.19)

so that 1
ϑN [X] ∈ L

1
loc(X,m) and the right hand side of (3.18) defines a Radon measure. Then,

in the notation of Theorem 2.13, by (2.23) for k = N it follows that equality holds in (3.18) if
we restrict both sides to ∪jUNj , so that to conclude it is sufficient to show that on X\ (∪jUNj )

both sides of (3.18) are zero. The fact that HN (X \ (∪jUNj )) = 0 is a trivial consequence of
Proposition 2.12 and Theorem 2.13, while (2.22) and (2.23) imply that for k < N , k ∈ N we
have ϑN [X] =∞ m-a.e. on ∪jUkj . Hence our claim (3.18) is proved.
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Now we apply Lemma 2.5 to the functions

fn := − 1

ϑN [Xn]
χ
B̄Xn
R (xn)

, n ∈ N ∪ {∞},

point (i) of Lemma 2.2 grants that (2.10) is satisfied, while from (3.19) and the assumption
mn(Zn) = 1 it easily follows that the fn’s are uniformly bounded from below by a continuous
function with bounded support. Hence the conclusion of Lemma 2.5 gives

−HN (Z∞)
(3.18)

=

∫
f∞ dm∞ ≤ lim

n→∞

∫
fn dmn

(3.18)
= lim

n→∞
−HN (Zn)

and thus the desired upper semicontinuity:

lim
n→∞

HN (Zn) ≤ HN (Z∞).

Lower semicontinuity Theorem 2.13 ensures that for HN -a.e. x ∈ Z∞ the metric tangent

space of X∞ at x is RN .
Now fix ε > 0, let δ2 := δ2(ε,N) be given by Proposition 3.2 and notice that what we just

said grants that for HN -a.e. x ∈ Z∞ there exists r̄ = r̄(x) such that for every r ∈ (0, r̄) we
have

dGH(BX∞
r/δ2

(x), BRN
r/δ2

(0)) ≤ rδ2,

thus, since Proposition 2.12 grants that HN (Z∞) < ∞, we can use Vitali’s covering lemma
(see e.g. [10, Theorem 2.2.2]) to find a finite number of points y∞,i ∈ BX∞

1 (x∞) and radii
ri > 0, i = 1, . . . ,M , such that

dGH(BX∞
ri/δ2

(y∞,i), B
RN
ri/δ2

(0)) ≤ riδ2 ∀i, (3.20a)

B̄X∞
ri (y∞,i) ∩ B̄X∞

ri′
(y∞,i′) = ∅ ∀i 6= i′, (3.20b)

d∞(y∞,i, x∞) + ri < 1 ∀i, (3.20c)

HN (BX∞
1 (x∞)) ≤ ε+ ωN

∑
i

rNi . (3.20d)

For each i find a sequence yn,i
GH→ y∞,i (recall (2.2)) and notice that there is n̄ ∈ N such that

for every n ≥ n̄ properties (3.20a), (3.20b), (3.20c) hold with yn,i and xn in place of y∞,i, x∞
respectively for any i. In particular, from (3.20a) for yn,i we can apply the scaled version of
Proposition 3.2 to deduce that

HN (BXn
ri (yn,i)) ≥ (1− ε)ωNrNi ∀i (3.21)

and since (3.20b), (3.20c) for the yn,i’s ensure that the balls BXn
ri (yn,i), i = 1, . . . ,M , are

disjoint and contained in BXn
1 (xn) for every n ≥ n̄ we deduce that

HN (BXn
1 (xn)) ≥

∑
i

HN (BXn
ri (yn,i))

(3.21)

≥ (1− ε)ωN
∑
i

rNi ∀n ≥ n̄.

Hence from (3.20d) we obtain

lim
n→∞

HN (BXn
1 (xn)) ≥ (1− ε)

(
HN (BX∞

1 (x∞))− ε
)

and, recalling (2.20), we conclude by the arbitrariness of ε > 0. �
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3.2 Dimension gap

In this section we shall prove the ‘dimension gap’ Theorem 1.4 and in doing so we will closely
follows the arguments in [17, Section 3].

The crucial part of argument, provided in Proposition 3.5, is the proof that the Hausdorff
dimension of the set of points for which no tangent space splits off a line is at most N − 1.
To clarify the structure of the proof, we isolate in the following lemma the measure-theoretic
argument which will ultimately lead to such estimate on the dimension (see [17, Proposition
3.2]):

Lemma 3.4. Let X be an RCD(K,N) space and Ωη ⊂ X Borel subsets indexed by a parameter
η > 0 such that it holds

m(Ωη) ≤ Cη ∀η ∈ (0, c) (3.22)

for some C, c > 0. For τ ∈ (0, 1) consider the sets

Ωτ,η := {x ∈ Ωη : d(x,X \ Ωη) > τη}. (3.23)

Then
dimH

( ⋂
j∈N

⋃
k≥j

Ωτ,2−k

)
≤ N − 1.

Proof For given x̄ ∈ X, R > 0 let ΩR,η := Ωη ∩BR(x̄) and Ωτ,R,η be defined as in (3.23) with
ΩR,η in place of Ωη. Then for every τ, η ∈ (0, 1) the definition easily gives Ωτ,η ∩ BR−1(x̄) ⊂
Ωτ,R,η and therefore

dimH

( ⋂
j∈N

⋃
k≥j

Ωτ,2−k

)
= lim

R→∞
dimH

( ⋂
j∈N

⋃
k≥j

Ωτ,2−k∩BR−1(x̄)
)
≤ lim

R→∞
dimH

( ⋂
j∈N

⋃
k≥j

Ωτ,R,2−k

)
.

Hence up to replacing Ωη with Ωη ∩BR(x̄) and then sending R ↑ ∞ we can, and will, assume
that Ωη ⊂ BR(x̄) for every η ∈ (0, 1).

Now let x1, . . . , xn ∈ Ωτ,η be with d(xi, xj) ≥ τη and denote by C ′ = C(K,N,R, x̄) a
constant depending only on K,N,R, x̄ (and thus independent on τ, η) whose values might
change in the various instances it appears: since the balls Bτη/2(xi) are disjoint and contained
in Ωη we have

n
(1.4)

≤ C ′
n∑
i=1

m(B1(xi))
(1.4)

≤ C ′(τη)−Nm
( n⋃
i=1

B τη
2

(xi)
)
≤ C ′(τη)−Nm(Ωη)

(3.22)

≤ CC ′(τη)−Nη.

If the family {x1, . . . , xn} is maximal we have Ωτ,η ⊂
⋃n
i=1Bτη(xi) and thus for any ε > 0 the

above implies
HN−1+ε

2τη (Ωτ,η) ≤ CC ′(τη)−Nη(2τη)N−1+ε ≤ CC ′τ ε−1ηε. (3.24)

Hence for any j ∈ N we have

HN−1+ε
2τ2−j

( ⋂
j′∈N

⋃
k≥j′

Ωτ,2−k

)
≤ HN−1+ε

2τ2−j

( ⋃
k≥j

Ωτ,2−k

)
≤
∑
k≥j
HN−1+ε

2τ2−k
(Ωτ,2−k)

by (3.24) ≤
∑
k≥j

CC ′τ ε−12−εk = CC ′τ ε−12ε(1−j)

and letting j ↑ ∞ we conclude. �
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Let us now give few definitions, following [17, Definition 2.10]. For a given RCD(K,N)
space X with measure having full support we define

E1(X) :=
{
x ∈ X : every metric tangent space at x splits off a line

}
where we say that a metric measure space (X, d,m) splits off a line provided X is isomorphic
to the product of another metric measure space (X′, d′,m′) and the real line, i.e. there is a
measure preserving isometry Φ : X′ ×R→ X, where the measure on X′ ×R is the product of
m′ and the Lebesgue measure and the distance is given by

d2
X′×R

(
(x, t), (y, s)

)
:= d′(x, y)2 + |t− s|2, ∀x, y ∈ X′, t, s ∈ R.

Also, for given x̄ ∈ X we put

E1,x̄(X) :=


∀ε, ε′ > 0 there exists r̄ = r̄(ε, ε′, x) such that for every r ∈ (0, r̄)

x 6= x̄ : there is y ∈ Bεr(x) and a unit speed geodesic
γ : [0, d(x̄, y) + r

ε′ ]→ X such that γ0 = x̄ and γd(x̄,y) = y

 .

We claim that
E1,x̄(X) ⊂ E1(X) ∀x̄ ∈ X. (3.25)

Indeed, let x ∈ E1,x̄(X), ε, ε′ > 0 and r̄ = r̄(ε, ε′, x) as above. Then for r ∈ (0, r̄) let
y, γ as above and notice that the appropriate restriction of γ is a geodesic of length ≥
2 min{ rε′ , d(x, x̄) − εr} whose midpoint y has distance ≤ εr from x. Hence in the rescaled

space (Xr, dr) := (X, d/r) there is a geodesic of length ≥ 2 min{ 1
ε′ ,

d(x,x̄)
r − ε} whose midpoint

has distance ≤ ε from x. Letting r ↓ 0 we conclude by a compactness argument that on every
tangent space at x there is a geodesic of length ≥ 2

ε′ whose midpoint has distance ≤ ε from the
origin, thus the arbitrariness of ε, ε′ and again a compactness argument ensure the existence
of a line through the origin. Since every tangent space to an RCD(K,N) space is a RCD(0, N)
space, the splitting theorem [28], [30] gives (3.25).

We then have the following:

Proposition 3.5. Let (X, d,m) be an RCD(K,N) space and x̄ ∈ X. Then

dimH(X \ E1,x̄(X)) ≤ N − 1 (3.26)

and thus also
dimH(X \ E1(X)) ≤ N − 1. (3.27)

Proof
Step 1: structure of the argument. From (3.25) and (3.26) the estimate (3.27) follows, hence
we focus in proving (3.26). Since trivially dimH({x̄}) = 0 ≤ N − 1, to conclude it is sufficient
to prove that for any R > 2 we have

dimH

(
AnnR/2(x̄) ∩

(
X \ E1,x̄(X)

))
≤ N − 1 where AnnR(x̄) := BR(x̄) \B1/R(x̄).

(3.28)
Fix x̄ ∈ X and for η > 0 define

ΩR
η := {x ∈ AnnR(x̄) : there is no unit speed geodesic γ : [0, d(x, x̄) + η]→ X

such that γ0 = x̄, γd(x,x̄) = x}
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and, for τ ∈ (0, 1), define ΩR
τ,η as in (3.23). We shall prove that for any R > 2 we have

m(ΩR
η ) ≤ Cη ∀η ∈ (0, 1

R) (3.29)

for some C = C(K,N,R, x̄) and

AnnR/2(x̄) ∩ (X \ E1,x̄) ⊂
⋃
i

(
AnnR/2(x̄) ∩

⋂
j

⋃
k≥j

ΩR
2−i,2−k

)
. (3.30)

Thanks to Lemma 3.4, these are sufficient to get (3.28) and the conclusion.
Step 2: proof of (3.29) We assume m(AnnR(x̄)) > 0 or there is nothing to prove, then we put

µ0 := m(AnnR(x̄))−1m|AnnR(x̄)
, µ1 := δx̄ and let π ∈ P(C([0, 1],X)) be the only optimal

geodesic plan from µ0 to µ1 (see [37]). Then from [37, Theorem 3.4] we know that (et)∗π � m
for every t ∈ [0, 1) and that for its density ρt it holds

ρ
− 1
N

t (γt) ≥ (m(AnnR(x̄)))
1
N σ

(1−t)
K,N (d(γ0, γ1)) where σ

(t)
K,N (d) :=

sinh(td
√
|K|N)

sinh(d
√
|K|/N)

π-a.e. γ, hence using the fact that σ
(t)
K,N (d) is decreasing in d we deduce that

(et)∗π ≤
1

m(AnnR(x̄))
(
σ

(1−t)
K,N (R)

)N m (3.31)

while the construction ensures that

(et)∗π is concentrated on BR(x̄) \ ΩR
t
R

∀t ∈ (0, 1). (3.32)

Therefore for η < 1
R using the above with t := ηR we have

m
(
BR(x̄) \ ΩR

η

) (3.31)

≥ m(AnnR(x̄))
(
σ

(1−ηR)
K,N (R)

)N
π
(

e−1
ηR

(
BR(x̄) \ ΩR

η

))
(3.32)

= m(AnnR(x̄))
(
σ

(1−ηR)
K,N (R)

)N (3.33)

and since ΩR
η ⊂ AnnR(x̄) ⊂ BR(x̄) yields ΩR

η = AnnR(x̄) \ (BR(x̄) \ ΩR
η ) in turn this gives

m(ΩR
η )

(3.33)

≤ m(AnnR(x̄))
(

1−
(
σ

(1−ηR)
K,N (R)

)N)
which, using the explicit expression of σ

(1−ηR)
K,N (R), gives our claim (3.29).

Step 3: proof of (3.30) We shall prove the equivalent inclusion

AnnR/2(x̄) ∩ E1,x̄ ⊃ AnnR/2(x̄) ∩
⋂
i

⋃
j

⋂
k≥j

(
X \ ΩR

2−i,2−k

)
. (3.34)

Let x belonging to the right hand side of (3.34) and ε, ε′ > 0. Pick i ∈ N such that 2−i ≤ εε′
and find j such that x ∈ X \ ΩR

2−i,2−k
for every k ≥ j. Up to increase j we can also assume

that 2−j < 1
R , then we put r̄ := ε′2−j and for given r ∈ (0, r̄) we let k ≥ j be such that

ε′2−(k+1) < r ≤ ε′2−k.
By definition of ΩR

2−i,2−k
we know that there is y ∈ X\ΩR

2−k
with d(x, y) ≤ 2−i−k and since

x ∈ AnnR/2(x̄) the bound 2−i−k ≤ 2−j < 1
R grants that y ∈ AnnR(x̄) \ΩR

2−k
. By definition of

ΩR
2−k

this means that there exists a unit speed geodesic starting from x̄ passing through y of

length d(x̄, y) + 2−k ≥ d(x̄, y) + r
ε′ and since d(x, y) ≤ 2−i−k ≤ εε′, taking into account the

arbitrariness of ε, ε′ we just showed that x ∈ E1,x̄, which was our claim. �
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To get the proof of the dimension gap and, later, of the stratification result we shall use
some facts about the Hα∞ pre-measure. Two direct consequences of the definitions are

Hα∞(A) = 0 ⇔ Hα(A) = 0 (3.35)

and
dH(An, A)→ 0, A compact ⇒ Hα∞(A) ≥ lim

n→∞
Hα∞(An). (3.36)

A subtler result relates the Hausdorff measure and the density of the∞-Hausdorf premeasure,
see [38, Proposition 11.3] and [26, Theorem 2.10.17] for the proof:

Lemma 3.6 (Density of ∞-Hausdorff premeasure). Let (X, d) be a metric space, α ≥ 0 and
E ⊂ X a Borel set. Then for Hα-a.e. x ∈ E we have

lim
r↓0

Hα∞(E ∩Br(x))

rα
≥ 2−αωα.

A last property of Hausdorff measures that we shall use is the following, see [26, Theorem
2.10.45] for the proof:

Hα(X) = 0 ⇔ Hα+1(X× R) = 0, (3.37)

valid for any α ≥ 0 and metric space X.
We can now prove Theorem 1.4:

Proof of Theorem 1.4 We shall assume that dimH(X) > N −1 and prove that HN (X) > 0,
thanks to Proposition 2.12 this is sufficient to conclude. We start claiming that

there exists an iterated tangent space of X which is the Euclidean space RN . (3.38)

To prove this, let ε > 0 be so that HN−1+ε(X) > 0, then by Proposition 3.5 we also have
HN−1+ε(E1(X)) > 0 and we can apply Lemma 3.6 to E := E1(X) to find x ∈ E1(X) and rn ↓ 0
such that

lim
n→∞

HN−1+ε
∞ (E1(X) ∩Br(x))

rN−1+ε
n

≥ 2−αωα. (3.39)

Recalling (2.1), up to pass to a not relabeled subsequence we can assume that the spaces
(Xn, dn,mn, xn) := (X, d/rn,m/m(Brn(x)), x) pmGH-converge to some RCD(0, N) space
(Y1, dY1 ,mY1 , o) as n ↑ ∞. It is clear that after embedding all these spaces into a real-

ization of such convergence we have that B
dn
1 (xn) → B

dY1

1 (o) w.r.t. the Hausdorff distance
and thus we have

HN−1+ε
∞ (B

Y1

1 (o))
(3.36)

≥ lim
n→∞

HN−1+ε
∞ (B

Xn
1 (xn)) = lim

n→∞

HN−1+ε
∞ (B

X
rn(x))

rN−1+ε
n

(3.39)
> 0

which, by (3.35), forces
HN−1+ε(Y1) > 0. (3.40)

By definition of E1(X) the fact that x ∈ E1(X) grants that Y1 = R × X1 and since Y1 is
RCD(0, N), the splitting ensures that X1 is either a point or N ≥ 2 and X1 is RCD(0, N − 1).

If X1 is a point we have Y1 = R and (3.40) forces N + ε ≤ 2. Since N ∈ N and N ≥ 1,
this implies N = 1.
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If instead N ≥ 2 we use (3.40) and (3.37) to deduce that HN−2+ε(X1) > 0 and repeat the
argument with the RCD(0, N − 1) space X1 in place of X and N − 1 in place of N .

Iterating this procedure after exactly N steps we arrive at a tangent space YN to the
RCD(0, 1) space XN−1 of the form YN = R×XN , and since YN is itself RCD(0, 1) this forces
XN to be a point.

In summary, we proved claim (3.38). Therefore by a diagonalization argument there is
r̃n ↓ 0 and (x̃n) ⊂ X such that for the rescaled spaces (X̃n, d̃n) := (X, d/r̃n) it holds

lim
n→∞

dGH

(
B̄X̃n
R (xn), B̄RN

R (0)
)

= 0 ∀R > 0. (3.41)

Now we consider δ2 = δ2(1/2, N) be given by Proposition 3.2 and pick R := 1
δ2

in (3.41)

above to conclude that for n sufficiently big we have r̃2
nK ≥ −δ2 and (3.2) is satisfied for the

RCD(r̃2
nK,N) space (X̃n, d̃n,m). Fix such n and let U ⊂ X̃n, u : U → u(U) ⊂ RN be given

by Proposition 3.2 with ε = 1
2 . Notice that (3.3) forces HN (u(U)) = LN (u(U)) > 0 and since

u is biLipschitz we also have that U ⊂ X̃n has positive HN measure in the space (X̃n, d̃n);
given that X̃n is obtained by rescaling of X, we see that U ⊂ X also has positive HN measure
in the space X, which gives the conclusion. �

The proof of Corollary 1.5 can now be easily obtained:

Proof of Corollary 1.5 If N is integer the claim is a direct consequence of Proposition 2.12
(see also [50, Corollary 2.3]). Otherwise let [N ]+ := min{n ∈ N : N ≤ n} and notice that
N < [N ]+ and that (X, d,m) is an RCD(K, [N ]+) space. Thus by Theorem 1.4 and again
Proposition 2.12 we conclude that dimH(X) ≤ [N ]+ − 1 = [N ]. �

3.3 Non-collapsed and collapsed convergence

Having at disposal the ‘continuity of volume’ granted by Theorem 1.3 and the ‘dimension
gap’ Theorem 1.4 we can now easily obtain the stability of the class of ncRCD(K,N) spaces
as stated in Theorem 1.2:

Proof of Theorem 1.2
(i) The fact that the lim is actually a lim is a direct consequence of Theorem 1.3 (recall also
(2.20)). This and the compactness of the class of RCD(K,N) spaces (see (2.1)) ensure that
up to pass to a subsequence, not relabeled, we can assume that there is a Radon measure
m∞ on X∞ such that (Xn, dn,HN , xn) pmGH-converge to (X∞, d∞,m∞, x) and to conclude
it is sufficient to prove that m∞ = HN , as this will in particular imply that the limit metric
measure space does not depend on the particular converging subsequence chosen.

By Theorems 2.3, 1.12 and point (i) of Lemma 2.2 we know that m∞ = ϑHN for some
ϑ ≤ 1, so that our aim is to prove that ϑ = 1 m∞-a.e.. If not, there would exist y∞ ∈ X∞ and
r > 0 such that

m∞(BX∞
r (y∞)) < HN (BX∞

r (y∞)). (3.42)

Now find a sequence yn
GH→ y∞ (recall (2.2)), notice that dGH(B̄Xn

r (yn), B̄X∞
r (y∞)) → 0 as

n→∞ and use Theorem 1.3 to obtain

lim
n→∞

HN (BXn
r (yn))

(2.20)
= lim

n→∞
HN (B̄Xn

r (yn)) = HN (B̄X∞
r (y∞))

(3.42)
> m∞(BX∞

r (y∞)),

contradicting (2.4).
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(ii) We argue by contradiction and assume

dimH(X∞) > N − 1. (3.43)

By the compactness of the class of RCD(K,N) spaces we know that there exists a Radon
measure m∞ on X∞ and a subsequence, not relabeled, such that the normalized spaces
(Xn, dn,HN/HN (B1(xn)), xn) pmGH-converge to (X∞, d∞,m∞, x) (recall (2.1)). In partic-
ular, this grants that (X∞, d∞,m∞) is an RCD(K,N) space, so that our assumption (3.43)
and Theorem 1.4 yield that HN (X∞) > 0 and thus there is x′ ∈ X such that HN (B1(x′)) > 0.

Now find a sequence x′n
GH→ x′ (recall (2.2)) and use Theorem 1.3 (and (2.20)) to obtain that

HN (BXn
1 (x′n))→ HN (BX∞

1 (x′)) > 0.

Taking into account that limn→∞ dn(xn, x
′
n) = d∞(x, x′) < ∞, such convergence and the

uniform local doubling property granted by the Bishop-Gromov inequality give that

lim
n→∞

HN (BXn
1 (xn)) > 0,

which contradicts our assumption limn→∞HN (BXn
1 (xn)) = 0 and thus yields the thesis. �

3.4 Volume rigidity

Collecting what proved so far it is now easy to establish the volume rigidity result, Theorem
1.6, and its Corollary 1.7.

Proof of Theorem 1.6
Step 1: set up Let (X, d,HN ) be a ncRCD(0, N) space and x̄ ∈ X such that

HN (BX
1 (x̄)) ≥ HN (BRN

1 (0)). (3.44)

We shall prove that this implies that B
X
1/2(x̄) is isometric to B

RN
1/2(0). Thanks to Gromov

compactness theorem (2.1) and to the stability of the ncRCD condition under non-collapsed
convergence established in Theorem 1.2, this is sufficient to conclude.

Step 2: the cone Y Consider the function (0, 1] 3 r 7→ HN (Br(x̄))
ωNrN

and notice that the Bishop-

Gromov inequality grants that it is non-increasing, that by (3.44) its value at r = 1 is 1 and,
recalling the definition of ϑN and Corollary 2.14, that it converges to ϑN [X](x̄) ≤ 1 as r ↓ 0.
Hence

ϑN [X](x̄) =
HN (Br(x̄))

ωNrN
= 1 ∀r ∈ (0, 1] (3.45)

and by the ‘volume cone to metric cone’ [24, Theorem 1.1] we get the existence of an N -cone
(Y, dY,mY, o) and a measure preserving isometry ι : BX

1/2(x̄)→ BY
1/2(o).

It follows that mY = HN and thus that Y is ncRCD(0, N). Also, the very definition of ϑN
and the properties of ι give that

ϑN [X](x) = ϑN [Y](ι(x)) ∀x ∈ BX
1 (x̄). (3.46)
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Now observe that by a simple scaling argument it is easy to see that ϑN [Y] is constant along
rays, and this fact together with the lower semicontinuity of ϑN [Y] given by point (i) in
Lemma 2.2 shows that ϑN [Y](o) ≤ ϑN [Y](y) for every y ∈ Y. Therefore

1
(3.45)

= ϑN [X](x̄)
(3.46)

= ϑN [Y](o) ≤ ϑN [Y](y)
(2.26)

≤ 1 ∀y ∈ Y. (3.47)

Step 3: Y = RN According to Lemma 2.9 it is sufficient to prove that Y is an N -metric
measure cone centered at any y ∈ Y and by the ‘volume cone to metric cone’ [24, Theorem

1.1] in order to prove this it is sufficient to show that r 7→ HN (Br(y))
ωNrN

is constant for every
y ∈ Y. By the very definition of N -cone this is true for y = o, then for general y ∈ Y put
R := dY(y, o) and notice that

lim
r→∞

HN (Br(y))

ωNrN
= lim

r→∞

HN (Br+R(y))

ωN (r +R)N
≥ lim

r→∞

HN (Br(o))

ωNrN
rN

(r +R)N
= ϑN [Y](o)

(3.47)
= 1,

so that the conclusion follows from (3.47) and the monotonicity granted by Bishop-Gromov
inequality (1.4). �

Proof of Corollary 1.7 Inequality (1.3) immediately follows from Corollary 2.14 and the
Bishop-Gromov inequality (1.4). The scaled version of Theorem 1.6 ensures the desired rigidity
for the equality case. Moreover, by the second step in the proof of Theorem (1.6) we see that
if

ϑ(x) = lim
r→0

HN (BX
r (x))

ωNrN
= 1,

then the spaces (X, d/r,Hn) converges to (RN , dE,HN ). The converse being an easy conse-
quence of Theorem 1.2, this concludes the proof. �

3.5 Stratification

Here we prove the stratification result stated in Theorem 1.8; notice the similarity with the
proof of Theorem 1.4.

Let us begin by giving the definition of the k-singular set Sk(X):

Sk(X) :=
{
x ∈ X : for every tangent space (Y, dY,mY, y) of X at x we have

dGH

(
B̄Y

1 (y), B̄Rk+1×Z
1 ((0, z))

)
> 0 for all pointed spaces (Z, dZ, z)

}
(3.48)

We can now prove Theorem 1.8:

Proof of Theorem 1.8 We argue by contradiction, thus we assume that for some k ∈ N and
ncRCD(K,N) space X we have dimH Sk(X) > k. Hence for some k′ > k it holds

Hk′(Sk(X)) > 0. (3.49)

Then for ε > 0 define

Sεk(X) =
{
x ∈ X : dGH

(
BX
r (x), BRk+1×Z

r ((0, z))
)
≥ εr ∀r ∈ (0, ε), pointed Z

}
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and note that Sεk(X) is closed and that Sk(X) =
⋃
i∈N S

2−i
k (X). From this and (3.49) it follows

that there exists ε̄ > 0 such that Hk′(S ε̄k(X)) > 0. We now apply Lemma 3.6 to E := S ε̄k(X)
to deduce that there exists x ∈ S ε̄k(X) and rn ↓ 0 such that

lim
n→∞

Hk′∞
(
S ε̄k(X) ∩BX

rn(x)
)

rk′n
≥ 2−k

′
ωk′ . (3.50)

By Corollary 2.14 we have ϑN [X, d,m](x) ≤ 1 and thus by Proposition 2.8, up to pass to
a non-relabeled subsequence, we can assume that the rescaled spaces (Xn, dn,mn, xn) :=
(X, d/rn,m/r

N
n , x) pmGH-converge to a pointed metric measure cone (Y, dY,mY, y) which,

by Theorem 1.2, is ncRCD(0, N).
Embedding all these spaces into a proper realization of this pmGH-convergence (recall

(2.1)) and using the metric version of Blaschke’s theorem (see [13, Theorem 7.3.8]) we see
that, extracting if necessary a further subsequence, we can assume that the compact sets
S ε̄k(Xn) ∩ B̄dn

1 (xn) converge to some compact set A ⊂ Y w.r.t. the Hausdorff distance. A
simple diagonal argument based on the very definition of S ε̄k(Y) then shows that A ⊂ S ε̄k(Y)
and thus

Hk′∞(S ε̄k(Y)) ≥ Hk′∞(A)
(3.36)

≥ lim
n→∞

Hk′∞
(
S ε̄k(Xn)∩Bdn

1 (xn)
)

= lim
n→∞

Hk′∞
(
S ε̄k(X) ∩Bd

rn(x)
)

rk′n

(3.50)
> 0.

Hence by (3.35) we also have Hk′(S ε̄k(Y) \ {y}) > 0 and we can repeat the argument to find
z ∈ S ε̄k(Y), z 6= y, and a tangent cone (Y′, dY′ ,mY′ , y

′) at z, which is ncRCD(0, N), such that

Hk′(S ε̄k(Y′)) > 0. (3.51)

Since z 6= y the cone Y′ contains a line passing through its origin y′ and thus by the split-
ting theorem for RCD spaces we deduce that Y′ = R × X1 for some metric measure space
(X1, d1,m1).

If k = 0 this is enough to conclude, because such splitting contradicts the choice z ∈ S ε̄k(Y).
Otherwise k ≥ 1, hence k′ > 1 and (3.51) and N ∈ N force N ≥ 2. Then the splitting grants
that X1 is an RCD(0, N − 1) space and from the fact that Y′ is ncRCD(0, N) and Proposition
2.15 we deduce that in fact X1 is ncRCD(0, N−1). Taking into account the trivial implication

(r, x1) ∈ Sk(R×X1) ⇐⇒ x1 ∈ Sk−1(X1)

and (3.37), from (3.51) we deduce that

dimH(Sk−1(X1)) > k − 1.

We can therefore repeat the whole argument with X1 and k− 1 in place of X and k: iterating
we eventually find a contradiction and achieve the proof. �

Remark 3.7 (Polar spaces). This theorem is also valid, with the same proof, in the a priori
larger class of RCD(K,N) spaces X such that every iterated tangent cone is a metric cone
(notice that the analogue of Proposition 2.15 holds, rather trivially, for this class of spaces).
Spaces with this property have been called polar in [17].

Notice that wncRCD(K,N) spaces such that ϑN [X] is locally bounded from above are
polar, and that Theorem 2.3 grants that this class of spaces is stable w.r.t. pmGH-convergence
provided we impose a uniform local upper bound on the ϑ’s. �
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Remark 3.8 (Boundary of ncRCD spaces). In the case of non-collapsed Ricci limit spaces it
has been shown in [17] that

SN−1(X) \ SN−2(X) = ∅. (3.52)

This is however false in the present situation, because, for instance, the closed unit ball
B̄1(0) ⊂ RN is a perfectly legitimate ncRCD(0, N) space and every point in the boundary
belongs to SN−1(X) \ SN−2(X).

The problem is the presence of the boundary: looking for a moment just at smooth objects,
compact manifolds with (convex) boundary are always RCD(K,N) spaces for suitable K,N
but not considered in [17] as objects whose limits define Ricci-limit spaces. Then in [17] it has
been proved (with an argument also linked to topology) that in the non-collapsing situation
boundary of balls converge to boundary of balls, a fact which quite easily implies (3.52).

This line of thoughts suggests to define the boundary ∂X of a ncRCD(K,N) space X as

∂X := closure of
(
SN−1(X) \ SN−2(X)

)
.

Then, mostly by analogy with the theory of Ricci-limit and Alexandrov spaces, a number of
natural non-trivial questions arise:

- Given a non-collapsing sequence Xn → X of ncRCD spaces, is it true that ∂Xn converge
to ∂X?

- Is it true that either ∂X = ∅ or ∂X is N − 1-rectifiable with HN−1|∂X
locally finite?

- Is X \ ∂X a convex subset of X? That is, is it true that for any x, y ∈ X \ ∂X there is a
(or perhaps, is any) geodesic connecting them entirely contained in X \ ∂X?

- Let Y be a connected component of ∂X. Is Y connected by Lipschitz paths? If so:

– let dY be the intrinsic distance on Y induced by the distance on X: is (Y, dY) an
Alexandrov space of non-negative curvature? (notice that the analogous of this
latter question for Alexandrov spaces is open - see [47, Section 9]).

– Let X′ be another ncRCD(K,N) space and assume that Y1, . . . ,Yn and Y′1, . . . ,Y
′
n

are the connected components of ∂X and ∂X′ respectively. Assume also that for
any i = 1, . . . , n the spaces Yi and Y′i with the induced length metrics are isometric
and glue X and X′ along their boundaries via such isometries. Is the resulting space
ncRCD(K,N)? (the analogous statement for Alexandrov spaces holds, see [46]).

�
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