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1 Introduction

Topological QFT’s introduced by Witten [1, 2] have been approached from various view-

points. A particularly insightful connection has been to realize these within string theory.

In this setup, topological amplitudes can naturally be realized by low energy degrees of

freedom living on supersymmetric branes [3]. A nice set of examples are 3d Chern-Simons

theories viewed as theories living on A-branes of topological strings [4]. In this setup, one

considers the local CY 3-fold string geometry to be T ∗M3 and wraps a D-brane around M3.

Realizing this theory in M-theory [5, 6], where M5 branes are wrapped around M3 × R3,

has led to interesting predictions about the integral structure of knot invariants, as well as

its extension [7] to Khovanov invariants.

Motivated by the connection between superstrings and M-theory, where the strings

are mapped to M2 branes, an uplift of topological strings to M-theory, called ‘topological

M-theory’ [8] was proposed, which replaces CY manifolds with G2 manifolds. In this theory

one would consider M2 branes wrapping associative 3-cycles instead of holomorphic curves.

Indeed, viewing CY times a circle as a special case of a G2 manifold, the associative cycles

are nothing but holomorphic curves times an extra circle. One can also consider the lift of
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Lagrangian D-branes to topological M-theory. The Lagrangian cycles of topological strings

map to co-associative 4-cycles for a G2 manifold. The worldsheet ending on D-branes in

topological strings gets mapped to associative subspaces ending on co-associative cycles.

It is natural to ask whether this story has any connections with topological field theory,

such as 3d CS theory. If so it is natural to expect it to be related to a 4d TQFT as 3d

Lagrangian subspaces are being replaced by 4d co-associative cycles.

Given the success of 3d TQFT and its relation to topological strings it is natural to ask

whether a similar idea would work for 4d TQFT. In particular it is natural to ask whether

the computation of Seiberg-Witten invariants [12], which for symplectic manifolds get

related to Gromov invariants by Taubes [13, 14], can be understood from this perspective

(see also [15]). To obtain a topological theory, as in the 3d case, we need X to be a

supersymmetric 4-cycle in a supersymmetric background. As discussed in [3] the natural

options are supersymmetric 4-cycles in CY 4-folds, or co-associative cycles in G2 holonomy

manifolds, or Cayley 4-cycles in spin(7) manifolds. However, if we wish to use M5 branes

then to get an N = 2 supersymmetric theory on X we need to wrap them in two extra

directions, that is, on a Riemann surface C. C must be part of a supersymmetric manifold;

for arbitrary C the smallest-dimensional ambient space in which C is calibrated is T ∗C.

So the only possibility, given that the dimension of M-theory is 11, is that the 4-cycle X is

part of a G2 manifold. The local structure of the G2 manifold is obtained by considering

the space of self-dual 2-forms on X which leads to a 7-fold W . We would then consider

M-theory on the 11-dimensional manifold W × T ∗C and wrap M5 branes around X × C.

The low energy, supersymmetric partition function of this theory is naturally captured by

N = 2 TQFT of the 4d QFT labeled by the curve C on the 4-manifold X. Precisely this

geometric realization of 4d TQFT in M-theory, using the G2 structure has already been

constructed and studied in [9]. Indeed many elements of what we encounter in this paper

have been considered there as well.1

The case of the Seiberg-Witten geometry near the monopole point is captured in this

setup by the curve C : xy − a = 0, with x, y ∈ C, where the monopole point corresponds

to a = 0. The light monopole, as a → 0, is realized in M-theory as a M2 brane whose

boundary ends on the vanishing cycle as in the setup studied in [16]. However, at a = 0

a new possibility arises: the curve C splits in two parts and they can be separated. This

corresponds to deforming the U(1) gauge theory by an FI D-term for each harmonic form

in X. If the harmonic form has no zeros, as is the case with symplectic X, it Higgses2

the U(1). In particular the co-associative cycle splits into two: {x = 0} × X ∪ {y =

0}×X4 separated by the harmonic form in the normal direction to X. The supersymmetric

partition function in this case receives contributions only from supersymmetric M2-branes

which are in the limit of small separation, when X is symplectic, the same as pseudo-

holomorphic curves times an interval along the normal direction as has been shown in [17].

Thus the contributions to the partition function of the topological theory become equivalent

1A different embedding of 4d TQFT in string theory which has led to insight about their structure was

recently considered in [10].
2For the mathematically minded readers, the mechanism of gauge symmetry breaking is nicely explained

in [11].
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to studying Gromov-Witten invariants on X. Even if X is not symplectic, this deformation

(which is possible only if b+2 > 0) is still useful, and in this case we will separate the two

sides except over the zeros of the harmonic form where the two pieces intersect. From the

physics setup it is clear that we still should be able to compute the partition function in

this case, but there would be extra configurations to take into account. This is in accord

with recent results in [18, 19] which show that one needs to include pseudo-holomorphic

curves which end on the zeros. This is natural because this still gives rise to the M2 branes

ending on the M5 branes. Even if b2+ = 0 and we could not deform the curves, this setup

is still valid, but does not lead to any simple way to compute it as the light modes are no

longer localized to pseudo-holomorphic curves in X.

This setup naturally extends to Gaiotto N = 2 theories where we wrap N M5 branes

over the Seiberg-Witten (SW) curve. To apply this setup we need a family of non-compact

SW curves Cu, parametrized by the N = 2 Coulomb branch U , such that there are points

u? ∈ U where Cu? degenerates into nodal genus 0 curves touching at points. Along this

degenerating locus the topological amplitudes typically diverge. However, in such cases

the local theory would have U(1)k global symmetry where k is the number of double

points in Cu? . If in addition we gauge this symmetry, we can introduce FI D-terms in the

corresponding U(1)’s which removes the singularities, which would correspond to separating

C into disconnected genus 0 pieces, and the above Seiberg-Witten geometry applies locally

to all such points and leads to computation of the corresponding topological amplitudes.

The organization of this paper is as follows: in section 2 we introduce the geometric

setup. In section 3 we explain the physical interpretation of the setup and the deformation.

Finally, in section 4 we end with some conclusions.

2 The geometric setup

In this note we consider M-theory on a Euclidean 11-fold of the form

M11 = W ×H, (2.1)

where W is a 7-fold of G2 holonomy with parallel 3-form Φ3 [20, 21], and H a hyperKähler 4-

fold; neither space is supposed to be compact or complete. This geometric compactification

of M-theory has been considered in [9]. This geometry preserves two supersymmetries. Let

L0 be a calibrated submanifold of the form

L0
∼= X × C ⊂W ×H (2.2)

where X ⊂ W is a compact co-associative submanifold (i.e. Φ3|X = 0) [21] and C ⊂ H a

special Lagrangian submanifold which is a holomorphic curve in complex structure I. Let

U ⊂ X be a coordinate patch3 in any real-analytic Riemannian 4-fold X; we can always

find a (non-complete) G2 manifold WU with an anti-G2 involution r (i.e. r∗Φ3 = −Φ3) so

3 To the best of our knowledge, it is not known if there exist global obstructions to the isometric

embedding of an arbitrary orientable Riemannian 4-manifold X as a co-associative submanifold of some

(non-complete) G2-manifold; if present, they are expected to be quite mild [22].
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that U embeds isometrically in WU as the co-associative submanifold Fix(r) of the fixed

points of r, in fact we may even choose WU so that the embedding is totally geodesic [22].

We are interested in the local physics near L0, and we may replace W ×H by a tubular

neighborhood of L0 which is isomorphic to the total space of the bundle [23]

WX × T ∗C → L0 (2.3)

where WX → X is the vector bundle of self-dual 2-forms and T ∗C → C the canonical

bundle. We identify X with the zero section s0 : X → WX, and write g for the genus of

C. The G2-structure along X ⊂WX is modeled on the 3-form

Φ3 = υ − ηaµν dwa ∧ dxµ ∧ dxν (2.4)

where wa (a = 1, 2, 3) are coordinates along the fiber, xµ local coordinates in X, υ the

volume form of the fiber, and ηaµν the ’t Hooft tensor [24]. The map ξ 7→ s∗0(iξΦ3) identifies

isomorphically the tangent space to the fiber of WX with the space of self-dual 2-forms on

X. The form Φ3 together with the G2 metric G define a vector cross product × on the

tangent bundle TWX preserved by parallel transport

× : TWX ∧ TWX → TWX, G(u× v, w) = Φ3(u, v, w). (2.5)

We start by wrapping a M5-brane on the 6-dimensional space

L = X ×
{
yN − yN−2φ2 + yN−3φ3 + · · · ± φN = 0

}
⊂WX × T ∗C, N ≥ 2 (2.6)

where y is a fiber coordinate for T ∗C and φk a meromorphic k-differential on C.

If X is flat and very large, the 4d IR world-volume theory on X is just the class-S 4d

N = 2 Gaiotto theory [25, 26] defined by the data (C, {φk}) quantized in the Euclidean

4-manifold X (plus a decoupled free theory for the center of mass d.o.f.). In the flat case

the 4d theory preserves 8 supercharges in the representation (2,1,2)+1⊕ (1,2,2)−1 of the

(Lorentz)× (R-symmetry) group

SU(2)+ × SU(2)− × SU(2)R ×U(1)r. (2.7)

The symmetry SU(2)R is geometrically identified with the rotations of the R3 fiber of the

bundle WX → X. The G2-structure identifies the fiber WXx with the vector space of

self-dual 2-forms at the point x ∈ X, and hence SU(2)R with the self-dual factor SU(2)+ in

the 4d Euclidean Lorentz group. The supercharge Q invariant under SU(2)diag ⊂ SU(2)+×
SU(2)R is the topological supersymmetry of the N = 2 theory topologically twisted á la

Witten [1] (for a nice survey see the book [27], and for the geometric setup relevant for

our discussion see [28]). The supersymmetry Q remains unbroken even when X is curved.

More generally, the topological supersymmetry Q is preserved by all deformations of the

4-manifold X inside WX as long as the deformed space Xdef is a co-associative submanifold

of WX since the G2-structure identifies the SU(2)+ and SU(2)R connections on Xdef and

one covariantly constant susy parameter ε is still present.
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Q is nilpotent, Q2 = 0, and the topological states/operators are Q-cohomology classes.

Each observable O has a k-form version O(k) for all k so that their integrals on k-cycles

O(Γk) ≡
∫

Γk
O(k) are Q-closed [1, 27]. The quantities of main interest are the topological

correlation functions 〈
Oi1(Γk1)Oi2(Γk2) · · · Oi`(Γk`)

〉
X

(2.8)

which are topological invariants of the smooth 4-manifold X.

Under certain geometric conditions (to be specified in a moment) the M5 brane config-

uration (2.6) admits an interesting deformation which preserves the topological supersym-

metry Q. The goal of the present note is to give a novel interpretation of this deformation

and study some of its implications. We shall proceed by steps.

The deformation of X in WX. Let us deform X to a nearby 4-fold Xdef ⊂ WX

specified locally by the equation

wa = ε φa(x) +O(ε2). (2.9)

One has

Φ3

∣∣
Xdef

= ε d
(
ηaµν φa(x) dxµ ∧ dxν

)
+O(ε2) = 0 (2.10)

so, to the first order in ε, a deformed co-associative submanifold Xdef is just the graph Xω

of a closed self-dual, hence harmonic, 2-form

ω = ηaµν φa(x) dxµ ∧ dxν . (2.11)

One shows4 that this deformation is not obstructed to higher order, so it make sense to

speak of the deformation

X  Xω (2.12)

by a finite5 self-dual harmonic 2-form ω: the 4-fold Xω ⊂ WX is compact and co-

associative. The deformation space of X is smooth of real dimension

b+2 (X) = dimRH
2(X,R)+. (2.13)

To have non-trivial deformations, in this paper we shall always assume b+2 (X) ≥ 1. To get

a simpler theory it is sometimes convenient to assume the stronger condition b+2 (X) > 1.6

4See e.g. section 4 of [23] or section 12.3.1 of [21].
5At least as long as ‖ω‖2 is not too large.
6Since the theory is topological, in fact, partially topological since the topological correlation functions

depend on non-normalizable complex deformations of non-compact C which corresponds to masses, we may

as well consider the opposite limit, namely X small and C very large. From this alternative point of view

we get the 2d TFT on C obtained by twisting the 2d (2, 0) model associated to the 4-fold X, see refs.[9, 28].

However the deformation we are interested in seems more naturally described from the perspective of TFT

on the space-time X.
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The factorization locus U◦ ⊂ U . The coefficients φk of the Seiberg-Witten (SW) curve

for the underlying 4d N = 2 model (2.6)

yN − yN−2φ2 + yN−3φ3 + · · · ± φN = 0 (2.14)

depends on fixed parameters, such as the masses, as well as on the point u in the Coulomb

branch U over which one has to integrate because the Euclidean space-time X is compact.

Contrary to the usual treatment [27, 29], we require the fixed parameters to have non-

generic values such that there is a non-empty sub-locus U◦ ⊂ U where the SW curve is

maximally reducible into N distinct components, i.e. it splits into linear factors

yN − yN−2φ2

∣∣
U◦ + yN−3φ3

∣∣
U◦ + · · · ± φN

∣∣
U◦ =

N∏
`=1

(y − λ`),
N∑
`=1

λ` = 0, (2.15)

where λ` are meromorphic differentials on C (λ` 6≡ λ`′ for `′ 6= `).

Formulae simplify in the N = 2 case where eq. (2.15) reduces to

φ2

∣∣
U◦ = λ2 (2.16)

for some meromorphic differential λ, and U◦ 6= ∅ iff (C, φ2) satisfies two conditions:

C1. φ2 has poles of even order 2ni at finitely many punctures zi ∈ C (i = 1, . . . , p), i.e.

√
φ2(u; z) = ±

ni∑
s=1

Λi,s
(z − zi)s

dz + regular as z → zi, Λi,ni 6= 0. (2.17)

The positive integers ni are restricted by the condition that the dimension k of the

Coulomb branch U of the 4d N = 2 theory is non-negative

k ≡ dimC U = 3(g − 1) +

p∑
i=1

ni ≥ 0. (2.18)

λ has poles of order ni at zi whose principal parts are as in eq. (2.17);

C2. for some choice of εi = ±1, the mass parameters mi ≡ Λi,1 satisfy

p∑
i=1

εimi = 0. (2.19)

Eq. (2.19) reflects the fact that the total residue of the meromorphic 1-form λ

vanishes.

In the N = 2 case, when φ2 is holomorphic the 6-fold L in (2.6) has the form X×(compact).

We are mainly interested in the opposite situation where the SW curve {y2 = φ2} is non-

compact: this requires at least one puncture to be present. U◦ = ∪i Ui decomposes in

finitely many irreducible components such that

Ui ∼= Cg as complex manifolds. (2.20)

In particular for g = 0 the locus U◦ ⊂ U consists of finitely many points.
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The class-S[A1] QFT specified by the datum (C, φ2) has a Lagrangian formulation

when C = P1 and φ2 has a single pole with n1 = 3, or for C arbitrary and ni ∈ {1, 2} [26, 30].

In the second case the flavor symmetry is at least7 SU(2)p. The masses mi take value in

the Cartan subalgebra h of the flavor symmetry.

Example 1. For instance, if the underlying class-S[A1] model is SQCD with Nf = 2

(which corresponds to (n1, n2) = (2, 2)) with quark masses m1 = ±m2 = m, we have

φ2(u; z) =

(
Λ2

z4
+

2Λm

z3
+

4u

z2
± 2Λm

z
+ Λ2

)
dz2, (2.21)

and U◦ consists of the single point u◦ = (m2 ± 2Λ2)/4. At u◦ eq. (2.16) holds with

λ =

(
Λ

z2
+
m

z
± Λ

)
dz. (2.22)

Co-associative deformations of the M5 branes. We return to the general case of

a SW curve satisfying the maximal factorization property (2.15) (but otherwise generic).

On the locus U◦ ⊂ U the M5 support L, eq. (2.6), becomes reducible

L =

N⋃
`=1

L`, L` ≡ X ×
{
y = λ`

}
⊂WX × T ∗C, (2.23)

and we can separate the various irreducible components in the WX direction

L 
N⋃
`=1

L`,ω`
, L`,ω`

≡ Xω`
×
{
y = λ`

}
⊂WX × T ∗C, (2.24)

where ω` ∈ Ω+
2 (X) are distinct self-dual harmonic forms. This is the deformed M5 brane

configuration we are interested in. By construction it still preserves the topological super-

symmetry Q.

For ease of presentation, from now on we focus on the N = 2 case, the extension to

general N being clear. The underlying 4d N = 2 QFT is then of class-S[A1]. For N = 2

the support of the M5 branes is simply

L = Lω ∪ L−, where Lω = Xω ×
{
y = λ

}
, L− = X ×

{
y = −λ

}
. (2.25)

The intersection {y = λ} ∩ {y = −λ} generically consists of

h = 2(g − 1) +
∑
i

ni (2.26)

distinct points (≡ double zeros of φ2).

In a general class-S[A1] QFT, when we approach a point u ∈ U where φ2(u) has

a zero of order 2 (which may be thought of as the result of the collision of two simple

zeros), a hypermultiplet becomes massless and we need to insert it in the IR description.

7There are 5 special cases where the symmetry enhances to a larger group of the same rank [30].

– 7 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
8

Approaching a zero of higher order the massless hypermultiplet gets replaced by a strongly

interacting Argyres-Douglas (AD) SCFT [31] which also becomes part of the IR physics.

In our setup, as we approach the special locus U◦ ⊂ U , all zeros of φ2 get of even

order. Approaching a generic point in U◦, h mutually-local hypermultiplets get massless.

In codimension 1 in U◦, interacting AD systems also enter in the IR description. The

emergence of AD SCFT’s is then generic for g ≥ 1. For g = 0 with general masses

satisfying (2.19) no AD system appears anywhere in the Coulomb branch U . To further

simplify the discussion, we focus on g = 0 with arbitrarily many punctures satisfying C1,

C2. Then U◦ ⊂ U is a finite collection of points. As we approach a factorization point

u◦ ∈ U◦, h ≡
∑

i ni − 2 mutually-local hypers get light; since we have only k ≡
∑

i ni − 3

photons, a Higgs branch of quaternionic dimension 1 opens up at each u◦ ∈ U◦.

Example 2. The simplest possible instance is C = P1 with a single pole with n1 = 3, that

is, φ2 = z2dz2. In this case h = 1 and k = 0, so the underlying N = 2 QFT is just a free

massless hypermultiplet. The two M5 branes have support

Xω × {x− y = 0} and X × {x+ y = 0}. (2.27)

2.1 Some useful geometric facts

2.1.1 ω symplectic

In the special case that the self-dual harmonic form ω is actually a symplectic form (i.e. it

vanishes nowhere) the supports of the two M5 branes (2.25) are completely separated

Lω ∩ L− = ∅. (2.28)

We write ω = tΩ, t ∈ R, where the self-dual symplectic form Ω is normalized so that

‖Ω‖2 = 2. There exists a compatible almost complex structure J : TX → TX, J2 = −1,

such that the Riemannian metric G has the form [32]

G(v, w) = Ω(v, Jw). (2.29)

When J is integrable the metric G is Kähler with Kähler form Ω. In general, J decomposes

the complexified differential forms into (p, q)-type

∧kT ∗X⊗C =
⊕
p+q=k

T (p,q), T (p,q) = ∧pT (1,0)⊗∧qT (0,1), T ∗X⊗C = T (1,0)⊕T (0,1). (2.30)

The canonical line bundle is K = T (2,0) and we write c for its Chern class c1(K).

A compact 2-dimensional submanifold Σ ⊂ X is called a pseudo-holomorphic curve iff

J preserves TΣ. In this case J induces on Σ the structure of a complex curve, the inclusion

i : Σ→ X is a pseudo-holomorphic map in the sense of Gromov [33], and Ω|Σ is the induced

volume form on Σ. We write e = e(Σ) for the 2-form Poincaré dual to the fundamental

class of Σ; the volume of the pseudo-holomorphic curve Σ is

vol(Σ) =

∫
X

Ω ∧ e(Σ). (2.31)

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
8

If Σ is connected, its genus is

g(Σ) = 1 +
1

2

(
e · e+ c · e

)
, (2.32)

while the formal dimension of the deformation space of Σ in X is [13, 34]

2d = e · e− c · e. (2.33)

2.1.2 ω near-symplectic

For a generic metric on a compact 4-fold X with b+2 (X) ≥ 1, the zero set of a self-dual

harmonic 2-form ω is a finite collection of non-intersecting codimension-3 circles qαS1
α ⊂

X [35, 36], so that the intersection between the two M5’s takes the form

Lω ∩ L− =
∐
α,a

S1
α × {qa} ⊂ X × C, (2.34)

where {qa} ⊂ C are the zeros of λ. We shall refer to this situation as the near-symplectic

case. One shows that for a generic metric one can choose the self-dual harmonic form ω so

that it has a single circle of zeros [37]. To fix the ideas, we assume this choice.

We cut out a tubular neighborhood Tε of the zero set S1 ⊂ X of radius ε. We remain

with a symplectic 4-manifold X̊ε = X \ Tε with boundary ∂X̊ε
∼= S1 × S2

ε . The boundary

∂X̊ε inherits a contact structure from the symplectic structure in the bulk [38]. The

symplectic geometry of the manifold X̊ε with boundary ∂X̊ε contains a new interesting

class of pseudo-holomorphic curves Σ, namely the ones with boundaries on ∂X̊ε which

have finite area and satisfy some good boundary conditions [19, 39]. Each component of

the boundary ∂Σ ⊂ ∂X̊ε is a (multiple cover of a) closed curve γ in the contact 3-fold

∂X̊ε: the appropriate boundary condition is that, as ε → 0, the curve γ approaches an

orbit of the Reeb vector field for the induced contact structure [19, 39]. One shows that if

the Seiberg-Witten invariants of the 4-manifold X are not zero, there must be such finite-

area pseudo-holomorphic curves with Reeb orbit boundaries. In fact, one may recover the

Seiberg-Witten invariants by a suitable count of such curves [19].

3 Physical interpretation of the deformation

3.1 Generalities

When the differential λ is holomorphic, the deformation L  Lω is normalizable and the

deformation parameter ω is a dynamical field from the viewpoint of the 4d QFT on X.

If λ has non-trivial poles (as is automatically the case for g = 0) the deformation is non-

compact and ω becomes a frozen parameter from the 4d perspective. Formally we may

still consider ω as a component of a (non-dynamical) background supermultiplet in the

same N = 2 susy representation as its compact-case counterpart. Since ω 6= 0 does not

break the topological supersymmetry, ω should be the v.e.v. of the lowest component in its

supermultiplet. In geometric engineering of N = 2 theories, the R-symmetry is identified

with the group of automorphisms of the normal bundle to the world-brane; it follows that
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ω transforms as a triplet under SU(2)R (identified with SU(2)+ by the topological twist).

The obvious N = 2 supermultiplet whose first component is a SU(2)R triplet is the linear

one, i.e. the supermultiplet containing a conserved flavor current Jµf . The first component

of the linear supermultiplet is the triplet of hyperKähler moment maps of the corresponding

flavor symmetry. The linear supermultiplet contains a 2-form gauge field B, related to the

flavor current by Jf = ∗dB. The 2-form B may be identified with a non-normalizable mode

of the 2-form living on the M5 world-volume.

An N = 2 susy-preserving coupling which may be interpreted as a background linear

multiplet is nothing else than an N = 2 Fayet-Iliopoulos (FI) term for an abelian vector-

multiplet which may be made of fundamental fields, composite operators, or non-dynamical

degrees of freedom.

We are thus led to consider FI terms of abelian gauge theories. The FI deformation of

topological theory under consideration has also been considered in [9].

3.2 Topological FI terms

We recall that, after the topological twist, the components of a N = 2 vector-multiplet

are: a gauge vector Aµ, a complex scalar φ, an auxiliary field D which is a real self-dual

2-form, a one-form fermion ψ, a self-dual 2-form fermion χ, and a scalar fermion η (all

fields being in the adjoint of the gauge group). We write δ for the action of the topological

supersymmetry. In particular we have8

δφ = 0, δχ = D − iF+, (3.1)

where F+ stands for the self-dual projection of the field strength F = dA+A2.

Let S be the action of a topologically twisted 4d N = 2 theory which contains an

abelian vector-multiplet (φ, ψ, χ, η,D,Aµ). We may add to S a δ-exact term of the form

S → S(ω) ≡ S + δ

∫
X
ω ∧ χ, (3.2)

where ω is a closed self-dual 2-form. The modification (3.2) does not change the topological

correlations (2.8) which then are ω-independent. We call the new term in the rhs of (3.2)

a topological FI coupling.

The topological FI term may be generalized to the non-abelian case

S → S + δ

∫
X
ω ∧ tr

(
P ′(φ)χ

)
(3.3)

where φ is the scalar of a non-abelian vector multiplet, χ its self-dual 2-form fermion and

trP (φ) stands for any ad-invariant symmetric polynomial.

Using eqs. (3.1), eq. (3.2) becomes

S →S +

∫
X
ω ∧D − i

∫
X
ω ∧ F = S +

∫
X
ω ∧D + 2π

∫
X
ω ∧ c1(L), (3.4)

8These formulae hold modulo gauge transformations [27].
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where L is the line bundle associated to the abelian gauge field and we used∫
X
ω ∧ F− = 0 (3.5)

since ω is self-dual. Then, up to the topological term 2π
∫
X ω ∧ c1(L), the Q-exact defor-

mation (3.2) just adds to the action the FI term∫
X
ω D. (3.6)

Therefore the topologically trivial modification (3.2) has two effects:

a) it multiplies the topological path integral in each topological sector by the constant

e−2π[ω]·c1(L), (3.7)

b) it modifies the equation of motions of the auxiliary field D with the effect of shifting

its on-shell value: Don-sh → Don-sh − e2ω where e is the abelian gauge coupling.

The statement that the combined effect of a) and b) is to leave the smooth invariants (2.8)

unchanged is equivalent to the well-established validity of the usual deformation [12, 13, 34]

used to simplify the computation of the Seiberg-Witten invariants [12, 27] when b+2 (X) > 1.

(For b+2 (X) = 1 the situation is a bit subtler, and some more care is needed [13, 34]).

In the non-abelian case one may write the last term in (3.3) as the topological observable9∫
[ω]

trP (φ)(2), (3.8)

plus a bilinear in the one-form fermion ψ of the vector-multiplet.

The discussion in section 3.1 suggests that the deformation L  Lω has the effect

of modifying the topologically twisted IR effective theory by adding a FI term of the

general form

S → S − δ
∫
X
ω ∧

∑
a

κa χ
a + 2π

∑
a

κa

∫
X
ω ∧ c1(La), (3.9)

where the sum is over all the light photons and κa are numerical coefficients which depend

on the SW curve and the point u◦ ∈ U . The new action (3.9) is still topologically invariant.

We shall make precise applications of this idea in the following subsections to the theories

under consideration.

3.3 M2 branes wrapped on associative cycles

To compute topological correlation functions from our geometric setup we have to sum

over all Q-invariant configurations describing finite-action instantons of our system of M5

branes wrapped on Lω ∪L−. In the N = 2 case these instantons are finite-volume BPS M2

branes suspended between the two M5 supported on Lω and L−. Such a M2 brane does

not break the topological supersymmetry iff each connected component M ⊂ WX × T ∗C
9Here [ω] stands for the 2-cycle Poincaré dual to ω.
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of its support is calibrated. In particular, the projection of M on the first factor space,

WX, should be either a point or a connected associative 3-manifold A. Saying that A is

associative is equivalent to saying that its tangent space TA is closed under the vector

cross-product × (2.5) or, equivalently, that is calibrated by Φ3 i.e.

Φ3

∣∣
A

= υA ≡ (induced volume form). (3.10)

We distinguish two cases.

3.3.1 ω symplectic

For ω symplectic Xω ∩X = ∅, so the projection of M on WX cannot be a point, hence it

must be an associative 3-fold A ⊂WX. Then the projection of each connected component

of the M2 brane on T ∗C is a point and

M = A× {q}, q ∈ {y = λ} ∩ {y = −λ} ⊂ T ∗C. (3.11)

It follows that the projection of M on the second space T ∗C must be a zero of the differential

λ. These zeros are in one-to-one correspondence with the hypers which get light as u →
u◦ ∈ U◦, so to each connected BPS M2 there is associated a particular massless hyper.

As before, for ω symplectic we write ω = tΩ with ‖Ω‖2 = 2. We claim that for small t

the boundary of A in X (as well as in XtΩ) is a pseudo-holomorphic curve Σ with respect to

the almost complex structure J defined by the self-dual symplectic form Ω, cfr. eq. (2.29).

Indeed, in a neighborhood of X the associative 3-fold has the form

A =
{(
x+O(s), wa = s φa(x) +O(s2)

)
, x ∈ Σ, s ≥ 0

}
⊂WX (3.12)

where φa(x) is as in eq. (2.9). The vertical subbundle VA ⊂ TA is spanned by ∂s and

G(∂s × u, v) = Φ3(∂s, u, v) = Ω(u, v) = G(Ju, v) u, v ∈ TX, (3.13)

that is, Ju = ∂s × u so that TA closed under × implies that TΣ ' TA/VA is closed

under J , i.e. the boundary Σ = ∂A ∩ X is pseudo-holomorphic. Vice-versa, if we have a

pseudo-holomorphic curve Σ ⊂ X we may construct an associative 3-fold A ⊂ WX such

that ∂A ∩ X = Σ. We conclude that associative 3-folds suspended between X and XtΩ

and pseudo-holomorphic curves in X are in one-to-one correspondence (for small t and X

symplectic), and counting associative 3-folds A with boundaries on X and Xω in a given

topological class is equivalent to counting pesudo-holomorphic curves with given homology

class e(Σ) (see [17] for a precise mathematical treatment).

As a check, let us compute the volume of the associative submanifold A (to the first

order in t), cfr. eq. (2.31)

vol(A) = t · vol(Σ) = t

∫
X

Ω ∧ e(Σ) =

∫
X
ω ∧ e(Σ). (3.14)

Since the Euclidean M2 branes wrapped on an associative manifold A with boundaries

in the co-associative spaces Xω, X are BPS, we expect that they give a contribution to the

topological action of the form

T vol(A) + δ-exact ≡ T
∫
X
ω ∧ e(Σ) + δ-exact, (3.15)
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where T is the M2 tension in the appropriate units. Eq. (3.15) matches with the expression

we found for the topological FI terms (3.9) (say with one vector-multiplet) provided the

following identifications hold

e(Σ) = c1(L), T = 2πκ. (3.16)

The second condition may be taken to be the definition of κ. To understand the validity of

the first identification we will first consider the situation for a U(1) N = 2 theory with a

massless charged field, as in the monopole point of the Seiberg-Witten geometry, and then

explain how the generalization works for the case in consideration.10

3.3.2 The U(1) monopole point and its deformation

In this section let us focus on the original Seiberg-Witten monopole point (example 2 of

section 2). The geometry in this case is represented by C : xy = 0. The U(1) gauge field

on the M5 brane arises from the B-field on the M5 brane as follows: consider a generic

Coulomb branch point deformation, given by xy = µ. In this case we have a non-trivial

1-cycle on C and a dual one form η. The U(1) gauge field A on X arises from the M5 brane

by decomposing it in the direction of this 1-form: B = A(x) ∧ η. Note that the mass of

the charged field is µ which goes to zero as µ→ 0. If we turn on the FI term for the U(1)

the Coulomb branch is automatically pushed to 0 to allow the condensation of a v.e.v. for

the massless fields to preserve supersymmetry. This corresponds to µ = 0 and then pulling

the xy = 0 curve to two disconnected curves in the full G2 geometry given by x = 0 and

y = 0 with different transverse positions. Now there is no compact cycle on C and this

corresponds to Higgsing the U(1) via the FI term.

Let us see how the situation changes in presence of a M2 instanton with world-volume

Σ × I where I is the unit interval whose two ends are, respectively, at the point x = 0

on the curve {y = 0} and at the point y = 0 on {x = 0}. From the point of view of

the world-volume theory on each M5 brane, this instanton is a topological defect with

support on the intersection of the M5 with the M2 along the surface Σ. The M5 world-

volume theory gives rise to a Gaiotto-like field theory living on the 4-manifold X, and

the M2 instanton is then realized as a topological configurations of the corresponding 4d

degrees of freedom having support on the surface Σ ⊂ X. Along X, away from Σ we

have the same local physics as in absence of the M2: the U(1) is Higgsed. We claim

that the 4d U(1) gauge symmetry is restored along Σ. Indeed, the intersection with the

M2 has a description as a topological defect in terms of the degrees of freedom living on

X, and conversely all topologically non-trivial configurations of the 4d fields should have a

geometric engineering in terms of branes. The 4d theory is a supersymmetric version of the

Abelian Higgs model; in the broken U(1) phase its topological defects are the well-known

superconducting vortices [11]. Let z be a local complex coordinate so that the surface Σ

is locally given by z = 0. As z → 0 the gauge field behaves, in a holomorphic gauge,

as dz/z and the Higgs field goes to zero. Therefore the U(1) gauge symmetry is restored

10For a review of work by Taubes [13, 14, 34] on the Seiberg-Witten monopole equations [12] and their

relation with the Gromov invariants [33] when X is symplectic and b+2 (X) > 1, see the appendix.
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along Σ. This is most easily understood from the geometric picture: the M2 brane has

the effect of making the two complex planes {x = 0} and {y = 0} into planes punctured

at the respective origins, so that a new compact 1-cycle emerges, namely the difference of

the cycles around the two punctures in the respective planes. From the viewpoint of the

field theory on the 4-manifold X the gauge field associated to this 1-cycle appears to be

the same one present in the original unbroken phase, before the deformation. The compact

cycle has support at the M2 brane. Moreover since the boundary of M2 brane sources the

B-field on the M5 brane, we have

dH = F ∧ dη = 2π δ[Σ] (3.17)

on the M5 brane which implies F = 2π δ[Σ]

∣∣
X

. In other words the first equation in (3.16)

now follows: e(Σ) = c1(L).

3.3.3 Application to S[A1] theory

Now we are ready to apply this setup to the Gaiotto theories. We will mainly focus

on the N = 2 case, but the generalization to all N is straightforward. As we already

discussed there is a locus where the curve C factorizes into two pieces. This can be done

after we adjust some of the masses of the gauge theory appropriately. Moreover, in this

limit we have U(1)n−1 gauge factors with n nodal points, i.e. with n charged fields where

[n − 2] is the divisor of the one form λ where the curve C is given by y2 = λ2. This

theory is different from the Seiberg-Witten case discussed: We have one extra matter field

compared to the number of U(1)’s and we can have a Higgs branch without even turning

on the FI term. However, this means that the topological theory, as the masses are tuned

to allow factorization will leads to the moduli space of Seiberg-Witten equations which

is not compact and which would lead to divergencies. To avoid this divergence we can

gauge an extra U(1) flavor symmetry, which is available only when the masses satisfy∑
i εimi = 0, as already discussed. Once we gauge this U(1) we will have a situation very

similar to the Seiberg-Witten case discussed, namely now we have n, U(1) gauge factors

and n massless charged fields, one for each nodal point. So in this context we can repeat the

exact analysis we did above for the Seiberg-Witten case, show that topological amplitudes

for this weakly gauged Gaiotto theory can be captured as in the Seiberg-Witten case by

pseudo-holomorphic vortices. Roughly speaking, we get ZX = ZnSW , although we expect

the actual relation to involve also contributions from contact terms and finite counterterms.

It would be interesting to interpret the resulting amplitude for the topological theory

considered here, in which one gauges an extra U(1) flavor symmetry, in terms of the

topological invariants computed in the original TFT without this gauging. As we discussed,

at the point in mass parameters where
∑
εimi = 0 the original theory is divergent (as

the Seiberg-Witten equations will have non-compact moduli of solutions) and develops an

extra U(1) global symmetry which we gauged. It is natural to expect that the result of

the gauging the extra U(1) is related to the residue of the pole in topological amplitudes

in the original theory as
∑
εimi → 0. This may have a simple interpretation in the

set-up [9] where one takes the viewpoint of the 2d topological field theory living on the

curve C, and defines the invariants of the 4-manifold in terms of correlation functions for
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this 2d theory. The singularity as
∑
εimi → 0 gets reinterpreted as due to the collision

limz1→z2 φ1(z1)φ2(z2) inside the relevant correlation. The residue is obtained by replacing

the product φ1(z1)φ2(z2) with the operator φ in the singular part of the OPE: it is a 4d

topological invariant, as it is the finite part of the correlation with the pole subtracted.

The operator φ looks to have the general structure one would expect to arise in this context

when we gauge the extra U(1) to get our modified topological field theory. It would be

worthwhile developing this further.

3.3.4 Extension to general N

The situation when the underlying 4d N = 2 QFT is of class S[AN−1] is similar. At a

point u◦ ∈ U◦ where the SW curve decomposes into N linear curves,
∏N
`=1(y − λ`) we get

a set of massless hypermultiplets in one-to-one correspondence with the zeros of

λ` − λ`′ = 0 1 ≤ ` < `′ ≤ N. (3.18)

Let q`,`′ be such a zero. One considers the M2 branes with supports of the form

A`,`′ × {q`,`′} ⊂WX × T ∗C, (3.19)

where A`,`′ ⊂WX is an associative submanifold with boundaries on Xω`
∪Xω`′ . At a generic

point in U◦ a Higgs branch of quaternionic dimension N − 1 opens up, and we introduce

N − 1 abelian vector-multiplets; the corresponding N − 1 topological D-terms that can

be added to the action describe the independent deformations deformations X → Xω`

(
∑

` ω` = 0) of the co-associative supports of the branes. At a generic point in U◦ we again

get several copies of the Seiberg-Witten-(Taubes) equations.

3.4 The near-symplectic case

For simplicity we focus on the N = 2 case. If our 4-manifold X with b+2 (X) ≥ 1 does not

admit a symplectic form, we may deform the metric so that there is a self-dual harmonic

form Ω whose zero-locus Z = {Ω = 0} ⊂ X is a single embedded circle S1 [37]. Then

the two M5 branes LtΩ and L− intersect in a collection of non-intersecting circles S1 one

for each zero of the differential λ. More generally, for a generic metric, the intersection

Lω ∩ L− consists of a set of non-intersecting embedded circles, each circle being localized

at a distinct zero of λ.

The story is similar to the symplectic case. The new ingredient of the analysis is the

existence of additional TFT instantons of a different kind. They are given by M2 branes

whose support has the form A×{(a zero of λ)} with A ⊂WX an associative submanifold

such that A ∩Xω ≡ Σω and A ∩X ≡ Σ are pseudo-holomorphic curves with boundary on

the zero set of ω

∂Σ = Z = −∂Σω, (3.20)

and finite volume

vol(Σ) =

∫
Σ

Ω <∞, (3.21)
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a condition which may be shown to be equivalent to having finite action in the sense of the

effective Seiberg-Witten theory [40].

Since the co-associative deformations are trivial at the level of the 4d TFT, the com-

putation of the usual Donaldson/Seiberg-Witten invariants should also localize around

the TFT instantons of this kind. In particular, if the Seiberg-Witten invariant of the 4-

manifold X is not zero, one expects the presence of non-trivial TFT instantons of the above

form. That they indeed exist is a theorem by Taubes [40] (see also a related theorem by

Gerig [19]).

In fact, one expects that the full Seiberg-Witten invariants are reproduced in this way

by an appropriate count of the various TFT instantons for the near-symplectic case as was

the case for symplectic manifolds. The correct count is discussed from the mathematical

viewpoint in ref.[19], where agreement is checked mod 2, but it is expected to work even

by dropping the mod 2 condition.11 From the physics side it is also clear that it should

work, and it would be interesting to flesh out the details of the physics that is involved

in this counting. In particular the relevant counting of the curves should be as counting

embedded objects in X (with multiplicities) and not as maps into X. In other words, we

expect the relevant invariants are the analogs of the Gopakumar-Vafa invariants rather

than the Gromov-Witten invariants.

4 Discussion

In this paper we have shown that embedding the N = 2 topological field theory on 4-

manifolds into M-theory can be helpful in shedding light on the connection of Taubes’

work and the Seiberg-Witten invariants, as inquired by Taubes at the end of ref. [15]. In

particular we find that G2 geometry on the space of self-dual 2-forms over the 4-manifold

X is necessary for this realization. The M2 branes suspended between M5 branes realizes

the Taubes’ realization of Seiberg-Witten invariants as Gromov invariants for symplectic

manifolds. This setup naturally generalizes to the case of near-symplectic manifolds, where

M-theory ingredients guarantee that there should be an extension for this picture, which

mirrors what has been found mathematically. Namely one ends up considering M2 branes

which project to Riemann surfaces ending on zero loci of self-dual 2-forms. It would

be interesting to further study the physics of this theory, as it involves superconducting

vortices ending on defects.

Acknowledgments

We thank Edward Witten for drawing our attention to this question, and to Sergei Gukov,

Marcos Mariño and Pavel Putrov for helpful discussions and clarifications.

The research of CV is supported in part by the NSF grant PHY-1719924 and by a

grant from the Simons Foundation (602883, CV). The research of CG is supported by the

National Science Foundation under Award #1803136.

11To be clear, in ref.[18] the relevant count of (punctured) pseudo-holomorphic curves is defined over the

integers, and in ref.[19] it is shown that there is a correspondence between the relevant moduli spaces of

such curves and Seiberg-Witten solutions.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
8

A Review of Taubes’ results (ω symplectic)

Seiberg-Witten monopole equations [12] describe the supersymmetric configurations of

topological twisted N = 2 SQED with one massless charged hypermultiplet which can

be seen as the IR effective theory of N = 2 pure SYM at a point in the Coulomb branch

where the monopole (or the dyon) get massless [41].12

In the notation of ref.[12] the Seiberg-Witten (SW) equations read

/DM = 0, F+
µν +

i

2
MΓµνM̄ = 0, (A.1)

where the “monopole” M is a section of the positive chirality sub-bundle S+ of a SpinC-

structure on the smooth oriented 4-manifold X, /D is the Dirac operator for a connection

on S+, and F+ is the self-dual part of the curvature of the induced U(1) connection A on

det(S+). The SW invariant SW associates to each choice of the SpinC-structure an integer

which “counts” with signs the solutions to the SW equations (A.1).

The second equation in (A.1) is just δχ = 0 with the auxiliary field D replaced by

its on-shell expression using its equations of motion. Therefore if we add to the action a

topological FI term (3.2) the second SW equation gets shifted by ω = tΩ

/DM = F+ +
i

2
MΓM̄ + tΩ = 0 (A.2)

a deformation of the SW equations already considered in Witten’s original paper [12] in

order to get a better behaved one (for t 6= 0 the gauge group acts freely on the space

of solutions).

Taubes considers the deformed SW equations (A.2) when X is a symplectic 4-fold [13,

14, 34]; his analysis is nicely summarized in section 3 of ref.[11]. When X is symplectic, we

may write13

S+ = E ⊕ (K−1 ⊗ E) (A.3)

for some line bundle E; the SpinC-structure is specified by the Chern class e ≡ c1(E). Then

the SW invariant may be seen as a map

SW : H2(X,Z)→ Z, e 7→ SW(e). (A.4)

The monopole field M takes the form

M =

(
α

β

)
, where α ∈ C∞(E), β ∈ Λ(0,2)(E). (A.5)

Taubes studies the behavior of the solutions for t≫ 0. He finds [13, 14]:

12We stress that while N = 2 SQED satisfies conditions C1, C2 of section 2 (it is the unique theory with

C = P1 and a single pole with n1 = 3), N = 2 pure SYM with gauge group SU(2) does not satisfy them

(since φ2 has pole of odd order) so pure SYM does not admit our co-associative deformation and its story

is rather different.
13Here K ≡ T (2,0) is the canonical bundle as in section 2.1.1.
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a) for [Ω] · e < 0 there is no solution, so SW(e) = 0;

b) if [Ω] · e = 0 the only solution is the trivial one: zero gauge field, β = 0 and |α| is the

constant such that MΓM̄ + 2itΩ = 0. Then SW(e) = 1;

c) if [Ω] · e ≥ [Ω] · c we reduce to the above two cases by the “charge conjugation”

symmetry

SW(e) = ±SW(c− e); (A.6)

d) for e in the window 0 < [Ω] · e < [Ω] · c we may have non-trivial solutions.

The interesting solutions have the following form (see also [11]): as t gets large and positive,

β → 0 everywhere while |α| goes “almost everywhere” to the constant in b); but α ∈ C∞(E)

is forced by topology to have a non-trivial zero locus Σ ⊂ X which (by definition) is

Poincaré dual to the Chern class e of E. In the limit t → ∞ the zero-locus Σ approaches

a pseudo-holomorphic curve; indeed for β = 0 the first equation (A.1) reduces to

∂Aα = 0 (A.7)

where ∂A is the (0,1)-part of the covariant derivative on C∞(E). It follows that in the

symplectic case counting solutions to the SW equations for the SpinC structure e is the

same as counting pseudo-holomorphic curves Σ in the homology class dual to e. In other

words, in the symplectic case with b+2 (X) > 1 the SW invariant SW coincides with the

Gromov invariant [13, 14, 34]. The action of a solution to the equation (A.2) for t � 0 is

proportional to

t

∫
Ω ∧ F/2π = t vol(Σ), (A.8)

as follows from section 3.2.

Remark. We clarify why it is convenient to assume b+2 (X) > 1. To have a well-defined

invariant, there should not be reducible solutions to the SW equations, i.e. solutions with

M = 0. If b+2 (X) ≥ 1 then there are no reducible solutions for a generic deformation

tΩ. If b+2 (X) > 1 there are no reducible solutions along a generic one-parameter family

of deformations, so that we may reach the limit t → ±∞ where the analysis simplifies

without crossing troublesome points.
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